forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			141 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LatencyPriorityQueue class, which is a
 | |
| // SchedulingPriorityQueue that schedules using latency information to
 | |
| // reduce the length of the critical path through the basic block.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/LatencyPriorityQueue.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "scheduler"
 | |
| 
 | |
| bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
 | |
|   // The isScheduleHigh flag allows nodes with wraparound dependencies that
 | |
|   // cannot easily be modeled as edges with latencies to be scheduled as
 | |
|   // soon as possible in a top-down schedule.
 | |
|   if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
 | |
|     return false;
 | |
|   if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
 | |
|     return true;
 | |
| 
 | |
|   unsigned LHSNum = LHS->NodeNum;
 | |
|   unsigned RHSNum = RHS->NodeNum;
 | |
| 
 | |
|   // The most important heuristic is scheduling the critical path.
 | |
|   unsigned LHSLatency = PQ->getLatency(LHSNum);
 | |
|   unsigned RHSLatency = PQ->getLatency(RHSNum);
 | |
|   if (LHSLatency < RHSLatency) return true;
 | |
|   if (LHSLatency > RHSLatency) return false;
 | |
| 
 | |
|   // After that, if two nodes have identical latencies, look to see if one will
 | |
|   // unblock more other nodes than the other.
 | |
|   unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
 | |
|   unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
 | |
|   if (LHSBlocked < RHSBlocked) return true;
 | |
|   if (LHSBlocked > RHSBlocked) return false;
 | |
| 
 | |
|   // Finally, just to provide a stable ordering, use the node number as a
 | |
|   // deciding factor.
 | |
|   return RHSNum < LHSNum;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | |
| /// of SU, return it, otherwise return null.
 | |
| SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
 | |
|   SUnit *OnlyAvailablePred = nullptr;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     SUnit &Pred = *I->getSUnit();
 | |
|     if (!Pred.isScheduled) {
 | |
|       // We found an available, but not scheduled, predecessor.  If it's the
 | |
|       // only one we have found, keep track of it... otherwise give up.
 | |
|       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
 | |
|         return nullptr;
 | |
|       OnlyAvailablePred = &Pred;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return OnlyAvailablePred;
 | |
| }
 | |
| 
 | |
| void LatencyPriorityQueue::push(SUnit *SU) {
 | |
|   // Look at all of the successors of this node.  Count the number of nodes that
 | |
|   // this node is the sole unscheduled node for.
 | |
|   unsigned NumNodesBlocking = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (getSingleUnscheduledPred(I->getSUnit()) == SU)
 | |
|       ++NumNodesBlocking;
 | |
|   }
 | |
|   NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
 | |
| 
 | |
|   Queue.push_back(SU);
 | |
| }
 | |
| 
 | |
| 
 | |
| // scheduledNode - As nodes are scheduled, we look to see if there are any
 | |
| // successor nodes that have a single unscheduled predecessor.  If so, that
 | |
| // single predecessor has a higher priority, since scheduling it will make
 | |
| // the node available.
 | |
| void LatencyPriorityQueue::scheduledNode(SUnit *SU) {
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     AdjustPriorityOfUnscheduledPreds(I->getSUnit());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
 | |
| /// scheduled.  If SU is not itself available, then there is at least one
 | |
| /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
 | |
| /// unscheduled predecessor, we want to increase its priority: it getting
 | |
| /// scheduled will make this node available, so it is better than some other
 | |
| /// node of the same priority that will not make a node available.
 | |
| void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
 | |
|   if (SU->isAvailable) return;  // All preds scheduled.
 | |
| 
 | |
|   SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
 | |
|   if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
 | |
| 
 | |
|   // Okay, we found a single predecessor that is available, but not scheduled.
 | |
|   // Since it is available, it must be in the priority queue.  First remove it.
 | |
|   remove(OnlyAvailablePred);
 | |
| 
 | |
|   // Reinsert the node into the priority queue, which recomputes its
 | |
|   // NumNodesSolelyBlocking value.
 | |
|   push(OnlyAvailablePred);
 | |
| }
 | |
| 
 | |
| SUnit *LatencyPriorityQueue::pop() {
 | |
|   if (empty()) return nullptr;
 | |
|   std::vector<SUnit *>::iterator Best = Queue.begin();
 | |
|   for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
 | |
|        E = Queue.end(); I != E; ++I)
 | |
|     if (Picker(*Best, *I))
 | |
|       Best = I;
 | |
|   SUnit *V = *Best;
 | |
|   if (Best != std::prev(Queue.end()))
 | |
|     std::swap(*Best, Queue.back());
 | |
|   Queue.pop_back();
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| void LatencyPriorityQueue::remove(SUnit *SU) {
 | |
|   assert(!Queue.empty() && "Queue is empty!");
 | |
|   std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
 | |
|   if (I != std::prev(Queue.end()))
 | |
|     std::swap(*I, Queue.back());
 | |
|   Queue.pop_back();
 | |
| }
 |