forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2460 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2460 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for statements.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/AST/APValue.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/StmtObjC.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
 | 
						|
  Expr *E = expr.get();
 | 
						|
  if (!E) // FIXME: FullExprArg has no error state?
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
 | 
						|
  // void expression for its side effects.  Conversion to void allows any
 | 
						|
  // operand, even incomplete types.
 | 
						|
 | 
						|
  // Same thing in for stmt first clause (when expr) and third clause.
 | 
						|
  return Owned(static_cast<Stmt*>(E));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
 | 
						|
                               bool HasLeadingEmptyMacro) {
 | 
						|
  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
 | 
						|
                               SourceLocation EndLoc) {
 | 
						|
  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
 | 
						|
 | 
						|
  // If we have an invalid decl, just return an error.
 | 
						|
  if (DG.isNull()) return StmtError();
 | 
						|
 | 
						|
  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
 | 
						|
  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
 | 
						|
 | 
						|
  // If we have an invalid decl, just return.
 | 
						|
  if (DG.isNull() || !DG.isSingleDecl()) return;
 | 
						|
  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
 | 
						|
 | 
						|
  // suppress any potential 'unused variable' warning.
 | 
						|
  var->setUsed();
 | 
						|
 | 
						|
  // foreach variables are never actually initialized in the way that
 | 
						|
  // the parser came up with.
 | 
						|
  var->setInit(0);
 | 
						|
 | 
						|
  // In ARC, we don't need to retain the iteration variable of a fast
 | 
						|
  // enumeration loop.  Rather than actually trying to catch that
 | 
						|
  // during declaration processing, we remove the consequences here.
 | 
						|
  if (getLangOptions().ObjCAutoRefCount) {
 | 
						|
    QualType type = var->getType();
 | 
						|
 | 
						|
    // Only do this if we inferred the lifetime.  Inferred lifetime
 | 
						|
    // will show up as a local qualifier because explicit lifetime
 | 
						|
    // should have shown up as an AttributedType instead.
 | 
						|
    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
 | 
						|
      // Add 'const' and mark the variable as pseudo-strong.
 | 
						|
      var->setType(type.withConst());
 | 
						|
      var->setARCPseudoStrong(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
 | 
						|
///
 | 
						|
/// Adding a cast to void (or other expression wrappers) will prevent the
 | 
						|
/// warning from firing.
 | 
						|
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
 | 
						|
  SourceLocation Loc;
 | 
						|
  bool IsNotEqual, CanAssign;
 | 
						|
 | 
						|
  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Loc = Op->getOperatorLoc();
 | 
						|
    IsNotEqual = Op->getOpcode() == BO_NE;
 | 
						|
    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
 | 
						|
  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
 | 
						|
    if (Op->getOperator() != OO_EqualEqual &&
 | 
						|
        Op->getOperator() != OO_ExclaimEqual)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Loc = Op->getOperatorLoc();
 | 
						|
    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
 | 
						|
    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
 | 
						|
  } else {
 | 
						|
    // Not a typo-prone comparison.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Suppress warnings when the operator, suspicious as it may be, comes from
 | 
						|
  // a macro expansion.
 | 
						|
  if (Loc.isMacroID())
 | 
						|
    return false;
 | 
						|
 | 
						|
  S.Diag(Loc, diag::warn_unused_comparison)
 | 
						|
    << (unsigned)IsNotEqual << E->getSourceRange();
 | 
						|
 | 
						|
  // If the LHS is a plausible entity to assign to, provide a fixit hint to
 | 
						|
  // correct common typos.
 | 
						|
  if (CanAssign) {
 | 
						|
    if (IsNotEqual)
 | 
						|
      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
 | 
						|
        << FixItHint::CreateReplacement(Loc, "|=");
 | 
						|
    else
 | 
						|
      S.Diag(Loc, diag::note_equality_comparison_to_assign)
 | 
						|
        << FixItHint::CreateReplacement(Loc, "=");
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
 | 
						|
  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
 | 
						|
    return DiagnoseUnusedExprResult(Label->getSubStmt());
 | 
						|
 | 
						|
  const Expr *E = dyn_cast_or_null<Expr>(S);
 | 
						|
  if (!E)
 | 
						|
    return;
 | 
						|
 | 
						|
  SourceLocation Loc;
 | 
						|
  SourceRange R1, R2;
 | 
						|
  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Okay, we have an unused result.  Depending on what the base expression is,
 | 
						|
  // we might want to make a more specific diagnostic.  Check for one of these
 | 
						|
  // cases now.
 | 
						|
  unsigned DiagID = diag::warn_unused_expr;
 | 
						|
  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
 | 
						|
    E = Temps->getSubExpr();
 | 
						|
  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
 | 
						|
    E = TempExpr->getSubExpr();
 | 
						|
 | 
						|
  if (DiagnoseUnusedComparison(*this, E))
 | 
						|
    return;
 | 
						|
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
 | 
						|
    if (E->getType()->isVoidType())
 | 
						|
      return;
 | 
						|
 | 
						|
    // If the callee has attribute pure, const, or warn_unused_result, warn with
 | 
						|
    // a more specific message to make it clear what is happening.
 | 
						|
    if (const Decl *FD = CE->getCalleeDecl()) {
 | 
						|
      if (FD->getAttr<WarnUnusedResultAttr>()) {
 | 
						|
        Diag(Loc, diag::warn_unused_result) << R1 << R2;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (FD->getAttr<PureAttr>()) {
 | 
						|
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (FD->getAttr<ConstAttr>()) {
 | 
						|
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
 | 
						|
    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
 | 
						|
      Diag(Loc, diag::err_arc_unused_init_message) << R1;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    const ObjCMethodDecl *MD = ME->getMethodDecl();
 | 
						|
    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
 | 
						|
      Diag(Loc, diag::warn_unused_result) << R1 << R2;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (isa<ObjCPropertyRefExpr>(E)) {
 | 
						|
    DiagID = diag::warn_unused_property_expr;
 | 
						|
  } else if (const CXXFunctionalCastExpr *FC
 | 
						|
                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
 | 
						|
    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
 | 
						|
        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  // Diagnose "(void*) blah" as a typo for "(void) blah".
 | 
						|
  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
 | 
						|
    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
 | 
						|
    QualType T = TI->getType();
 | 
						|
 | 
						|
    // We really do want to use the non-canonical type here.
 | 
						|
    if (T == Context.VoidPtrTy) {
 | 
						|
      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
 | 
						|
 | 
						|
      Diag(Loc, diag::warn_unused_voidptr)
 | 
						|
        << FixItHint::CreateRemoval(TL.getStarLoc());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
 | 
						|
                        MultiStmtArg elts, bool isStmtExpr) {
 | 
						|
  unsigned NumElts = elts.size();
 | 
						|
  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
 | 
						|
  // If we're in C89 mode, check that we don't have any decls after stmts.  If
 | 
						|
  // so, emit an extension diagnostic.
 | 
						|
  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
 | 
						|
    // Note that __extension__ can be around a decl.
 | 
						|
    unsigned i = 0;
 | 
						|
    // Skip over all declarations.
 | 
						|
    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
 | 
						|
      /*empty*/;
 | 
						|
 | 
						|
    // We found the end of the list or a statement.  Scan for another declstmt.
 | 
						|
    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
 | 
						|
      /*empty*/;
 | 
						|
 | 
						|
    if (i != NumElts) {
 | 
						|
      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
 | 
						|
      Diag(D->getLocation(), diag::ext_mixed_decls_code);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Warn about unused expressions in statements.
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    // Ignore statements that are last in a statement expression.
 | 
						|
    if (isStmtExpr && i == NumElts - 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DiagnoseUnusedExprResult(Elts[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
 | 
						|
                    SourceLocation DotDotDotLoc, Expr *RHSVal,
 | 
						|
                    SourceLocation ColonLoc) {
 | 
						|
  assert((LHSVal != 0) && "missing expression in case statement");
 | 
						|
 | 
						|
  // C99 6.8.4.2p3: The expression shall be an integer constant.
 | 
						|
  // However, GCC allows any evaluatable integer expression.
 | 
						|
  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
 | 
						|
      VerifyIntegerConstantExpression(LHSVal))
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  // GCC extension: The expression shall be an integer constant.
 | 
						|
 | 
						|
  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
 | 
						|
      VerifyIntegerConstantExpression(RHSVal)) {
 | 
						|
    RHSVal = 0;  // Recover by just forgetting about it.
 | 
						|
  }
 | 
						|
 | 
						|
  if (getCurFunction()->SwitchStack.empty()) {
 | 
						|
    Diag(CaseLoc, diag::err_case_not_in_switch);
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
 | 
						|
                                        ColonLoc);
 | 
						|
  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
 | 
						|
  return Owned(CS);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCaseStmtBody - This installs a statement as the body of a case.
 | 
						|
void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
 | 
						|
  DiagnoseUnusedExprResult(SubStmt);
 | 
						|
 | 
						|
  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
 | 
						|
  CS->setSubStmt(SubStmt);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
 | 
						|
                       Stmt *SubStmt, Scope *CurScope) {
 | 
						|
  DiagnoseUnusedExprResult(SubStmt);
 | 
						|
 | 
						|
  if (getCurFunction()->SwitchStack.empty()) {
 | 
						|
    Diag(DefaultLoc, diag::err_default_not_in_switch);
 | 
						|
    return Owned(SubStmt);
 | 
						|
  }
 | 
						|
 | 
						|
  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
 | 
						|
  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
 | 
						|
  return Owned(DS);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
 | 
						|
                     SourceLocation ColonLoc, Stmt *SubStmt) {
 | 
						|
  
 | 
						|
  // If the label was multiply defined, reject it now.
 | 
						|
  if (TheDecl->getStmt()) {
 | 
						|
    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
 | 
						|
    Diag(TheDecl->getLocation(), diag::note_previous_definition);
 | 
						|
    return Owned(SubStmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, things are good.  Fill in the declaration and return it.
 | 
						|
  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
 | 
						|
  TheDecl->setStmt(LS);
 | 
						|
  if (!TheDecl->isGnuLocal())
 | 
						|
    TheDecl->setLocation(IdentLoc);
 | 
						|
  return Owned(LS);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
 | 
						|
                  Stmt *thenStmt, SourceLocation ElseLoc,
 | 
						|
                  Stmt *elseStmt) {
 | 
						|
  ExprResult CondResult(CondVal.release());
 | 
						|
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (CondVar) {
 | 
						|
    ConditionVar = cast<VarDecl>(CondVar);
 | 
						|
    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
 | 
						|
    if (CondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
  Expr *ConditionExpr = CondResult.takeAs<Expr>();
 | 
						|
  if (!ConditionExpr)
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  DiagnoseUnusedExprResult(thenStmt);
 | 
						|
 | 
						|
  // Warn if the if block has a null body without an else value.
 | 
						|
  // this helps prevent bugs due to typos, such as
 | 
						|
  // if (condition);
 | 
						|
  //   do_stuff();
 | 
						|
  //
 | 
						|
  if (!elseStmt) {
 | 
						|
    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
 | 
						|
      // But do not warn if the body is a macro that expands to nothing, e.g:
 | 
						|
      //
 | 
						|
      // #define CALL(x)
 | 
						|
      // if (condition)
 | 
						|
      //   CALL(0);
 | 
						|
      //
 | 
						|
      if (!stmt->hasLeadingEmptyMacro())
 | 
						|
        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseUnusedExprResult(elseStmt);
 | 
						|
 | 
						|
  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
 | 
						|
                                    thenStmt, ElseLoc, elseStmt));
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
 | 
						|
/// the specified width and sign.  If an overflow occurs, detect it and emit
 | 
						|
/// the specified diagnostic.
 | 
						|
void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
 | 
						|
                                              unsigned NewWidth, bool NewSign,
 | 
						|
                                              SourceLocation Loc,
 | 
						|
                                              unsigned DiagID) {
 | 
						|
  // Perform a conversion to the promoted condition type if needed.
 | 
						|
  if (NewWidth > Val.getBitWidth()) {
 | 
						|
    // If this is an extension, just do it.
 | 
						|
    Val = Val.extend(NewWidth);
 | 
						|
    Val.setIsSigned(NewSign);
 | 
						|
 | 
						|
    // If the input was signed and negative and the output is
 | 
						|
    // unsigned, don't bother to warn: this is implementation-defined
 | 
						|
    // behavior.
 | 
						|
    // FIXME: Introduce a second, default-ignored warning for this case?
 | 
						|
  } else if (NewWidth < Val.getBitWidth()) {
 | 
						|
    // If this is a truncation, check for overflow.
 | 
						|
    llvm::APSInt ConvVal(Val);
 | 
						|
    ConvVal = ConvVal.trunc(NewWidth);
 | 
						|
    ConvVal.setIsSigned(NewSign);
 | 
						|
    ConvVal = ConvVal.extend(Val.getBitWidth());
 | 
						|
    ConvVal.setIsSigned(Val.isSigned());
 | 
						|
    if (ConvVal != Val)
 | 
						|
      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
 | 
						|
 | 
						|
    // Regardless of whether a diagnostic was emitted, really do the
 | 
						|
    // truncation.
 | 
						|
    Val = Val.trunc(NewWidth);
 | 
						|
    Val.setIsSigned(NewSign);
 | 
						|
  } else if (NewSign != Val.isSigned()) {
 | 
						|
    // Convert the sign to match the sign of the condition.  This can cause
 | 
						|
    // overflow as well: unsigned(INTMIN)
 | 
						|
    // We don't diagnose this overflow, because it is implementation-defined
 | 
						|
    // behavior.
 | 
						|
    // FIXME: Introduce a second, default-ignored warning for this case?
 | 
						|
    llvm::APSInt OldVal(Val);
 | 
						|
    Val.setIsSigned(NewSign);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct CaseCompareFunctor {
 | 
						|
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
 | 
						|
                    const llvm::APSInt &RHS) {
 | 
						|
      return LHS.first < RHS;
 | 
						|
    }
 | 
						|
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
 | 
						|
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
 | 
						|
      return LHS.first < RHS.first;
 | 
						|
    }
 | 
						|
    bool operator()(const llvm::APSInt &LHS,
 | 
						|
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
 | 
						|
      return LHS < RHS.first;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// CmpCaseVals - Comparison predicate for sorting case values.
 | 
						|
///
 | 
						|
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
 | 
						|
                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
 | 
						|
  if (lhs.first < rhs.first)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (lhs.first == rhs.first &&
 | 
						|
      lhs.second->getCaseLoc().getRawEncoding()
 | 
						|
       < rhs.second->getCaseLoc().getRawEncoding())
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CmpEnumVals - Comparison predicate for sorting enumeration values.
 | 
						|
///
 | 
						|
static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
 | 
						|
                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
 | 
						|
{
 | 
						|
  return lhs.first < rhs.first;
 | 
						|
}
 | 
						|
 | 
						|
/// EqEnumVals - Comparison preficate for uniqing enumeration values.
 | 
						|
///
 | 
						|
static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
 | 
						|
                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
 | 
						|
{
 | 
						|
  return lhs.first == rhs.first;
 | 
						|
}
 | 
						|
 | 
						|
/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
 | 
						|
/// potentially integral-promoted expression @p expr.
 | 
						|
static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
 | 
						|
  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
 | 
						|
    expr = cleanups->getSubExpr();
 | 
						|
  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
 | 
						|
    if (impcast->getCastKind() != CK_IntegralCast) break;
 | 
						|
    expr = impcast->getSubExpr();
 | 
						|
  }
 | 
						|
  return expr->getType();
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
 | 
						|
                             Decl *CondVar) {
 | 
						|
  ExprResult CondResult;
 | 
						|
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (CondVar) {
 | 
						|
    ConditionVar = cast<VarDecl>(CondVar);
 | 
						|
    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
 | 
						|
    if (CondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    Cond = CondResult.release();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Cond)
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  CondResult
 | 
						|
    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
 | 
						|
                          PDiag(diag::err_typecheck_statement_requires_integer),
 | 
						|
                                   PDiag(diag::err_switch_incomplete_class_type)
 | 
						|
                                     << Cond->getSourceRange(),
 | 
						|
                                   PDiag(diag::err_switch_explicit_conversion),
 | 
						|
                                         PDiag(diag::note_switch_conversion),
 | 
						|
                                   PDiag(diag::err_switch_multiple_conversions),
 | 
						|
                                         PDiag(diag::note_switch_conversion),
 | 
						|
                                         PDiag(0));
 | 
						|
  if (CondResult.isInvalid()) return StmtError();
 | 
						|
  Cond = CondResult.take();
 | 
						|
 | 
						|
  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
 | 
						|
  CondResult = UsualUnaryConversions(Cond);
 | 
						|
  if (CondResult.isInvalid()) return StmtError();
 | 
						|
  Cond = CondResult.take();
 | 
						|
 | 
						|
  if (!CondVar) {
 | 
						|
    CheckImplicitConversions(Cond, SwitchLoc);
 | 
						|
    CondResult = MaybeCreateExprWithCleanups(Cond);
 | 
						|
    if (CondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
    Cond = CondResult.take();
 | 
						|
  }
 | 
						|
 | 
						|
  getCurFunction()->setHasBranchIntoScope();
 | 
						|
 | 
						|
  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
 | 
						|
  getCurFunction()->SwitchStack.push_back(SS);
 | 
						|
  return Owned(SS);
 | 
						|
}
 | 
						|
 | 
						|
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
 | 
						|
  if (Val.getBitWidth() < BitWidth)
 | 
						|
    Val = Val.extend(BitWidth);
 | 
						|
  else if (Val.getBitWidth() > BitWidth)
 | 
						|
    Val = Val.trunc(BitWidth);
 | 
						|
  Val.setIsSigned(IsSigned);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
 | 
						|
                            Stmt *BodyStmt) {
 | 
						|
  SwitchStmt *SS = cast<SwitchStmt>(Switch);
 | 
						|
  assert(SS == getCurFunction()->SwitchStack.back() &&
 | 
						|
         "switch stack missing push/pop!");
 | 
						|
 | 
						|
  SS->setBody(BodyStmt, SwitchLoc);
 | 
						|
  getCurFunction()->SwitchStack.pop_back();
 | 
						|
 | 
						|
  Expr *CondExpr = SS->getCond();
 | 
						|
  if (!CondExpr) return StmtError();
 | 
						|
 | 
						|
  QualType CondType = CondExpr->getType();
 | 
						|
 | 
						|
  Expr *CondExprBeforePromotion = CondExpr;
 | 
						|
  QualType CondTypeBeforePromotion =
 | 
						|
      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
 | 
						|
 | 
						|
  // C++ 6.4.2.p2:
 | 
						|
  // Integral promotions are performed (on the switch condition).
 | 
						|
  //
 | 
						|
  // A case value unrepresentable by the original switch condition
 | 
						|
  // type (before the promotion) doesn't make sense, even when it can
 | 
						|
  // be represented by the promoted type.  Therefore we need to find
 | 
						|
  // the pre-promotion type of the switch condition.
 | 
						|
  if (!CondExpr->isTypeDependent()) {
 | 
						|
    // We have already converted the expression to an integral or enumeration
 | 
						|
    // type, when we started the switch statement. If we don't have an
 | 
						|
    // appropriate type now, just return an error.
 | 
						|
    if (!CondType->isIntegralOrEnumerationType())
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    if (CondExpr->isKnownToHaveBooleanValue()) {
 | 
						|
      // switch(bool_expr) {...} is often a programmer error, e.g.
 | 
						|
      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
 | 
						|
      // One can always use an if statement instead of switch(bool_expr).
 | 
						|
      Diag(SwitchLoc, diag::warn_bool_switch_condition)
 | 
						|
          << CondExpr->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the bitwidth of the switched-on value before promotions.  We must
 | 
						|
  // convert the integer case values to this width before comparison.
 | 
						|
  bool HasDependentValue
 | 
						|
    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
 | 
						|
  unsigned CondWidth
 | 
						|
    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
 | 
						|
  bool CondIsSigned 
 | 
						|
    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
 | 
						|
 | 
						|
  // Accumulate all of the case values in a vector so that we can sort them
 | 
						|
  // and detect duplicates.  This vector contains the APInt for the case after
 | 
						|
  // it has been converted to the condition type.
 | 
						|
  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
 | 
						|
  CaseValsTy CaseVals;
 | 
						|
 | 
						|
  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
 | 
						|
  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
 | 
						|
  CaseRangesTy CaseRanges;
 | 
						|
 | 
						|
  DefaultStmt *TheDefaultStmt = 0;
 | 
						|
 | 
						|
  bool CaseListIsErroneous = false;
 | 
						|
 | 
						|
  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
 | 
						|
       SC = SC->getNextSwitchCase()) {
 | 
						|
 | 
						|
    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
 | 
						|
      if (TheDefaultStmt) {
 | 
						|
        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
 | 
						|
        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
 | 
						|
 | 
						|
        // FIXME: Remove the default statement from the switch block so that
 | 
						|
        // we'll return a valid AST.  This requires recursing down the AST and
 | 
						|
        // finding it, not something we are set up to do right now.  For now,
 | 
						|
        // just lop the entire switch stmt out of the AST.
 | 
						|
        CaseListIsErroneous = true;
 | 
						|
      }
 | 
						|
      TheDefaultStmt = DS;
 | 
						|
 | 
						|
    } else {
 | 
						|
      CaseStmt *CS = cast<CaseStmt>(SC);
 | 
						|
 | 
						|
      // We already verified that the expression has a i-c-e value (C99
 | 
						|
      // 6.8.4.2p3) - get that value now.
 | 
						|
      Expr *Lo = CS->getLHS();
 | 
						|
 | 
						|
      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
 | 
						|
        HasDependentValue = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
 | 
						|
 | 
						|
      // Convert the value to the same width/sign as the condition.
 | 
						|
      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
 | 
						|
                                         Lo->getLocStart(),
 | 
						|
                                         diag::warn_case_value_overflow);
 | 
						|
 | 
						|
      // If the LHS is not the same type as the condition, insert an implicit
 | 
						|
      // cast.
 | 
						|
      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
 | 
						|
      CS->setLHS(Lo);
 | 
						|
 | 
						|
      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
 | 
						|
      if (CS->getRHS()) {
 | 
						|
        if (CS->getRHS()->isTypeDependent() ||
 | 
						|
            CS->getRHS()->isValueDependent()) {
 | 
						|
          HasDependentValue = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        CaseRanges.push_back(std::make_pair(LoVal, CS));
 | 
						|
      } else
 | 
						|
        CaseVals.push_back(std::make_pair(LoVal, CS));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HasDependentValue) {
 | 
						|
    // If we don't have a default statement, check whether the
 | 
						|
    // condition is constant.
 | 
						|
    llvm::APSInt ConstantCondValue;
 | 
						|
    bool HasConstantCond = false;
 | 
						|
    bool ShouldCheckConstantCond = false;
 | 
						|
    if (!HasDependentValue && !TheDefaultStmt) {
 | 
						|
      Expr::EvalResult Result;
 | 
						|
      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
 | 
						|
      if (HasConstantCond) {
 | 
						|
        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
 | 
						|
        ConstantCondValue = Result.Val.getInt();
 | 
						|
        ShouldCheckConstantCond = true;
 | 
						|
 | 
						|
        assert(ConstantCondValue.getBitWidth() == CondWidth &&
 | 
						|
               ConstantCondValue.isSigned() == CondIsSigned);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort all the scalar case values so we can easily detect duplicates.
 | 
						|
    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
 | 
						|
 | 
						|
    if (!CaseVals.empty()) {
 | 
						|
      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
 | 
						|
        if (ShouldCheckConstantCond &&
 | 
						|
            CaseVals[i].first == ConstantCondValue)
 | 
						|
          ShouldCheckConstantCond = false;
 | 
						|
 | 
						|
        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
 | 
						|
          // If we have a duplicate, report it.
 | 
						|
          Diag(CaseVals[i].second->getLHS()->getLocStart(),
 | 
						|
               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
 | 
						|
          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
 | 
						|
               diag::note_duplicate_case_prev);
 | 
						|
          // FIXME: We really want to remove the bogus case stmt from the
 | 
						|
          // substmt, but we have no way to do this right now.
 | 
						|
          CaseListIsErroneous = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Detect duplicate case ranges, which usually don't exist at all in
 | 
						|
    // the first place.
 | 
						|
    if (!CaseRanges.empty()) {
 | 
						|
      // Sort all the case ranges by their low value so we can easily detect
 | 
						|
      // overlaps between ranges.
 | 
						|
      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
 | 
						|
 | 
						|
      // Scan the ranges, computing the high values and removing empty ranges.
 | 
						|
      std::vector<llvm::APSInt> HiVals;
 | 
						|
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
 | 
						|
        llvm::APSInt &LoVal = CaseRanges[i].first;
 | 
						|
        CaseStmt *CR = CaseRanges[i].second;
 | 
						|
        Expr *Hi = CR->getRHS();
 | 
						|
        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
 | 
						|
 | 
						|
        // Convert the value to the same width/sign as the condition.
 | 
						|
        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
 | 
						|
                                           Hi->getLocStart(),
 | 
						|
                                           diag::warn_case_value_overflow);
 | 
						|
 | 
						|
        // If the LHS is not the same type as the condition, insert an implicit
 | 
						|
        // cast.
 | 
						|
        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
 | 
						|
        CR->setRHS(Hi);
 | 
						|
 | 
						|
        // If the low value is bigger than the high value, the case is empty.
 | 
						|
        if (LoVal > HiVal) {
 | 
						|
          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
 | 
						|
            << SourceRange(CR->getLHS()->getLocStart(),
 | 
						|
                           Hi->getLocEnd());
 | 
						|
          CaseRanges.erase(CaseRanges.begin()+i);
 | 
						|
          --i, --e;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (ShouldCheckConstantCond &&
 | 
						|
            LoVal <= ConstantCondValue &&
 | 
						|
            ConstantCondValue <= HiVal)
 | 
						|
          ShouldCheckConstantCond = false;
 | 
						|
 | 
						|
        HiVals.push_back(HiVal);
 | 
						|
      }
 | 
						|
 | 
						|
      // Rescan the ranges, looking for overlap with singleton values and other
 | 
						|
      // ranges.  Since the range list is sorted, we only need to compare case
 | 
						|
      // ranges with their neighbors.
 | 
						|
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
 | 
						|
        llvm::APSInt &CRLo = CaseRanges[i].first;
 | 
						|
        llvm::APSInt &CRHi = HiVals[i];
 | 
						|
        CaseStmt *CR = CaseRanges[i].second;
 | 
						|
 | 
						|
        // Check to see whether the case range overlaps with any
 | 
						|
        // singleton cases.
 | 
						|
        CaseStmt *OverlapStmt = 0;
 | 
						|
        llvm::APSInt OverlapVal(32);
 | 
						|
 | 
						|
        // Find the smallest value >= the lower bound.  If I is in the
 | 
						|
        // case range, then we have overlap.
 | 
						|
        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
 | 
						|
                                                  CaseVals.end(), CRLo,
 | 
						|
                                                  CaseCompareFunctor());
 | 
						|
        if (I != CaseVals.end() && I->first < CRHi) {
 | 
						|
          OverlapVal  = I->first;   // Found overlap with scalar.
 | 
						|
          OverlapStmt = I->second;
 | 
						|
        }
 | 
						|
 | 
						|
        // Find the smallest value bigger than the upper bound.
 | 
						|
        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
 | 
						|
        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
 | 
						|
          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
 | 
						|
          OverlapStmt = (I-1)->second;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check to see if this case stmt overlaps with the subsequent
 | 
						|
        // case range.
 | 
						|
        if (i && CRLo <= HiVals[i-1]) {
 | 
						|
          OverlapVal  = HiVals[i-1];       // Found overlap with range.
 | 
						|
          OverlapStmt = CaseRanges[i-1].second;
 | 
						|
        }
 | 
						|
 | 
						|
        if (OverlapStmt) {
 | 
						|
          // If we have a duplicate, report it.
 | 
						|
          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
 | 
						|
            << OverlapVal.toString(10);
 | 
						|
          Diag(OverlapStmt->getLHS()->getLocStart(),
 | 
						|
               diag::note_duplicate_case_prev);
 | 
						|
          // FIXME: We really want to remove the bogus case stmt from the
 | 
						|
          // substmt, but we have no way to do this right now.
 | 
						|
          CaseListIsErroneous = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Complain if we have a constant condition and we didn't find a match.
 | 
						|
    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
 | 
						|
      // TODO: it would be nice if we printed enums as enums, chars as
 | 
						|
      // chars, etc.
 | 
						|
      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
 | 
						|
        << ConstantCondValue.toString(10)
 | 
						|
        << CondExpr->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if switch is over an Enum and handles all of its
 | 
						|
    // values.  We only issue a warning if there is not 'default:', but
 | 
						|
    // we still do the analysis to preserve this information in the AST
 | 
						|
    // (which can be used by flow-based analyes).
 | 
						|
    //
 | 
						|
    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
 | 
						|
 | 
						|
    // If switch has default case, then ignore it.
 | 
						|
    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
 | 
						|
      const EnumDecl *ED = ET->getDecl();
 | 
						|
      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
 | 
						|
        EnumValsTy;
 | 
						|
      EnumValsTy EnumVals;
 | 
						|
 | 
						|
      // Gather all enum values, set their type and sort them,
 | 
						|
      // allowing easier comparison with CaseVals.
 | 
						|
      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
 | 
						|
           EDI != ED->enumerator_end(); ++EDI) {
 | 
						|
        llvm::APSInt Val = EDI->getInitVal();
 | 
						|
        AdjustAPSInt(Val, CondWidth, CondIsSigned);
 | 
						|
        EnumVals.push_back(std::make_pair(Val, *EDI));
 | 
						|
      }
 | 
						|
      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
 | 
						|
      EnumValsTy::iterator EIend =
 | 
						|
        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
 | 
						|
 | 
						|
      // See which case values aren't in enum.
 | 
						|
      // TODO: we might want to check whether case values are out of the
 | 
						|
      // enum even if we don't want to check whether all cases are handled.
 | 
						|
      if (!TheDefaultStmt) {
 | 
						|
        EnumValsTy::const_iterator EI = EnumVals.begin();
 | 
						|
        for (CaseValsTy::const_iterator CI = CaseVals.begin();
 | 
						|
             CI != CaseVals.end(); CI++) {
 | 
						|
          while (EI != EIend && EI->first < CI->first)
 | 
						|
            EI++;
 | 
						|
          if (EI == EIend || EI->first > CI->first)
 | 
						|
            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
 | 
						|
              << ED->getDeclName();
 | 
						|
        }
 | 
						|
        // See which of case ranges aren't in enum
 | 
						|
        EI = EnumVals.begin();
 | 
						|
        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
 | 
						|
             RI != CaseRanges.end() && EI != EIend; RI++) {
 | 
						|
          while (EI != EIend && EI->first < RI->first)
 | 
						|
            EI++;
 | 
						|
 | 
						|
          if (EI == EIend || EI->first != RI->first) {
 | 
						|
            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
 | 
						|
              << ED->getDeclName();
 | 
						|
          }
 | 
						|
 | 
						|
          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
 | 
						|
          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
 | 
						|
          while (EI != EIend && EI->first < Hi)
 | 
						|
            EI++;
 | 
						|
          if (EI == EIend || EI->first != Hi)
 | 
						|
            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
 | 
						|
              << ED->getDeclName();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check which enum vals aren't in switch
 | 
						|
      CaseValsTy::const_iterator CI = CaseVals.begin();
 | 
						|
      CaseRangesTy::const_iterator RI = CaseRanges.begin();
 | 
						|
      bool hasCasesNotInSwitch = false;
 | 
						|
 | 
						|
      SmallVector<DeclarationName,8> UnhandledNames;
 | 
						|
 | 
						|
      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
 | 
						|
        // Drop unneeded case values
 | 
						|
        llvm::APSInt CIVal;
 | 
						|
        while (CI != CaseVals.end() && CI->first < EI->first)
 | 
						|
          CI++;
 | 
						|
 | 
						|
        if (CI != CaseVals.end() && CI->first == EI->first)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Drop unneeded case ranges
 | 
						|
        for (; RI != CaseRanges.end(); RI++) {
 | 
						|
          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
 | 
						|
          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
 | 
						|
          if (EI->first <= Hi)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (RI == CaseRanges.end() || EI->first < RI->first) {
 | 
						|
          hasCasesNotInSwitch = true;
 | 
						|
          if (!TheDefaultStmt)
 | 
						|
            UnhandledNames.push_back(EI->second->getDeclName());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Produce a nice diagnostic if multiple values aren't handled.
 | 
						|
      switch (UnhandledNames.size()) {
 | 
						|
      case 0: break;
 | 
						|
      case 1:
 | 
						|
        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
 | 
						|
          << UnhandledNames[0];
 | 
						|
        break;
 | 
						|
      case 2:
 | 
						|
        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
 | 
						|
          << UnhandledNames[0] << UnhandledNames[1];
 | 
						|
        break;
 | 
						|
      case 3:
 | 
						|
        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
 | 
						|
          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
 | 
						|
          << (unsigned)UnhandledNames.size()
 | 
						|
          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!hasCasesNotInSwitch)
 | 
						|
        SS->setAllEnumCasesCovered();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: If the case list was broken is some way, we don't have a good system
 | 
						|
  // to patch it up.  Instead, just return the whole substmt as broken.
 | 
						|
  if (CaseListIsErroneous)
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  return Owned(SS);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
 | 
						|
                     Decl *CondVar, Stmt *Body) {
 | 
						|
  ExprResult CondResult(Cond.release());
 | 
						|
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (CondVar) {
 | 
						|
    ConditionVar = cast<VarDecl>(CondVar);
 | 
						|
    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
 | 
						|
    if (CondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
  Expr *ConditionExpr = CondResult.take();
 | 
						|
  if (!ConditionExpr)
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  DiagnoseUnusedExprResult(Body);
 | 
						|
 | 
						|
  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
 | 
						|
                                       Body, WhileLoc));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
 | 
						|
                  SourceLocation WhileLoc, SourceLocation CondLParen,
 | 
						|
                  Expr *Cond, SourceLocation CondRParen) {
 | 
						|
  assert(Cond && "ActOnDoStmt(): missing expression");
 | 
						|
 | 
						|
  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
 | 
						|
  if (CondResult.isInvalid() || CondResult.isInvalid())
 | 
						|
    return StmtError();
 | 
						|
  Cond = CondResult.take();
 | 
						|
 | 
						|
  CheckImplicitConversions(Cond, DoLoc);
 | 
						|
  CondResult = MaybeCreateExprWithCleanups(Cond);
 | 
						|
  if (CondResult.isInvalid())
 | 
						|
    return StmtError();
 | 
						|
  Cond = CondResult.take();
 | 
						|
 | 
						|
  DiagnoseUnusedExprResult(Body);
 | 
						|
 | 
						|
  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
 | 
						|
                   Stmt *First, FullExprArg second, Decl *secondVar,
 | 
						|
                   FullExprArg third,
 | 
						|
                   SourceLocation RParenLoc, Stmt *Body) {
 | 
						|
  if (!getLangOptions().CPlusPlus) {
 | 
						|
    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
 | 
						|
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
 | 
						|
      // declare identifiers for objects having storage class 'auto' or
 | 
						|
      // 'register'.
 | 
						|
      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
 | 
						|
           DI!=DE; ++DI) {
 | 
						|
        VarDecl *VD = dyn_cast<VarDecl>(*DI);
 | 
						|
        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
 | 
						|
          VD = 0;
 | 
						|
        if (VD == 0)
 | 
						|
          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
 | 
						|
        // FIXME: mark decl erroneous!
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult SecondResult(second.release());
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (secondVar) {
 | 
						|
    ConditionVar = cast<VarDecl>(secondVar);
 | 
						|
    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
 | 
						|
    if (SecondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Third  = third.release().takeAs<Expr>();
 | 
						|
 | 
						|
  DiagnoseUnusedExprResult(First);
 | 
						|
  DiagnoseUnusedExprResult(Third);
 | 
						|
  DiagnoseUnusedExprResult(Body);
 | 
						|
 | 
						|
  return Owned(new (Context) ForStmt(Context, First,
 | 
						|
                                     SecondResult.take(), ConditionVar,
 | 
						|
                                     Third, Body, ForLoc, LParenLoc,
 | 
						|
                                     RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// In an Objective C collection iteration statement:
 | 
						|
///   for (x in y)
 | 
						|
/// x can be an arbitrary l-value expression.  Bind it up as a
 | 
						|
/// full-expression.
 | 
						|
StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
 | 
						|
  CheckImplicitConversions(E);
 | 
						|
  ExprResult Result = MaybeCreateExprWithCleanups(E);
 | 
						|
  if (Result.isInvalid()) return StmtError();
 | 
						|
  return Owned(static_cast<Stmt*>(Result.get()));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
 | 
						|
  assert(collection);
 | 
						|
 | 
						|
  // Bail out early if we've got a type-dependent expression.
 | 
						|
  if (collection->isTypeDependent()) return Owned(collection);
 | 
						|
 | 
						|
  // Perform normal l-value conversion.
 | 
						|
  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
 | 
						|
  if (result.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  collection = result.take();
 | 
						|
 | 
						|
  // The operand needs to have object-pointer type.
 | 
						|
  // TODO: should we do a contextual conversion?
 | 
						|
  const ObjCObjectPointerType *pointerType =
 | 
						|
    collection->getType()->getAs<ObjCObjectPointerType>();
 | 
						|
  if (!pointerType)
 | 
						|
    return Diag(forLoc, diag::err_collection_expr_type)
 | 
						|
             << collection->getType() << collection->getSourceRange();
 | 
						|
 | 
						|
  // Check that the operand provides
 | 
						|
  //   - countByEnumeratingWithState:objects:count:
 | 
						|
  const ObjCObjectType *objectType = pointerType->getObjectType();
 | 
						|
  ObjCInterfaceDecl *iface = objectType->getInterface();
 | 
						|
 | 
						|
  // If we have a forward-declared type, we can't do this check.
 | 
						|
  if (iface && iface->isForwardDecl()) {
 | 
						|
    // This is ill-formed under ARC.
 | 
						|
    if (getLangOptions().ObjCAutoRefCount) {
 | 
						|
      Diag(forLoc, diag::err_arc_collection_forward)
 | 
						|
        << pointerType->getPointeeType() << collection->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, if we have any useful type information, check that
 | 
						|
    // the type declares the appropriate method.
 | 
						|
  } else if (iface || !objectType->qual_empty()) {
 | 
						|
    IdentifierInfo *selectorIdents[] = {
 | 
						|
      &Context.Idents.get("countByEnumeratingWithState"),
 | 
						|
      &Context.Idents.get("objects"),
 | 
						|
      &Context.Idents.get("count")
 | 
						|
    };
 | 
						|
    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
 | 
						|
 | 
						|
    ObjCMethodDecl *method = 0;
 | 
						|
 | 
						|
    // If there's an interface, look in both the public and private APIs.
 | 
						|
    if (iface) {
 | 
						|
      method = iface->lookupInstanceMethod(selector);
 | 
						|
      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
 | 
						|
    }
 | 
						|
 | 
						|
    // Also check protocol qualifiers.
 | 
						|
    if (!method)
 | 
						|
      method = LookupMethodInQualifiedType(selector, pointerType,
 | 
						|
                                           /*instance*/ true);
 | 
						|
 | 
						|
    // If we didn't find it anywhere, give up.
 | 
						|
    if (!method) {
 | 
						|
      Diag(forLoc, diag::warn_collection_expr_type)
 | 
						|
        << collection->getType() << selector << collection->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: check for an incompatible signature?
 | 
						|
  }
 | 
						|
 | 
						|
  // Wrap up any cleanups in the expression.
 | 
						|
  return Owned(MaybeCreateExprWithCleanups(collection));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
 | 
						|
                                 SourceLocation LParenLoc,
 | 
						|
                                 Stmt *First, Expr *Second,
 | 
						|
                                 SourceLocation RParenLoc, Stmt *Body) {
 | 
						|
  if (First) {
 | 
						|
    QualType FirstType;
 | 
						|
    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
 | 
						|
      if (!DS->isSingleDecl())
 | 
						|
        return StmtError(Diag((*DS->decl_begin())->getLocation(),
 | 
						|
                         diag::err_toomany_element_decls));
 | 
						|
 | 
						|
      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
 | 
						|
      FirstType = D->getType();
 | 
						|
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
 | 
						|
      // declare identifiers for objects having storage class 'auto' or
 | 
						|
      // 'register'.
 | 
						|
      if (!D->hasLocalStorage())
 | 
						|
        return StmtError(Diag(D->getLocation(),
 | 
						|
                              diag::err_non_variable_decl_in_for));
 | 
						|
    } else {
 | 
						|
      Expr *FirstE = cast<Expr>(First);
 | 
						|
      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
 | 
						|
        return StmtError(Diag(First->getLocStart(),
 | 
						|
                   diag::err_selector_element_not_lvalue)
 | 
						|
          << First->getSourceRange());
 | 
						|
 | 
						|
      FirstType = static_cast<Expr*>(First)->getType();
 | 
						|
    }
 | 
						|
    if (!FirstType->isDependentType() &&
 | 
						|
        !FirstType->isObjCObjectPointerType() &&
 | 
						|
        !FirstType->isBlockPointerType())
 | 
						|
        Diag(ForLoc, diag::err_selector_element_type)
 | 
						|
          << FirstType << First->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
 | 
						|
                                                   ForLoc, RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
enum BeginEndFunction {
 | 
						|
  BEF_begin,
 | 
						|
  BEF_end
 | 
						|
};
 | 
						|
 | 
						|
/// Build a variable declaration for a for-range statement.
 | 
						|
static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
 | 
						|
                                     QualType Type, const char *Name) {
 | 
						|
  DeclContext *DC = SemaRef.CurContext;
 | 
						|
  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
 | 
						|
  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
 | 
						|
  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
 | 
						|
                                  TInfo, SC_Auto, SC_None);
 | 
						|
  Decl->setImplicit();
 | 
						|
  return Decl;
 | 
						|
}
 | 
						|
 | 
						|
/// Finish building a variable declaration for a for-range statement.
 | 
						|
/// \return true if an error occurs.
 | 
						|
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
 | 
						|
                                  SourceLocation Loc, int diag) {
 | 
						|
  // Deduce the type for the iterator variable now rather than leaving it to
 | 
						|
  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
 | 
						|
  TypeSourceInfo *InitTSI = 0;
 | 
						|
  if (Init->getType()->isVoidType() ||
 | 
						|
      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
 | 
						|
    SemaRef.Diag(Loc, diag) << Init->getType();
 | 
						|
  if (!InitTSI) {
 | 
						|
    Decl->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Decl->setTypeSourceInfo(InitTSI);
 | 
						|
  Decl->setType(InitTSI->getType());
 | 
						|
 | 
						|
  // In ARC, infer lifetime.
 | 
						|
  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
 | 
						|
  // we're doing the equivalent of fast iteration.
 | 
						|
  if (SemaRef.getLangOptions().ObjCAutoRefCount && 
 | 
						|
      SemaRef.inferObjCARCLifetime(Decl))
 | 
						|
    Decl->setInvalidDecl();
 | 
						|
 | 
						|
  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
 | 
						|
                               /*TypeMayContainAuto=*/false);
 | 
						|
  SemaRef.FinalizeDeclaration(Decl);
 | 
						|
  SemaRef.CurContext->addHiddenDecl(Decl);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Produce a note indicating which begin/end function was implicitly called
 | 
						|
/// by a C++0x for-range statement. This is often not obvious from the code,
 | 
						|
/// nor from the diagnostics produced when analysing the implicit expressions
 | 
						|
/// required in a for-range statement.
 | 
						|
void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
 | 
						|
                                  BeginEndFunction BEF) {
 | 
						|
  CallExpr *CE = dyn_cast<CallExpr>(E);
 | 
						|
  if (!CE)
 | 
						|
    return;
 | 
						|
  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
 | 
						|
  if (!D)
 | 
						|
    return;
 | 
						|
  SourceLocation Loc = D->getLocation();
 | 
						|
 | 
						|
  std::string Description;
 | 
						|
  bool IsTemplate = false;
 | 
						|
  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
 | 
						|
    Description = SemaRef.getTemplateArgumentBindingsText(
 | 
						|
      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
 | 
						|
    IsTemplate = true;
 | 
						|
  }
 | 
						|
 | 
						|
  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
 | 
						|
    << BEF << IsTemplate << Description << E->getType();
 | 
						|
}
 | 
						|
 | 
						|
/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
 | 
						|
/// given LookupResult is non-empty, it is assumed to describe a member which
 | 
						|
/// will be invoked. Otherwise, the function will be found via argument
 | 
						|
/// dependent lookup.
 | 
						|
static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
 | 
						|
                                            SourceLocation Loc,
 | 
						|
                                            VarDecl *Decl,
 | 
						|
                                            BeginEndFunction BEF,
 | 
						|
                                            const DeclarationNameInfo &NameInfo,
 | 
						|
                                            LookupResult &MemberLookup,
 | 
						|
                                            Expr *Range) {
 | 
						|
  ExprResult CallExpr;
 | 
						|
  if (!MemberLookup.empty()) {
 | 
						|
    ExprResult MemberRef =
 | 
						|
      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
 | 
						|
                                       /*IsPtr=*/false, CXXScopeSpec(),
 | 
						|
                                       /*Qualifier=*/0, MemberLookup,
 | 
						|
                                       /*TemplateArgs=*/0);
 | 
						|
    if (MemberRef.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
 | 
						|
                                     Loc, 0);
 | 
						|
    if (CallExpr.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
  } else {
 | 
						|
    UnresolvedSet<0> FoundNames;
 | 
						|
    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
 | 
						|
    // std is an associated namespace.
 | 
						|
    UnresolvedLookupExpr *Fn =
 | 
						|
      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
 | 
						|
                                   NestedNameSpecifierLoc(), NameInfo,
 | 
						|
                                   /*NeedsADL=*/true, /*Overloaded=*/false,
 | 
						|
                                   FoundNames.begin(), FoundNames.end(),
 | 
						|
                                   /*LookInStdNamespace=*/true);
 | 
						|
    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
 | 
						|
                                               0);
 | 
						|
    if (CallExpr.isInvalid()) {
 | 
						|
      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
 | 
						|
        << Range->getType();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
 | 
						|
                            diag::err_for_range_iter_deduction_failure)) {
 | 
						|
    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
  return CallExpr;
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
 | 
						|
///
 | 
						|
/// C++0x [stmt.ranged]:
 | 
						|
///   A range-based for statement is equivalent to
 | 
						|
///
 | 
						|
///   {
 | 
						|
///     auto && __range = range-init;
 | 
						|
///     for ( auto __begin = begin-expr,
 | 
						|
///           __end = end-expr;
 | 
						|
///           __begin != __end;
 | 
						|
///           ++__begin ) {
 | 
						|
///       for-range-declaration = *__begin;
 | 
						|
///       statement
 | 
						|
///     }
 | 
						|
///   }
 | 
						|
///
 | 
						|
/// The body of the loop is not available yet, since it cannot be analysed until
 | 
						|
/// we have determined the type of the for-range-declaration.
 | 
						|
StmtResult
 | 
						|
Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
 | 
						|
                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
 | 
						|
                           SourceLocation RParenLoc) {
 | 
						|
  if (!First || !Range)
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  DeclStmt *DS = dyn_cast<DeclStmt>(First);
 | 
						|
  assert(DS && "first part of for range not a decl stmt");
 | 
						|
 | 
						|
  if (!DS->isSingleDecl()) {
 | 
						|
    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
  if (DS->getSingleDecl()->isInvalidDecl())
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  // Build  auto && __range = range-init
 | 
						|
  SourceLocation RangeLoc = Range->getLocStart();
 | 
						|
  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
 | 
						|
                                           Context.getAutoRRefDeductType(),
 | 
						|
                                           "__range");
 | 
						|
  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
 | 
						|
                            diag::err_for_range_deduction_failure))
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  // Claim the type doesn't contain auto: we've already done the checking.
 | 
						|
  DeclGroupPtrTy RangeGroup =
 | 
						|
    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
 | 
						|
  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
 | 
						|
  if (RangeDecl.isInvalid())
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
 | 
						|
                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
 | 
						|
                              RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
 | 
						|
StmtResult
 | 
						|
Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
 | 
						|
                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
 | 
						|
                           Expr *Inc, Stmt *LoopVarDecl,
 | 
						|
                           SourceLocation RParenLoc) {
 | 
						|
  Scope *S = getCurScope();
 | 
						|
 | 
						|
  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
 | 
						|
  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
 | 
						|
  QualType RangeVarType = RangeVar->getType();
 | 
						|
 | 
						|
  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
 | 
						|
  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
 | 
						|
 | 
						|
  StmtResult BeginEndDecl = BeginEnd;
 | 
						|
  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
 | 
						|
 | 
						|
  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
 | 
						|
    SourceLocation RangeLoc = RangeVar->getLocation();
 | 
						|
 | 
						|
    ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
 | 
						|
                                           RangeVarType.getNonReferenceType(),
 | 
						|
                                           VK_LValue, ColonLoc);
 | 
						|
    if (RangeRef.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    QualType AutoType = Context.getAutoDeductType();
 | 
						|
    Expr *Range = RangeVar->getInit();
 | 
						|
    if (!Range)
 | 
						|
      return StmtError();
 | 
						|
    QualType RangeType = Range->getType();
 | 
						|
 | 
						|
    if (RequireCompleteType(RangeLoc, RangeType,
 | 
						|
                            PDiag(diag::err_for_range_incomplete_type)))
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    // Build auto __begin = begin-expr, __end = end-expr.
 | 
						|
    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
 | 
						|
                                             "__begin");
 | 
						|
    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
 | 
						|
                                           "__end");
 | 
						|
 | 
						|
    // Build begin-expr and end-expr and attach to __begin and __end variables.
 | 
						|
    ExprResult BeginExpr, EndExpr;
 | 
						|
    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
 | 
						|
      // - if _RangeT is an array type, begin-expr and end-expr are __range and
 | 
						|
      //   __range + __bound, respectively, where __bound is the array bound. If
 | 
						|
      //   _RangeT is an array of unknown size or an array of incomplete type,
 | 
						|
      //   the program is ill-formed;
 | 
						|
 | 
						|
      // begin-expr is __range.
 | 
						|
      BeginExpr = RangeRef;
 | 
						|
      if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
 | 
						|
                                diag::err_for_range_iter_deduction_failure)) {
 | 
						|
        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | 
						|
        return StmtError();
 | 
						|
      }
 | 
						|
 | 
						|
      // Find the array bound.
 | 
						|
      ExprResult BoundExpr;
 | 
						|
      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
 | 
						|
        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
 | 
						|
                                                 Context.getPointerDiffType(),
 | 
						|
                                                 RangeLoc));
 | 
						|
      else if (const VariableArrayType *VAT =
 | 
						|
               dyn_cast<VariableArrayType>(UnqAT))
 | 
						|
        BoundExpr = VAT->getSizeExpr();
 | 
						|
      else {
 | 
						|
        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
 | 
						|
        // UnqAT is not incomplete and Range is not type-dependent.
 | 
						|
        assert(0 && "Unexpected array type in for-range");
 | 
						|
        return StmtError();
 | 
						|
      }
 | 
						|
 | 
						|
      // end-expr is __range + __bound.
 | 
						|
      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
 | 
						|
                           BoundExpr.get());
 | 
						|
      if (EndExpr.isInvalid())
 | 
						|
        return StmtError();
 | 
						|
      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
 | 
						|
                                diag::err_for_range_iter_deduction_failure)) {
 | 
						|
        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
 | 
						|
        return StmtError();
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
 | 
						|
                                        ColonLoc);
 | 
						|
      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
 | 
						|
                                      ColonLoc);
 | 
						|
 | 
						|
      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
 | 
						|
      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
 | 
						|
 | 
						|
      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
 | 
						|
        // - if _RangeT is a class type, the unqualified-ids begin and end are
 | 
						|
        //   looked up in the scope of class _RangeT as if by class member access
 | 
						|
        //   lookup (3.4.5), and if either (or both) finds at least one
 | 
						|
        //   declaration, begin-expr and end-expr are __range.begin() and
 | 
						|
        //   __range.end(), respectively;
 | 
						|
        LookupQualifiedName(BeginMemberLookup, D);
 | 
						|
        LookupQualifiedName(EndMemberLookup, D);
 | 
						|
 | 
						|
        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
 | 
						|
          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
 | 
						|
            << RangeType << BeginMemberLookup.empty();
 | 
						|
          return StmtError();
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // - otherwise, begin-expr and end-expr are begin(__range) and
 | 
						|
        //   end(__range), respectively, where begin and end are looked up with
 | 
						|
        //   argument-dependent lookup (3.4.2). For the purposes of this name
 | 
						|
        //   lookup, namespace std is an associated namespace.
 | 
						|
      }
 | 
						|
 | 
						|
      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
 | 
						|
                                            BEF_begin, BeginNameInfo,
 | 
						|
                                            BeginMemberLookup, RangeRef.get());
 | 
						|
      if (BeginExpr.isInvalid())
 | 
						|
        return StmtError();
 | 
						|
 | 
						|
      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
 | 
						|
                                          BEF_end, EndNameInfo,
 | 
						|
                                          EndMemberLookup, RangeRef.get());
 | 
						|
      if (EndExpr.isInvalid())
 | 
						|
        return StmtError();
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
 | 
						|
    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
 | 
						|
    if (!Context.hasSameType(BeginType, EndType)) {
 | 
						|
      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
 | 
						|
        << BeginType << EndType;
 | 
						|
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | 
						|
      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
 | 
						|
    }
 | 
						|
 | 
						|
    Decl *BeginEndDecls[] = { BeginVar, EndVar };
 | 
						|
    // Claim the type doesn't contain auto: we've already done the checking.
 | 
						|
    DeclGroupPtrTy BeginEndGroup =
 | 
						|
      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
 | 
						|
    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
 | 
						|
 | 
						|
    ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
 | 
						|
                                           BeginType.getNonReferenceType(),
 | 
						|
                                           VK_LValue, ColonLoc);
 | 
						|
    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
 | 
						|
                                         VK_LValue, ColonLoc);
 | 
						|
 | 
						|
    // Build and check __begin != __end expression.
 | 
						|
    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
 | 
						|
                           BeginRef.get(), EndRef.get());
 | 
						|
    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
 | 
						|
    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
 | 
						|
    if (NotEqExpr.isInvalid()) {
 | 
						|
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | 
						|
      if (!Context.hasSameType(BeginType, EndType))
 | 
						|
        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
 | 
						|
      return StmtError();
 | 
						|
    }
 | 
						|
 | 
						|
    // Build and check ++__begin expression.
 | 
						|
    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
 | 
						|
    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
 | 
						|
    if (IncrExpr.isInvalid()) {
 | 
						|
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | 
						|
      return StmtError();
 | 
						|
    }
 | 
						|
 | 
						|
    // Build and check *__begin  expression.
 | 
						|
    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
 | 
						|
    if (DerefExpr.isInvalid()) {
 | 
						|
      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | 
						|
      return StmtError();
 | 
						|
    }
 | 
						|
 | 
						|
    // Attach  *__begin  as initializer for VD.
 | 
						|
    if (!LoopVar->isInvalidDecl()) {
 | 
						|
      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
 | 
						|
                           /*TypeMayContainAuto=*/true);
 | 
						|
      if (LoopVar->isInvalidDecl())
 | 
						|
        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // The range is implicitly used as a placeholder when it is dependent.
 | 
						|
    RangeVar->setUsed();
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) CXXForRangeStmt(RangeDS,
 | 
						|
                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
 | 
						|
                                             NotEqExpr.take(), IncrExpr.take(),
 | 
						|
                                             LoopVarDS, /*Body=*/0, ForLoc,
 | 
						|
                                             ColonLoc, RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
 | 
						|
/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
 | 
						|
/// body cannot be performed until after the type of the range variable is
 | 
						|
/// determined.
 | 
						|
StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
 | 
						|
  if (!S || !B)
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  cast<CXXForRangeStmt>(S)->setBody(B);
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
 | 
						|
                               SourceLocation LabelLoc,
 | 
						|
                               LabelDecl *TheDecl) {
 | 
						|
  getCurFunction()->setHasBranchIntoScope();
 | 
						|
  TheDecl->setUsed();
 | 
						|
  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
 | 
						|
                            Expr *E) {
 | 
						|
  // Convert operand to void*
 | 
						|
  if (!E->isTypeDependent()) {
 | 
						|
    QualType ETy = E->getType();
 | 
						|
    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
 | 
						|
    ExprResult ExprRes = Owned(E);
 | 
						|
    AssignConvertType ConvTy =
 | 
						|
      CheckSingleAssignmentConstraints(DestTy, ExprRes);
 | 
						|
    if (ExprRes.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
    E = ExprRes.take();
 | 
						|
    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  getCurFunction()->setHasIndirectGoto();
 | 
						|
 | 
						|
  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
 | 
						|
  Scope *S = CurScope->getContinueParent();
 | 
						|
  if (!S) {
 | 
						|
    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
 | 
						|
    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) ContinueStmt(ContinueLoc));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
 | 
						|
  Scope *S = CurScope->getBreakParent();
 | 
						|
  if (!S) {
 | 
						|
    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
 | 
						|
    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) BreakStmt(BreakLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given expression is a candidate for
 | 
						|
/// copy elision in either a return statement or a throw expression.
 | 
						|
///
 | 
						|
/// \param ReturnType If we're determining the copy elision candidate for
 | 
						|
/// a return statement, this is the return type of the function. If we're
 | 
						|
/// determining the copy elision candidate for a throw expression, this will
 | 
						|
/// be a NULL type.
 | 
						|
///
 | 
						|
/// \param E The expression being returned from the function or block, or
 | 
						|
/// being thrown.
 | 
						|
///
 | 
						|
/// \param AllowFunctionParameter Whether we allow function parameters to
 | 
						|
/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
 | 
						|
/// we re-use this logic to determine whether we should try to move as part of
 | 
						|
/// a return or throw (which does allow function parameters).
 | 
						|
///
 | 
						|
/// \returns The NRVO candidate variable, if the return statement may use the
 | 
						|
/// NRVO, or NULL if there is no such candidate.
 | 
						|
const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
 | 
						|
                                             Expr *E,
 | 
						|
                                             bool AllowFunctionParameter) {
 | 
						|
  QualType ExprType = E->getType();
 | 
						|
  // - in a return statement in a function with ...
 | 
						|
  // ... a class return type ...
 | 
						|
  if (!ReturnType.isNull()) {
 | 
						|
    if (!ReturnType->isRecordType())
 | 
						|
      return 0;
 | 
						|
    // ... the same cv-unqualified type as the function return type ...
 | 
						|
    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // ... the expression is the name of a non-volatile automatic object
 | 
						|
  // (other than a function or catch-clause parameter)) ...
 | 
						|
  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
 | 
						|
  if (!DR)
 | 
						|
    return 0;
 | 
						|
  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
 | 
						|
  if (!VD)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
 | 
						|
      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
 | 
						|
      !VD->getType().isVolatileQualified() &&
 | 
						|
      ((VD->getKind() == Decl::Var) ||
 | 
						|
       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
 | 
						|
    return VD;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform the initialization of a potentially-movable value, which
 | 
						|
/// is the result of return value.
 | 
						|
///
 | 
						|
/// This routine implements C++0x [class.copy]p33, which attempts to treat
 | 
						|
/// returned lvalues as rvalues in certain cases (to prefer move construction),
 | 
						|
/// then falls back to treating them as lvalues if that failed.
 | 
						|
ExprResult
 | 
						|
Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
 | 
						|
                                      const VarDecl *NRVOCandidate,
 | 
						|
                                      QualType ResultType,
 | 
						|
                                      Expr *Value,
 | 
						|
                                      bool AllowNRVO) {
 | 
						|
  // C++0x [class.copy]p33:
 | 
						|
  //   When the criteria for elision of a copy operation are met or would
 | 
						|
  //   be met save for the fact that the source object is a function
 | 
						|
  //   parameter, and the object to be copied is designated by an lvalue,
 | 
						|
  //   overload resolution to select the constructor for the copy is first
 | 
						|
  //   performed as if the object were designated by an rvalue.
 | 
						|
  ExprResult Res = ExprError();
 | 
						|
  if (AllowNRVO &&
 | 
						|
      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
 | 
						|
    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
 | 
						|
                              Value->getType(), CK_LValueToRValue,
 | 
						|
                              Value, VK_XValue);
 | 
						|
 | 
						|
    Expr *InitExpr = &AsRvalue;
 | 
						|
    InitializationKind Kind
 | 
						|
      = InitializationKind::CreateCopy(Value->getLocStart(),
 | 
						|
                                       Value->getLocStart());
 | 
						|
    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
 | 
						|
 | 
						|
    //   [...] If overload resolution fails, or if the type of the first
 | 
						|
    //   parameter of the selected constructor is not an rvalue reference
 | 
						|
    //   to the object's type (possibly cv-qualified), overload resolution
 | 
						|
    //   is performed again, considering the object as an lvalue.
 | 
						|
    if (Seq) {
 | 
						|
      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
 | 
						|
           StepEnd = Seq.step_end();
 | 
						|
           Step != StepEnd; ++Step) {
 | 
						|
        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
 | 
						|
          continue;
 | 
						|
 | 
						|
        CXXConstructorDecl *Constructor
 | 
						|
        = cast<CXXConstructorDecl>(Step->Function.Function);
 | 
						|
 | 
						|
        const RValueReferenceType *RRefType
 | 
						|
          = Constructor->getParamDecl(0)->getType()
 | 
						|
                                                 ->getAs<RValueReferenceType>();
 | 
						|
 | 
						|
        // If we don't meet the criteria, break out now.
 | 
						|
        if (!RRefType ||
 | 
						|
            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
 | 
						|
                            Context.getTypeDeclType(Constructor->getParent())))
 | 
						|
          break;
 | 
						|
 | 
						|
        // Promote "AsRvalue" to the heap, since we now need this
 | 
						|
        // expression node to persist.
 | 
						|
        Value = ImplicitCastExpr::Create(Context, Value->getType(),
 | 
						|
                                         CK_LValueToRValue, Value, 0,
 | 
						|
                                         VK_XValue);
 | 
						|
 | 
						|
        // Complete type-checking the initialization of the return type
 | 
						|
        // using the constructor we found.
 | 
						|
        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
 | 
						|
  // above, or overload resolution failed. Either way, we need to try
 | 
						|
  // (again) now with the return value expression as written.
 | 
						|
  if (Res.isInvalid())
 | 
						|
    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
 | 
						|
///
 | 
						|
StmtResult
 | 
						|
Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
 | 
						|
  // If this is the first return we've seen in the block, infer the type of
 | 
						|
  // the block from it.
 | 
						|
  BlockScopeInfo *CurBlock = getCurBlock();
 | 
						|
  if (CurBlock->ReturnType.isNull()) {
 | 
						|
    if (RetValExp) {
 | 
						|
      // Don't call UsualUnaryConversions(), since we don't want to do
 | 
						|
      // integer promotions here.
 | 
						|
      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return StmtError();
 | 
						|
      RetValExp = Result.take();
 | 
						|
 | 
						|
      if (!RetValExp->isTypeDependent()) {
 | 
						|
        CurBlock->ReturnType = RetValExp->getType();
 | 
						|
        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
 | 
						|
          // We have to remove a 'const' added to copied-in variable which was
 | 
						|
          // part of the implementation spec. and not the actual qualifier for
 | 
						|
          // the variable.
 | 
						|
          if (CDRE->isConstQualAdded())
 | 
						|
            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        CurBlock->ReturnType = Context.DependentTy;
 | 
						|
    } else
 | 
						|
      CurBlock->ReturnType = Context.VoidTy;
 | 
						|
  }
 | 
						|
  QualType FnRetType = CurBlock->ReturnType;
 | 
						|
 | 
						|
  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
 | 
						|
    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
 | 
						|
      << getCurFunctionOrMethodDecl()->getDeclName();
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, verify that this result type matches the previous one.  We are
 | 
						|
  // pickier with blocks than for normal functions because we don't have GCC
 | 
						|
  // compatibility to worry about here.
 | 
						|
  const VarDecl *NRVOCandidate = 0;
 | 
						|
  if (FnRetType->isDependentType()) {
 | 
						|
    // Delay processing for now.  TODO: there are lots of dependent
 | 
						|
    // types we can conclusively prove aren't void.
 | 
						|
  } else if (FnRetType->isVoidType()) {
 | 
						|
    if (RetValExp &&
 | 
						|
        !(getLangOptions().CPlusPlus &&
 | 
						|
          (RetValExp->isTypeDependent() ||
 | 
						|
           RetValExp->getType()->isVoidType()))) {
 | 
						|
      Diag(ReturnLoc, diag::err_return_block_has_expr);
 | 
						|
      RetValExp = 0;
 | 
						|
    }
 | 
						|
  } else if (!RetValExp) {
 | 
						|
    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
 | 
						|
  } else if (!RetValExp->isTypeDependent()) {
 | 
						|
    // we have a non-void block with an expression, continue checking
 | 
						|
 | 
						|
    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
 | 
						|
    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
 | 
						|
    // function return.
 | 
						|
 | 
						|
    // In C++ the return statement is handled via a copy initialization.
 | 
						|
    // the C version of which boils down to CheckSingleAssignmentConstraints.
 | 
						|
    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
 | 
						|
                                                                   FnRetType,
 | 
						|
                                                           NRVOCandidate != 0);
 | 
						|
    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
 | 
						|
                                                     FnRetType, RetValExp);
 | 
						|
    if (Res.isInvalid()) {
 | 
						|
      // FIXME: Cleanup temporaries here, anyway?
 | 
						|
      return StmtError();
 | 
						|
    }
 | 
						|
    RetValExp = Res.take();
 | 
						|
    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  if (RetValExp) {
 | 
						|
    CheckImplicitConversions(RetValExp, ReturnLoc);
 | 
						|
    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
 | 
						|
  }
 | 
						|
  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
 | 
						|
                                                NRVOCandidate);
 | 
						|
 | 
						|
  // If we need to check for the named return value optimization, save the
 | 
						|
  // return statement in our scope for later processing.
 | 
						|
  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() && 
 | 
						|
      !CurContext->isDependentContext())
 | 
						|
    FunctionScopes.back()->Returns.push_back(Result);
 | 
						|
 | 
						|
  return Owned(Result);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
 | 
						|
  // Check for unexpanded parameter packs.
 | 
						|
  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
 | 
						|
    return StmtError();
 | 
						|
  
 | 
						|
  if (getCurBlock())
 | 
						|
    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
 | 
						|
 | 
						|
  QualType FnRetType;
 | 
						|
  QualType DeclaredRetType;
 | 
						|
  if (const FunctionDecl *FD = getCurFunctionDecl()) {
 | 
						|
    FnRetType = FD->getResultType();
 | 
						|
    DeclaredRetType = FnRetType;
 | 
						|
    if (FD->hasAttr<NoReturnAttr>() ||
 | 
						|
        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
 | 
						|
      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
 | 
						|
        << getCurFunctionOrMethodDecl()->getDeclName();
 | 
						|
  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
 | 
						|
    DeclaredRetType = MD->getResultType();
 | 
						|
    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
 | 
						|
      // In the implementation of a method with a related return type, the
 | 
						|
      // type used to type-check the validity of return statements within the 
 | 
						|
      // method body is a pointer to the type of the class being implemented.
 | 
						|
      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
 | 
						|
      FnRetType = Context.getObjCObjectPointerType(FnRetType);
 | 
						|
    } else {
 | 
						|
      FnRetType = DeclaredRetType;
 | 
						|
    }
 | 
						|
  } else // If we don't have a function/method context, bail.
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  ReturnStmt *Result = 0;
 | 
						|
  if (FnRetType->isVoidType()) {
 | 
						|
    if (RetValExp) {
 | 
						|
      if (!RetValExp->isTypeDependent()) {
 | 
						|
        // C99 6.8.6.4p1 (ext_ since GCC warns)
 | 
						|
        unsigned D = diag::ext_return_has_expr;
 | 
						|
        if (RetValExp->getType()->isVoidType())
 | 
						|
          D = diag::ext_return_has_void_expr;
 | 
						|
        else {
 | 
						|
          ExprResult Result = Owned(RetValExp);
 | 
						|
          Result = IgnoredValueConversions(Result.take());
 | 
						|
          if (Result.isInvalid())
 | 
						|
            return StmtError();
 | 
						|
          RetValExp = Result.take();
 | 
						|
          RetValExp = ImpCastExprToType(RetValExp,
 | 
						|
                                        Context.VoidTy, CK_ToVoid).take();
 | 
						|
        }
 | 
						|
 | 
						|
        // return (some void expression); is legal in C++.
 | 
						|
        if (D != diag::ext_return_has_void_expr ||
 | 
						|
            !getLangOptions().CPlusPlus) {
 | 
						|
          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
 | 
						|
 | 
						|
          int FunctionKind = 0;
 | 
						|
          if (isa<ObjCMethodDecl>(CurDecl))
 | 
						|
            FunctionKind = 1;
 | 
						|
          else if (isa<CXXConstructorDecl>(CurDecl))
 | 
						|
            FunctionKind = 2;
 | 
						|
          else if (isa<CXXDestructorDecl>(CurDecl))
 | 
						|
            FunctionKind = 3;
 | 
						|
 | 
						|
          Diag(ReturnLoc, D)
 | 
						|
            << CurDecl->getDeclName() << FunctionKind
 | 
						|
            << RetValExp->getSourceRange();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      CheckImplicitConversions(RetValExp, ReturnLoc);
 | 
						|
      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
 | 
						|
    }
 | 
						|
 | 
						|
    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
 | 
						|
  } else if (!RetValExp && !FnRetType->isDependentType()) {
 | 
						|
    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
 | 
						|
    // C99 6.8.6.4p1 (ext_ since GCC warns)
 | 
						|
    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
 | 
						|
 | 
						|
    if (FunctionDecl *FD = getCurFunctionDecl())
 | 
						|
      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
 | 
						|
    else
 | 
						|
      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
 | 
						|
    Result = new (Context) ReturnStmt(ReturnLoc);
 | 
						|
  } else {
 | 
						|
    const VarDecl *NRVOCandidate = 0;
 | 
						|
    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
 | 
						|
      // we have a non-void function with an expression, continue checking
 | 
						|
 | 
						|
      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
 | 
						|
      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
 | 
						|
      // function return.
 | 
						|
 | 
						|
      // In C++ the return statement is handled via a copy initialization,
 | 
						|
      // the C version of which boils down to CheckSingleAssignmentConstraints.
 | 
						|
      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
 | 
						|
      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
 | 
						|
                                                                     FnRetType,
 | 
						|
                                                            NRVOCandidate != 0);
 | 
						|
      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
 | 
						|
                                                       FnRetType, RetValExp);
 | 
						|
      if (Res.isInvalid()) {
 | 
						|
        // FIXME: Cleanup temporaries here, anyway?
 | 
						|
        return StmtError();
 | 
						|
      }
 | 
						|
 | 
						|
      RetValExp = Res.takeAs<Expr>();
 | 
						|
      if (RetValExp)
 | 
						|
        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RetValExp) {
 | 
						|
      // If we type-checked an Objective-C method's return type based
 | 
						|
      // on a related return type, we may need to adjust the return
 | 
						|
      // type again. Do so now.
 | 
						|
      if (DeclaredRetType != FnRetType) {
 | 
						|
        ExprResult result = PerformImplicitConversion(RetValExp,
 | 
						|
                                                      DeclaredRetType,
 | 
						|
                                                      AA_Returning);
 | 
						|
        if (result.isInvalid()) return StmtError();
 | 
						|
        RetValExp = result.take();
 | 
						|
      }
 | 
						|
 | 
						|
      CheckImplicitConversions(RetValExp, ReturnLoc);
 | 
						|
      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
 | 
						|
    }
 | 
						|
    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we need to check for the named return value optimization, save the
 | 
						|
  // return statement in our scope for later processing.
 | 
						|
  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
 | 
						|
      !CurContext->isDependentContext())
 | 
						|
    FunctionScopes.back()->Returns.push_back(Result);
 | 
						|
  
 | 
						|
  return Owned(Result);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
 | 
						|
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
 | 
						|
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
 | 
						|
/// provide a strong guidance to not use it.
 | 
						|
///
 | 
						|
/// This method checks to see if the argument is an acceptable l-value and
 | 
						|
/// returns false if it is a case we can handle.
 | 
						|
static bool CheckAsmLValue(const Expr *E, Sema &S) {
 | 
						|
  // Type dependent expressions will be checked during instantiation.
 | 
						|
  if (E->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (E->isLValue())
 | 
						|
    return false;  // Cool, this is an lvalue.
 | 
						|
 | 
						|
  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
 | 
						|
  // are supposed to allow.
 | 
						|
  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
 | 
						|
  if (E != E2 && E2->isLValue()) {
 | 
						|
    if (!S.getLangOptions().HeinousExtensions)
 | 
						|
      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
 | 
						|
        << E->getSourceRange();
 | 
						|
    else
 | 
						|
      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
 | 
						|
        << E->getSourceRange();
 | 
						|
    // Accept, even if we emitted an error diagnostic.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the above, just randomly invalid non-lvalue.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isOperandMentioned - Return true if the specified operand # is mentioned
 | 
						|
/// anywhere in the decomposed asm string.
 | 
						|
static bool isOperandMentioned(unsigned OpNo, 
 | 
						|
                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
 | 
						|
  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
 | 
						|
    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
 | 
						|
    if (!Piece.isOperand()) continue;
 | 
						|
    
 | 
						|
    // If this is a reference to the input and if the input was the smaller
 | 
						|
    // one, then we have to reject this asm.
 | 
						|
    if (Piece.getOperandNo() == OpNo)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
 | 
						|
                              bool IsVolatile, unsigned NumOutputs,
 | 
						|
                              unsigned NumInputs, IdentifierInfo **Names,
 | 
						|
                              MultiExprArg constraints, MultiExprArg exprs,
 | 
						|
                              Expr *asmString, MultiExprArg clobbers,
 | 
						|
                              SourceLocation RParenLoc, bool MSAsm) {
 | 
						|
  unsigned NumClobbers = clobbers.size();
 | 
						|
  StringLiteral **Constraints =
 | 
						|
    reinterpret_cast<StringLiteral**>(constraints.get());
 | 
						|
  Expr **Exprs = exprs.get();
 | 
						|
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
 | 
						|
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
 | 
						|
 | 
						|
  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | 
						|
 | 
						|
  // The parser verifies that there is a string literal here.
 | 
						|
  if (!AsmString->isAscii())
 | 
						|
    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
 | 
						|
      << AsmString->getSourceRange());
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumOutputs; i++) {
 | 
						|
    StringLiteral *Literal = Constraints[i];
 | 
						|
    if (!Literal->isAscii())
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | 
						|
        << Literal->getSourceRange());
 | 
						|
 | 
						|
    StringRef OutputName;
 | 
						|
    if (Names[i])
 | 
						|
      OutputName = Names[i]->getName();
 | 
						|
 | 
						|
    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
 | 
						|
    if (!Context.Target.validateOutputConstraint(Info))
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),
 | 
						|
                            diag::err_asm_invalid_output_constraint)
 | 
						|
                       << Info.getConstraintStr());
 | 
						|
 | 
						|
    // Check that the output exprs are valid lvalues.
 | 
						|
    Expr *OutputExpr = Exprs[i];
 | 
						|
    if (CheckAsmLValue(OutputExpr, *this)) {
 | 
						|
      return StmtError(Diag(OutputExpr->getLocStart(),
 | 
						|
                  diag::err_asm_invalid_lvalue_in_output)
 | 
						|
        << OutputExpr->getSourceRange());
 | 
						|
    }
 | 
						|
 | 
						|
    OutputConstraintInfos.push_back(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | 
						|
 | 
						|
  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
 | 
						|
    StringLiteral *Literal = Constraints[i];
 | 
						|
    if (!Literal->isAscii())
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | 
						|
        << Literal->getSourceRange());
 | 
						|
 | 
						|
    StringRef InputName;
 | 
						|
    if (Names[i])
 | 
						|
      InputName = Names[i]->getName();
 | 
						|
 | 
						|
    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
 | 
						|
    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
 | 
						|
                                                NumOutputs, Info)) {
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),
 | 
						|
                            diag::err_asm_invalid_input_constraint)
 | 
						|
                       << Info.getConstraintStr());
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *InputExpr = Exprs[i];
 | 
						|
 | 
						|
    // Only allow void types for memory constraints.
 | 
						|
    if (Info.allowsMemory() && !Info.allowsRegister()) {
 | 
						|
      if (CheckAsmLValue(InputExpr, *this))
 | 
						|
        return StmtError(Diag(InputExpr->getLocStart(),
 | 
						|
                              diag::err_asm_invalid_lvalue_in_input)
 | 
						|
                         << Info.getConstraintStr()
 | 
						|
                         << InputExpr->getSourceRange());
 | 
						|
    }
 | 
						|
 | 
						|
    if (Info.allowsRegister()) {
 | 
						|
      if (InputExpr->getType()->isVoidType()) {
 | 
						|
        return StmtError(Diag(InputExpr->getLocStart(),
 | 
						|
                              diag::err_asm_invalid_type_in_input)
 | 
						|
          << InputExpr->getType() << Info.getConstraintStr()
 | 
						|
          << InputExpr->getSourceRange());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    Exprs[i] = Result.take();
 | 
						|
    InputConstraintInfos.push_back(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the clobbers are valid.
 | 
						|
  for (unsigned i = 0; i != NumClobbers; i++) {
 | 
						|
    StringLiteral *Literal = Clobbers[i];
 | 
						|
    if (!Literal->isAscii())
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | 
						|
        << Literal->getSourceRange());
 | 
						|
 | 
						|
    StringRef Clobber = Literal->getString();
 | 
						|
 | 
						|
    if (!Context.Target.isValidClobber(Clobber))
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),
 | 
						|
                  diag::err_asm_unknown_register_name) << Clobber);
 | 
						|
  }
 | 
						|
 | 
						|
  AsmStmt *NS =
 | 
						|
    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
 | 
						|
                          NumOutputs, NumInputs, Names, Constraints, Exprs,
 | 
						|
                          AsmString, NumClobbers, Clobbers, RParenLoc);
 | 
						|
  // Validate the asm string, ensuring it makes sense given the operands we
 | 
						|
  // have.
 | 
						|
  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
 | 
						|
  unsigned DiagOffs;
 | 
						|
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
 | 
						|
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
 | 
						|
           << AsmString->getSourceRange();
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Validate tied input operands for type mismatches.
 | 
						|
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
 | 
						|
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | 
						|
 | 
						|
    // If this is a tied constraint, verify that the output and input have
 | 
						|
    // either exactly the same type, or that they are int/ptr operands with the
 | 
						|
    // same size (int/long, int*/long, are ok etc).
 | 
						|
    if (!Info.hasTiedOperand()) continue;
 | 
						|
 | 
						|
    unsigned TiedTo = Info.getTiedOperand();
 | 
						|
    unsigned InputOpNo = i+NumOutputs;
 | 
						|
    Expr *OutputExpr = Exprs[TiedTo];
 | 
						|
    Expr *InputExpr = Exprs[InputOpNo];
 | 
						|
    QualType InTy = InputExpr->getType();
 | 
						|
    QualType OutTy = OutputExpr->getType();
 | 
						|
    if (Context.hasSameType(InTy, OutTy))
 | 
						|
      continue;  // All types can be tied to themselves.
 | 
						|
 | 
						|
    // Decide if the input and output are in the same domain (integer/ptr or
 | 
						|
    // floating point.
 | 
						|
    enum AsmDomain {
 | 
						|
      AD_Int, AD_FP, AD_Other
 | 
						|
    } InputDomain, OutputDomain;
 | 
						|
 | 
						|
    if (InTy->isIntegerType() || InTy->isPointerType())
 | 
						|
      InputDomain = AD_Int;
 | 
						|
    else if (InTy->isRealFloatingType())
 | 
						|
      InputDomain = AD_FP;
 | 
						|
    else
 | 
						|
      InputDomain = AD_Other;
 | 
						|
 | 
						|
    if (OutTy->isIntegerType() || OutTy->isPointerType())
 | 
						|
      OutputDomain = AD_Int;
 | 
						|
    else if (OutTy->isRealFloatingType())
 | 
						|
      OutputDomain = AD_FP;
 | 
						|
    else
 | 
						|
      OutputDomain = AD_Other;
 | 
						|
 | 
						|
    // They are ok if they are the same size and in the same domain.  This
 | 
						|
    // allows tying things like:
 | 
						|
    //   void* to int*
 | 
						|
    //   void* to int            if they are the same size.
 | 
						|
    //   double to long double   if they are the same size.
 | 
						|
    //
 | 
						|
    uint64_t OutSize = Context.getTypeSize(OutTy);
 | 
						|
    uint64_t InSize = Context.getTypeSize(InTy);
 | 
						|
    if (OutSize == InSize && InputDomain == OutputDomain &&
 | 
						|
        InputDomain != AD_Other)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the smaller input/output operand is not mentioned in the asm string,
 | 
						|
    // then we can promote the smaller one to a larger input and the asm string
 | 
						|
    // won't notice.
 | 
						|
    bool SmallerValueMentioned = false;
 | 
						|
    
 | 
						|
    // If this is a reference to the input and if the input was the smaller
 | 
						|
    // one, then we have to reject this asm.
 | 
						|
    if (isOperandMentioned(InputOpNo, Pieces)) {
 | 
						|
      // This is a use in the asm string of the smaller operand.  Since we
 | 
						|
      // codegen this by promoting to a wider value, the asm will get printed
 | 
						|
      // "wrong".
 | 
						|
      SmallerValueMentioned |= InSize < OutSize;
 | 
						|
    }
 | 
						|
    if (isOperandMentioned(TiedTo, Pieces)) {
 | 
						|
      // If this is a reference to the output, and if the output is the larger
 | 
						|
      // value, then it's ok because we'll promote the input to the larger type.
 | 
						|
      SmallerValueMentioned |= OutSize < InSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the smaller value wasn't mentioned in the asm string, and if the
 | 
						|
    // output was a register, just extend the shorter one to the size of the
 | 
						|
    // larger one.
 | 
						|
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
 | 
						|
        OutputConstraintInfos[TiedTo].allowsRegister())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Either both of the operands were mentioned or the smaller one was
 | 
						|
    // mentioned.  One more special case that we'll allow: if the tied input is
 | 
						|
    // integer, unmentioned, and is a constant, then we'll allow truncating it
 | 
						|
    // down to the size of the destination.
 | 
						|
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
 | 
						|
        !isOperandMentioned(InputOpNo, Pieces) &&
 | 
						|
        InputExpr->isEvaluatable(Context)) {
 | 
						|
      CastKind castKind =
 | 
						|
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
 | 
						|
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
 | 
						|
      Exprs[InputOpNo] = InputExpr;
 | 
						|
      NS->setInputExpr(i, InputExpr);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Diag(InputExpr->getLocStart(),
 | 
						|
         diag::err_asm_tying_incompatible_types)
 | 
						|
      << InTy << OutTy << OutputExpr->getSourceRange()
 | 
						|
      << InputExpr->getSourceRange();
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(NS);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
 | 
						|
                           SourceLocation RParen, Decl *Parm,
 | 
						|
                           Stmt *Body) {
 | 
						|
  VarDecl *Var = cast_or_null<VarDecl>(Parm);
 | 
						|
  if (Var && Var->isInvalidDecl())
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
 | 
						|
  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
 | 
						|
                         MultiStmtArg CatchStmts, Stmt *Finally) {
 | 
						|
  if (!getLangOptions().ObjCExceptions)
 | 
						|
    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
 | 
						|
 | 
						|
  getCurFunction()->setHasBranchProtectedScope();
 | 
						|
  unsigned NumCatchStmts = CatchStmts.size();
 | 
						|
  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
 | 
						|
                                     CatchStmts.release(),
 | 
						|
                                     NumCatchStmts,
 | 
						|
                                     Finally));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
 | 
						|
                                                  Expr *Throw) {
 | 
						|
  if (Throw) {
 | 
						|
    Throw = MaybeCreateExprWithCleanups(Throw);
 | 
						|
    ExprResult Result = DefaultLvalueConversion(Throw);
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    Throw = Result.take();
 | 
						|
    QualType ThrowType = Throw->getType();
 | 
						|
    // Make sure the expression type is an ObjC pointer or "void *".
 | 
						|
    if (!ThrowType->isDependentType() &&
 | 
						|
        !ThrowType->isObjCObjectPointerType()) {
 | 
						|
      const PointerType *PT = ThrowType->getAs<PointerType>();
 | 
						|
      if (!PT || !PT->getPointeeType()->isVoidType())
 | 
						|
        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
 | 
						|
                         << Throw->getType() << Throw->getSourceRange());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
 | 
						|
                           Scope *CurScope) {
 | 
						|
  if (!getLangOptions().ObjCExceptions)
 | 
						|
    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
 | 
						|
 | 
						|
  if (!Throw) {
 | 
						|
    // @throw without an expression designates a rethrow (which much occur
 | 
						|
    // in the context of an @catch clause).
 | 
						|
    Scope *AtCatchParent = CurScope;
 | 
						|
    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
 | 
						|
      AtCatchParent = AtCatchParent->getParent();
 | 
						|
    if (!AtCatchParent)
 | 
						|
      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
 | 
						|
  }
 | 
						|
  
 | 
						|
  return BuildObjCAtThrowStmt(AtLoc, Throw);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
 | 
						|
  ExprResult result = DefaultLvalueConversion(operand);
 | 
						|
  if (result.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  operand = result.take();
 | 
						|
 | 
						|
  // Make sure the expression type is an ObjC pointer or "void *".
 | 
						|
  QualType type = operand->getType();
 | 
						|
  if (!type->isDependentType() &&
 | 
						|
      !type->isObjCObjectPointerType()) {
 | 
						|
    const PointerType *pointerType = type->getAs<PointerType>();
 | 
						|
    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
 | 
						|
      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
 | 
						|
               << type << operand->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // The operand to @synchronized is a full-expression.
 | 
						|
  return MaybeCreateExprWithCleanups(operand);
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
 | 
						|
                                  Stmt *SyncBody) {
 | 
						|
  // We can't jump into or indirect-jump out of a @synchronized block.
 | 
						|
  getCurFunction()->setHasBranchProtectedScope();
 | 
						|
  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
 | 
						|
/// and creates a proper catch handler from them.
 | 
						|
StmtResult
 | 
						|
Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
 | 
						|
                         Stmt *HandlerBlock) {
 | 
						|
  // There's nothing to test that ActOnExceptionDecl didn't already test.
 | 
						|
  return Owned(new (Context) CXXCatchStmt(CatchLoc,
 | 
						|
                                          cast_or_null<VarDecl>(ExDecl),
 | 
						|
                                          HandlerBlock));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
 | 
						|
  getCurFunction()->setHasBranchProtectedScope();
 | 
						|
  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class TypeWithHandler {
 | 
						|
  QualType t;
 | 
						|
  CXXCatchStmt *stmt;
 | 
						|
public:
 | 
						|
  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
 | 
						|
  : t(type), stmt(statement) {}
 | 
						|
 | 
						|
  // An arbitrary order is fine as long as it places identical
 | 
						|
  // types next to each other.
 | 
						|
  bool operator<(const TypeWithHandler &y) const {
 | 
						|
    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
 | 
						|
      return true;
 | 
						|
    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
 | 
						|
      return false;
 | 
						|
    else
 | 
						|
      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const TypeWithHandler& other) const {
 | 
						|
    return t == other.t;
 | 
						|
  }
 | 
						|
 | 
						|
  CXXCatchStmt *getCatchStmt() const { return stmt; }
 | 
						|
  SourceLocation getTypeSpecStartLoc() const {
 | 
						|
    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
 | 
						|
/// handlers and creates a try statement from them.
 | 
						|
StmtResult
 | 
						|
Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
 | 
						|
                       MultiStmtArg RawHandlers) {
 | 
						|
  // Don't report an error if 'try' is used in system headers.
 | 
						|
  if (!getLangOptions().CXXExceptions &&
 | 
						|
      !getSourceManager().isInSystemHeader(TryLoc))
 | 
						|
      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
 | 
						|
 | 
						|
  unsigned NumHandlers = RawHandlers.size();
 | 
						|
  assert(NumHandlers > 0 &&
 | 
						|
         "The parser shouldn't call this if there are no handlers.");
 | 
						|
  Stmt **Handlers = RawHandlers.get();
 | 
						|
 | 
						|
  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumHandlers; ++i) {
 | 
						|
    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
 | 
						|
    if (!Handler->getExceptionDecl()) {
 | 
						|
      if (i < NumHandlers - 1)
 | 
						|
        return StmtError(Diag(Handler->getLocStart(),
 | 
						|
                              diag::err_early_catch_all));
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const QualType CaughtType = Handler->getCaughtType();
 | 
						|
    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
 | 
						|
    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
 | 
						|
  }
 | 
						|
 | 
						|
  // Detect handlers for the same type as an earlier one.
 | 
						|
  if (NumHandlers > 1) {
 | 
						|
    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
 | 
						|
 | 
						|
    TypeWithHandler prev = TypesWithHandlers[0];
 | 
						|
    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
 | 
						|
      TypeWithHandler curr = TypesWithHandlers[i];
 | 
						|
 | 
						|
      if (curr == prev) {
 | 
						|
        Diag(curr.getTypeSpecStartLoc(),
 | 
						|
             diag::warn_exception_caught_by_earlier_handler)
 | 
						|
          << curr.getCatchStmt()->getCaughtType().getAsString();
 | 
						|
        Diag(prev.getTypeSpecStartLoc(),
 | 
						|
             diag::note_previous_exception_handler)
 | 
						|
          << prev.getCatchStmt()->getCaughtType().getAsString();
 | 
						|
      }
 | 
						|
 | 
						|
      prev = curr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  getCurFunction()->setHasBranchProtectedScope();
 | 
						|
 | 
						|
  // FIXME: We should detect handlers that cannot catch anything because an
 | 
						|
  // earlier handler catches a superclass. Need to find a method that is not
 | 
						|
  // quadratic for this.
 | 
						|
  // Neither of these are explicitly forbidden, but every compiler detects them
 | 
						|
  // and warns.
 | 
						|
 | 
						|
  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
 | 
						|
                                  Handlers, NumHandlers));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnSEHTryBlock(bool IsCXXTry,
 | 
						|
                       SourceLocation TryLoc,
 | 
						|
                       Stmt *TryBlock,
 | 
						|
                       Stmt *Handler) {
 | 
						|
  assert(TryBlock && Handler);
 | 
						|
 | 
						|
  getCurFunction()->setHasBranchProtectedScope();
 | 
						|
 | 
						|
  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnSEHExceptBlock(SourceLocation Loc,
 | 
						|
                          Expr *FilterExpr,
 | 
						|
                          Stmt *Block) {
 | 
						|
  assert(FilterExpr && Block);
 | 
						|
 | 
						|
  if(!FilterExpr->getType()->isIntegerType()) {
 | 
						|
    return StmtError(Diag(FilterExpr->getExprLoc(),
 | 
						|
                     diag::err_filter_expression_integral)
 | 
						|
                     << FilterExpr->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
 | 
						|
                           Stmt *Block) {
 | 
						|
  assert(Block);
 | 
						|
  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
 | 
						|
}
 |