forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1465 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1465 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Perform peephole optimizations on the machine code:
 | |
| //
 | |
| // - Optimize Extensions
 | |
| //
 | |
| //     Optimization of sign / zero extension instructions. It may be extended to
 | |
| //     handle other instructions with similar properties.
 | |
| //
 | |
| //     On some targets, some instructions, e.g. X86 sign / zero extension, may
 | |
| //     leave the source value in the lower part of the result. This optimization
 | |
| //     will replace some uses of the pre-extension value with uses of the
 | |
| //     sub-register of the results.
 | |
| //
 | |
| // - Optimize Comparisons
 | |
| //
 | |
| //     Optimization of comparison instructions. For instance, in this code:
 | |
| //
 | |
| //       sub r1, 1
 | |
| //       cmp r1, 0
 | |
| //       bz  L1
 | |
| //
 | |
| //     If the "sub" instruction all ready sets (or could be modified to set) the
 | |
| //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
 | |
| //     eliminate the "cmp" instruction.
 | |
| //
 | |
| //     Another instance, in this code:
 | |
| //
 | |
| //       sub r1, r3 | sub r1, imm
 | |
| //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
 | |
| //       bge L1
 | |
| //
 | |
| //     If the branch instruction can use flag from "sub", then we can replace
 | |
| //     "sub" with "subs" and eliminate the "cmp" instruction.
 | |
| //
 | |
| // - Optimize Loads:
 | |
| //
 | |
| //     Loads that can be folded into a later instruction. A load is foldable
 | |
| //     if it loads to virtual registers and the virtual register defined has 
 | |
| //     a single use.
 | |
| //
 | |
| // - Optimize Copies and Bitcast (more generally, target specific copies):
 | |
| //
 | |
| //     Rewrite copies and bitcasts to avoid cross register bank copies
 | |
| //     when possible.
 | |
| //     E.g., Consider the following example, where capital and lower
 | |
| //     letters denote different register file:
 | |
| //     b = copy A <-- cross-bank copy
 | |
| //     C = copy b <-- cross-bank copy
 | |
| //   =>
 | |
| //     b = copy A <-- cross-bank copy
 | |
| //     C = copy A <-- same-bank copy
 | |
| //
 | |
| //     E.g., for bitcast:
 | |
| //     b = bitcast A <-- cross-bank copy
 | |
| //     C = bitcast b <-- cross-bank copy
 | |
| //   =>
 | |
| //     b = bitcast A <-- cross-bank copy
 | |
| //     C = copy A    <-- same-bank copy
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <utility>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "peephole-opt"
 | |
| 
 | |
| // Optimize Extensions
 | |
| static cl::opt<bool>
 | |
| Aggressive("aggressive-ext-opt", cl::Hidden,
 | |
|            cl::desc("Aggressive extension optimization"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
 | |
|                 cl::desc("Disable the peephole optimizer"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
 | |
|                   cl::desc("Disable advanced copy optimization"));
 | |
| 
 | |
| STATISTIC(NumReuse,      "Number of extension results reused");
 | |
| STATISTIC(NumCmps,       "Number of compares eliminated");
 | |
| STATISTIC(NumImmFold,    "Number of move immediate folded");
 | |
| STATISTIC(NumLoadFold,   "Number of loads folded");
 | |
| STATISTIC(NumSelects,    "Number of selects optimized");
 | |
| STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
 | |
| STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
 | |
| 
 | |
| namespace {
 | |
|   class PeepholeOptimizer : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo   *MRI;
 | |
|     MachineDominatorTree  *DT;  // Machine dominator tree
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     PeepholeOptimizer() : MachineFunctionPass(ID) {
 | |
|       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       if (Aggressive) {
 | |
|         AU.addRequired<MachineDominatorTree>();
 | |
|         AU.addPreserved<MachineDominatorTree>();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
 | |
|     bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
 | |
|     bool optimizeSelect(MachineInstr *MI,
 | |
|                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
 | |
|     bool optimizeCondBranch(MachineInstr *MI);
 | |
|     bool optimizeCopyOrBitcast(MachineInstr *MI);
 | |
|     bool optimizeCoalescableCopy(MachineInstr *MI);
 | |
|     bool optimizeUncoalescableCopy(MachineInstr *MI,
 | |
|                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
 | |
|     bool findNextSource(unsigned &Reg, unsigned &SubReg);
 | |
|     bool isMoveImmediate(MachineInstr *MI,
 | |
|                          SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
 | |
|     bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                        SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
 | |
|     bool isLoadFoldable(MachineInstr *MI,
 | |
|                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
 | |
| 
 | |
|     /// \brief Check whether \p MI is understood by the register coalescer
 | |
|     /// but may require some rewriting.
 | |
|     bool isCoalescableCopy(const MachineInstr &MI) {
 | |
|       // SubregToRegs are not interesting, because they are already register
 | |
|       // coalescer friendly.
 | |
|       return MI.isCopy() || (!DisableAdvCopyOpt &&
 | |
|                              (MI.isRegSequence() || MI.isInsertSubreg() ||
 | |
|                               MI.isExtractSubreg()));
 | |
|     }
 | |
| 
 | |
|     /// \brief Check whether \p MI is a copy like instruction that is
 | |
|     /// not recognized by the register coalescer.
 | |
|     bool isUncoalescableCopy(const MachineInstr &MI) {
 | |
|       return MI.isBitcast() ||
 | |
|              (!DisableAdvCopyOpt &&
 | |
|               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
 | |
|                MI.isExtractSubregLike()));
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Helper class to track the possible sources of a value defined by
 | |
|   /// a (chain of) copy related instructions.
 | |
|   /// Given a definition (instruction and definition index), this class
 | |
|   /// follows the use-def chain to find successive suitable sources.
 | |
|   /// The given source can be used to rewrite the definition into
 | |
|   /// def = COPY src.
 | |
|   ///
 | |
|   /// For instance, let us consider the following snippet:
 | |
|   /// v0 =
 | |
|   /// v2 = INSERT_SUBREG v1, v0, sub0
 | |
|   /// def = COPY v2.sub0
 | |
|   ///
 | |
|   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
 | |
|   /// suitable sources:
 | |
|   /// v2.sub0 and v0.
 | |
|   /// Then, def can be rewritten into def = COPY v0.
 | |
|   class ValueTracker {
 | |
|   private:
 | |
|     /// The current point into the use-def chain.
 | |
|     const MachineInstr *Def;
 | |
|     /// The index of the definition in Def.
 | |
|     unsigned DefIdx;
 | |
|     /// The sub register index of the definition.
 | |
|     unsigned DefSubReg;
 | |
|     /// The register where the value can be found.
 | |
|     unsigned Reg;
 | |
|     /// Specifiy whether or not the value tracking looks through
 | |
|     /// complex instructions. When this is false, the value tracker
 | |
|     /// bails on everything that is not a copy or a bitcast.
 | |
|     ///
 | |
|     /// Note: This could have been implemented as a specialized version of
 | |
|     /// the ValueTracker class but that would have complicated the code of
 | |
|     /// the users of this class.
 | |
|     bool UseAdvancedTracking;
 | |
|     /// MachineRegisterInfo used to perform tracking.
 | |
|     const MachineRegisterInfo &MRI;
 | |
|     /// Optional TargetInstrInfo used to perform some complex
 | |
|     /// tracking.
 | |
|     const TargetInstrInfo *TII;
 | |
| 
 | |
|     /// \brief Dispatcher to the right underlying implementation of
 | |
|     /// getNextSource.
 | |
|     bool getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
|     /// \brief Specialized version of getNextSource for Copy instructions.
 | |
|     bool getNextSourceFromCopy(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
|     /// \brief Specialized version of getNextSource for Bitcast instructions.
 | |
|     bool getNextSourceFromBitcast(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
|     /// \brief Specialized version of getNextSource for RegSequence
 | |
|     /// instructions.
 | |
|     bool getNextSourceFromRegSequence(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
|     /// \brief Specialized version of getNextSource for InsertSubreg
 | |
|     /// instructions.
 | |
|     bool getNextSourceFromInsertSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
|     /// \brief Specialized version of getNextSource for ExtractSubreg
 | |
|     /// instructions.
 | |
|     bool getNextSourceFromExtractSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
|     /// \brief Specialized version of getNextSource for SubregToReg
 | |
|     /// instructions.
 | |
|     bool getNextSourceFromSubregToReg(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
| 
 | |
|   public:
 | |
|     /// \brief Create a ValueTracker instance for the value defined by \p Reg.
 | |
|     /// \p DefSubReg represents the sub register index the value tracker will
 | |
|     /// track. It does not need to match the sub register index used in the
 | |
|     /// definition of \p Reg.
 | |
|     /// \p UseAdvancedTracking specifies whether or not the value tracker looks
 | |
|     /// through complex instructions. By default (false), it handles only copy
 | |
|     /// and bitcast instructions.
 | |
|     /// If \p Reg is a physical register, a value tracker constructed with
 | |
|     /// this constructor will not find any alternative source.
 | |
|     /// Indeed, when \p Reg is a physical register that constructor does not
 | |
|     /// know which definition of \p Reg it should track.
 | |
|     /// Use the next constructor to track a physical register.
 | |
|     ValueTracker(unsigned Reg, unsigned DefSubReg,
 | |
|                  const MachineRegisterInfo &MRI,
 | |
|                  bool UseAdvancedTracking = false,
 | |
|                  const TargetInstrInfo *TII = nullptr)
 | |
|         : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
 | |
|           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
 | |
|       if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|         Def = MRI.getVRegDef(Reg);
 | |
|         DefIdx = MRI.def_begin(Reg).getOperandNo();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// \brief Create a ValueTracker instance for the value defined by
 | |
|     /// the pair \p MI, \p DefIdx.
 | |
|     /// Unlike the other constructor, the value tracker produced by this one
 | |
|     /// may be able to find a new source when the definition is a physical
 | |
|     /// register.
 | |
|     /// This could be useful to rewrite target specific instructions into
 | |
|     /// generic copy instructions.
 | |
|     ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
 | |
|                  const MachineRegisterInfo &MRI,
 | |
|                  bool UseAdvancedTracking = false,
 | |
|                  const TargetInstrInfo *TII = nullptr)
 | |
|         : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
 | |
|           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
 | |
|       assert(DefIdx < Def->getDesc().getNumDefs() &&
 | |
|              Def->getOperand(DefIdx).isReg() && "Invalid definition");
 | |
|       Reg = Def->getOperand(DefIdx).getReg();
 | |
|     }
 | |
| 
 | |
|     /// \brief Following the use-def chain, get the next available source
 | |
|     /// for the tracked value.
 | |
|     /// When the returned value is not nullptr, \p SrcReg gives the register
 | |
|     /// that contain the tracked value.
 | |
|     /// \note The sub register index returned in \p SrcSubReg must be used
 | |
|     /// on \p SrcReg to access the actual value.
 | |
|     /// \return Unless the returned value is nullptr (i.e., no source found),
 | |
|     /// \p SrcReg gives the register of the next source used in the returned
 | |
|     /// instruction and \p SrcSubReg the sub-register index to be used on that
 | |
|     /// source to get the tracked value. When nullptr is returned, no
 | |
|     /// alternative source has been found.
 | |
|     const MachineInstr *getNextSource(unsigned &SrcReg, unsigned &SrcSubReg);
 | |
| 
 | |
|     /// \brief Get the last register where the initial value can be found.
 | |
|     /// Initially this is the register of the definition.
 | |
|     /// Then, after each successful call to getNextSource, this is the
 | |
|     /// register of the last source.
 | |
|     unsigned getReg() const { return Reg; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char PeepholeOptimizer::ID = 0;
 | |
| char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
 | |
| INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
 | |
|                 "Peephole Optimizations", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
 | |
|                 "Peephole Optimizations", false, false)
 | |
| 
 | |
| /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
 | |
| /// a single register and writes a single register and it does not modify the
 | |
| /// source, and if the source value is preserved as a sub-register of the
 | |
| /// result, then replace all reachable uses of the source with the subreg of the
 | |
| /// result.
 | |
| ///
 | |
| /// Do not generate an EXTRACT that is used only in a debug use, as this changes
 | |
| /// the code. Since this code does not currently share EXTRACTs, just ignore all
 | |
| /// debug uses.
 | |
| bool PeepholeOptimizer::
 | |
| optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
 | |
|   unsigned SrcReg, DstReg, SubIdx;
 | |
|   if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
 | |
|     return false;
 | |
| 
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
 | |
|       TargetRegisterInfo::isPhysicalRegister(SrcReg))
 | |
|     return false;
 | |
| 
 | |
|   if (MRI->hasOneNonDBGUse(SrcReg))
 | |
|     // No other uses.
 | |
|     return false;
 | |
| 
 | |
|   // Ensure DstReg can get a register class that actually supports
 | |
|   // sub-registers. Don't change the class until we commit.
 | |
|   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
 | |
|   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
 | |
|   if (!DstRC)
 | |
|     return false;
 | |
| 
 | |
|   // The ext instr may be operating on a sub-register of SrcReg as well.
 | |
|   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
 | |
|   // register.
 | |
|   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
 | |
|   // SrcReg:SubIdx should be replaced.
 | |
|   bool UseSrcSubIdx =
 | |
|       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
 | |
| 
 | |
|   // The source has other uses. See if we can replace the other uses with use of
 | |
|   // the result of the extension.
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
 | |
|   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
 | |
|     ReachedBBs.insert(UI.getParent());
 | |
| 
 | |
|   // Uses that are in the same BB of uses of the result of the instruction.
 | |
|   SmallVector<MachineOperand*, 8> Uses;
 | |
| 
 | |
|   // Uses that the result of the instruction can reach.
 | |
|   SmallVector<MachineOperand*, 8> ExtendedUses;
 | |
| 
 | |
|   bool ExtendLife = true;
 | |
|   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
 | |
|     MachineInstr *UseMI = UseMO.getParent();
 | |
|     if (UseMI == MI)
 | |
|       continue;
 | |
| 
 | |
|     if (UseMI->isPHI()) {
 | |
|       ExtendLife = false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Only accept uses of SrcReg:SubIdx.
 | |
|     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
 | |
|       continue;
 | |
| 
 | |
|     // It's an error to translate this:
 | |
|     //
 | |
|     //    %reg1025 = <sext> %reg1024
 | |
|     //     ...
 | |
|     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
 | |
|     //
 | |
|     // into this:
 | |
|     //
 | |
|     //    %reg1025 = <sext> %reg1024
 | |
|     //     ...
 | |
|     //    %reg1027 = COPY %reg1025:4
 | |
|     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
 | |
|     //
 | |
|     // The problem here is that SUBREG_TO_REG is there to assert that an
 | |
|     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
 | |
|     // the COPY here, it will give us the value after the <sext>, not the
 | |
|     // original value of %reg1024 before <sext>.
 | |
|     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
 | |
|       continue;
 | |
| 
 | |
|     MachineBasicBlock *UseMBB = UseMI->getParent();
 | |
|     if (UseMBB == MBB) {
 | |
|       // Local uses that come after the extension.
 | |
|       if (!LocalMIs.count(UseMI))
 | |
|         Uses.push_back(&UseMO);
 | |
|     } else if (ReachedBBs.count(UseMBB)) {
 | |
|       // Non-local uses where the result of the extension is used. Always
 | |
|       // replace these unless it's a PHI.
 | |
|       Uses.push_back(&UseMO);
 | |
|     } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
 | |
|       // We may want to extend the live range of the extension result in order
 | |
|       // to replace these uses.
 | |
|       ExtendedUses.push_back(&UseMO);
 | |
|     } else {
 | |
|       // Both will be live out of the def MBB anyway. Don't extend live range of
 | |
|       // the extension result.
 | |
|       ExtendLife = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ExtendLife && !ExtendedUses.empty())
 | |
|     // Extend the liveness of the extension result.
 | |
|     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
 | |
| 
 | |
|   // Now replace all uses.
 | |
|   bool Changed = false;
 | |
|   if (!Uses.empty()) {
 | |
|     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
 | |
| 
 | |
|     // Look for PHI uses of the extended result, we don't want to extend the
 | |
|     // liveness of a PHI input. It breaks all kinds of assumptions down
 | |
|     // stream. A PHI use is expected to be the kill of its source values.
 | |
|     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
 | |
|       if (UI.isPHI())
 | |
|         PHIBBs.insert(UI.getParent());
 | |
| 
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
 | |
|     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
 | |
|       MachineOperand *UseMO = Uses[i];
 | |
|       MachineInstr *UseMI = UseMO->getParent();
 | |
|       MachineBasicBlock *UseMBB = UseMI->getParent();
 | |
|       if (PHIBBs.count(UseMBB))
 | |
|         continue;
 | |
| 
 | |
|       // About to add uses of DstReg, clear DstReg's kill flags.
 | |
|       if (!Changed) {
 | |
|         MRI->clearKillFlags(DstReg);
 | |
|         MRI->constrainRegClass(DstReg, DstRC);
 | |
|       }
 | |
| 
 | |
|       unsigned NewVR = MRI->createVirtualRegister(RC);
 | |
|       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
 | |
|                                    TII->get(TargetOpcode::COPY), NewVR)
 | |
|         .addReg(DstReg, 0, SubIdx);
 | |
|       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
 | |
|       if (UseSrcSubIdx) {
 | |
|         Copy->getOperand(0).setSubReg(SubIdx);
 | |
|         Copy->getOperand(0).setIsUndef();
 | |
|       }
 | |
|       UseMO->setReg(NewVR);
 | |
|       ++NumReuse;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// optimizeCmpInstr - If the instruction is a compare and the previous
 | |
| /// instruction it's comparing against all ready sets (or could be modified to
 | |
| /// set) the same flag as the compare, then we can remove the comparison and use
 | |
| /// the flag from the previous instruction.
 | |
| bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
 | |
|                                          MachineBasicBlock *MBB) {
 | |
|   // If this instruction is a comparison against zero and isn't comparing a
 | |
|   // physical register, we can try to optimize it.
 | |
|   unsigned SrcReg, SrcReg2;
 | |
|   int CmpMask, CmpValue;
 | |
|   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
 | |
|       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
 | |
|       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
 | |
|     return false;
 | |
| 
 | |
|   // Attempt to optimize the comparison instruction.
 | |
|   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
 | |
|     ++NumCmps;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Optimize a select instruction.
 | |
| bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
 | |
|                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
 | |
|   unsigned TrueOp = 0;
 | |
|   unsigned FalseOp = 0;
 | |
|   bool Optimizable = false;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
 | |
|     return false;
 | |
|   if (!Optimizable)
 | |
|     return false;
 | |
|   if (!TII->optimizeSelect(MI, LocalMIs))
 | |
|     return false;
 | |
|   MI->eraseFromParent();
 | |
|   ++NumSelects;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Check if a simpler conditional branch can be
 | |
| // generated
 | |
| bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
 | |
|   return TII->optimizeCondBranch(MI);
 | |
| }
 | |
| 
 | |
| /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
 | |
| /// share the same register file.
 | |
| static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
 | |
|                                   const TargetRegisterClass *DefRC,
 | |
|                                   unsigned DefSubReg,
 | |
|                                   const TargetRegisterClass *SrcRC,
 | |
|                                   unsigned SrcSubReg) {
 | |
|   // Same register class.
 | |
|   if (DefRC == SrcRC)
 | |
|     return true;
 | |
| 
 | |
|   // Both operands are sub registers. Check if they share a register class.
 | |
|   unsigned SrcIdx, DefIdx;
 | |
|   if (SrcSubReg && DefSubReg)
 | |
|     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
 | |
|                                       SrcIdx, DefIdx) != nullptr;
 | |
|   // At most one of the register is a sub register, make it Src to avoid
 | |
|   // duplicating the test.
 | |
|   if (!SrcSubReg) {
 | |
|     std::swap(DefSubReg, SrcSubReg);
 | |
|     std::swap(DefRC, SrcRC);
 | |
|   }
 | |
| 
 | |
|   // One of the register is a sub register, check if we can get a superclass.
 | |
|   if (SrcSubReg)
 | |
|     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
 | |
|   // Plain copy.
 | |
|   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Try to find the next source that share the same register file
 | |
| /// for the value defined by \p Reg and \p SubReg.
 | |
| /// When true is returned, \p Reg and \p SubReg are updated with the
 | |
| /// register number and sub-register index of the new source.
 | |
| /// \return False if no alternative sources are available. True otherwise.
 | |
| bool PeepholeOptimizer::findNextSource(unsigned &Reg, unsigned &SubReg) {
 | |
|   // Do not try to find a new source for a physical register.
 | |
|   // So far we do not have any motivating example for doing that.
 | |
|   // Thus, instead of maintaining untested code, we will revisit that if
 | |
|   // that changes at some point.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
 | |
|   unsigned DefSubReg = SubReg;
 | |
| 
 | |
|   unsigned Src;
 | |
|   unsigned SrcSubReg;
 | |
|   bool ShouldRewrite = false;
 | |
| 
 | |
|   // Follow the chain of copies until we reach the top of the use-def chain
 | |
|   // or find a more suitable source.
 | |
|   ValueTracker ValTracker(Reg, DefSubReg, *MRI, !DisableAdvCopyOpt, TII);
 | |
|   do {
 | |
|     unsigned CopySrcReg, CopySrcSubReg;
 | |
|     if (!ValTracker.getNextSource(CopySrcReg, CopySrcSubReg))
 | |
|       break;
 | |
|     Src = CopySrcReg;
 | |
|     SrcSubReg = CopySrcSubReg;
 | |
| 
 | |
|     // Do not extend the live-ranges of physical registers as they add
 | |
|     // constraints to the register allocator.
 | |
|     // Moreover, if we want to extend the live-range of a physical register,
 | |
|     // unlike SSA virtual register, we will have to check that they are not
 | |
|     // redefine before the related use.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Src))
 | |
|       break;
 | |
| 
 | |
|     const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
 | |
| 
 | |
|     // If this source does not incur a cross register bank copy, use it.
 | |
|     ShouldRewrite = shareSameRegisterFile(*TRI, DefRC, DefSubReg, SrcRC,
 | |
|                                           SrcSubReg);
 | |
|   } while (!ShouldRewrite);
 | |
| 
 | |
|   // If we did not find a more suitable source, there is nothing to optimize.
 | |
|   if (!ShouldRewrite || Src == Reg)
 | |
|     return false;
 | |
| 
 | |
|   Reg = Src;
 | |
|   SubReg = SrcSubReg;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Helper class to rewrite the arguments of a copy-like instruction.
 | |
| class CopyRewriter {
 | |
| protected:
 | |
|   /// The copy-like instruction.
 | |
|   MachineInstr &CopyLike;
 | |
|   /// The index of the source being rewritten.
 | |
|   unsigned CurrentSrcIdx;
 | |
| 
 | |
| public:
 | |
|   CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
 | |
| 
 | |
|   virtual ~CopyRewriter() {}
 | |
| 
 | |
|   /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
 | |
|   /// the related value that it affects (TrackReg, TrackSubReg).
 | |
|   /// A source is considered rewritable if its register class and the
 | |
|   /// register class of the related TrackReg may not be register
 | |
|   /// coalescer friendly. In other words, given a copy-like instruction
 | |
|   /// not all the arguments may be returned at rewritable source, since
 | |
|   /// some arguments are none to be register coalescer friendly.
 | |
|   ///
 | |
|   /// Each call of this method moves the current source to the next
 | |
|   /// rewritable source.
 | |
|   /// For instance, let CopyLike be the instruction to rewrite.
 | |
|   /// CopyLike has one definition and one source:
 | |
|   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
 | |
|   ///
 | |
|   /// The first call will give the first rewritable source, i.e.,
 | |
|   /// the only source this instruction has:
 | |
|   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
 | |
|   /// This source defines the whole definition, i.e.,
 | |
|   /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
 | |
|   ///
 | |
|   /// The second and subsequent calls will return false, has there is only one
 | |
|   /// rewritable source.
 | |
|   ///
 | |
|   /// \return True if a rewritable source has been found, false otherwise.
 | |
|   /// The output arguments are valid if and only if true is returned.
 | |
|   virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | |
|                                        unsigned &TrackReg,
 | |
|                                        unsigned &TrackSubReg) {
 | |
|     // If CurrentSrcIdx == 1, this means this function has already been
 | |
|     // called once. CopyLike has one defintiion and one argument, thus,
 | |
|     // there is nothing else to rewrite.
 | |
|     if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
 | |
|       return false;
 | |
|     // This is the first call to getNextRewritableSource.
 | |
|     // Move the CurrentSrcIdx to remember that we made that call.
 | |
|     CurrentSrcIdx = 1;
 | |
|     // The rewritable source is the argument.
 | |
|     const MachineOperand &MOSrc = CopyLike.getOperand(1);
 | |
|     SrcReg = MOSrc.getReg();
 | |
|     SrcSubReg = MOSrc.getSubReg();
 | |
|     // What we track are the alternative sources of the definition.
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
|     TrackReg = MODef.getReg();
 | |
|     TrackSubReg = MODef.getSubReg();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
 | |
|   /// if possible.
 | |
|   /// \return True if the rewritting was possible, false otherwise.
 | |
|   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
 | |
|     if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
 | |
|       return false;
 | |
|     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     MOSrc.setReg(NewReg);
 | |
|     MOSrc.setSubReg(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Specialized rewriter for INSERT_SUBREG instruction.
 | |
| class InsertSubregRewriter : public CopyRewriter {
 | |
| public:
 | |
|   InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
 | |
|     assert(MI.isInsertSubreg() && "Invalid instruction");
 | |
|   }
 | |
| 
 | |
|   /// \brief See CopyRewriter::getNextRewritableSource.
 | |
|   /// Here CopyLike has the following form:
 | |
|   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
 | |
|   /// Src1 has the same register class has dst, hence, there is
 | |
|   /// nothing to rewrite.
 | |
|   /// Src2.src2SubIdx, may not be register coalescer friendly.
 | |
|   /// Therefore, the first call to this method returns:
 | |
|   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
 | |
|   /// (TrackReg, TrackSubReg) = (dst, subIdx).
 | |
|   ///
 | |
|   /// Subsequence calls will return false.
 | |
|   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | |
|                                unsigned &TrackReg,
 | |
|                                unsigned &TrackSubReg) override {
 | |
|     // If we already get the only source we can rewrite, return false.
 | |
|     if (CurrentSrcIdx == 2)
 | |
|       return false;
 | |
|     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
 | |
|     CurrentSrcIdx = 2;
 | |
|     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
 | |
|     SrcReg = MOInsertedReg.getReg();
 | |
|     SrcSubReg = MOInsertedReg.getSubReg();
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
| 
 | |
|     // We want to track something that is compatible with the
 | |
|     // partial definition.
 | |
|     TrackReg = MODef.getReg();
 | |
|     if (MODef.getSubReg())
 | |
|       // Bails if we have to compose sub-register indices.
 | |
|       return false;
 | |
|     TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
 | |
|     return true;
 | |
|   }
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     if (CurrentSrcIdx != 2)
 | |
|       return false;
 | |
|     // We are rewriting the inserted reg.
 | |
|     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     MO.setReg(NewReg);
 | |
|     MO.setSubReg(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
 | |
| class ExtractSubregRewriter : public CopyRewriter {
 | |
|   const TargetInstrInfo &TII;
 | |
| 
 | |
| public:
 | |
|   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
 | |
|       : CopyRewriter(MI), TII(TII) {
 | |
|     assert(MI.isExtractSubreg() && "Invalid instruction");
 | |
|   }
 | |
| 
 | |
|   /// \brief See CopyRewriter::getNextRewritableSource.
 | |
|   /// Here CopyLike has the following form:
 | |
|   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
 | |
|   /// There is only one rewritable source: Src.subIdx,
 | |
|   /// which defines dst.dstSubIdx.
 | |
|   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | |
|                                unsigned &TrackReg,
 | |
|                                unsigned &TrackSubReg) override {
 | |
|     // If we already get the only source we can rewrite, return false.
 | |
|     if (CurrentSrcIdx == 1)
 | |
|       return false;
 | |
|     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
 | |
|     CurrentSrcIdx = 1;
 | |
|     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
 | |
|     SrcReg = MOExtractedReg.getReg();
 | |
|     // If we have to compose sub-register indices, bails out.
 | |
|     if (MOExtractedReg.getSubReg())
 | |
|       return false;
 | |
| 
 | |
|     SrcSubReg = CopyLike.getOperand(2).getImm();
 | |
| 
 | |
|     // We want to track something that is compatible with the definition.
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
|     TrackReg = MODef.getReg();
 | |
|     TrackSubReg = MODef.getSubReg();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     // The only source we can rewrite is the input register.
 | |
|     if (CurrentSrcIdx != 1)
 | |
|       return false;
 | |
| 
 | |
|     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
 | |
| 
 | |
|     // If we find a source that does not require to extract something,
 | |
|     // rewrite the operation with a copy.
 | |
|     if (!NewSubReg) {
 | |
|       // Move the current index to an invalid position.
 | |
|       // We do not want another call to this method to be able
 | |
|       // to do any change.
 | |
|       CurrentSrcIdx = -1;
 | |
|       // Rewrite the operation as a COPY.
 | |
|       // Get rid of the sub-register index.
 | |
|       CopyLike.RemoveOperand(2);
 | |
|       // Morph the operation into a COPY.
 | |
|       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
 | |
|       return true;
 | |
|     }
 | |
|     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Specialized rewriter for REG_SEQUENCE instruction.
 | |
| class RegSequenceRewriter : public CopyRewriter {
 | |
| public:
 | |
|   RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
 | |
|     assert(MI.isRegSequence() && "Invalid instruction");
 | |
|   }
 | |
| 
 | |
|   /// \brief See CopyRewriter::getNextRewritableSource.
 | |
|   /// Here CopyLike has the following form:
 | |
|   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
 | |
|   /// Each call will return a different source, walking all the available
 | |
|   /// source.
 | |
|   ///
 | |
|   /// The first call returns:
 | |
|   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
 | |
|   /// (TrackReg, TrackSubReg) = (dst, subIdx1).
 | |
|   ///
 | |
|   /// The second call returns:
 | |
|   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
 | |
|   /// (TrackReg, TrackSubReg) = (dst, subIdx2).
 | |
|   ///
 | |
|   /// And so on, until all the sources have been traversed, then
 | |
|   /// it returns false.
 | |
|   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
 | |
|                                unsigned &TrackReg,
 | |
|                                unsigned &TrackSubReg) override {
 | |
|     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
 | |
| 
 | |
|     // If this is the first call, move to the first argument.
 | |
|     if (CurrentSrcIdx == 0) {
 | |
|       CurrentSrcIdx = 1;
 | |
|     } else {
 | |
|       // Otherwise, move to the next argument and check that it is valid.
 | |
|       CurrentSrcIdx += 2;
 | |
|       if (CurrentSrcIdx >= CopyLike.getNumOperands())
 | |
|         return false;
 | |
|     }
 | |
|     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     SrcReg = MOInsertedReg.getReg();
 | |
|     // If we have to compose sub-register indices, bails out.
 | |
|     if ((SrcSubReg = MOInsertedReg.getSubReg()))
 | |
|       return false;
 | |
| 
 | |
|     // We want to track something that is compatible with the related
 | |
|     // partial definition.
 | |
|     TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
 | |
| 
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
|     TrackReg = MODef.getReg();
 | |
|     // If we have to compose sub-registers, bails.
 | |
|     return MODef.getSubReg() == 0;
 | |
|   }
 | |
| 
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     // We cannot rewrite out of bound operands.
 | |
|     // Moreover, rewritable sources are at odd positions.
 | |
|     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     MO.setReg(NewReg);
 | |
|     MO.setSubReg(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| } // End namespace.
 | |
| 
 | |
| /// \brief Get the appropriated CopyRewriter for \p MI.
 | |
| /// \return A pointer to a dynamically allocated CopyRewriter or nullptr
 | |
| /// if no rewriter works for \p MI.
 | |
| static CopyRewriter *getCopyRewriter(MachineInstr &MI,
 | |
|                                      const TargetInstrInfo &TII) {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   case TargetOpcode::COPY:
 | |
|     return new CopyRewriter(MI);
 | |
|   case TargetOpcode::INSERT_SUBREG:
 | |
|     return new InsertSubregRewriter(MI);
 | |
|   case TargetOpcode::EXTRACT_SUBREG:
 | |
|     return new ExtractSubregRewriter(MI, TII);
 | |
|   case TargetOpcode::REG_SEQUENCE:
 | |
|     return new RegSequenceRewriter(MI);
 | |
|   }
 | |
|   llvm_unreachable(nullptr);
 | |
| }
 | |
| 
 | |
| /// \brief Optimize generic copy instructions to avoid cross
 | |
| /// register bank copy. The optimization looks through a chain of
 | |
| /// copies and tries to find a source that has a compatible register
 | |
| /// class.
 | |
| /// Two register classes are considered to be compatible if they share
 | |
| /// the same register bank.
 | |
| /// New copies issued by this optimization are register allocator
 | |
| /// friendly. This optimization does not remove any copy as it may
 | |
| /// overconstraint the register allocator, but replaces some operands
 | |
| /// when possible.
 | |
| /// \pre isCoalescableCopy(*MI) is true.
 | |
| /// \return True, when \p MI has been rewritten. False otherwise.
 | |
| bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
 | |
|   assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
 | |
|   assert(MI->getDesc().getNumDefs() == 1 &&
 | |
|          "Coalescer can understand multiple defs?!");
 | |
|   const MachineOperand &MODef = MI->getOperand(0);
 | |
|   // Do not rewrite physical definitions.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // Get the right rewriter for the current copy.
 | |
|   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII));
 | |
|   // If none exists, bails out.
 | |
|   if (!CpyRewriter)
 | |
|     return false;
 | |
|   // Rewrite each rewritable source.
 | |
|   unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
 | |
|   while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
 | |
|                                               TrackSubReg)) {
 | |
|     unsigned NewSrc = TrackReg;
 | |
|     unsigned NewSubReg = TrackSubReg;
 | |
|     // Try to find a more suitable source.
 | |
|     // If we failed to do so, or get the actual source,
 | |
|     // move to the next source.
 | |
|     if (!findNextSource(NewSrc, NewSubReg) || SrcReg == NewSrc)
 | |
|       continue;
 | |
|     // Rewrite source.
 | |
|     if (CpyRewriter->RewriteCurrentSource(NewSrc, NewSubReg)) {
 | |
|       // We may have extended the live-range of NewSrc, account for that.
 | |
|       MRI->clearKillFlags(NewSrc);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   // TODO: We could have a clean-up method to tidy the instruction.
 | |
|   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
 | |
|   // => v0 = COPY v1
 | |
|   // Currently we haven't seen motivating example for that and we
 | |
|   // want to avoid untested code.
 | |
|   NumRewrittenCopies += Changed;
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Optimize copy-like instructions to create
 | |
| /// register coalescer friendly instruction.
 | |
| /// The optimization tries to kill-off the \p MI by looking
 | |
| /// through a chain of copies to find a source that has a compatible
 | |
| /// register class.
 | |
| /// If such a source is found, it replace \p MI by a generic COPY
 | |
| /// operation.
 | |
| /// \pre isUncoalescableCopy(*MI) is true.
 | |
| /// \return True, when \p MI has been optimized. In that case, \p MI has
 | |
| /// been removed from its parent.
 | |
| /// All COPY instructions created, are inserted in \p LocalMIs.
 | |
| bool PeepholeOptimizer::optimizeUncoalescableCopy(
 | |
|     MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
 | |
|   assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
 | |
| 
 | |
|   // Check if we can rewrite all the values defined by this instruction.
 | |
|   SmallVector<
 | |
|       std::pair<TargetInstrInfo::RegSubRegPair, TargetInstrInfo::RegSubRegPair>,
 | |
|       4> RewritePairs;
 | |
|   for (const MachineOperand &MODef : MI->defs()) {
 | |
|     if (MODef.isDead())
 | |
|       // We can ignore those.
 | |
|       continue;
 | |
| 
 | |
|     // If a physical register is here, this is probably for a good reason.
 | |
|     // Do not rewrite that.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
 | |
|       return false;
 | |
| 
 | |
|     // If we do not know how to rewrite this definition, there is no point
 | |
|     // in trying to kill this instruction.
 | |
|     TargetInstrInfo::RegSubRegPair Def(MODef.getReg(), MODef.getSubReg());
 | |
|     TargetInstrInfo::RegSubRegPair Src = Def;
 | |
|     if (!findNextSource(Src.Reg, Src.SubReg))
 | |
|       return false;
 | |
|     RewritePairs.push_back(std::make_pair(Def, Src));
 | |
|   }
 | |
|   // The change is possible for all defs, do it.
 | |
|   for (const auto &PairDefSrc : RewritePairs) {
 | |
|     const auto &Def = PairDefSrc.first;
 | |
|     const auto &Src = PairDefSrc.second;
 | |
|     // Rewrite the "copy" in a way the register coalescer understands.
 | |
|     assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
 | |
|            "We do not rewrite physical registers");
 | |
|     const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
 | |
|     unsigned NewVR = MRI->createVirtualRegister(DefRC);
 | |
|     MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
 | |
|                                     TII->get(TargetOpcode::COPY),
 | |
|                                     NewVR).addReg(Src.Reg, 0, Src.SubReg);
 | |
|     NewCopy->getOperand(0).setSubReg(Def.SubReg);
 | |
|     if (Def.SubReg)
 | |
|       NewCopy->getOperand(0).setIsUndef();
 | |
|     LocalMIs.insert(NewCopy);
 | |
|     MRI->replaceRegWith(Def.Reg, NewVR);
 | |
|     MRI->clearKillFlags(NewVR);
 | |
|     // We extended the lifetime of Src.
 | |
|     // Clear the kill flags to account for that.
 | |
|     MRI->clearKillFlags(Src.Reg);
 | |
|   }
 | |
|   // MI is now dead.
 | |
|   MI->eraseFromParent();
 | |
|   ++NumUncoalescableCopies;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLoadFoldable - Check whether MI is a candidate for folding into a later
 | |
| /// instruction. We only fold loads to virtual registers and the virtual
 | |
| /// register defined has a single use.
 | |
| bool PeepholeOptimizer::isLoadFoldable(
 | |
|                               MachineInstr *MI,
 | |
|                               SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
 | |
|   if (!MI->canFoldAsLoad() || !MI->mayLoad())
 | |
|     return false;
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   if (MCID.getNumDefs() != 1)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Reg = MI->getOperand(0).getReg();
 | |
|   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
 | |
|   // loads. It should be checked when processing uses of the load, since
 | |
|   // uses can be removed during peephole.
 | |
|   if (!MI->getOperand(0).getSubReg() &&
 | |
|       TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|       MRI->hasOneNonDBGUse(Reg)) {
 | |
|     FoldAsLoadDefCandidates.insert(Reg);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
 | |
|                                         SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   if (!MI->isMoveImmediate())
 | |
|     return false;
 | |
|   if (MCID.getNumDefs() != 1)
 | |
|     return false;
 | |
|   unsigned Reg = MI->getOperand(0).getReg();
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     ImmDefMIs.insert(std::make_pair(Reg, MI));
 | |
|     ImmDefRegs.insert(Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// foldImmediate - Try folding register operands that are defined by move
 | |
| /// immediate instructions, i.e. a trivial constant folding optimization, if
 | |
| /// and only if the def and use are in the same BB.
 | |
| bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                                       SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
 | |
|   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || MO.isDef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     if (ImmDefRegs.count(Reg) == 0)
 | |
|       continue;
 | |
|     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
 | |
|     assert(II != ImmDefMIs.end());
 | |
|     if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
 | |
|       ++NumImmFold;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipOptnoneFunction(*MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
 | |
|   DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
 | |
| 
 | |
|   if (DisablePeephole)
 | |
|     return false;
 | |
| 
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
 | |
|     MachineBasicBlock *MBB = &*I;
 | |
| 
 | |
|     bool SeenMoveImm = false;
 | |
| 
 | |
|     // During this forward scan, at some point it needs to answer the question
 | |
|     // "given a pointer to an MI in the current BB, is it located before or
 | |
|     // after the current instruction".
 | |
|     // To perform this, the following set keeps track of the MIs already seen
 | |
|     // during the scan, if a MI is not in the set, it is assumed to be located
 | |
|     // after. Newly created MIs have to be inserted in the set as well.
 | |
|     SmallPtrSet<MachineInstr*, 16> LocalMIs;
 | |
|     SmallSet<unsigned, 4> ImmDefRegs;
 | |
|     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
 | |
|     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator
 | |
|            MII = I->begin(), MIE = I->end(); MII != MIE; ) {
 | |
|       MachineInstr *MI = &*MII;
 | |
|       // We may be erasing MI below, increment MII now.
 | |
|       ++MII;
 | |
|       LocalMIs.insert(MI);
 | |
| 
 | |
|       // Skip debug values. They should not affect this peephole optimization.
 | |
|       if (MI->isDebugValue())
 | |
|           continue;
 | |
| 
 | |
|       // If there exists an instruction which belongs to the following
 | |
|       // categories, we will discard the load candidates.
 | |
|       if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
 | |
|           MI->isKill() || MI->isInlineAsm() ||
 | |
|           MI->hasUnmodeledSideEffects()) {
 | |
|         FoldAsLoadDefCandidates.clear();
 | |
|         continue;
 | |
|       }
 | |
|       if (MI->mayStore() || MI->isCall())
 | |
|         FoldAsLoadDefCandidates.clear();
 | |
| 
 | |
|       if ((isUncoalescableCopy(*MI) &&
 | |
|            optimizeUncoalescableCopy(MI, LocalMIs)) ||
 | |
|           (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
 | |
|           (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
 | |
|         // MI is deleted.
 | |
|         LocalMIs.erase(MI);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
 | |
|         // MI is just rewritten.
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
 | |
|         SeenMoveImm = true;
 | |
|       } else {
 | |
|         Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
 | |
|         // optimizeExtInstr might have created new instructions after MI
 | |
|         // and before the already incremented MII. Adjust MII so that the
 | |
|         // next iteration sees the new instructions.
 | |
|         MII = MI;
 | |
|         ++MII;
 | |
|         if (SeenMoveImm)
 | |
|           Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
 | |
|       }
 | |
| 
 | |
|       // Check whether MI is a load candidate for folding into a later
 | |
|       // instruction. If MI is not a candidate, check whether we can fold an
 | |
|       // earlier load into MI.
 | |
|       if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
 | |
|           !FoldAsLoadDefCandidates.empty()) {
 | |
|         const MCInstrDesc &MIDesc = MI->getDesc();
 | |
|         for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
 | |
|              ++i) {
 | |
|           const MachineOperand &MOp = MI->getOperand(i);
 | |
|           if (!MOp.isReg())
 | |
|             continue;
 | |
|           unsigned FoldAsLoadDefReg = MOp.getReg();
 | |
|           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
 | |
|             // We need to fold load after optimizeCmpInstr, since
 | |
|             // optimizeCmpInstr can enable folding by converting SUB to CMP.
 | |
|             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
 | |
|             // we need it for markUsesInDebugValueAsUndef().
 | |
|             unsigned FoldedReg = FoldAsLoadDefReg;
 | |
|             MachineInstr *DefMI = nullptr;
 | |
|             MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
 | |
|                                                           FoldAsLoadDefReg,
 | |
|                                                           DefMI);
 | |
|             if (FoldMI) {
 | |
|               // Update LocalMIs since we replaced MI with FoldMI and deleted
 | |
|               // DefMI.
 | |
|               DEBUG(dbgs() << "Replacing: " << *MI);
 | |
|               DEBUG(dbgs() << "     With: " << *FoldMI);
 | |
|               LocalMIs.erase(MI);
 | |
|               LocalMIs.erase(DefMI);
 | |
|               LocalMIs.insert(FoldMI);
 | |
|               MI->eraseFromParent();
 | |
|               DefMI->eraseFromParent();
 | |
|               MRI->markUsesInDebugValueAsUndef(FoldedReg);
 | |
|               FoldAsLoadDefCandidates.erase(FoldedReg);
 | |
|               ++NumLoadFold;
 | |
|               // MI is replaced with FoldMI.
 | |
|               Changed = true;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool ValueTracker::getNextSourceFromCopy(unsigned &SrcReg,
 | |
|                                          unsigned &SrcSubReg) {
 | |
|   assert(Def->isCopy() && "Invalid definition");
 | |
|   // Copy instruction are supposed to be: Def = Src.
 | |
|   // If someone breaks this assumption, bad things will happen everywhere.
 | |
|   assert(Def->getNumOperands() == 2 && "Invalid number of operands");
 | |
| 
 | |
|   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
 | |
|     // If we look for a different subreg, it means we want a subreg of src.
 | |
|     // Bails as we do not support composing subreg yet.
 | |
|     return false;
 | |
|   // Otherwise, we want the whole source.
 | |
|   const MachineOperand &Src = Def->getOperand(1);
 | |
|   SrcReg = Src.getReg();
 | |
|   SrcSubReg = Src.getSubReg();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcReg,
 | |
|                                             unsigned &SrcSubReg) {
 | |
|   assert(Def->isBitcast() && "Invalid definition");
 | |
| 
 | |
|   // Bail if there are effects that a plain copy will not expose.
 | |
|   if (Def->hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   // Bitcasts with more than one def are not supported.
 | |
|   if (Def->getDesc().getNumDefs() != 1)
 | |
|     return false;
 | |
|   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
 | |
|     // If we look for a different subreg, it means we want a subreg of the src.
 | |
|     // Bails as we do not support composing subreg yet.
 | |
|     return false;
 | |
| 
 | |
|   unsigned SrcIdx = Def->getNumOperands();
 | |
|   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
 | |
|        ++OpIdx) {
 | |
|     const MachineOperand &MO = Def->getOperand(OpIdx);
 | |
|     if (!MO.isReg() || !MO.getReg())
 | |
|       continue;
 | |
|     assert(!MO.isDef() && "We should have skipped all the definitions by now");
 | |
|     if (SrcIdx != EndOpIdx)
 | |
|       // Multiple sources?
 | |
|       return false;
 | |
|     SrcIdx = OpIdx;
 | |
|   }
 | |
|   const MachineOperand &Src = Def->getOperand(SrcIdx);
 | |
|   SrcReg = Src.getReg();
 | |
|   SrcSubReg = Src.getSubReg();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcReg,
 | |
|                                                 unsigned &SrcSubReg) {
 | |
|   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
 | |
|          "Invalid definition");
 | |
| 
 | |
|   if (Def->getOperand(DefIdx).getSubReg())
 | |
|     // If we are composing subreg, bails out.
 | |
|     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
 | |
|     // This should almost never happen as the SSA property is tracked at
 | |
|     // the register level (as opposed to the subreg level).
 | |
|     // I.e.,
 | |
|     // Def.sub0 =
 | |
|     // Def.sub1 =
 | |
|     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
 | |
|     // Def. Thus, it must not be generated.
 | |
|     // However, some code could theoretically generates a single
 | |
|     // Def.sub0 (i.e, not defining the other subregs) and we would
 | |
|     // have this case.
 | |
|     // If we can ascertain (or force) that this never happens, we could
 | |
|     // turn that into an assertion.
 | |
|     return false;
 | |
| 
 | |
|   if (!TII)
 | |
|     // We could handle the REG_SEQUENCE here, but we do not want to
 | |
|     // duplicate the code from the generic TII.
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
 | |
|   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
 | |
|     return false;
 | |
| 
 | |
|   // We are looking at:
 | |
|   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
 | |
|   // Check if one of the operand defines the subreg we are interested in.
 | |
|   for (auto &RegSeqInput : RegSeqInputRegs) {
 | |
|     if (RegSeqInput.SubIdx == DefSubReg) {
 | |
|       if (RegSeqInput.SubReg)
 | |
|         // Bails if we have to compose sub registers.
 | |
|         return false;
 | |
| 
 | |
|       SrcReg = RegSeqInput.Reg;
 | |
|       SrcSubReg = RegSeqInput.SubReg;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the subreg we are tracking is super-defined by another subreg,
 | |
|   // we could follow this value. However, this would require to compose
 | |
|   // the subreg and we do not do that for now.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcReg,
 | |
|                                                  unsigned &SrcSubReg) {
 | |
|   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
 | |
|          "Invalid definition");
 | |
| 
 | |
|   if (Def->getOperand(DefIdx).getSubReg())
 | |
|     // If we are composing subreg, bails out.
 | |
|     // Same remark as getNextSourceFromRegSequence.
 | |
|     // I.e., this may be turned into an assert.
 | |
|     return false;
 | |
| 
 | |
|   if (!TII)
 | |
|     // We could handle the REG_SEQUENCE here, but we do not want to
 | |
|     // duplicate the code from the generic TII.
 | |
|     return false;
 | |
| 
 | |
|   TargetInstrInfo::RegSubRegPair BaseReg;
 | |
|   TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
 | |
|   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
 | |
|     return false;
 | |
| 
 | |
|   // We are looking at:
 | |
|   // Def = INSERT_SUBREG v0, v1, sub1
 | |
|   // There are two cases:
 | |
|   // 1. DefSubReg == sub1, get v1.
 | |
|   // 2. DefSubReg != sub1, the value may be available through v0.
 | |
| 
 | |
|   // #1 Check if the inserted register matches the required sub index.
 | |
|   if (InsertedReg.SubIdx == DefSubReg) {
 | |
|     SrcReg = InsertedReg.Reg;
 | |
|     SrcSubReg = InsertedReg.SubReg;
 | |
|     return true;
 | |
|   }
 | |
|   // #2 Otherwise, if the sub register we are looking for is not partial
 | |
|   // defined by the inserted element, we can look through the main
 | |
|   // register (v0).
 | |
|   const MachineOperand &MODef = Def->getOperand(DefIdx);
 | |
|   // If the result register (Def) and the base register (v0) do not
 | |
|   // have the same register class or if we have to compose
 | |
|   // subregisters, bails out.
 | |
|   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
 | |
|       BaseReg.SubReg)
 | |
|     return false;
 | |
| 
 | |
|   // Get the TRI and check if the inserted sub-register overlaps with the
 | |
|   // sub-register we are tracking.
 | |
|   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
 | |
|   if (!TRI ||
 | |
|       (TRI->getSubRegIndexLaneMask(DefSubReg) &
 | |
|        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
 | |
|     return false;
 | |
|   // At this point, the value is available in v0 via the same subreg
 | |
|   // we used for Def.
 | |
|   SrcReg = BaseReg.Reg;
 | |
|   SrcSubReg = DefSubReg;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcReg,
 | |
|                                                   unsigned &SrcSubReg) {
 | |
|   assert((Def->isExtractSubreg() ||
 | |
|           Def->isExtractSubregLike()) && "Invalid definition");
 | |
|   // We are looking at:
 | |
|   // Def = EXTRACT_SUBREG v0, sub0
 | |
| 
 | |
|   // Bails if we have to compose sub registers.
 | |
|   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
 | |
|   if (DefSubReg)
 | |
|     return false;
 | |
| 
 | |
|   if (!TII)
 | |
|     // We could handle the EXTRACT_SUBREG here, but we do not want to
 | |
|     // duplicate the code from the generic TII.
 | |
|     return false;
 | |
| 
 | |
|   TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
 | |
|   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
 | |
|     return false;
 | |
| 
 | |
|   // Bails if we have to compose sub registers.
 | |
|   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
 | |
|   if (ExtractSubregInputReg.SubReg)
 | |
|     return false;
 | |
|   // Otherwise, the value is available in the v0.sub0.
 | |
|   SrcReg = ExtractSubregInputReg.Reg;
 | |
|   SrcSubReg = ExtractSubregInputReg.SubIdx;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcReg,
 | |
|                                                 unsigned &SrcSubReg) {
 | |
|   assert(Def->isSubregToReg() && "Invalid definition");
 | |
|   // We are looking at:
 | |
|   // Def = SUBREG_TO_REG Imm, v0, sub0
 | |
| 
 | |
|   // Bails if we have to compose sub registers.
 | |
|   // If DefSubReg != sub0, we would have to check that all the bits
 | |
|   // we track are included in sub0 and if yes, we would have to
 | |
|   // determine the right subreg in v0.
 | |
|   if (DefSubReg != Def->getOperand(3).getImm())
 | |
|     return false;
 | |
|   // Bails if we have to compose sub registers.
 | |
|   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
 | |
|   if (Def->getOperand(2).getSubReg())
 | |
|     return false;
 | |
| 
 | |
|   SrcReg = Def->getOperand(2).getReg();
 | |
|   SrcSubReg = Def->getOperand(3).getImm();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ValueTracker::getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg) {
 | |
|   assert(Def && "This method needs a valid definition");
 | |
| 
 | |
|   assert(
 | |
|       (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
 | |
|       Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
 | |
|   if (Def->isCopy())
 | |
|     return getNextSourceFromCopy(SrcReg, SrcSubReg);
 | |
|   if (Def->isBitcast())
 | |
|     return getNextSourceFromBitcast(SrcReg, SrcSubReg);
 | |
|   // All the remaining cases involve "complex" instructions.
 | |
|   // Bails if we did not ask for the advanced tracking.
 | |
|   if (!UseAdvancedTracking)
 | |
|     return false;
 | |
|   if (Def->isRegSequence() || Def->isRegSequenceLike())
 | |
|     return getNextSourceFromRegSequence(SrcReg, SrcSubReg);
 | |
|   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
 | |
|     return getNextSourceFromInsertSubreg(SrcReg, SrcSubReg);
 | |
|   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
 | |
|     return getNextSourceFromExtractSubreg(SrcReg, SrcSubReg);
 | |
|   if (Def->isSubregToReg())
 | |
|     return getNextSourceFromSubregToReg(SrcReg, SrcSubReg);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const MachineInstr *ValueTracker::getNextSource(unsigned &SrcReg,
 | |
|                                                 unsigned &SrcSubReg) {
 | |
|   // If we reach a point where we cannot move up in the use-def chain,
 | |
|   // there is nothing we can get.
 | |
|   if (!Def)
 | |
|     return nullptr;
 | |
| 
 | |
|   const MachineInstr *PrevDef = nullptr;
 | |
|   // Try to find the next source.
 | |
|   if (getNextSourceImpl(SrcReg, SrcSubReg)) {
 | |
|     // Update definition, definition index, and subregister for the
 | |
|     // next call of getNextSource.
 | |
|     // Update the current register.
 | |
|     Reg = SrcReg;
 | |
|     // Update the return value before moving up in the use-def chain.
 | |
|     PrevDef = Def;
 | |
|     // If we can still move up in the use-def chain, move to the next
 | |
|     // defintion.
 | |
|     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       Def = MRI.getVRegDef(Reg);
 | |
|       DefIdx = MRI.def_begin(Reg).getOperandNo();
 | |
|       DefSubReg = SrcSubReg;
 | |
|       return PrevDef;
 | |
|     }
 | |
|   }
 | |
|   // If we end up here, this means we will not be able to find another source
 | |
|   // for the next iteration.
 | |
|   // Make sure any new call to getNextSource bails out early by cutting the
 | |
|   // use-def chain.
 | |
|   Def = nullptr;
 | |
|   return PrevDef;
 | |
| }
 |