forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			428 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			428 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the BasicBlock class for the IR library.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "SymbolTableListTraitsImpl.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| ValueSymbolTable *BasicBlock::getValueSymbolTable() {
 | |
|   if (Function *F = getParent())
 | |
|     return &F->getValueSymbolTable();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| LLVMContext &BasicBlock::getContext() const {
 | |
|   return getType()->getContext();
 | |
| }
 | |
| 
 | |
| // Explicit instantiation of SymbolTableListTraits since some of the methods
 | |
| // are not in the public header file...
 | |
| template class llvm::SymbolTableListTraits<Instruction, BasicBlock>;
 | |
| 
 | |
| 
 | |
| BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
 | |
|                        BasicBlock *InsertBefore)
 | |
|   : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
 | |
| 
 | |
|   if (NewParent)
 | |
|     insertInto(NewParent, InsertBefore);
 | |
|   else
 | |
|     assert(!InsertBefore &&
 | |
|            "Cannot insert block before another block with no function!");
 | |
| 
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
 | |
|   assert(NewParent && "Expected a parent");
 | |
|   assert(!Parent && "Already has a parent");
 | |
| 
 | |
|   if (InsertBefore)
 | |
|     NewParent->getBasicBlockList().insert(InsertBefore, this);
 | |
|   else
 | |
|     NewParent->getBasicBlockList().push_back(this);
 | |
| }
 | |
| 
 | |
| BasicBlock::~BasicBlock() {
 | |
|   // If the address of the block is taken and it is being deleted (e.g. because
 | |
|   // it is dead), this means that there is either a dangling constant expr
 | |
|   // hanging off the block, or an undefined use of the block (source code
 | |
|   // expecting the address of a label to keep the block alive even though there
 | |
|   // is no indirect branch).  Handle these cases by zapping the BlockAddress
 | |
|   // nodes.  There are no other possible uses at this point.
 | |
|   if (hasAddressTaken()) {
 | |
|     assert(!use_empty() && "There should be at least one blockaddress!");
 | |
|     Constant *Replacement =
 | |
|       ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
 | |
|     while (!use_empty()) {
 | |
|       BlockAddress *BA = cast<BlockAddress>(user_back());
 | |
|       BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
 | |
|                                                        BA->getType()));
 | |
|       BA->destroyConstant();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(getParent() == nullptr && "BasicBlock still linked into the program!");
 | |
|   dropAllReferences();
 | |
|   InstList.clear();
 | |
| }
 | |
| 
 | |
| void BasicBlock::setParent(Function *parent) {
 | |
|   // Set Parent=parent, updating instruction symtab entries as appropriate.
 | |
|   InstList.setSymTabObject(&Parent, parent);
 | |
| }
 | |
| 
 | |
| void BasicBlock::removeFromParent() {
 | |
|   getParent()->getBasicBlockList().remove(this);
 | |
| }
 | |
| 
 | |
| iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
 | |
|   return getParent()->getBasicBlockList().erase(this);
 | |
| }
 | |
| 
 | |
| /// Unlink this basic block from its current function and
 | |
| /// insert it into the function that MovePos lives in, right before MovePos.
 | |
| void BasicBlock::moveBefore(BasicBlock *MovePos) {
 | |
|   MovePos->getParent()->getBasicBlockList().splice(MovePos,
 | |
|                        getParent()->getBasicBlockList(), this);
 | |
| }
 | |
| 
 | |
| /// Unlink this basic block from its current function and
 | |
| /// insert it into the function that MovePos lives in, right after MovePos.
 | |
| void BasicBlock::moveAfter(BasicBlock *MovePos) {
 | |
|   Function::iterator I = MovePos;
 | |
|   MovePos->getParent()->getBasicBlockList().splice(++I,
 | |
|                                        getParent()->getBasicBlockList(), this);
 | |
| }
 | |
| 
 | |
| const Module *BasicBlock::getModule() const {
 | |
|   return getParent()->getParent();
 | |
| }
 | |
| 
 | |
| Module *BasicBlock::getModule() {
 | |
|   return getParent()->getParent();
 | |
| }
 | |
| 
 | |
| TerminatorInst *BasicBlock::getTerminator() {
 | |
|   if (InstList.empty()) return nullptr;
 | |
|   return dyn_cast<TerminatorInst>(&InstList.back());
 | |
| }
 | |
| 
 | |
| const TerminatorInst *BasicBlock::getTerminator() const {
 | |
|   if (InstList.empty()) return nullptr;
 | |
|   return dyn_cast<TerminatorInst>(&InstList.back());
 | |
| }
 | |
| 
 | |
| CallInst *BasicBlock::getTerminatingMustTailCall() {
 | |
|   if (InstList.empty())
 | |
|     return nullptr;
 | |
|   ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
 | |
|   if (!RI || RI == &InstList.front())
 | |
|     return nullptr;
 | |
| 
 | |
|   Instruction *Prev = RI->getPrevNode();
 | |
|   if (!Prev)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Value *RV = RI->getReturnValue()) {
 | |
|     if (RV != Prev)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Look through the optional bitcast.
 | |
|     if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
 | |
|       RV = BI->getOperand(0);
 | |
|       Prev = BI->getPrevNode();
 | |
|       if (!Prev || RV != Prev)
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *CI = dyn_cast<CallInst>(Prev)) {
 | |
|     if (CI->isMustTailCall())
 | |
|       return CI;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction* BasicBlock::getFirstNonPHI() {
 | |
|   BasicBlock::iterator i = begin();
 | |
|   // All valid basic blocks should have a terminator,
 | |
|   // which is not a PHINode. If we have an invalid basic
 | |
|   // block we'll get an assertion failure when dereferencing
 | |
|   // a past-the-end iterator.
 | |
|   while (isa<PHINode>(i)) ++i;
 | |
|   return &*i;
 | |
| }
 | |
| 
 | |
| Instruction* BasicBlock::getFirstNonPHIOrDbg() {
 | |
|   BasicBlock::iterator i = begin();
 | |
|   // All valid basic blocks should have a terminator,
 | |
|   // which is not a PHINode. If we have an invalid basic
 | |
|   // block we'll get an assertion failure when dereferencing
 | |
|   // a past-the-end iterator.
 | |
|   while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i;
 | |
|   return &*i;
 | |
| }
 | |
| 
 | |
| Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
 | |
|   // All valid basic blocks should have a terminator,
 | |
|   // which is not a PHINode. If we have an invalid basic
 | |
|   // block we'll get an assertion failure when dereferencing
 | |
|   // a past-the-end iterator.
 | |
|   BasicBlock::iterator i = begin();
 | |
|   for (;; ++i) {
 | |
|     if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i))
 | |
|       continue;
 | |
| 
 | |
|     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i);
 | |
|     if (!II)
 | |
|       break;
 | |
|     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
 | |
|         II->getIntrinsicID() != Intrinsic::lifetime_end)
 | |
|       break;
 | |
|   }
 | |
|   return &*i;
 | |
| }
 | |
| 
 | |
| BasicBlock::iterator BasicBlock::getFirstInsertionPt() {
 | |
|   iterator InsertPt = getFirstNonPHI();
 | |
|   if (isa<LandingPadInst>(InsertPt)) ++InsertPt;
 | |
|   return InsertPt;
 | |
| }
 | |
| 
 | |
| void BasicBlock::dropAllReferences() {
 | |
|   for(iterator I = begin(), E = end(); I != E; ++I)
 | |
|     I->dropAllReferences();
 | |
| }
 | |
| 
 | |
| /// If this basic block has a single predecessor block,
 | |
| /// return the block, otherwise return a null pointer.
 | |
| BasicBlock *BasicBlock::getSinglePredecessor() {
 | |
|   pred_iterator PI = pred_begin(this), E = pred_end(this);
 | |
|   if (PI == E) return nullptr;         // No preds.
 | |
|   BasicBlock *ThePred = *PI;
 | |
|   ++PI;
 | |
|   return (PI == E) ? ThePred : nullptr /*multiple preds*/;
 | |
| }
 | |
| 
 | |
| /// If this basic block has a unique predecessor block,
 | |
| /// return the block, otherwise return a null pointer.
 | |
| /// Note that unique predecessor doesn't mean single edge, there can be
 | |
| /// multiple edges from the unique predecessor to this block (for example
 | |
| /// a switch statement with multiple cases having the same destination).
 | |
| BasicBlock *BasicBlock::getUniquePredecessor() {
 | |
|   pred_iterator PI = pred_begin(this), E = pred_end(this);
 | |
|   if (PI == E) return nullptr; // No preds.
 | |
|   BasicBlock *PredBB = *PI;
 | |
|   ++PI;
 | |
|   for (;PI != E; ++PI) {
 | |
|     if (*PI != PredBB)
 | |
|       return nullptr;
 | |
|     // The same predecessor appears multiple times in the predecessor list.
 | |
|     // This is OK.
 | |
|   }
 | |
|   return PredBB;
 | |
| }
 | |
| 
 | |
| BasicBlock *BasicBlock::getSingleSuccessor() {
 | |
|   succ_iterator SI = succ_begin(this), E = succ_end(this);
 | |
|   if (SI == E) return nullptr; // no successors
 | |
|   BasicBlock *TheSucc = *SI;
 | |
|   ++SI;
 | |
|   return (SI == E) ? TheSucc : nullptr /* multiple successors */;
 | |
| }
 | |
| 
 | |
| BasicBlock *BasicBlock::getUniqueSuccessor() {
 | |
|   succ_iterator SI = succ_begin(this), E = succ_end(this);
 | |
|   if (SI == E) return NULL; // No successors
 | |
|   BasicBlock *SuccBB = *SI;
 | |
|   ++SI;
 | |
|   for (;SI != E; ++SI) {
 | |
|     if (*SI != SuccBB)
 | |
|       return NULL;
 | |
|     // The same successor appears multiple times in the successor list.
 | |
|     // This is OK.
 | |
|   }
 | |
|   return SuccBB;
 | |
| }
 | |
| 
 | |
| /// This method is used to notify a BasicBlock that the
 | |
| /// specified Predecessor of the block is no longer able to reach it.  This is
 | |
| /// actually not used to update the Predecessor list, but is actually used to
 | |
| /// update the PHI nodes that reside in the block.  Note that this should be
 | |
| /// called while the predecessor still refers to this block.
 | |
| ///
 | |
| void BasicBlock::removePredecessor(BasicBlock *Pred,
 | |
|                                    bool DontDeleteUselessPHIs) {
 | |
|   assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
 | |
|           find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
 | |
|          "removePredecessor: BB is not a predecessor!");
 | |
| 
 | |
|   if (InstList.empty()) return;
 | |
|   PHINode *APN = dyn_cast<PHINode>(&front());
 | |
|   if (!APN) return;   // Quick exit.
 | |
| 
 | |
|   // If there are exactly two predecessors, then we want to nuke the PHI nodes
 | |
|   // altogether.  However, we cannot do this, if this in this case:
 | |
|   //
 | |
|   //  Loop:
 | |
|   //    %x = phi [X, Loop]
 | |
|   //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
 | |
|   //    br Loop                 ;; %x2 does not dominate all uses
 | |
|   //
 | |
|   // This is because the PHI node input is actually taken from the predecessor
 | |
|   // basic block.  The only case this can happen is with a self loop, so we
 | |
|   // check for this case explicitly now.
 | |
|   //
 | |
|   unsigned max_idx = APN->getNumIncomingValues();
 | |
|   assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
 | |
|   if (max_idx == 2) {
 | |
|     BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
 | |
| 
 | |
|     // Disable PHI elimination!
 | |
|     if (this == Other) max_idx = 3;
 | |
|   }
 | |
| 
 | |
|   // <= Two predecessors BEFORE I remove one?
 | |
|   if (max_idx <= 2 && !DontDeleteUselessPHIs) {
 | |
|     // Yup, loop through and nuke the PHI nodes
 | |
|     while (PHINode *PN = dyn_cast<PHINode>(&front())) {
 | |
|       // Remove the predecessor first.
 | |
|       PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
 | |
| 
 | |
|       // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
 | |
|       if (max_idx == 2) {
 | |
|         if (PN->getIncomingValue(0) != PN)
 | |
|           PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | |
|         else
 | |
|           // We are left with an infinite loop with no entries: kill the PHI.
 | |
|           PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | |
|         getInstList().pop_front();    // Remove the PHI node
 | |
|       }
 | |
| 
 | |
|       // If the PHI node already only had one entry, it got deleted by
 | |
|       // removeIncomingValue.
 | |
|     }
 | |
|   } else {
 | |
|     // Okay, now we know that we need to remove predecessor #pred_idx from all
 | |
|     // PHI nodes.  Iterate over each PHI node fixing them up
 | |
|     PHINode *PN;
 | |
|     for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
 | |
|       ++II;
 | |
|       PN->removeIncomingValue(Pred, false);
 | |
|       // If all incoming values to the Phi are the same, we can replace the Phi
 | |
|       // with that value.
 | |
|       Value* PNV = nullptr;
 | |
|       if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
 | |
|         if (PNV != PN) {
 | |
|           PN->replaceAllUsesWith(PNV);
 | |
|           PN->eraseFromParent();
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This splits a basic block into two at the specified
 | |
| /// instruction.  Note that all instructions BEFORE the specified iterator stay
 | |
| /// as part of the original basic block, an unconditional branch is added to
 | |
| /// the new BB, and the rest of the instructions in the BB are moved to the new
 | |
| /// BB, including the old terminator.  This invalidates the iterator.
 | |
| ///
 | |
| /// Note that this only works on well formed basic blocks (must have a
 | |
| /// terminator), and 'I' must not be the end of instruction list (which would
 | |
| /// cause a degenerate basic block to be formed, having a terminator inside of
 | |
| /// the basic block).
 | |
| ///
 | |
| BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
 | |
|   assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
 | |
|   assert(I != InstList.end() &&
 | |
|          "Trying to get me to create degenerate basic block!");
 | |
| 
 | |
|   BasicBlock *InsertBefore = std::next(Function::iterator(this))
 | |
|                                .getNodePtrUnchecked();
 | |
|   BasicBlock *New = BasicBlock::Create(getContext(), BBName,
 | |
|                                        getParent(), InsertBefore);
 | |
| 
 | |
|   // Move all of the specified instructions from the original basic block into
 | |
|   // the new basic block.
 | |
|   New->getInstList().splice(New->end(), this->getInstList(), I, end());
 | |
| 
 | |
|   // Add a branch instruction to the newly formed basic block.
 | |
|   BranchInst::Create(New, this);
 | |
| 
 | |
|   // Now we must loop through all of the successors of the New block (which
 | |
|   // _were_ the successors of the 'this' block), and update any PHI nodes in
 | |
|   // successors.  If there were PHI nodes in the successors, then they need to
 | |
|   // know that incoming branches will be from New, not from Old.
 | |
|   //
 | |
|   for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
 | |
|     // Loop over any phi nodes in the basic block, updating the BB field of
 | |
|     // incoming values...
 | |
|     BasicBlock *Successor = *I;
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator II = Successor->begin();
 | |
|          (PN = dyn_cast<PHINode>(II)); ++II) {
 | |
|       int IDX = PN->getBasicBlockIndex(this);
 | |
|       while (IDX != -1) {
 | |
|         PN->setIncomingBlock((unsigned)IDX, New);
 | |
|         IDX = PN->getBasicBlockIndex(this);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
 | |
|   TerminatorInst *TI = getTerminator();
 | |
|   if (!TI)
 | |
|     // Cope with being called on a BasicBlock that doesn't have a terminator
 | |
|     // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
 | |
|     return;
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|     BasicBlock *Succ = TI->getSuccessor(i);
 | |
|     // N.B. Succ might not be a complete BasicBlock, so don't assume
 | |
|     // that it ends with a non-phi instruction.
 | |
|     for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
 | |
|       PHINode *PN = dyn_cast<PHINode>(II);
 | |
|       if (!PN)
 | |
|         break;
 | |
|       int i;
 | |
|       while ((i = PN->getBasicBlockIndex(this)) >= 0)
 | |
|         PN->setIncomingBlock(i, New);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if this basic block is a landing pad. I.e., it's
 | |
| /// the destination of the 'unwind' edge of an invoke instruction.
 | |
| bool BasicBlock::isLandingPad() const {
 | |
|   return isa<LandingPadInst>(getFirstNonPHI());
 | |
| }
 | |
| 
 | |
| /// Return the landingpad instruction associated with the landing pad.
 | |
| LandingPadInst *BasicBlock::getLandingPadInst() {
 | |
|   return dyn_cast<LandingPadInst>(getFirstNonPHI());
 | |
| }
 | |
| const LandingPadInst *BasicBlock::getLandingPadInst() const {
 | |
|   return dyn_cast<LandingPadInst>(getFirstNonPHI());
 | |
| }
 |