forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			605 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			605 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- GlobalMerge.cpp - Internal globals merging  -----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This pass merges globals with internal linkage into one. This way all the
 | |
| // globals which were merged into a biggest one can be addressed using offsets
 | |
| // from the same base pointer (no need for separate base pointer for each of the
 | |
| // global). Such a transformation can significantly reduce the register pressure
 | |
| // when many globals are involved.
 | |
| //
 | |
| // For example, consider the code which touches several global variables at
 | |
| // once:
 | |
| //
 | |
| // static int foo[N], bar[N], baz[N];
 | |
| //
 | |
| // for (i = 0; i < N; ++i) {
 | |
| //    foo[i] = bar[i] * baz[i];
 | |
| // }
 | |
| //
 | |
| //  On ARM the addresses of 3 arrays should be kept in the registers, thus
 | |
| //  this code has quite large register pressure (loop body):
 | |
| //
 | |
| //  ldr     r1, [r5], #4
 | |
| //  ldr     r2, [r6], #4
 | |
| //  mul     r1, r2, r1
 | |
| //  str     r1, [r0], #4
 | |
| //
 | |
| //  Pass converts the code to something like:
 | |
| //
 | |
| //  static struct {
 | |
| //    int foo[N];
 | |
| //    int bar[N];
 | |
| //    int baz[N];
 | |
| //  } merged;
 | |
| //
 | |
| //  for (i = 0; i < N; ++i) {
 | |
| //    merged.foo[i] = merged.bar[i] * merged.baz[i];
 | |
| //  }
 | |
| //
 | |
| //  and in ARM code this becomes:
 | |
| //
 | |
| //  ldr     r0, [r5, #40]
 | |
| //  ldr     r1, [r5, #80]
 | |
| //  mul     r0, r1, r0
 | |
| //  str     r0, [r5], #4
 | |
| //
 | |
| //  note that we saved 2 registers here almostly "for free".
 | |
| //
 | |
| // However, merging globals can have tradeoffs:
 | |
| // - it confuses debuggers, tools, and users
 | |
| // - it makes linker optimizations less useful (order files, LOHs, ...)
 | |
| // - it forces usage of indexed addressing (which isn't necessarily "free")
 | |
| // - it can increase register pressure when the uses are disparate enough.
 | |
| // 
 | |
| // We use heuristics to discover the best global grouping we can (cf cl::opts).
 | |
| // ===---------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "global-merge"
 | |
| 
 | |
| // FIXME: This is only useful as a last-resort way to disable the pass.
 | |
| static cl::opt<bool>
 | |
| EnableGlobalMerge("enable-global-merge", cl::Hidden,
 | |
|                   cl::desc("Enable the global merge pass"),
 | |
|                   cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> GlobalMergeGroupByUse(
 | |
|     "global-merge-group-by-use", cl::Hidden,
 | |
|     cl::desc("Improve global merge pass to look at uses"), cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> GlobalMergeIgnoreSingleUse(
 | |
|     "global-merge-ignore-single-use", cl::Hidden,
 | |
|     cl::desc("Improve global merge pass to ignore globals only used alone"),
 | |
|     cl::init(true));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
 | |
|                          cl::desc("Enable global merge pass on constants"),
 | |
|                          cl::init(false));
 | |
| 
 | |
| // FIXME: this could be a transitional option, and we probably need to remove
 | |
| // it if only we are sure this optimization could always benefit all targets.
 | |
| static cl::opt<bool>
 | |
| EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
 | |
|      cl::desc("Enable global merge pass on external linkage"),
 | |
|      cl::init(false));
 | |
| 
 | |
| STATISTIC(NumMerged, "Number of globals merged");
 | |
| namespace {
 | |
|   class GlobalMerge : public FunctionPass {
 | |
|     const TargetMachine *TM;
 | |
|     const DataLayout *DL;
 | |
|     // FIXME: Infer the maximum possible offset depending on the actual users
 | |
|     // (these max offsets are different for the users inside Thumb or ARM
 | |
|     // functions), see the code that passes in the offset in the ARM backend
 | |
|     // for more information.
 | |
|     unsigned MaxOffset;
 | |
| 
 | |
|     /// Whether we should try to optimize for size only.
 | |
|     /// Currently, this applies a dead simple heuristic: only consider globals
 | |
|     /// used in minsize functions for merging.
 | |
|     /// FIXME: This could learn about optsize, and be used in the cost model.
 | |
|     bool OnlyOptimizeForSize;
 | |
| 
 | |
|     bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
 | |
|                  Module &M, bool isConst, unsigned AddrSpace) const;
 | |
|     /// \brief Merge everything in \p Globals for which the corresponding bit
 | |
|     /// in \p GlobalSet is set.
 | |
|     bool doMerge(SmallVectorImpl<GlobalVariable *> &Globals,
 | |
|                  const BitVector &GlobalSet, Module &M, bool isConst,
 | |
|                  unsigned AddrSpace) const;
 | |
| 
 | |
|     /// \brief Check if the given variable has been identified as must keep
 | |
|     /// \pre setMustKeepGlobalVariables must have been called on the Module that
 | |
|     ///      contains GV
 | |
|     bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
 | |
|       return MustKeepGlobalVariables.count(GV);
 | |
|     }
 | |
| 
 | |
|     /// Collect every variables marked as "used" or used in a landing pad
 | |
|     /// instruction for this Module.
 | |
|     void setMustKeepGlobalVariables(Module &M);
 | |
| 
 | |
|     /// Collect every variables marked as "used"
 | |
|     void collectUsedGlobalVariables(Module &M);
 | |
| 
 | |
|     /// Keep track of the GlobalVariable that must not be merged away
 | |
|     SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;
 | |
| 
 | |
|   public:
 | |
|     static char ID;             // Pass identification, replacement for typeid.
 | |
|     explicit GlobalMerge(const TargetMachine *TM = nullptr,
 | |
|                          unsigned MaximalOffset = 0,
 | |
|                          bool OnlyOptimizeForSize = false)
 | |
|         : FunctionPass(ID), TM(TM), DL(TM->getDataLayout()),
 | |
|           MaxOffset(MaximalOffset), OnlyOptimizeForSize(OnlyOptimizeForSize) {
 | |
|       initializeGlobalMergePass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool doInitialization(Module &M) override;
 | |
|     bool runOnFunction(Function &F) override;
 | |
|     bool doFinalization(Module &M) override;
 | |
| 
 | |
|     const char *getPassName() const override {
 | |
|       return "Merge internal globals";
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       FunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char GlobalMerge::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(GlobalMerge, "global-merge", "Merge global variables",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_END(GlobalMerge, "global-merge", "Merge global variables",
 | |
|                     false, false)
 | |
| 
 | |
| bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
 | |
|                           Module &M, bool isConst, unsigned AddrSpace) const {
 | |
|   // FIXME: Find better heuristics
 | |
|   std::stable_sort(Globals.begin(), Globals.end(),
 | |
|                    [this](const GlobalVariable *GV1, const GlobalVariable *GV2) {
 | |
|     Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType();
 | |
|     Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType();
 | |
| 
 | |
|     return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2));
 | |
|   });
 | |
| 
 | |
|   // If we want to just blindly group all globals together, do so.
 | |
|   if (!GlobalMergeGroupByUse) {
 | |
|     BitVector AllGlobals(Globals.size());
 | |
|     AllGlobals.set();
 | |
|     return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
 | |
|   }
 | |
| 
 | |
|   // If we want to be smarter, look at all uses of each global, to try to
 | |
|   // discover all sets of globals used together, and how many times each of
 | |
|   // these sets occured.
 | |
|   //
 | |
|   // Keep this reasonably efficient, by having an append-only list of all sets
 | |
|   // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of
 | |
|   // code (currently, a Function) to the set of globals seen so far that are
 | |
|   // used together in that unit (GlobalUsesByFunction).
 | |
|   //
 | |
|   // When we look at the Nth global, we now that any new set is either:
 | |
|   // - the singleton set {N}, containing this global only, or
 | |
|   // - the union of {N} and a previously-discovered set, containing some
 | |
|   //   combination of the previous N-1 globals.
 | |
|   // Using that knowledge, when looking at the Nth global, we can keep:
 | |
|   // - a reference to the singleton set {N} (CurGVOnlySetIdx)
 | |
|   // - a list mapping each previous set to its union with {N} (EncounteredUGS),
 | |
|   //   if it actually occurs.
 | |
| 
 | |
|   // We keep track of the sets of globals used together "close enough".
 | |
|   struct UsedGlobalSet {
 | |
|     UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {}
 | |
|     BitVector Globals;
 | |
|     unsigned UsageCount;
 | |
|   };
 | |
| 
 | |
|   // Each set is unique in UsedGlobalSets.
 | |
|   std::vector<UsedGlobalSet> UsedGlobalSets;
 | |
| 
 | |
|   // Avoid repeating the create-global-set pattern.
 | |
|   auto CreateGlobalSet = [&]() -> UsedGlobalSet & {
 | |
|     UsedGlobalSets.emplace_back(Globals.size());
 | |
|     return UsedGlobalSets.back();
 | |
|   };
 | |
| 
 | |
|   // The first set is the empty set.
 | |
|   CreateGlobalSet().UsageCount = 0;
 | |
| 
 | |
|   // We define "close enough" to be "in the same function".
 | |
|   // FIXME: Grouping uses by function is way too aggressive, so we should have
 | |
|   // a better metric for distance between uses.
 | |
|   // The obvious alternative would be to group by BasicBlock, but that's in
 | |
|   // turn too conservative..
 | |
|   // Anything in between wouldn't be trivial to compute, so just stick with
 | |
|   // per-function grouping.
 | |
| 
 | |
|   // The value type is an index into UsedGlobalSets.
 | |
|   // The default (0) conveniently points to the empty set.
 | |
|   DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction;
 | |
| 
 | |
|   // Now, look at each merge-eligible global in turn.
 | |
| 
 | |
|   // Keep track of the sets we already encountered to which we added the
 | |
|   // current global.
 | |
|   // Each element matches the same-index element in UsedGlobalSets.
 | |
|   // This lets us efficiently tell whether a set has already been expanded to
 | |
|   // include the current global.
 | |
|   std::vector<size_t> EncounteredUGS;
 | |
| 
 | |
|   for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) {
 | |
|     GlobalVariable *GV = Globals[GI];
 | |
| 
 | |
|     // Reset the encountered sets for this global...
 | |
|     std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0);
 | |
|     // ...and grow it in case we created new sets for the previous global.
 | |
|     EncounteredUGS.resize(UsedGlobalSets.size());
 | |
| 
 | |
|     // We might need to create a set that only consists of the current global.
 | |
|     // Keep track of its index into UsedGlobalSets.
 | |
|     size_t CurGVOnlySetIdx = 0;
 | |
| 
 | |
|     // For each global, look at all its Uses.
 | |
|     for (auto &U : GV->uses()) {
 | |
|       // This Use might be a ConstantExpr.  We're interested in Instruction
 | |
|       // users, so look through ConstantExpr...
 | |
|       Use *UI, *UE;
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
 | |
|         UI = &*CE->use_begin();
 | |
|         UE = nullptr;
 | |
|       } else if (isa<Instruction>(U.getUser())) {
 | |
|         UI = &U;
 | |
|         UE = UI->getNext();
 | |
|       } else {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // ...to iterate on all the instruction users of the global.
 | |
|       // Note that we iterate on Uses and not on Users to be able to getNext().
 | |
|       for (; UI != UE; UI = UI->getNext()) {
 | |
|         Instruction *I = dyn_cast<Instruction>(UI->getUser());
 | |
|         if (!I)
 | |
|           continue;
 | |
| 
 | |
|         Function *ParentFn = I->getParent()->getParent();
 | |
| 
 | |
|         // If we're only optimizing for size, ignore non-minsize functions.
 | |
|         if (OnlyOptimizeForSize &&
 | |
|             !ParentFn->hasFnAttribute(Attribute::MinSize))
 | |
|           continue;
 | |
| 
 | |
|         size_t UGSIdx = GlobalUsesByFunction[ParentFn];
 | |
| 
 | |
|         // If this is the first global the basic block uses, map it to the set
 | |
|         // consisting of this global only.
 | |
|         if (!UGSIdx) {
 | |
|           // If that set doesn't exist yet, create it.
 | |
|           if (!CurGVOnlySetIdx) {
 | |
|             CurGVOnlySetIdx = UsedGlobalSets.size();
 | |
|             CreateGlobalSet().Globals.set(GI);
 | |
|           } else {
 | |
|             ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount;
 | |
|           }
 | |
| 
 | |
|           GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If we already encountered this BB, just increment the counter.
 | |
|         if (UsedGlobalSets[UGSIdx].Globals.test(GI)) {
 | |
|           ++UsedGlobalSets[UGSIdx].UsageCount;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If not, the previous set wasn't actually used in this function.
 | |
|         --UsedGlobalSets[UGSIdx].UsageCount;
 | |
| 
 | |
|         // If we already expanded the previous set to include this global, just
 | |
|         // reuse that expanded set.
 | |
|         if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) {
 | |
|           ++UsedGlobalSets[ExpandedIdx].UsageCount;
 | |
|           GlobalUsesByFunction[ParentFn] = ExpandedIdx;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If not, create a new set consisting of the union of the previous set
 | |
|         // and this global.  Mark it as encountered, so we can reuse it later.
 | |
|         GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] =
 | |
|             UsedGlobalSets.size();
 | |
| 
 | |
|         UsedGlobalSet &NewUGS = CreateGlobalSet();
 | |
|         NewUGS.Globals.set(GI);
 | |
|         NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we found a bunch of sets of globals used together.  We accumulated
 | |
|   // the number of times we encountered the sets (i.e., the number of blocks
 | |
|   // that use that exact set of globals).
 | |
|   //
 | |
|   // Multiply that by the size of the set to give us a crude profitability
 | |
|   // metric.
 | |
|   std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(),
 | |
|             [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) {
 | |
|               return UGS1.Globals.count() * UGS1.UsageCount <
 | |
|                      UGS2.Globals.count() * UGS2.UsageCount;
 | |
|             });
 | |
| 
 | |
|   // We can choose to merge all globals together, but ignore globals never used
 | |
|   // with another global.  This catches the obviously non-profitable cases of
 | |
|   // having a single global, but is aggressive enough for any other case.
 | |
|   if (GlobalMergeIgnoreSingleUse) {
 | |
|     BitVector AllGlobals(Globals.size());
 | |
|     for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
 | |
|       const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
 | |
|       if (UGS.UsageCount == 0)
 | |
|         continue;
 | |
|       if (UGS.Globals.count() > 1)
 | |
|         AllGlobals |= UGS.Globals;
 | |
|     }
 | |
|     return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
 | |
|   }
 | |
| 
 | |
|   // Starting from the sets with the best (=biggest) profitability, find a
 | |
|   // good combination.
 | |
|   // The ideal (and expensive) solution can only be found by trying all
 | |
|   // combinations, looking for the one with the best profitability.
 | |
|   // Don't be smart about it, and just pick the first compatible combination,
 | |
|   // starting with the sets with the best profitability.
 | |
|   BitVector PickedGlobals(Globals.size());
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
 | |
|     const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
 | |
|     if (UGS.UsageCount == 0)
 | |
|       continue;
 | |
|     if (PickedGlobals.anyCommon(UGS.Globals))
 | |
|       continue;
 | |
|     PickedGlobals |= UGS.Globals;
 | |
|     // If the set only contains one global, there's no point in merging.
 | |
|     // Ignore the global for inclusion in other sets though, so keep it in
 | |
|     // PickedGlobals.
 | |
|     if (UGS.Globals.count() < 2)
 | |
|       continue;
 | |
|     Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable *> &Globals,
 | |
|                           const BitVector &GlobalSet, Module &M, bool isConst,
 | |
|                           unsigned AddrSpace) const {
 | |
| 
 | |
|   Type *Int32Ty = Type::getInt32Ty(M.getContext());
 | |
| 
 | |
|   assert(Globals.size() > 1);
 | |
| 
 | |
|   DEBUG(dbgs() << " Trying to merge set, starts with #"
 | |
|                << GlobalSet.find_first() << "\n");
 | |
| 
 | |
|   ssize_t i = GlobalSet.find_first();
 | |
|   while (i != -1) {
 | |
|     ssize_t j = 0;
 | |
|     uint64_t MergedSize = 0;
 | |
|     std::vector<Type*> Tys;
 | |
|     std::vector<Constant*> Inits;
 | |
| 
 | |
|     bool HasExternal = false;
 | |
|     GlobalVariable *TheFirstExternal = 0;
 | |
|     for (j = i; j != -1; j = GlobalSet.find_next(j)) {
 | |
|       Type *Ty = Globals[j]->getType()->getElementType();
 | |
|       MergedSize += DL->getTypeAllocSize(Ty);
 | |
|       if (MergedSize > MaxOffset) {
 | |
|         break;
 | |
|       }
 | |
|       Tys.push_back(Ty);
 | |
|       Inits.push_back(Globals[j]->getInitializer());
 | |
| 
 | |
|       if (Globals[j]->hasExternalLinkage() && !HasExternal) {
 | |
|         HasExternal = true;
 | |
|         TheFirstExternal = Globals[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If merged variables doesn't have external linkage, we needn't to expose
 | |
|     // the symbol after merging.
 | |
|     GlobalValue::LinkageTypes Linkage = HasExternal
 | |
|                                             ? GlobalValue::ExternalLinkage
 | |
|                                             : GlobalValue::InternalLinkage;
 | |
| 
 | |
|     StructType *MergedTy = StructType::get(M.getContext(), Tys);
 | |
|     Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
 | |
| 
 | |
|     // If merged variables have external linkage, we use symbol name of the
 | |
|     // first variable merged as the suffix of global symbol name. This would
 | |
|     // be able to avoid the link-time naming conflict for globalm symbols.
 | |
|     GlobalVariable *MergedGV = new GlobalVariable(
 | |
|         M, MergedTy, isConst, Linkage, MergedInit,
 | |
|         HasExternal ? "_MergedGlobals_" + TheFirstExternal->getName()
 | |
|                     : "_MergedGlobals",
 | |
|         nullptr, GlobalVariable::NotThreadLocal, AddrSpace);
 | |
| 
 | |
|     for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k)) {
 | |
|       GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
 | |
|       std::string Name = Globals[k]->getName();
 | |
| 
 | |
|       Constant *Idx[2] = {
 | |
|         ConstantInt::get(Int32Ty, 0),
 | |
|         ConstantInt::get(Int32Ty, idx++)
 | |
|       };
 | |
|       Constant *GEP =
 | |
|           ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx);
 | |
|       Globals[k]->replaceAllUsesWith(GEP);
 | |
|       Globals[k]->eraseFromParent();
 | |
| 
 | |
|       if (Linkage != GlobalValue::InternalLinkage) {
 | |
|         // Generate a new alias...
 | |
|         auto *PTy = cast<PointerType>(GEP->getType());
 | |
|         GlobalAlias::create(PTy, Linkage, Name, GEP, &M);
 | |
|       }
 | |
| 
 | |
|       NumMerged++;
 | |
|     }
 | |
|     i = j;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void GlobalMerge::collectUsedGlobalVariables(Module &M) {
 | |
|   // Extract global variables from llvm.used array
 | |
|   const GlobalVariable *GV = M.getGlobalVariable("llvm.used");
 | |
|   if (!GV || !GV->hasInitializer()) return;
 | |
| 
 | |
|   // Should be an array of 'i8*'.
 | |
|   const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
 | |
| 
 | |
|   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | |
|     if (const GlobalVariable *G =
 | |
|         dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
 | |
|       MustKeepGlobalVariables.insert(G);
 | |
| }
 | |
| 
 | |
| void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
 | |
|   collectUsedGlobalVariables(M);
 | |
| 
 | |
|   for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn;
 | |
|        ++IFn) {
 | |
|     for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end();
 | |
|          IBB != IEndBB; ++IBB) {
 | |
|       // Follow the invoke link to find the landing pad instruction
 | |
|       const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator());
 | |
|       if (!II) continue;
 | |
| 
 | |
|       const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst();
 | |
|       // Look for globals in the clauses of the landing pad instruction
 | |
|       for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses();
 | |
|            Idx != NumClauses; ++Idx)
 | |
|         if (const GlobalVariable *GV =
 | |
|             dyn_cast<GlobalVariable>(LPInst->getClause(Idx)
 | |
|                                      ->stripPointerCasts()))
 | |
|           MustKeepGlobalVariables.insert(GV);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool GlobalMerge::doInitialization(Module &M) {
 | |
|   if (!EnableGlobalMerge)
 | |
|     return false;
 | |
| 
 | |
|   DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
 | |
|                                                         BSSGlobals;
 | |
|   bool Changed = false;
 | |
|   setMustKeepGlobalVariables(M);
 | |
| 
 | |
|   // Grab all non-const globals.
 | |
|   for (Module::global_iterator I = M.global_begin(),
 | |
|          E = M.global_end(); I != E; ++I) {
 | |
|     // Merge is safe for "normal" internal or external globals only
 | |
|     if (I->isDeclaration() || I->isThreadLocal() || I->hasSection())
 | |
|       continue;
 | |
| 
 | |
|     if (!(EnableGlobalMergeOnExternal && I->hasExternalLinkage()) &&
 | |
|         !I->hasInternalLinkage())
 | |
|       continue;
 | |
| 
 | |
|     PointerType *PT = dyn_cast<PointerType>(I->getType());
 | |
|     assert(PT && "Global variable is not a pointer!");
 | |
| 
 | |
|     unsigned AddressSpace = PT->getAddressSpace();
 | |
| 
 | |
|     // Ignore fancy-aligned globals for now.
 | |
|     unsigned Alignment = DL->getPreferredAlignment(I);
 | |
|     Type *Ty = I->getType()->getElementType();
 | |
|     if (Alignment > DL->getABITypeAlignment(Ty))
 | |
|       continue;
 | |
| 
 | |
|     // Ignore all 'special' globals.
 | |
|     if (I->getName().startswith("llvm.") ||
 | |
|         I->getName().startswith(".llvm."))
 | |
|       continue;
 | |
| 
 | |
|     // Ignore all "required" globals:
 | |
|     if (isMustKeepGlobalVariable(I))
 | |
|       continue;
 | |
| 
 | |
|     if (DL->getTypeAllocSize(Ty) < MaxOffset) {
 | |
|       if (TargetLoweringObjectFile::getKindForGlobal(I, *TM).isBSSLocal())
 | |
|         BSSGlobals[AddressSpace].push_back(I);
 | |
|       else if (I->isConstant())
 | |
|         ConstGlobals[AddressSpace].push_back(I);
 | |
|       else
 | |
|         Globals[AddressSpace].push_back(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
 | |
|        I = Globals.begin(), E = Globals.end(); I != E; ++I)
 | |
|     if (I->second.size() > 1)
 | |
|       Changed |= doMerge(I->second, M, false, I->first);
 | |
| 
 | |
|   for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
 | |
|        I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
 | |
|     if (I->second.size() > 1)
 | |
|       Changed |= doMerge(I->second, M, false, I->first);
 | |
| 
 | |
|   if (EnableGlobalMergeOnConst)
 | |
|     for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
 | |
|          I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I)
 | |
|       if (I->second.size() > 1)
 | |
|         Changed |= doMerge(I->second, M, true, I->first);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool GlobalMerge::runOnFunction(Function &F) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool GlobalMerge::doFinalization(Module &M) {
 | |
|   MustKeepGlobalVariables.clear();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset,
 | |
|                                   bool OnlyOptimizeForSize) {
 | |
|   return new GlobalMerge(TM, Offset, OnlyOptimizeForSize);
 | |
| }
 |