forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			655 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass eliminates machine instruction PHI nodes by inserting copy
 | |
| // instructions.  This destroys SSA information, but is the desired input for
 | |
| // some register allocators.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "PHIEliminationUtils.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "phielim"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
 | |
|                      cl::Hidden, cl::desc("Disable critical edge splitting "
 | |
|                                           "during PHI elimination"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
 | |
|                       cl::Hidden, cl::desc("Split all critical edges during "
 | |
|                                            "PHI elimination"));
 | |
| 
 | |
| static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
 | |
|     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
 | |
| 
 | |
| namespace {
 | |
|   class PHIElimination : public MachineFunctionPass {
 | |
|     MachineRegisterInfo *MRI; // Machine register information
 | |
|     LiveVariables *LV;
 | |
|     LiveIntervals *LIS;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     PHIElimination() : MachineFunctionPass(ID) {
 | |
|       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &Fn) override;
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   private:
 | |
|     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
 | |
|     /// in predecessor basic blocks.
 | |
|     ///
 | |
|     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
 | |
|     void LowerPHINode(MachineBasicBlock &MBB,
 | |
|                       MachineBasicBlock::iterator LastPHIIt);
 | |
| 
 | |
|     /// analyzePHINodes - Gather information about the PHI nodes in
 | |
|     /// here. In particular, we want to map the number of uses of a virtual
 | |
|     /// register which is used in a PHI node. We map that to the BB the
 | |
|     /// vreg is coming from. This is used later to determine when the vreg
 | |
|     /// is killed in the BB.
 | |
|     ///
 | |
|     void analyzePHINodes(const MachineFunction& Fn);
 | |
| 
 | |
|     /// Split critical edges where necessary for good coalescer performance.
 | |
|     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
 | |
|                        MachineLoopInfo *MLI);
 | |
| 
 | |
|     // These functions are temporary abstractions around LiveVariables and
 | |
|     // LiveIntervals, so they can go away when LiveVariables does.
 | |
|     bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
 | |
|     bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
 | |
| 
 | |
|     typedef std::pair<unsigned, unsigned> BBVRegPair;
 | |
|     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
 | |
| 
 | |
|     VRegPHIUse VRegPHIUseCount;
 | |
| 
 | |
|     // Defs of PHI sources which are implicit_def.
 | |
|     SmallPtrSet<MachineInstr*, 4> ImpDefs;
 | |
| 
 | |
|     // Map reusable lowered PHI node -> incoming join register.
 | |
|     typedef DenseMap<MachineInstr*, unsigned,
 | |
|                      MachineInstrExpressionTrait> LoweredPHIMap;
 | |
|     LoweredPHIMap LoweredPHIs;
 | |
|   };
 | |
| }
 | |
| 
 | |
| STATISTIC(NumLowered, "Number of phis lowered");
 | |
| STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
 | |
| STATISTIC(NumReused, "Number of reused lowered phis");
 | |
| 
 | |
| char PHIElimination::ID = 0;
 | |
| char& llvm::PHIEliminationID = PHIElimination::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
 | |
|                       "Eliminate PHI nodes for register allocation",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveVariables)
 | |
| INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
 | |
|                     "Eliminate PHI nodes for register allocation", false, false)
 | |
| 
 | |
| void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addPreserved<LiveVariables>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   AU.addPreserved<MachineDominatorTree>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MRI = &MF.getRegInfo();
 | |
|   LV = getAnalysisIfAvailable<LiveVariables>();
 | |
|   LIS = getAnalysisIfAvailable<LiveIntervals>();
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // This pass takes the function out of SSA form.
 | |
|   MRI->leaveSSA();
 | |
| 
 | |
|   // Split critical edges to help the coalescer. This does not yet support
 | |
|   // updating LiveIntervals, so we disable it.
 | |
|   if (!DisableEdgeSplitting && (LV || LIS)) {
 | |
|     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
 | |
|     for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|       Changed |= SplitPHIEdges(MF, *I, MLI);
 | |
|   }
 | |
| 
 | |
|   // Populate VRegPHIUseCount
 | |
|   analyzePHINodes(MF);
 | |
| 
 | |
|   // Eliminate PHI instructions by inserting copies into predecessor blocks.
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|     Changed |= EliminatePHINodes(MF, *I);
 | |
| 
 | |
|   // Remove dead IMPLICIT_DEF instructions.
 | |
|   for (MachineInstr *DefMI : ImpDefs) {
 | |
|     unsigned DefReg = DefMI->getOperand(0).getReg();
 | |
|     if (MRI->use_nodbg_empty(DefReg)) {
 | |
|       if (LIS)
 | |
|         LIS->RemoveMachineInstrFromMaps(DefMI);
 | |
|       DefMI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Clean up the lowered PHI instructions.
 | |
|   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
 | |
|        I != E; ++I) {
 | |
|     if (LIS)
 | |
|       LIS->RemoveMachineInstrFromMaps(I->first);
 | |
|     MF.DeleteMachineInstr(I->first);
 | |
|   }
 | |
| 
 | |
|   LoweredPHIs.clear();
 | |
|   ImpDefs.clear();
 | |
|   VRegPHIUseCount.clear();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 | |
| /// predecessor basic blocks.
 | |
| ///
 | |
| bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
 | |
|                                              MachineBasicBlock &MBB) {
 | |
|   if (MBB.empty() || !MBB.front().isPHI())
 | |
|     return false;   // Quick exit for basic blocks without PHIs.
 | |
| 
 | |
|   // Get an iterator to the first instruction after the last PHI node (this may
 | |
|   // also be the end of the basic block).
 | |
|   MachineBasicBlock::iterator LastPHIIt =
 | |
|     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
 | |
| 
 | |
|   while (MBB.front().isPHI())
 | |
|     LowerPHINode(MBB, LastPHIIt);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
 | |
| /// This includes registers with no defs.
 | |
| static bool isImplicitlyDefined(unsigned VirtReg,
 | |
|                                 const MachineRegisterInfo *MRI) {
 | |
|   for (MachineInstr &DI : MRI->def_instructions(VirtReg))
 | |
|     if (!DI.isImplicitDef())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
 | |
| /// are implicit_def's.
 | |
| static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
 | |
|                                          const MachineRegisterInfo *MRI) {
 | |
|   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | |
|     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LowerPHINode - Lower the PHI node at the top of the specified block,
 | |
| ///
 | |
| void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator LastPHIIt) {
 | |
|   ++NumLowered;
 | |
| 
 | |
|   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
 | |
| 
 | |
|   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
 | |
|   MachineInstr *MPhi = MBB.remove(MBB.begin());
 | |
| 
 | |
|   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
 | |
|   unsigned DestReg = MPhi->getOperand(0).getReg();
 | |
|   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
 | |
|   bool isDead = MPhi->getOperand(0).isDead();
 | |
| 
 | |
|   // Create a new register for the incoming PHI arguments.
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned IncomingReg = 0;
 | |
|   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
 | |
| 
 | |
|   // Insert a register to register copy at the top of the current block (but
 | |
|   // after any remaining phi nodes) which copies the new incoming register
 | |
|   // into the phi node destination.
 | |
|   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
 | |
|   if (isSourceDefinedByImplicitDef(MPhi, MRI))
 | |
|     // If all sources of a PHI node are implicit_def, just emit an
 | |
|     // implicit_def instead of a copy.
 | |
|     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | |
|             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
 | |
|   else {
 | |
|     // Can we reuse an earlier PHI node? This only happens for critical edges,
 | |
|     // typically those created by tail duplication.
 | |
|     unsigned &entry = LoweredPHIs[MPhi];
 | |
|     if (entry) {
 | |
|       // An identical PHI node was already lowered. Reuse the incoming register.
 | |
|       IncomingReg = entry;
 | |
|       reusedIncoming = true;
 | |
|       ++NumReused;
 | |
|       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
 | |
|     } else {
 | |
|       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
 | |
|       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
 | |
|     }
 | |
|     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
 | |
|             TII->get(TargetOpcode::COPY), DestReg)
 | |
|       .addReg(IncomingReg);
 | |
|   }
 | |
| 
 | |
|   // Update live variable information if there is any.
 | |
|   if (LV) {
 | |
|     MachineInstr *PHICopy = std::prev(AfterPHIsIt);
 | |
| 
 | |
|     if (IncomingReg) {
 | |
|       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
 | |
| 
 | |
|       // Increment use count of the newly created virtual register.
 | |
|       LV->setPHIJoin(IncomingReg);
 | |
| 
 | |
|       // When we are reusing the incoming register, it may already have been
 | |
|       // killed in this block. The old kill will also have been inserted at
 | |
|       // AfterPHIsIt, so it appears before the current PHICopy.
 | |
|       if (reusedIncoming)
 | |
|         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
 | |
|           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
 | |
|           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
 | |
|           DEBUG(MBB.dump());
 | |
|         }
 | |
| 
 | |
|       // Add information to LiveVariables to know that the incoming value is
 | |
|       // killed.  Note that because the value is defined in several places (once
 | |
|       // each for each incoming block), the "def" block and instruction fields
 | |
|       // for the VarInfo is not filled in.
 | |
|       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
 | |
|     }
 | |
| 
 | |
|     // Since we are going to be deleting the PHI node, if it is the last use of
 | |
|     // any registers, or if the value itself is dead, we need to move this
 | |
|     // information over to the new copy we just inserted.
 | |
|     LV->removeVirtualRegistersKilled(MPhi);
 | |
| 
 | |
|     // If the result is dead, update LV.
 | |
|     if (isDead) {
 | |
|       LV->addVirtualRegisterDead(DestReg, PHICopy);
 | |
|       LV->removeVirtualRegisterDead(DestReg, MPhi);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update LiveIntervals for the new copy or implicit def.
 | |
|   if (LIS) {
 | |
|     MachineInstr *NewInstr = std::prev(AfterPHIsIt);
 | |
|     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
 | |
| 
 | |
|     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
 | |
|     if (IncomingReg) {
 | |
|       // Add the region from the beginning of MBB to the copy instruction to
 | |
|       // IncomingReg's live interval.
 | |
|       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
 | |
|       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
 | |
|       if (!IncomingVNI)
 | |
|         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
 | |
|                                               LIS->getVNInfoAllocator());
 | |
|       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
 | |
|                                                   DestCopyIndex.getRegSlot(),
 | |
|                                                   IncomingVNI));
 | |
|     }
 | |
| 
 | |
|     LiveInterval &DestLI = LIS->getInterval(DestReg);
 | |
|     assert(DestLI.begin() != DestLI.end() &&
 | |
|            "PHIs should have nonempty LiveIntervals.");
 | |
|     if (DestLI.endIndex().isDead()) {
 | |
|       // A dead PHI's live range begins and ends at the start of the MBB, but
 | |
|       // the lowered copy, which will still be dead, needs to begin and end at
 | |
|       // the copy instruction.
 | |
|       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
 | |
|       assert(OrigDestVNI && "PHI destination should be live at block entry.");
 | |
|       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
 | |
|       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
 | |
|                            LIS->getVNInfoAllocator());
 | |
|       DestLI.removeValNo(OrigDestVNI);
 | |
|     } else {
 | |
|       // Otherwise, remove the region from the beginning of MBB to the copy
 | |
|       // instruction from DestReg's live interval.
 | |
|       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
 | |
|       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
 | |
|       assert(DestVNI && "PHI destination should be live at its definition.");
 | |
|       DestVNI->def = DestCopyIndex.getRegSlot();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
 | |
|   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
 | |
|     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
 | |
|                                  MPhi->getOperand(i).getReg())];
 | |
| 
 | |
|   // Now loop over all of the incoming arguments, changing them to copy into the
 | |
|   // IncomingReg register in the corresponding predecessor basic block.
 | |
|   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
 | |
|   for (int i = NumSrcs - 1; i >= 0; --i) {
 | |
|     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
 | |
|     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
 | |
|     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
 | |
|       isImplicitlyDefined(SrcReg, MRI);
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|            "Machine PHI Operands must all be virtual registers!");
 | |
| 
 | |
|     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
 | |
|     // path the PHI.
 | |
|     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
 | |
| 
 | |
|     // Check to make sure we haven't already emitted the copy for this block.
 | |
|     // This can happen because PHI nodes may have multiple entries for the same
 | |
|     // basic block.
 | |
|     if (!MBBsInsertedInto.insert(&opBlock).second)
 | |
|       continue;  // If the copy has already been emitted, we're done.
 | |
| 
 | |
|     // Find a safe location to insert the copy, this may be the first terminator
 | |
|     // in the block (or end()).
 | |
|     MachineBasicBlock::iterator InsertPos =
 | |
|       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
 | |
| 
 | |
|     // Insert the copy.
 | |
|     MachineInstr *NewSrcInstr = nullptr;
 | |
|     if (!reusedIncoming && IncomingReg) {
 | |
|       if (SrcUndef) {
 | |
|         // The source register is undefined, so there is no need for a real
 | |
|         // COPY, but we still need to ensure joint dominance by defs.
 | |
|         // Insert an IMPLICIT_DEF instruction.
 | |
|         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
 | |
|                               TII->get(TargetOpcode::IMPLICIT_DEF),
 | |
|                               IncomingReg);
 | |
| 
 | |
|         // Clean up the old implicit-def, if there even was one.
 | |
|         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
 | |
|           if (DefMI->isImplicitDef())
 | |
|             ImpDefs.insert(DefMI);
 | |
|       } else {
 | |
|         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
 | |
|                             TII->get(TargetOpcode::COPY), IncomingReg)
 | |
|                         .addReg(SrcReg, 0, SrcSubReg);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We only need to update the LiveVariables kill of SrcReg if this was the
 | |
|     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
 | |
|     // out of the predecessor. We can also ignore undef sources.
 | |
|     if (LV && !SrcUndef &&
 | |
|         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
 | |
|         !LV->isLiveOut(SrcReg, opBlock)) {
 | |
|       // We want to be able to insert a kill of the register if this PHI (aka,
 | |
|       // the copy we just inserted) is the last use of the source value. Live
 | |
|       // variable analysis conservatively handles this by saying that the value
 | |
|       // is live until the end of the block the PHI entry lives in. If the value
 | |
|       // really is dead at the PHI copy, there will be no successor blocks which
 | |
|       // have the value live-in.
 | |
| 
 | |
|       // Okay, if we now know that the value is not live out of the block, we
 | |
|       // can add a kill marker in this block saying that it kills the incoming
 | |
|       // value!
 | |
| 
 | |
|       // In our final twist, we have to decide which instruction kills the
 | |
|       // register.  In most cases this is the copy, however, terminator
 | |
|       // instructions at the end of the block may also use the value. In this
 | |
|       // case, we should mark the last such terminator as being the killing
 | |
|       // block, not the copy.
 | |
|       MachineBasicBlock::iterator KillInst = opBlock.end();
 | |
|       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
 | |
|       for (MachineBasicBlock::iterator Term = FirstTerm;
 | |
|           Term != opBlock.end(); ++Term) {
 | |
|         if (Term->readsRegister(SrcReg))
 | |
|           KillInst = Term;
 | |
|       }
 | |
| 
 | |
|       if (KillInst == opBlock.end()) {
 | |
|         // No terminator uses the register.
 | |
| 
 | |
|         if (reusedIncoming || !IncomingReg) {
 | |
|           // We may have to rewind a bit if we didn't insert a copy this time.
 | |
|           KillInst = FirstTerm;
 | |
|           while (KillInst != opBlock.begin()) {
 | |
|             --KillInst;
 | |
|             if (KillInst->isDebugValue())
 | |
|               continue;
 | |
|             if (KillInst->readsRegister(SrcReg))
 | |
|               break;
 | |
|           }
 | |
|         } else {
 | |
|           // We just inserted this copy.
 | |
|           KillInst = std::prev(InsertPos);
 | |
|         }
 | |
|       }
 | |
|       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
 | |
| 
 | |
|       // Finally, mark it killed.
 | |
|       LV->addVirtualRegisterKilled(SrcReg, KillInst);
 | |
| 
 | |
|       // This vreg no longer lives all of the way through opBlock.
 | |
|       unsigned opBlockNum = opBlock.getNumber();
 | |
|       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
 | |
|     }
 | |
| 
 | |
|     if (LIS) {
 | |
|       if (NewSrcInstr) {
 | |
|         LIS->InsertMachineInstrInMaps(NewSrcInstr);
 | |
|         LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
 | |
|       }
 | |
| 
 | |
|       if (!SrcUndef &&
 | |
|           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
 | |
|         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
 | |
| 
 | |
|         bool isLiveOut = false;
 | |
|         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
 | |
|              SE = opBlock.succ_end(); SI != SE; ++SI) {
 | |
|           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
 | |
|           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
 | |
| 
 | |
|           // Definitions by other PHIs are not truly live-in for our purposes.
 | |
|           if (VNI && VNI->def != startIdx) {
 | |
|             isLiveOut = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!isLiveOut) {
 | |
|           MachineBasicBlock::iterator KillInst = opBlock.end();
 | |
|           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
 | |
|           for (MachineBasicBlock::iterator Term = FirstTerm;
 | |
|               Term != opBlock.end(); ++Term) {
 | |
|             if (Term->readsRegister(SrcReg))
 | |
|               KillInst = Term;
 | |
|           }
 | |
| 
 | |
|           if (KillInst == opBlock.end()) {
 | |
|             // No terminator uses the register.
 | |
| 
 | |
|             if (reusedIncoming || !IncomingReg) {
 | |
|               // We may have to rewind a bit if we didn't just insert a copy.
 | |
|               KillInst = FirstTerm;
 | |
|               while (KillInst != opBlock.begin()) {
 | |
|                 --KillInst;
 | |
|                 if (KillInst->isDebugValue())
 | |
|                   continue;
 | |
|                 if (KillInst->readsRegister(SrcReg))
 | |
|                   break;
 | |
|               }
 | |
|             } else {
 | |
|               // We just inserted this copy.
 | |
|               KillInst = std::prev(InsertPos);
 | |
|             }
 | |
|           }
 | |
|           assert(KillInst->readsRegister(SrcReg) &&
 | |
|                  "Cannot find kill instruction");
 | |
| 
 | |
|           SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
 | |
|           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
 | |
|                               LIS->getMBBEndIdx(&opBlock));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
 | |
|   if (reusedIncoming || !IncomingReg) {
 | |
|     if (LIS)
 | |
|       LIS->RemoveMachineInstrFromMaps(MPhi);
 | |
|     MF.DeleteMachineInstr(MPhi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In
 | |
| /// particular, we want to map the number of uses of a virtual register which is
 | |
| /// used in a PHI node. We map that to the BB the vreg is coming from. This is
 | |
| /// used later to determine when the vreg is killed in the BB.
 | |
| ///
 | |
| void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
 | |
|   for (const auto &MBB : MF)
 | |
|     for (const auto &BBI : MBB) {
 | |
|       if (!BBI.isPHI())
 | |
|         break;
 | |
|       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
 | |
|         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
 | |
|                                      BBI.getOperand(i).getReg())];
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
 | |
|                                    MachineBasicBlock &MBB,
 | |
|                                    MachineLoopInfo *MLI) {
 | |
|   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
 | |
|     return false;   // Quick exit for basic blocks without PHIs.
 | |
| 
 | |
|   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
 | |
|   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
 | |
|        BBI != BBE && BBI->isPHI(); ++BBI) {
 | |
|     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
 | |
|       unsigned Reg = BBI->getOperand(i).getReg();
 | |
|       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
 | |
|       // Is there a critical edge from PreMBB to MBB?
 | |
|       if (PreMBB->succ_size() == 1)
 | |
|         continue;
 | |
| 
 | |
|       // Avoid splitting backedges of loops. It would introduce small
 | |
|       // out-of-line blocks into the loop which is very bad for code placement.
 | |
|       if (PreMBB == &MBB && !SplitAllCriticalEdges)
 | |
|         continue;
 | |
|       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
 | |
|       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
 | |
|         continue;
 | |
| 
 | |
|       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
 | |
|       // when the source register is live-out for some other reason than a phi
 | |
|       // use. That means the copy we will insert in PreMBB won't be a kill, and
 | |
|       // there is a risk it may not be coalesced away.
 | |
|       //
 | |
|       // If the copy would be a kill, there is no need to split the edge.
 | |
|       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
 | |
|       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
 | |
|         continue;
 | |
|       if (ShouldSplit) {
 | |
|         DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
 | |
|                      << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
 | |
|                      << ": " << *BBI);
 | |
|       }
 | |
| 
 | |
|       // If Reg is not live-in to MBB, it means it must be live-in to some
 | |
|       // other PreMBB successor, and we can avoid the interference by splitting
 | |
|       // the edge.
 | |
|       //
 | |
|       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
 | |
|       // is likely to be left after coalescing. If we are looking at a loop
 | |
|       // exiting edge, split it so we won't insert code in the loop, otherwise
 | |
|       // don't bother.
 | |
|       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
 | |
| 
 | |
|       // Check for a loop exiting edge.
 | |
|       if (!ShouldSplit && CurLoop != PreLoop) {
 | |
|         DEBUG({
 | |
|           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
 | |
|           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
 | |
|           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
 | |
|         });
 | |
|         // This edge could be entering a loop, exiting a loop, or it could be
 | |
|         // both: Jumping directly form one loop to the header of a sibling
 | |
|         // loop.
 | |
|         // Split unless this edge is entering CurLoop from an outer loop.
 | |
|         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
 | |
|       }
 | |
|       if (!ShouldSplit && !SplitAllCriticalEdges)
 | |
|         continue;
 | |
|       if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
 | |
|         DEBUG(dbgs() << "Failed to split critical edge.\n");
 | |
|         continue;
 | |
|       }
 | |
|       Changed = true;
 | |
|       ++NumCriticalEdgesSplit;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
 | |
|   assert((LV || LIS) &&
 | |
|          "isLiveIn() requires either LiveVariables or LiveIntervals");
 | |
|   if (LIS)
 | |
|     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
 | |
|   else
 | |
|     return LV->isLiveIn(Reg, *MBB);
 | |
| }
 | |
| 
 | |
| bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
 | |
|   assert((LV || LIS) &&
 | |
|          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
 | |
|   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
 | |
|   // so that a register used only in a PHI is not live out of the block. In
 | |
|   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
 | |
|   // in the predecessor basic block, so that a register used only in a PHI is live
 | |
|   // out of the block.
 | |
|   if (LIS) {
 | |
|     const LiveInterval &LI = LIS->getInterval(Reg);
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|          SE = MBB->succ_end(); SI != SE; ++SI) {
 | |
|       if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   } else {
 | |
|     return LV->isLiveOut(Reg, *MBB);
 | |
|   }
 | |
| }
 |