forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			789 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			789 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- DataLayout.cpp - Data size & alignment routines --------------------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines layout properties related to datatype size/offset/alignment
 | |
| // information.
 | |
| //
 | |
| // This structure should be created once, filled in if the defaults are not
 | |
| // correct and then passed around by const&.  None of the members functions
 | |
| // require modification to the object.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Mutex.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cstdlib>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Support for StructLayout
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
 | |
|   assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
 | |
|   StructAlignment = 0;
 | |
|   StructSize = 0;
 | |
|   NumElements = ST->getNumElements();
 | |
| 
 | |
|   // Loop over each of the elements, placing them in memory.
 | |
|   for (unsigned i = 0, e = NumElements; i != e; ++i) {
 | |
|     Type *Ty = ST->getElementType(i);
 | |
|     unsigned TyAlign = ST->isPacked() ? 1 : DL.getABITypeAlignment(Ty);
 | |
| 
 | |
|     // Add padding if necessary to align the data element properly.
 | |
|     if ((StructSize & (TyAlign-1)) != 0)
 | |
|       StructSize = RoundUpToAlignment(StructSize, TyAlign);
 | |
| 
 | |
|     // Keep track of maximum alignment constraint.
 | |
|     StructAlignment = std::max(TyAlign, StructAlignment);
 | |
| 
 | |
|     MemberOffsets[i] = StructSize;
 | |
|     StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item
 | |
|   }
 | |
| 
 | |
|   // Empty structures have alignment of 1 byte.
 | |
|   if (StructAlignment == 0) StructAlignment = 1;
 | |
| 
 | |
|   // Add padding to the end of the struct so that it could be put in an array
 | |
|   // and all array elements would be aligned correctly.
 | |
|   if ((StructSize & (StructAlignment-1)) != 0)
 | |
|     StructSize = RoundUpToAlignment(StructSize, StructAlignment);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getElementContainingOffset - Given a valid offset into the structure,
 | |
| /// return the structure index that contains it.
 | |
| unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
 | |
|   const uint64_t *SI =
 | |
|     std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
 | |
|   assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
 | |
|   --SI;
 | |
|   assert(*SI <= Offset && "upper_bound didn't work");
 | |
|   assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
 | |
|          (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
 | |
|          "Upper bound didn't work!");
 | |
| 
 | |
|   // Multiple fields can have the same offset if any of them are zero sized.
 | |
|   // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
 | |
|   // at the i32 element, because it is the last element at that offset.  This is
 | |
|   // the right one to return, because anything after it will have a higher
 | |
|   // offset, implying that this element is non-empty.
 | |
|   return SI-&MemberOffsets[0];
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LayoutAlignElem, LayoutAlign support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| LayoutAlignElem
 | |
| LayoutAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
 | |
|                      unsigned pref_align, uint32_t bit_width) {
 | |
|   assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
 | |
|   LayoutAlignElem retval;
 | |
|   retval.AlignType = align_type;
 | |
|   retval.ABIAlign = abi_align;
 | |
|   retval.PrefAlign = pref_align;
 | |
|   retval.TypeBitWidth = bit_width;
 | |
|   return retval;
 | |
| }
 | |
| 
 | |
| bool
 | |
| LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
 | |
|   return (AlignType == rhs.AlignType
 | |
|           && ABIAlign == rhs.ABIAlign
 | |
|           && PrefAlign == rhs.PrefAlign
 | |
|           && TypeBitWidth == rhs.TypeBitWidth);
 | |
| }
 | |
| 
 | |
| const LayoutAlignElem
 | |
| DataLayout::InvalidAlignmentElem = { INVALID_ALIGN, 0, 0, 0 };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PointerAlignElem, PointerAlign support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| PointerAlignElem
 | |
| PointerAlignElem::get(uint32_t AddressSpace, unsigned ABIAlign,
 | |
|                       unsigned PrefAlign, uint32_t TypeByteWidth) {
 | |
|   assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
 | |
|   PointerAlignElem retval;
 | |
|   retval.AddressSpace = AddressSpace;
 | |
|   retval.ABIAlign = ABIAlign;
 | |
|   retval.PrefAlign = PrefAlign;
 | |
|   retval.TypeByteWidth = TypeByteWidth;
 | |
|   return retval;
 | |
| }
 | |
| 
 | |
| bool
 | |
| PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
 | |
|   return (ABIAlign == rhs.ABIAlign
 | |
|           && AddressSpace == rhs.AddressSpace
 | |
|           && PrefAlign == rhs.PrefAlign
 | |
|           && TypeByteWidth == rhs.TypeByteWidth);
 | |
| }
 | |
| 
 | |
| const PointerAlignElem
 | |
| DataLayout::InvalidPointerElem = { 0U, 0U, 0U, ~0U };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       DataLayout Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| const char *DataLayout::getManglingComponent(const Triple &T) {
 | |
|   if (T.isOSBinFormatMachO())
 | |
|     return "-m:o";
 | |
|   if (T.isOSWindows() && T.isOSBinFormatCOFF())
 | |
|     return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
 | |
|   return "-m:e";
 | |
| }
 | |
| 
 | |
| static const LayoutAlignElem DefaultAlignments[] = {
 | |
|   { INTEGER_ALIGN, 1, 1, 1 },    // i1
 | |
|   { INTEGER_ALIGN, 8, 1, 1 },    // i8
 | |
|   { INTEGER_ALIGN, 16, 2, 2 },   // i16
 | |
|   { INTEGER_ALIGN, 32, 4, 4 },   // i32
 | |
|   { INTEGER_ALIGN, 64, 4, 8 },   // i64
 | |
|   { FLOAT_ALIGN, 16, 2, 2 },     // half
 | |
|   { FLOAT_ALIGN, 32, 4, 4 },     // float
 | |
|   { FLOAT_ALIGN, 64, 8, 8 },     // double
 | |
|   { FLOAT_ALIGN, 128, 16, 16 },  // ppcf128, quad, ...
 | |
|   { VECTOR_ALIGN, 64, 8, 8 },    // v2i32, v1i64, ...
 | |
|   { VECTOR_ALIGN, 128, 16, 16 }, // v16i8, v8i16, v4i32, ...
 | |
|   { AGGREGATE_ALIGN, 0, 0, 8 }   // struct
 | |
| };
 | |
| 
 | |
| void DataLayout::reset(StringRef Desc) {
 | |
|   clear();
 | |
| 
 | |
|   LayoutMap = nullptr;
 | |
|   BigEndian = false;
 | |
|   StackNaturalAlign = 0;
 | |
|   ManglingMode = MM_None;
 | |
| 
 | |
|   // Default alignments
 | |
|   for (const LayoutAlignElem &E : DefaultAlignments) {
 | |
|     setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign, E.PrefAlign,
 | |
|                  E.TypeBitWidth);
 | |
|   }
 | |
|   setPointerAlignment(0, 8, 8, 8);
 | |
| 
 | |
|   parseSpecifier(Desc);
 | |
| }
 | |
| 
 | |
| /// Checked version of split, to ensure mandatory subparts.
 | |
| static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) {
 | |
|   assert(!Str.empty() && "parse error, string can't be empty here");
 | |
|   std::pair<StringRef, StringRef> Split = Str.split(Separator);
 | |
|   if (Split.second.empty() && Split.first != Str)
 | |
|     report_fatal_error("Trailing separator in datalayout string");
 | |
|   if (!Split.second.empty() && Split.first.empty())
 | |
|     report_fatal_error("Expected token before separator in datalayout string");
 | |
|   return Split;
 | |
| }
 | |
| 
 | |
| /// Get an unsigned integer, including error checks.
 | |
| static unsigned getInt(StringRef R) {
 | |
|   unsigned Result;
 | |
|   bool error = R.getAsInteger(10, Result); (void)error;
 | |
|   if (error)
 | |
|     report_fatal_error("not a number, or does not fit in an unsigned int");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Convert bits into bytes. Assert if not a byte width multiple.
 | |
| static unsigned inBytes(unsigned Bits) {
 | |
|   if (Bits % 8)
 | |
|     report_fatal_error("number of bits must be a byte width multiple");
 | |
|   return Bits / 8;
 | |
| }
 | |
| 
 | |
| void DataLayout::parseSpecifier(StringRef Desc) {
 | |
|   StringRepresentation = Desc;
 | |
|   while (!Desc.empty()) {
 | |
|     // Split at '-'.
 | |
|     std::pair<StringRef, StringRef> Split = split(Desc, '-');
 | |
|     Desc = Split.second;
 | |
| 
 | |
|     // Split at ':'.
 | |
|     Split = split(Split.first, ':');
 | |
| 
 | |
|     // Aliases used below.
 | |
|     StringRef &Tok  = Split.first;  // Current token.
 | |
|     StringRef &Rest = Split.second; // The rest of the string.
 | |
| 
 | |
|     char Specifier = Tok.front();
 | |
|     Tok = Tok.substr(1);
 | |
| 
 | |
|     switch (Specifier) {
 | |
|     case 's':
 | |
|       // Ignored for backward compatibility.
 | |
|       // FIXME: remove this on LLVM 4.0.
 | |
|       break;
 | |
|     case 'E':
 | |
|       BigEndian = true;
 | |
|       break;
 | |
|     case 'e':
 | |
|       BigEndian = false;
 | |
|       break;
 | |
|     case 'p': {
 | |
|       // Address space.
 | |
|       unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok);
 | |
|       if (!isUInt<24>(AddrSpace))
 | |
|         report_fatal_error("Invalid address space, must be a 24bit integer");
 | |
| 
 | |
|       // Size.
 | |
|       if (Rest.empty())
 | |
|         report_fatal_error(
 | |
|             "Missing size specification for pointer in datalayout string");
 | |
|       Split = split(Rest, ':');
 | |
|       unsigned PointerMemSize = inBytes(getInt(Tok));
 | |
|       if (!PointerMemSize)
 | |
|         report_fatal_error("Invalid pointer size of 0 bytes");
 | |
| 
 | |
|       // ABI alignment.
 | |
|       if (Rest.empty())
 | |
|         report_fatal_error(
 | |
|             "Missing alignment specification for pointer in datalayout string");
 | |
|       Split = split(Rest, ':');
 | |
|       unsigned PointerABIAlign = inBytes(getInt(Tok));
 | |
|       if (!isPowerOf2_64(PointerABIAlign))
 | |
|         report_fatal_error(
 | |
|             "Pointer ABI alignment must be a power of 2");
 | |
| 
 | |
|       // Preferred alignment.
 | |
|       unsigned PointerPrefAlign = PointerABIAlign;
 | |
|       if (!Rest.empty()) {
 | |
|         Split = split(Rest, ':');
 | |
|         PointerPrefAlign = inBytes(getInt(Tok));
 | |
|         if (!isPowerOf2_64(PointerPrefAlign))
 | |
|           report_fatal_error(
 | |
|             "Pointer preferred alignment must be a power of 2");
 | |
|       }
 | |
| 
 | |
|       setPointerAlignment(AddrSpace, PointerABIAlign, PointerPrefAlign,
 | |
|                           PointerMemSize);
 | |
|       break;
 | |
|     }
 | |
|     case 'i':
 | |
|     case 'v':
 | |
|     case 'f':
 | |
|     case 'a': {
 | |
|       AlignTypeEnum AlignType;
 | |
|       switch (Specifier) {
 | |
|       default:
 | |
|       case 'i': AlignType = INTEGER_ALIGN; break;
 | |
|       case 'v': AlignType = VECTOR_ALIGN; break;
 | |
|       case 'f': AlignType = FLOAT_ALIGN; break;
 | |
|       case 'a': AlignType = AGGREGATE_ALIGN; break;
 | |
|       }
 | |
| 
 | |
|       // Bit size.
 | |
|       unsigned Size = Tok.empty() ? 0 : getInt(Tok);
 | |
| 
 | |
|       if (AlignType == AGGREGATE_ALIGN && Size != 0)
 | |
|         report_fatal_error(
 | |
|             "Sized aggregate specification in datalayout string");
 | |
| 
 | |
|       // ABI alignment.
 | |
|       if (Rest.empty())
 | |
|         report_fatal_error(
 | |
|             "Missing alignment specification in datalayout string");
 | |
|       Split = split(Rest, ':');
 | |
|       unsigned ABIAlign = inBytes(getInt(Tok));
 | |
|       if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
 | |
|         report_fatal_error(
 | |
|             "ABI alignment specification must be >0 for non-aggregate types");
 | |
| 
 | |
|       // Preferred alignment.
 | |
|       unsigned PrefAlign = ABIAlign;
 | |
|       if (!Rest.empty()) {
 | |
|         Split = split(Rest, ':');
 | |
|         PrefAlign = inBytes(getInt(Tok));
 | |
|       }
 | |
| 
 | |
|       setAlignment(AlignType, ABIAlign, PrefAlign, Size);
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case 'n':  // Native integer types.
 | |
|       for (;;) {
 | |
|         unsigned Width = getInt(Tok);
 | |
|         if (Width == 0)
 | |
|           report_fatal_error(
 | |
|               "Zero width native integer type in datalayout string");
 | |
|         LegalIntWidths.push_back(Width);
 | |
|         if (Rest.empty())
 | |
|           break;
 | |
|         Split = split(Rest, ':');
 | |
|       }
 | |
|       break;
 | |
|     case 'S': { // Stack natural alignment.
 | |
|       StackNaturalAlign = inBytes(getInt(Tok));
 | |
|       break;
 | |
|     }
 | |
|     case 'm':
 | |
|       if (!Tok.empty())
 | |
|         report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string");
 | |
|       if (Rest.empty())
 | |
|         report_fatal_error("Expected mangling specifier in datalayout string");
 | |
|       if (Rest.size() > 1)
 | |
|         report_fatal_error("Unknown mangling specifier in datalayout string");
 | |
|       switch(Rest[0]) {
 | |
|       default:
 | |
|         report_fatal_error("Unknown mangling in datalayout string");
 | |
|       case 'e':
 | |
|         ManglingMode = MM_ELF;
 | |
|         break;
 | |
|       case 'o':
 | |
|         ManglingMode = MM_MachO;
 | |
|         break;
 | |
|       case 'm':
 | |
|         ManglingMode = MM_Mips;
 | |
|         break;
 | |
|       case 'w':
 | |
|         ManglingMode = MM_WinCOFF;
 | |
|         break;
 | |
|       case 'x':
 | |
|         ManglingMode = MM_WinCOFFX86;
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       report_fatal_error("Unknown specifier in datalayout string");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| DataLayout::DataLayout(const Module *M) : LayoutMap(nullptr) {
 | |
|   init(M);
 | |
| }
 | |
| 
 | |
| void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }
 | |
| 
 | |
| bool DataLayout::operator==(const DataLayout &Other) const {
 | |
|   bool Ret = BigEndian == Other.BigEndian &&
 | |
|              StackNaturalAlign == Other.StackNaturalAlign &&
 | |
|              ManglingMode == Other.ManglingMode &&
 | |
|              LegalIntWidths == Other.LegalIntWidths &&
 | |
|              Alignments == Other.Alignments && Pointers == Other.Pointers;
 | |
|   // Note: getStringRepresentation() might differs, it is not canonicalized
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| void
 | |
| DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
 | |
|                          unsigned pref_align, uint32_t bit_width) {
 | |
|   if (!isUInt<24>(bit_width))
 | |
|     report_fatal_error("Invalid bit width, must be a 24bit integer");
 | |
|   if (!isUInt<16>(abi_align))
 | |
|     report_fatal_error("Invalid ABI alignment, must be a 16bit integer");
 | |
|   if (!isUInt<16>(pref_align))
 | |
|     report_fatal_error("Invalid preferred alignment, must be a 16bit integer");
 | |
|   if (abi_align != 0 && !isPowerOf2_64(abi_align))
 | |
|     report_fatal_error("Invalid ABI alignment, must be a power of 2");
 | |
|   if (pref_align != 0 && !isPowerOf2_64(pref_align))
 | |
|     report_fatal_error("Invalid preferred alignment, must be a power of 2");
 | |
| 
 | |
|   if (pref_align < abi_align)
 | |
|     report_fatal_error(
 | |
|         "Preferred alignment cannot be less than the ABI alignment");
 | |
| 
 | |
|   for (LayoutAlignElem &Elem : Alignments) {
 | |
|     if (Elem.AlignType == (unsigned)align_type &&
 | |
|         Elem.TypeBitWidth == bit_width) {
 | |
|       // Update the abi, preferred alignments.
 | |
|       Elem.ABIAlign = abi_align;
 | |
|       Elem.PrefAlign = pref_align;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Alignments.push_back(LayoutAlignElem::get(align_type, abi_align,
 | |
|                                             pref_align, bit_width));
 | |
| }
 | |
| 
 | |
| DataLayout::PointersTy::iterator
 | |
| DataLayout::findPointerLowerBound(uint32_t AddressSpace) {
 | |
|   return std::lower_bound(Pointers.begin(), Pointers.end(), AddressSpace,
 | |
|                           [](const PointerAlignElem &A, uint32_t AddressSpace) {
 | |
|     return A.AddressSpace < AddressSpace;
 | |
|   });
 | |
| }
 | |
| 
 | |
| void DataLayout::setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
 | |
|                                      unsigned PrefAlign,
 | |
|                                      uint32_t TypeByteWidth) {
 | |
|   if (PrefAlign < ABIAlign)
 | |
|     report_fatal_error(
 | |
|         "Preferred alignment cannot be less than the ABI alignment");
 | |
| 
 | |
|   PointersTy::iterator I = findPointerLowerBound(AddrSpace);
 | |
|   if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
 | |
|     Pointers.insert(I, PointerAlignElem::get(AddrSpace, ABIAlign, PrefAlign,
 | |
|                                              TypeByteWidth));
 | |
|   } else {
 | |
|     I->ABIAlign = ABIAlign;
 | |
|     I->PrefAlign = PrefAlign;
 | |
|     I->TypeByteWidth = TypeByteWidth;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
 | |
| /// preferred if ABIInfo = false) the layout wants for the specified datatype.
 | |
| unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType,
 | |
|                                       uint32_t BitWidth, bool ABIInfo,
 | |
|                                       Type *Ty) const {
 | |
|   // Check to see if we have an exact match and remember the best match we see.
 | |
|   int BestMatchIdx = -1;
 | |
|   int LargestInt = -1;
 | |
|   for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
 | |
|     if (Alignments[i].AlignType == (unsigned)AlignType &&
 | |
|         Alignments[i].TypeBitWidth == BitWidth)
 | |
|       return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
 | |
| 
 | |
|     // The best match so far depends on what we're looking for.
 | |
|      if (AlignType == INTEGER_ALIGN &&
 | |
|          Alignments[i].AlignType == INTEGER_ALIGN) {
 | |
|       // The "best match" for integers is the smallest size that is larger than
 | |
|       // the BitWidth requested.
 | |
|       if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
 | |
|           Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
 | |
|         BestMatchIdx = i;
 | |
|       // However, if there isn't one that's larger, then we must use the
 | |
|       // largest one we have (see below)
 | |
|       if (LargestInt == -1 ||
 | |
|           Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
 | |
|         LargestInt = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we didn't find an exact solution.  Fall back here depending on what
 | |
|   // is being looked for.
 | |
|   if (BestMatchIdx == -1) {
 | |
|     // If we didn't find an integer alignment, fall back on most conservative.
 | |
|     if (AlignType == INTEGER_ALIGN) {
 | |
|       BestMatchIdx = LargestInt;
 | |
|     } else if (AlignType == VECTOR_ALIGN) {
 | |
|       // By default, use natural alignment for vector types. This is consistent
 | |
|       // with what clang and llvm-gcc do.
 | |
|       unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
 | |
|       Align *= cast<VectorType>(Ty)->getNumElements();
 | |
|       // If the alignment is not a power of 2, round up to the next power of 2.
 | |
|       // This happens for non-power-of-2 length vectors.
 | |
|       if (Align & (Align-1))
 | |
|         Align = NextPowerOf2(Align);
 | |
|       return Align;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we still couldn't find a reasonable default alignment, fall back
 | |
|   // to a simple heuristic that the alignment is the first power of two
 | |
|   // greater-or-equal to the store size of the type.  This is a reasonable
 | |
|   // approximation of reality, and if the user wanted something less
 | |
|   // less conservative, they should have specified it explicitly in the data
 | |
|   // layout.
 | |
|   if (BestMatchIdx == -1) {
 | |
|     unsigned Align = getTypeStoreSize(Ty);
 | |
|     if (Align & (Align-1))
 | |
|       Align = NextPowerOf2(Align);
 | |
|     return Align;
 | |
|   }
 | |
| 
 | |
|   // Since we got a "best match" index, just return it.
 | |
|   return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
 | |
|                  : Alignments[BestMatchIdx].PrefAlign;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class StructLayoutMap {
 | |
|   typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy;
 | |
|   LayoutInfoTy LayoutInfo;
 | |
| 
 | |
| public:
 | |
|   ~StructLayoutMap() {
 | |
|     // Remove any layouts.
 | |
|     for (const auto &I : LayoutInfo) {
 | |
|       StructLayout *Value = I.second;
 | |
|       Value->~StructLayout();
 | |
|       free(Value);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   StructLayout *&operator[](StructType *STy) {
 | |
|     return LayoutInfo[STy];
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void DataLayout::clear() {
 | |
|   LegalIntWidths.clear();
 | |
|   Alignments.clear();
 | |
|   Pointers.clear();
 | |
|   delete static_cast<StructLayoutMap *>(LayoutMap);
 | |
|   LayoutMap = nullptr;
 | |
| }
 | |
| 
 | |
| DataLayout::~DataLayout() {
 | |
|   clear();
 | |
| }
 | |
| 
 | |
| const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
 | |
|   if (!LayoutMap)
 | |
|     LayoutMap = new StructLayoutMap();
 | |
| 
 | |
|   StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
 | |
|   StructLayout *&SL = (*STM)[Ty];
 | |
|   if (SL) return SL;
 | |
| 
 | |
|   // Otherwise, create the struct layout.  Because it is variable length, we
 | |
|   // malloc it, then use placement new.
 | |
|   int NumElts = Ty->getNumElements();
 | |
|   StructLayout *L =
 | |
|     (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
 | |
| 
 | |
|   // Set SL before calling StructLayout's ctor.  The ctor could cause other
 | |
|   // entries to be added to TheMap, invalidating our reference.
 | |
|   SL = L;
 | |
| 
 | |
|   new (L) StructLayout(Ty, *this);
 | |
| 
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned DataLayout::getPointerABIAlignment(unsigned AS) const {
 | |
|   PointersTy::const_iterator I = findPointerLowerBound(AS);
 | |
|   if (I == Pointers.end() || I->AddressSpace != AS) {
 | |
|     I = findPointerLowerBound(0);
 | |
|     assert(I->AddressSpace == 0);
 | |
|   }
 | |
|   return I->ABIAlign;
 | |
| }
 | |
| 
 | |
| unsigned DataLayout::getPointerPrefAlignment(unsigned AS) const {
 | |
|   PointersTy::const_iterator I = findPointerLowerBound(AS);
 | |
|   if (I == Pointers.end() || I->AddressSpace != AS) {
 | |
|     I = findPointerLowerBound(0);
 | |
|     assert(I->AddressSpace == 0);
 | |
|   }
 | |
|   return I->PrefAlign;
 | |
| }
 | |
| 
 | |
| unsigned DataLayout::getPointerSize(unsigned AS) const {
 | |
|   PointersTy::const_iterator I = findPointerLowerBound(AS);
 | |
|   if (I == Pointers.end() || I->AddressSpace != AS) {
 | |
|     I = findPointerLowerBound(0);
 | |
|     assert(I->AddressSpace == 0);
 | |
|   }
 | |
|   return I->TypeByteWidth;
 | |
| }
 | |
| 
 | |
| unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
 | |
|   assert(Ty->isPtrOrPtrVectorTy() &&
 | |
|          "This should only be called with a pointer or pointer vector type");
 | |
| 
 | |
|   if (Ty->isPointerTy())
 | |
|     return getTypeSizeInBits(Ty);
 | |
| 
 | |
|   return getTypeSizeInBits(Ty->getScalarType());
 | |
| }
 | |
| 
 | |
| /*!
 | |
|   \param abi_or_pref Flag that determines which alignment is returned. true
 | |
|   returns the ABI alignment, false returns the preferred alignment.
 | |
|   \param Ty The underlying type for which alignment is determined.
 | |
| 
 | |
|   Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
 | |
|   == false) for the requested type \a Ty.
 | |
|  */
 | |
| unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
 | |
|   int AlignType = -1;
 | |
| 
 | |
|   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
 | |
|   switch (Ty->getTypeID()) {
 | |
|   // Early escape for the non-numeric types.
 | |
|   case Type::LabelTyID:
 | |
|     return (abi_or_pref
 | |
|             ? getPointerABIAlignment(0)
 | |
|             : getPointerPrefAlignment(0));
 | |
|   case Type::PointerTyID: {
 | |
|     unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
 | |
|     return (abi_or_pref
 | |
|             ? getPointerABIAlignment(AS)
 | |
|             : getPointerPrefAlignment(AS));
 | |
|     }
 | |
|   case Type::ArrayTyID:
 | |
|     return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     // Packed structure types always have an ABI alignment of one.
 | |
|     if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
 | |
|       return 1;
 | |
| 
 | |
|     // Get the layout annotation... which is lazily created on demand.
 | |
|     const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
 | |
|     unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
 | |
|     return std::max(Align, Layout->getAlignment());
 | |
|   }
 | |
|   case Type::IntegerTyID:
 | |
|     AlignType = INTEGER_ALIGN;
 | |
|     break;
 | |
|   case Type::HalfTyID:
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:
 | |
|   // PPC_FP128TyID and FP128TyID have different data contents, but the
 | |
|   // same size and alignment, so they look the same here.
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::FP128TyID:
 | |
|   case Type::X86_FP80TyID:
 | |
|     AlignType = FLOAT_ALIGN;
 | |
|     break;
 | |
|   case Type::X86_MMXTyID:
 | |
|   case Type::VectorTyID:
 | |
|     AlignType = VECTOR_ALIGN;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Bad type for getAlignment!!!");
 | |
|   }
 | |
| 
 | |
|   return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
 | |
|                           abi_or_pref, Ty);
 | |
| }
 | |
| 
 | |
| unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
 | |
|   return getAlignment(Ty, true);
 | |
| }
 | |
| 
 | |
| /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
 | |
| /// an integer type of the specified bitwidth.
 | |
| unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
 | |
|   return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, nullptr);
 | |
| }
 | |
| 
 | |
| unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
 | |
|   return getAlignment(Ty, false);
 | |
| }
 | |
| 
 | |
| unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const {
 | |
|   unsigned Align = getPrefTypeAlignment(Ty);
 | |
|   assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
 | |
|   return Log2_32(Align);
 | |
| }
 | |
| 
 | |
| IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
 | |
|                                        unsigned AddressSpace) const {
 | |
|   return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
 | |
| }
 | |
| 
 | |
| Type *DataLayout::getIntPtrType(Type *Ty) const {
 | |
|   assert(Ty->isPtrOrPtrVectorTy() &&
 | |
|          "Expected a pointer or pointer vector type.");
 | |
|   unsigned NumBits = getPointerTypeSizeInBits(Ty);
 | |
|   IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
 | |
|   if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
 | |
|     return VectorType::get(IntTy, VecTy->getNumElements());
 | |
|   return IntTy;
 | |
| }
 | |
| 
 | |
| Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
 | |
|   for (unsigned LegalIntWidth : LegalIntWidths)
 | |
|     if (Width <= LegalIntWidth)
 | |
|       return Type::getIntNTy(C, LegalIntWidth);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| unsigned DataLayout::getLargestLegalIntTypeSize() const {
 | |
|   auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
 | |
|   return Max != LegalIntWidths.end() ? *Max : 0;
 | |
| }
 | |
| 
 | |
| uint64_t DataLayout::getIndexedOffset(Type *ptrTy,
 | |
|                                       ArrayRef<Value *> Indices) const {
 | |
|   Type *Ty = ptrTy;
 | |
|   assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
 | |
|   uint64_t Result = 0;
 | |
| 
 | |
|   generic_gep_type_iterator<Value* const*>
 | |
|     TI = gep_type_begin(ptrTy, Indices);
 | |
|   for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX;
 | |
|        ++CurIDX, ++TI) {
 | |
|     if (StructType *STy = dyn_cast<StructType>(*TI)) {
 | |
|       assert(Indices[CurIDX]->getType() ==
 | |
|              Type::getInt32Ty(ptrTy->getContext()) &&
 | |
|              "Illegal struct idx");
 | |
|       unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
 | |
| 
 | |
|       // Get structure layout information...
 | |
|       const StructLayout *Layout = getStructLayout(STy);
 | |
| 
 | |
|       // Add in the offset, as calculated by the structure layout info...
 | |
|       Result += Layout->getElementOffset(FieldNo);
 | |
| 
 | |
|       // Update Ty to refer to current element
 | |
|       Ty = STy->getElementType(FieldNo);
 | |
|     } else {
 | |
|       // Update Ty to refer to current element
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // Get the array index and the size of each array element.
 | |
|       if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue())
 | |
|         Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getPreferredAlignment - Return the preferred alignment of the specified
 | |
| /// global.  This includes an explicitly requested alignment (if the global
 | |
| /// has one).
 | |
| unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const {
 | |
|   Type *ElemType = GV->getType()->getElementType();
 | |
|   unsigned Alignment = getPrefTypeAlignment(ElemType);
 | |
|   unsigned GVAlignment = GV->getAlignment();
 | |
|   if (GVAlignment >= Alignment) {
 | |
|     Alignment = GVAlignment;
 | |
|   } else if (GVAlignment != 0) {
 | |
|     Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
 | |
|   }
 | |
| 
 | |
|   if (GV->hasInitializer() && GVAlignment == 0) {
 | |
|     if (Alignment < 16) {
 | |
|       // If the global is not external, see if it is large.  If so, give it a
 | |
|       // larger alignment.
 | |
|       if (getTypeSizeInBits(ElemType) > 128)
 | |
|         Alignment = 16;    // 16-byte alignment.
 | |
|     }
 | |
|   }
 | |
|   return Alignment;
 | |
| }
 | |
| 
 | |
| /// getPreferredAlignmentLog - Return the preferred alignment of the
 | |
| /// specified global, returned in log form.  This includes an explicitly
 | |
| /// requested alignment (if the global has one).
 | |
| unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
 | |
|   return Log2_32(getPreferredAlignment(GV));
 | |
| }
 | |
| 
 |