forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2463 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2463 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the interfaces that Hexagon uses to lower LLVM code
 | |
| // into a selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "HexagonISelLowering.h"
 | |
| #include "HexagonMachineFunctionInfo.h"
 | |
| #include "HexagonSubtarget.h"
 | |
| #include "HexagonTargetMachine.h"
 | |
| #include "HexagonTargetObjectFile.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "hexagon-lowering"
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
 | |
|   cl::desc("Control jump table emission on Hexagon target"));
 | |
| 
 | |
| static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(false),
 | |
|   cl::desc("Enable Hexagon SDNode scheduling"));
 | |
| 
 | |
| static cl::opt<bool> EnableFastMath("ffast-math",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(false),
 | |
|   cl::desc("Enable Fast Math processing"));
 | |
| 
 | |
| static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(5),
 | |
|   cl::desc("Set minimum jump tables"));
 | |
| 
 | |
| static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(6),
 | |
|   cl::desc("Max #stores to inline memcpy"));
 | |
| 
 | |
| static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(4),
 | |
|   cl::desc("Max #stores to inline memcpy"));
 | |
| 
 | |
| static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(6),
 | |
|   cl::desc("Max #stores to inline memmove"));
 | |
| 
 | |
| static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(4),
 | |
|   cl::desc("Max #stores to inline memmove"));
 | |
| 
 | |
| static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(8),
 | |
|   cl::desc("Max #stores to inline memset"));
 | |
| 
 | |
| static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
 | |
|   cl::Hidden, cl::ZeroOrMore, cl::init(4),
 | |
|   cl::desc("Max #stores to inline memset"));
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| class HexagonCCState : public CCState {
 | |
|   unsigned NumNamedVarArgParams;
 | |
| 
 | |
| public:
 | |
|   HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
 | |
|                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
 | |
|                  int NumNamedVarArgParams)
 | |
|       : CCState(CC, isVarArg, MF, locs, C),
 | |
|         NumNamedVarArgParams(NumNamedVarArgParams) {}
 | |
| 
 | |
|   unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
 | |
| };
 | |
| }
 | |
| 
 | |
| // Implement calling convention for Hexagon.
 | |
| static bool
 | |
| CC_Hexagon(unsigned ValNo, MVT ValVT,
 | |
|            MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|            ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|              MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|              ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|              MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|              ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| RetCC_Hexagon(unsigned ValNo, MVT ValVT,
 | |
|               MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|               ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|                 MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                 ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|                 MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                 ISD::ArgFlagsTy ArgFlags, CCState &State);
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
 | |
|             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
|   HexagonCCState &HState = static_cast<HexagonCCState &>(State);
 | |
| 
 | |
|   if (ValNo < HState.getNumNamedVarArgParams()) {
 | |
|     // Deal with named arguments.
 | |
|     return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
 | |
|   }
 | |
| 
 | |
|   // Deal with un-named arguments.
 | |
|   unsigned ofst;
 | |
|   if (ArgFlags.isByVal()) {
 | |
|     // If pass-by-value, the size allocated on stack is decided
 | |
|     // by ArgFlags.getByValSize(), not by the size of LocVT.
 | |
|     ofst = State.AllocateStack(ArgFlags.getByValSize(),
 | |
|                                ArgFlags.getByValAlign());
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
|   if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     ValVT = MVT::i32;
 | |
|     if (ArgFlags.isSExt())
 | |
|       LocInfo = CCValAssign::SExt;
 | |
|     else if (ArgFlags.isZExt())
 | |
|       LocInfo = CCValAssign::ZExt;
 | |
|     else
 | |
|       LocInfo = CCValAssign::AExt;
 | |
|   }
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     ofst = State.AllocateStack(4, 4);
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     ofst = State.AllocateStack(8, 8);
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
|   llvm_unreachable(nullptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool
 | |
| CC_Hexagon (unsigned ValNo, MVT ValVT,
 | |
|             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   if (ArgFlags.isByVal()) {
 | |
|     // Passed on stack.
 | |
|     unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(),
 | |
|                                           ArgFlags.getByValAlign());
 | |
|     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     ValVT = MVT::i32;
 | |
|     if (ArgFlags.isSExt())
 | |
|       LocInfo = CCValAssign::SExt;
 | |
|     else if (ArgFlags.isZExt())
 | |
|       LocInfo = CCValAssign::ZExt;
 | |
|     else
 | |
|       LocInfo = CCValAssign::AExt;
 | |
|   } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     LocInfo = CCValAssign::BCvt;
 | |
|   } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
 | |
|     LocVT = MVT::i64;
 | |
|     LocInfo = CCValAssign::BCvt;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;  // CC didn't match.
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|                          MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   static const MCPhysReg RegList[] = {
 | |
|     Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
 | |
|     Hexagon::R5
 | |
|   };
 | |
|   if (unsigned Reg = State.AllocateReg(RegList)) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(4, 4);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|                          MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   static const MCPhysReg RegList1[] = {
 | |
|     Hexagon::D1, Hexagon::D2
 | |
|   };
 | |
|   static const MCPhysReg RegList2[] = {
 | |
|     Hexagon::R1, Hexagon::R3
 | |
|   };
 | |
|   if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
 | |
|                           MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                           ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
| 
 | |
|   if (LocVT == MVT::i1 ||
 | |
|       LocVT == MVT::i8 ||
 | |
|       LocVT == MVT::i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     ValVT = MVT::i32;
 | |
|     if (ArgFlags.isSExt())
 | |
|       LocInfo = CCValAssign::SExt;
 | |
|     else if (ArgFlags.isZExt())
 | |
|       LocInfo = CCValAssign::ZExt;
 | |
|     else
 | |
|       LocInfo = CCValAssign::AExt;
 | |
|   } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
 | |
|     LocVT = MVT::i32;
 | |
|     LocInfo = CCValAssign::BCvt;
 | |
|   } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
 | |
|     LocVT = MVT::i64;
 | |
|     LocInfo = CCValAssign::BCvt;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;  // CC didn't match.
 | |
| }
 | |
| 
 | |
| static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
 | |
|                             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
| 
 | |
|   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | |
|     if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
 | |
|       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(4, 4);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
 | |
|                             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | |
|                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | |
|   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | |
|     if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
 | |
|       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Offset = State.AllocateStack(8, 8);
 | |
|   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
 | |
| const {
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" of size "Size".  Alignment information is
 | |
| /// specified by the specific parameter attribute. The copy will be passed as
 | |
| /// a byval function parameter.  Sometimes what we are copying is the end of a
 | |
| /// larger object, the part that does not fit in registers.
 | |
| static SDValue
 | |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | |
|                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | |
|                           SDLoc dl) {
 | |
| 
 | |
|   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        /*isVolatile=*/false, /*AlwaysInline=*/false,
 | |
|                        /*isTailCall=*/false,
 | |
|                        MachinePointerInfo(), MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| 
 | |
| // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
 | |
| // passed by value, the function prototype is modified to return void and
 | |
| // the value is stored in memory pointed by a pointer passed by caller.
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                    CallingConv::ID CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                    const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                    SDLoc dl, SelectionDAG &DAG) const {
 | |
| 
 | |
|   // CCValAssign - represent the assignment of the return value to locations.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   // CCState - Info about the registers and stack slot.
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Analyze return values of ISD::RET
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
 | |
| 
 | |
|   SDValue Flag;
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
 | |
| 
 | |
|     // Guarantee that all emitted copies are stuck together with flags.
 | |
|     Flag = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain;  // Update chain.
 | |
| 
 | |
|   // Add the flag if we have it.
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
 | |
|   // If either no tail call or told not to tail call at all, don't.
 | |
|   if (!CI->isTailCall() || HTM.Options.DisableTailCalls)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the
 | |
| /// appropriate copies out of appropriate physical registers.  This assumes that
 | |
| /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
 | |
| /// being lowered. Returns a SDNode with the same number of values as the
 | |
| /// ISD::CALL.
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                        CallingConv::ID CallConv, bool isVarArg,
 | |
|                                        const
 | |
|                                        SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                        SDLoc dl, SelectionDAG &DAG,
 | |
|                                        SmallVectorImpl<SDValue> &InVals,
 | |
|                                        const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                        SDValue Callee) const {
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl,
 | |
|                                RVLocs[i].getLocReg(),
 | |
|                                RVLocs[i].getValVT(), InFlag).getValue(1);
 | |
|     InFlag = Chain.getValue(2);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// LowerCall - Functions arguments are copied from virtual regs to
 | |
| /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | |
|                                  SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG                     = CLI.DAG;
 | |
|   SDLoc &dl                             = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | |
|   SDValue Chain                         = CLI.Chain;
 | |
|   SDValue Callee                        = CLI.Callee;
 | |
|   bool &isTailCall                      = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv              = CLI.CallConv;
 | |
|   bool isVarArg                         = CLI.IsVarArg;
 | |
|   bool doesNotReturn                    = CLI.DoesNotReturn;
 | |
| 
 | |
|   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Check for varargs.
 | |
|   int NumNamedVarArgParams = -1;
 | |
|   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|   {
 | |
|     const Function* CalleeFn = nullptr;
 | |
|     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
 | |
|     if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
 | |
|     {
 | |
|       // If a function has zero args and is a vararg function, that's
 | |
|       // disallowed so it must be an undeclared function.  Do not assume
 | |
|       // varargs if the callee is undefined.
 | |
|       if (CalleeFn->isVarArg() &&
 | |
|           CalleeFn->getFunctionType()->getNumParams() != 0) {
 | |
|         NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                         *DAG.getContext(), NumNamedVarArgParams);
 | |
| 
 | |
|   if (isVarArg)
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
 | |
|   else
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
 | |
| 
 | |
|   if (DAG.getTarget().Options.DisableTailCalls)
 | |
|     isTailCall = false;
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     bool StructAttrFlag = MF.getFunction()->hasStructRetAttr();
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | |
|                                                    isVarArg, IsStructRet,
 | |
|                                                    StructAttrFlag,
 | |
|                                                    Outs, OutVals, Ins, DAG);
 | |
|     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|       CCValAssign &VA = ArgLocs[i];
 | |
|       if (VA.isMemLoc()) {
 | |
|         isTailCall = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << (isTailCall ? "Eligible for Tail Call\n"
 | |
|                                 : "Argument must be passed on stack. "
 | |
|                                   "Not eligible for Tail Call\n"));
 | |
|   }
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   auto &HRI = *Subtarget.getRegisterInfo();
 | |
|   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(),
 | |
|                                         getPointerTy());
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|       default:
 | |
|         // Loc info must be one of Full, SExt, ZExt, or AExt.
 | |
|         llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::BCvt:
 | |
|       case CCValAssign::Full:
 | |
|         break;
 | |
|       case CCValAssign::SExt:
 | |
|         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|       case CCValAssign::AExt:
 | |
|         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (VA.isMemLoc()) {
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
 | |
|                                         StackPtr.getValueType());
 | |
|       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
 | |
|       if (Flags.isByVal()) {
 | |
|         // The argument is a struct passed by value. According to LLVM, "Arg"
 | |
|         // is is pointer.
 | |
|         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
 | |
|                                                         Flags, DAG, dl));
 | |
|       } else {
 | |
|         MachinePointerInfo LocPI = MachinePointerInfo::getStack(LocMemOffset);
 | |
|         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI, false,
 | |
|                                  false, 0);
 | |
|         MemOpChains.push_back(S);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Arguments that can be passed on register must be kept at RegsToPass
 | |
|     // vector.
 | |
|     if (VA.isRegLoc())
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|   }
 | |
| 
 | |
|   // Transform all store nodes into one single node because all store
 | |
|   // nodes are independent of each other.
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | |
| 
 | |
|   if (!isTailCall) {
 | |
|     SDValue C = DAG.getConstant(NumBytes, dl, getPointerTy(), true);
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, C, dl);
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token
 | |
|   // chain and flag operands which copy the outgoing args into registers.
 | |
|   // The InFlag in necessary since all emitted instructions must be
 | |
|   // stuck together.
 | |
|   SDValue InFlag;
 | |
|   if (!isTailCall) {
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|   } else {
 | |
|     // For tail calls lower the arguments to the 'real' stack slot.
 | |
|     //
 | |
|     // Force all the incoming stack arguments to be loaded from the stack
 | |
|     // before any new outgoing arguments are stored to the stack, because the
 | |
|     // outgoing stack slots may alias the incoming argument stack slots, and
 | |
|     // the alias isn't otherwise explicit. This is slightly more conservative
 | |
|     // than necessary, because it means that each store effectively depends
 | |
|     // on every argument instead of just those arguments it would clobber.
 | |
|     //
 | |
|     // Do not flag preceding copytoreg stuff together with the following stuff.
 | |
|     InFlag = SDValue();
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|     InFlag = SDValue();
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   if (flag_aligned_memcpy) {
 | |
|     const char *MemcpyName =
 | |
|       "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
 | |
|     Callee = DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
 | |
|     flag_aligned_memcpy = false;
 | |
|   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
 | |
|   } else if (ExternalSymbolSDNode *S =
 | |
|              dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
 | |
|   }
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are
 | |
|   // known live into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
|   }
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     MF.getFrameInfo()->setHasTailCall();
 | |
|     return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
 | |
|   }
 | |
| 
 | |
|   int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3;
 | |
|   Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Create the CALLSEQ_END node.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | |
|                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
 | |
|                          InVals, OutVals, Callee);
 | |
| }
 | |
| 
 | |
| static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                    bool isSEXTLoad, SDValue &Base,
 | |
|                                    SDValue &Offset, bool &isInc,
 | |
|                                    SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD)
 | |
|     return false;
 | |
| 
 | |
|   if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Base = Ptr->getOperand(0);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     // Ensure that Offset is a constant.
 | |
|     return (isa<ConstantSDNode>(Offset));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // TODO: Put this function along with the other isS* functions in
 | |
| // HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
 | |
| // functions defined in HexagonOperands.td.
 | |
| static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
 | |
|   ConstantSDNode *N = cast<ConstantSDNode>(S);
 | |
| 
 | |
|   // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
 | |
|   // field.
 | |
|   int64_t v = (int64_t)N->getSExtValue();
 | |
|   int64_t m = 0;
 | |
|   if (ShiftAmount > 0) {
 | |
|     m = v % ShiftAmount;
 | |
|     v = v >> ShiftAmount;
 | |
|   }
 | |
|   return (v <= 7) && (v >= -8) && (m == 0);
 | |
| }
 | |
| 
 | |
| /// getPostIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if this node can be
 | |
| /// combined with a load / store to form a post-indexed load / store.
 | |
| bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                                        SDValue &Base,
 | |
|                                                        SDValue &Offset,
 | |
|                                                        ISD::MemIndexedMode &AM,
 | |
|                                                        SelectionDAG &DAG) const
 | |
| {
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false;
 | |
| 
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT  = LD->getMemoryVT();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT  = ST->getMemoryVT();
 | |
|     if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool isInc = false;
 | |
|   bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                         isInc, DAG);
 | |
|   // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
 | |
|   int ShiftAmount = VT.getSizeInBits() / 16;
 | |
|   if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
 | |
|     AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDNode *Node = Op.getNode();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
 | |
|   switch (Node->getOpcode()) {
 | |
|     case ISD::INLINEASM: {
 | |
|       unsigned NumOps = Node->getNumOperands();
 | |
|       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
 | |
|         --NumOps;  // Ignore the flag operand.
 | |
| 
 | |
|       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | |
|         if (FuncInfo.hasClobberLR())
 | |
|           break;
 | |
|         unsigned Flags =
 | |
|           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | |
|         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | |
|         ++i;  // Skip the ID value.
 | |
| 
 | |
|         switch (InlineAsm::getKind(Flags)) {
 | |
|         default: llvm_unreachable("Bad flags!");
 | |
|           case InlineAsm::Kind_RegDef:
 | |
|           case InlineAsm::Kind_RegUse:
 | |
|           case InlineAsm::Kind_Imm:
 | |
|           case InlineAsm::Kind_Clobber:
 | |
|           case InlineAsm::Kind_Mem: {
 | |
|             for (; NumVals; --NumVals, ++i) {}
 | |
|             break;
 | |
|           }
 | |
|           case InlineAsm::Kind_RegDefEarlyClobber: {
 | |
|             for (; NumVals; --NumVals, ++i) {
 | |
|               unsigned Reg =
 | |
|                 cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
| 
 | |
|               // Check it to be lr
 | |
|               const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo();
 | |
|               if (Reg == QRI->getRARegister()) {
 | |
|                 FuncInfo.setHasClobberLR(true);
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } // Node->getOpcode
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| 
 | |
| //
 | |
| // Taken from the XCore backend.
 | |
| //
 | |
| SDValue HexagonTargetLowering::
 | |
| LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
 | |
| {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Table = Op.getOperand(1);
 | |
|   SDValue Index = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
 | |
|   unsigned JTI = JT->getIndex();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
 | |
|   SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
 | |
| 
 | |
|   // Mark all jump table targets as address taken.
 | |
|   const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
 | |
|   const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
 | |
|   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *MBB = JTBBs[i];
 | |
|     MBB->setHasAddressTaken();
 | |
|     // This line is needed to set the hasAddressTaken flag on the BasicBlock
 | |
|     // object.
 | |
|     BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
 | |
|   }
 | |
| 
 | |
|   SDValue JumpTableBase = DAG.getNode(HexagonISD::JT, dl,
 | |
|                                       getPointerTy(), TargetJT);
 | |
|   SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
 | |
|                                    DAG.getConstant(2, dl, MVT::i32));
 | |
|   SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
 | |
|                                   ShiftIndex);
 | |
|   SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
 | |
|                                    MachinePointerInfo(), false, false, false,
 | |
|                                    0);
 | |
|   return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size = Op.getOperand(1);
 | |
|   SDValue Align = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
 | |
|   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
 | |
| 
 | |
|   unsigned A = AlignConst->getSExtValue();
 | |
|   auto &HFI = *Subtarget.getFrameLowering();
 | |
|   // "Zero" means natural stack alignment.
 | |
|   if (A == 0)
 | |
|     A = HFI.getStackAlignment();
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: ";
 | |
|     Size.getNode()->dump(&DAG);
 | |
|     dbgs() << "\n";
 | |
|   });
 | |
| 
 | |
|   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
 | |
|   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
 | |
|   return DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                             CallingConv::ID CallConv,
 | |
|                                             bool isVarArg,
 | |
|                                             const
 | |
|                                             SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                             SDLoc dl, SelectionDAG &DAG,
 | |
|                                             SmallVectorImpl<SDValue> &InVals)
 | |
| const {
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
 | |
| 
 | |
|   // For LLVM, in the case when returning a struct by value (>8byte),
 | |
|   // the first argument is a pointer that points to the location on caller's
 | |
|   // stack where the return value will be stored. For Hexagon, the location on
 | |
|   // caller's stack is passed only when the struct size is smaller than (and
 | |
|   // equal to) 8 bytes. If not, no address will be passed into callee and
 | |
|   // callee return the result direclty through R0/R1.
 | |
| 
 | |
|   SmallVector<SDValue, 4> MemOps;
 | |
| 
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | |
|     unsigned ObjSize;
 | |
|     unsigned StackLocation;
 | |
|     int FI;
 | |
| 
 | |
|     if (   (VA.isRegLoc() && !Flags.isByVal())
 | |
|         || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
 | |
|       // Arguments passed in registers
 | |
|       // 1. int, long long, ptr args that get allocated in register.
 | |
|       // 2. Large struct that gets an register to put its address in.
 | |
|       EVT RegVT = VA.getLocVT();
 | |
|       if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
 | |
|           RegVT == MVT::i32 || RegVT == MVT::f32) {
 | |
|         unsigned VReg =
 | |
|           RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | |
|         RegInfo.addLiveIn(VA.getLocReg(), VReg);
 | |
|         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
 | |
|       } else if (RegVT == MVT::i64 || RegVT == MVT::f64) {
 | |
|         unsigned VReg =
 | |
|           RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
 | |
|         RegInfo.addLiveIn(VA.getLocReg(), VReg);
 | |
|         InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
 | |
|       } else {
 | |
|         assert (0);
 | |
|       }
 | |
|     } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
 | |
|       assert (0 && "ByValSize must be bigger than 8 bytes");
 | |
|     } else {
 | |
|       // Sanity check.
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // If it's a byval parameter, then we need to compute the
 | |
|         // "real" size, not the size of the pointer.
 | |
|         ObjSize = Flags.getByValSize();
 | |
|       } else {
 | |
|         ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
 | |
|       }
 | |
| 
 | |
|       StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
 | |
|       // Create the frame index object for this incoming parameter...
 | |
|       FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
 | |
| 
 | |
|       // Create the SelectionDAG nodes cordl, responding to a load
 | |
|       // from this parameter.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // If it's a pass-by-value aggregate, then do not dereference the stack
 | |
|         // location. Instead, we should generate a reference to the stack
 | |
|         // location.
 | |
|         InVals.push_back(FIN);
 | |
|       } else {
 | |
|         InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
 | |
|                                      MachinePointerInfo(), false, false,
 | |
|                                      false, 0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | |
| 
 | |
|   if (isVarArg) {
 | |
|     // This will point to the next argument passed via stack.
 | |
|     int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
 | |
|                                             HEXAGON_LRFP_SIZE +
 | |
|                                             CCInfo.getNextStackOffset(),
 | |
|                                             true);
 | |
|     FuncInfo.setVarArgsFrameIndex(FrameIndex);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // VASTART stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
 | |
|   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
 | |
|                       Op.getOperand(1), MachinePointerInfo(SV), false,
 | |
|                       false, 0);
 | |
| }
 | |
| 
 | |
| // Creates a SPLAT instruction for a constant value VAL.
 | |
| static SDValue createSplat(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue Val) {
 | |
|   if (VT.getSimpleVT() == MVT::v4i8)
 | |
|     return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val);
 | |
| 
 | |
|   if (VT.getSimpleVT() == MVT::v4i16)
 | |
|     return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static bool isSExtFree(SDValue N) {
 | |
|   // A sign-extend of a truncate of a sign-extend is free.
 | |
|   if (N.getOpcode() == ISD::TRUNCATE &&
 | |
|       N.getOperand(0).getOpcode() == ISD::AssertSext)
 | |
|     return true;
 | |
|   // We have sign-extended loads.
 | |
|   if (N.getOpcode() == ISD::LOAD)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   SDValue InpVal = Op.getOperand(0);
 | |
|   if (isa<ConstantSDNode>(InpVal)) {
 | |
|     uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue();
 | |
|     return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64);
 | |
|   }
 | |
|   SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal);
 | |
|   return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut);
 | |
| }
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   SDValue Cmp = Op.getOperand(2);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT LHSVT = LHS.getValueType();
 | |
|   EVT RHSVT = RHS.getValueType();
 | |
| 
 | |
|   if (LHSVT == MVT::v2i16) {
 | |
|     assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC));
 | |
|     unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND
 | |
|                                                 : ISD::ZERO_EXTEND;
 | |
|     SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS);
 | |
|     SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS);
 | |
|     SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp);
 | |
|     return SC;
 | |
|   }
 | |
| 
 | |
|   // Treat all other vector types as legal.
 | |
|   if (VT.isVector())
 | |
|     return Op;
 | |
| 
 | |
|   // Equals and not equals should use sign-extend, not zero-extend, since
 | |
|   // we can represent small negative values in the compare instructions.
 | |
|   // The LLVM default is to use zero-extend arbitrarily in these cases.
 | |
|   if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | |
|       (RHSVT == MVT::i8 || RHSVT == MVT::i16) &&
 | |
|       (LHSVT == MVT::i8 || LHSVT == MVT::i16)) {
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
 | |
|     if (C && C->getAPIntValue().isNegative()) {
 | |
|       LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
 | |
|       RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
 | |
|       return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
 | |
|                          LHS, RHS, Op.getOperand(2));
 | |
|     }
 | |
|     if (isSExtFree(LHS) || isSExtFree(RHS)) {
 | |
|       LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
 | |
|       RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
 | |
|       return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
 | |
|                          LHS, RHS, Op.getOperand(2));
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG)
 | |
|       const {
 | |
|   SDValue PredOp = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
 | |
|   EVT OpVT = Op1.getValueType();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   if (OpVT == MVT::v2i16) {
 | |
|     SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
 | |
|     SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
 | |
|     SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
 | |
|     SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
 | |
|     return TR;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Handle only specific vector loads.
 | |
| SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
 | |
|   SDValue Chain = LoadNode->getChain();
 | |
|   SDValue Ptr = Op.getOperand(1);
 | |
|   SDValue LoweredLoad;
 | |
|   SDValue Result;
 | |
|   SDValue Base = LoadNode->getBasePtr();
 | |
|   ISD::LoadExtType Ext = LoadNode->getExtensionType();
 | |
|   unsigned Alignment = LoadNode->getAlignment();
 | |
|   SDValue LoadChain;
 | |
| 
 | |
|   if(Ext == ISD::NON_EXTLOAD)
 | |
|     Ext = ISD::ZEXTLOAD;
 | |
| 
 | |
|   if (VT == MVT::v4i16) {
 | |
|     if (Alignment == 2) {
 | |
|       SDValue Loads[4];
 | |
|       // Base load.
 | |
|       Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base,
 | |
|                                 LoadNode->getPointerInfo(), MVT::i16,
 | |
|                                 LoadNode->isVolatile(),
 | |
|                                 LoadNode->isNonTemporal(),
 | |
|                                 LoadNode->isInvariant(),
 | |
|                                 Alignment);
 | |
|       // Base+2 load.
 | |
|       SDValue Increment = DAG.getConstant(2, DL, MVT::i32);
 | |
|       Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
 | |
|       Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
 | |
|                                 LoadNode->getPointerInfo(), MVT::i16,
 | |
|                                 LoadNode->isVolatile(),
 | |
|                                 LoadNode->isNonTemporal(),
 | |
|                                 LoadNode->isInvariant(),
 | |
|                                 Alignment);
 | |
|       // SHL 16, then OR base and base+2.
 | |
|       SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32);
 | |
|       SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount);
 | |
|       SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]);
 | |
|       // Base + 4.
 | |
|       Increment = DAG.getConstant(4, DL, MVT::i32);
 | |
|       Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
 | |
|       Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
 | |
|                                 LoadNode->getPointerInfo(), MVT::i16,
 | |
|                                 LoadNode->isVolatile(),
 | |
|                                 LoadNode->isNonTemporal(),
 | |
|                                 LoadNode->isInvariant(),
 | |
|                                 Alignment);
 | |
|       // Base + 6.
 | |
|       Increment = DAG.getConstant(6, DL, MVT::i32);
 | |
|       Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
 | |
|       Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
 | |
|                                 LoadNode->getPointerInfo(), MVT::i16,
 | |
|                                 LoadNode->isVolatile(),
 | |
|                                 LoadNode->isNonTemporal(),
 | |
|                                 LoadNode->isInvariant(),
 | |
|                                 Alignment);
 | |
|       // SHL 16, then OR base+4 and base+6.
 | |
|       Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount);
 | |
|       SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]);
 | |
|       // Combine to i64. This could be optimised out later if we can
 | |
|       // affect reg allocation of this code.
 | |
|       Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2);
 | |
|       LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
 | |
|                               Loads[0].getValue(1), Loads[1].getValue(1),
 | |
|                               Loads[2].getValue(1), Loads[3].getValue(1));
 | |
|     } else {
 | |
|       // Perform default type expansion.
 | |
|       Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(),
 | |
|                            LoadNode->isVolatile(), LoadNode->isNonTemporal(),
 | |
|                           LoadNode->isInvariant(), LoadNode->getAlignment());
 | |
|       LoadChain = Result.getValue(1);
 | |
|     }
 | |
|   } else
 | |
|     llvm_unreachable("Custom lowering unsupported load");
 | |
| 
 | |
|   Result = DAG.getNode(ISD::BITCAST, DL, VT, Result);
 | |
|   // Since we pretend to lower a load, we need the original chain
 | |
|   // info attached to the result.
 | |
|   SDValue Ops[] = { Result, LoadChain };
 | |
| 
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT ValTy = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   SDValue Res;
 | |
|   if (CP->isMachineConstantPoolEntry())
 | |
|     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
 | |
|                                     CP->getAlignment());
 | |
|   else
 | |
|     Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
 | |
|                                     CP->getAlignment());
 | |
|   return DAG.getNode(HexagonISD::CP, dl, ValTy, Res);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = *MF.getFrameInfo();
 | |
|   MFI.setReturnAddressIsTaken(true);
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   if (Depth) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
 | |
|     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | |
|                        MachinePointerInfo(), false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Return LR, which contains the return address. Mark it an implicit live-in.
 | |
|   unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
 | |
|   MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI.setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | |
|                                          HRI.getFrameRegister(), VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | |
|                             MachinePointerInfo(),
 | |
|                             false, false, false, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
 | |
|                                                  SelectionDAG& DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDValue Result;
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
 | |
|   SDLoc dl(Op);
 | |
|   Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
 | |
| 
 | |
|   const HexagonTargetObjectFile *TLOF =
 | |
|       static_cast<const HexagonTargetObjectFile *>(
 | |
|           getTargetMachine().getObjFileLowering());
 | |
|   if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine())) {
 | |
|     return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
 | |
| }
 | |
| 
 | |
| // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
 | |
| void HexagonTargetLowering::promoteLdStType(EVT VT, EVT PromotedLdStVT) {
 | |
|   if (VT != PromotedLdStVT) {
 | |
|     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType(ISD::LOAD, VT.getSimpleVT(),
 | |
|                       PromotedLdStVT.getSimpleVT());
 | |
| 
 | |
|     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType(ISD::STORE, VT.getSimpleVT(),
 | |
|                       PromotedLdStVT.getSimpleVT());
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   SDValue BA_SD =  DAG.getTargetBlockAddress(BA, MVT::i32);
 | |
|   SDLoc dl(Op);
 | |
|   return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TargetLowering Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
 | |
|                                              const HexagonSubtarget &STI)
 | |
|     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
 | |
|       Subtarget(STI) {
 | |
|   bool IsV4 = !Subtarget.hasV5TOps();
 | |
|   auto &HRI = *Subtarget.getRegisterInfo();
 | |
| 
 | |
|   setPrefLoopAlignment(4);
 | |
|   setPrefFunctionAlignment(4);
 | |
|   setMinFunctionAlignment(2);
 | |
|   setInsertFencesForAtomic(false);
 | |
|   setExceptionPointerRegister(Hexagon::R0);
 | |
|   setExceptionSelectorRegister(Hexagon::R1);
 | |
|   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
 | |
| 
 | |
|   if (EnableHexSDNodeSched)
 | |
|     setSchedulingPreference(Sched::VLIW);
 | |
|   else
 | |
|     setSchedulingPreference(Sched::Source);
 | |
| 
 | |
|   // Limits for inline expansion of memcpy/memmove
 | |
|   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
 | |
|   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
 | |
|   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
 | |
|   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
 | |
|   MaxStoresPerMemset = MaxStoresPerMemsetCL;
 | |
|   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
 | |
| 
 | |
|   //
 | |
|   // Set up register classes.
 | |
|   //
 | |
| 
 | |
|   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
 | |
|   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
 | |
|   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
 | |
|   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
 | |
|   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
 | |
|   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
 | |
|   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
 | |
|   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
 | |
|   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
 | |
|   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
 | |
|   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
 | |
| 
 | |
|   if (Subtarget.hasV5TOps()) {
 | |
|     addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
 | |
|     addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Handling of scalar operations.
 | |
|   //
 | |
|   // All operations default to "legal", except:
 | |
|   // - indexed loads and stores (pre-/post-incremented),
 | |
|   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
 | |
|   //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
 | |
|   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
 | |
|   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
 | |
|   // which default to "expand" for at least one type.
 | |
| 
 | |
|   // Misc operations.
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand
 | |
| 
 | |
|   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
|   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
 | |
| 
 | |
|   // Custom legalize GlobalAddress nodes into CONST32.
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
 | |
|   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
 | |
| 
 | |
|   // Hexagon needs to optimize cases with negative constants.
 | |
|   setOperationAction(ISD::SETCC, MVT::i8,  Custom);
 | |
|   setOperationAction(ISD::SETCC, MVT::i16, Custom);
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | |
| 
 | |
|   if (EmitJumpTables)
 | |
|     setOperationAction(ISD::BR_JT, MVT::Other, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | |
|   // Increase jump tables cutover to 5, was 4.
 | |
|   setMinimumJumpTableEntries(MinimumJumpTables);
 | |
| 
 | |
|   // Hexagon has instructions for add/sub with carry. The problem with
 | |
|   // modeling these instructions is that they produce 2 results: Rdd and Px.
 | |
|   // To model the update of Px, we will have to use Defs[p0..p3] which will
 | |
|   // cause any predicate live range to spill. So, we pretend we dont't have
 | |
|   // these instructions.
 | |
|   setOperationAction(ISD::ADDE, MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::ADDE, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::ADDE, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ADDE, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SUBE, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ADDC, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i8,  Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i16, Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SUBC, MVT::i64, Expand);
 | |
| 
 | |
|   // Only add and sub that detect overflow are the saturating ones.
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setOperationAction(ISD::UADDO, VT, Expand);
 | |
|     setOperationAction(ISD::SADDO, VT, Expand);
 | |
|     setOperationAction(ISD::USUBO, VT, Expand);
 | |
|     setOperationAction(ISD::SSUBO, VT, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
 | |
|   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
 | |
|   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
 | |
|   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8,  Promote);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8,  Promote);
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
 | |
| 
 | |
|   // In V5, popcount can count # of 1s in i64 but returns i32.
 | |
|   // On V4 it will be expanded (set later).
 | |
|   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
 | |
| 
 | |
|   // We custom lower i64 to i64 mul, so that it is not considered as a legal
 | |
|   // operation. There is a pattern that will match i64 mul and transform it
 | |
|   // to a series of instructions.
 | |
|   setOperationAction(ISD::MUL,   MVT::i64, Expand);
 | |
|   setOperationAction(ISD::MULHS, MVT::i64, Expand);
 | |
| 
 | |
|   for (unsigned IntExpOp :
 | |
|        {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM,
 | |
|         ISD::ROTL, ISD::ROTR, ISD::BSWAP, ISD::SHL_PARTS, ISD::SRA_PARTS,
 | |
|         ISD::SRL_PARTS, ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
 | |
|     setOperationAction(IntExpOp, MVT::i32, Expand);
 | |
|     setOperationAction(IntExpOp, MVT::i64, Expand);
 | |
|   }
 | |
| 
 | |
|   for (unsigned FPExpOp :
 | |
|        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
 | |
|         ISD::FPOW, ISD::FCOPYSIGN}) {
 | |
|     setOperationAction(FPExpOp, MVT::f32, Expand);
 | |
|     setOperationAction(FPExpOp, MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   // No extending loads from i32.
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
 | |
|     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
 | |
|   }
 | |
|   // Turn FP truncstore into trunc + store.
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   // Turn FP extload into load/fextend.
 | |
|   for (MVT VT : MVT::fp_valuetypes())
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
 | |
| 
 | |
|   // Expand BR_CC and SELECT_CC for all integer and fp types.
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setOperationAction(ISD::BR_CC,     VT, Expand);
 | |
|     setOperationAction(ISD::SELECT_CC, VT, Expand);
 | |
|   }
 | |
|   for (MVT VT : MVT::fp_valuetypes()) {
 | |
|     setOperationAction(ISD::BR_CC,     VT, Expand);
 | |
|     setOperationAction(ISD::SELECT_CC, VT, Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
 | |
| 
 | |
|   //
 | |
|   // Handling of vector operations.
 | |
|   //
 | |
| 
 | |
|   // Custom lower v4i16 load only. Let v4i16 store to be
 | |
|   // promoted for now.
 | |
|   promoteLdStType(MVT::v4i8,  MVT::i32);
 | |
|   promoteLdStType(MVT::v2i16, MVT::i32);
 | |
|   promoteLdStType(MVT::v8i8,  MVT::i64);
 | |
|   promoteLdStType(MVT::v2i32, MVT::i64);
 | |
| 
 | |
|   setOperationAction(ISD::LOAD,  MVT::v4i16, Custom);
 | |
|   setOperationAction(ISD::STORE, MVT::v4i16, Promote);
 | |
|   AddPromotedToType(ISD::LOAD,  MVT::v4i16, MVT::i64);
 | |
|   AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64);
 | |
| 
 | |
|   // Set the action for vector operations to "expand", then override it with
 | |
|   // either "custom" or "legal" for specific cases.
 | |
|   static unsigned VectExpOps[] = {
 | |
|     // Integer arithmetic:
 | |
|     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,    ISD::UDIV,
 | |
|     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC,
 | |
|     ISD::SUBC,    ISD::SADDO,   ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,
 | |
|     ISD::SMUL_LOHI,             ISD::UMUL_LOHI,
 | |
|     // Logical/bit:
 | |
|     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
 | |
|     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,    ISD::CTLZ_ZERO_UNDEF,
 | |
|     ISD::CTTZ_ZERO_UNDEF,
 | |
|     // Floating point arithmetic/math functions:
 | |
|     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
 | |
|     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
 | |
|     ISD::FCOS,    ISD::FPOWI,   ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
 | |
|     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
 | |
|     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
 | |
|     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
 | |
|     // Misc:
 | |
|     ISD::SELECT,  ISD::ConstantPool,
 | |
|     // Vector:
 | |
|     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
 | |
|     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
 | |
|     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
 | |
|     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
 | |
|   };
 | |
| 
 | |
|   for (MVT VT : MVT::vector_valuetypes()) {
 | |
|     for (unsigned VectExpOp : VectExpOps)
 | |
|       setOperationAction(VectExpOp, VT, Expand);
 | |
| 
 | |
|     // Expand all extended loads and truncating stores:
 | |
|     for (MVT TargetVT : MVT::vector_valuetypes()) {
 | |
|       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
 | |
|       setTruncStoreAction(VT, TargetVT, Expand);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::SRA, VT, Custom);
 | |
|     setOperationAction(ISD::SHL, VT, Custom);
 | |
|     setOperationAction(ISD::SRL, VT, Custom);
 | |
|   }
 | |
| 
 | |
|   // Types natively supported:
 | |
|   for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1,
 | |
|                        MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32,
 | |
|                        MVT::v2i32, MVT::v1i64}) {
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
 | |
|     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::ADD, NativeVT, Legal);
 | |
|     setOperationAction(ISD::SUB, NativeVT, Legal);
 | |
|     setOperationAction(ISD::MUL, NativeVT, Legal);
 | |
|     setOperationAction(ISD::AND, NativeVT, Legal);
 | |
|     setOperationAction(ISD::OR,  NativeVT, Legal);
 | |
|     setOperationAction(ISD::XOR, NativeVT, Legal);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
 | |
|   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
 | |
| 
 | |
|   // Subtarget-specific operation actions.
 | |
|   //
 | |
|   if (Subtarget.hasV5TOps()) {
 | |
|     setOperationAction(ISD::FMA,  MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FADD, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSUB, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FMUL, MVT::f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
 | |
| 
 | |
|   } else { // V4
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FP_ROUND,   MVT::f64, Expand);
 | |
|     setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
 | |
| 
 | |
|     setOperationAction(ISD::CTPOP, MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::CTPOP, MVT::i16, Expand);
 | |
|     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
 | |
| 
 | |
|     // Expand these operations for both f32 and f64:
 | |
|     for (unsigned FPExpOpV4 :
 | |
|          {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
 | |
|       setOperationAction(FPExpOpV4, MVT::f32, Expand);
 | |
|       setOperationAction(FPExpOpV4, MVT::f64, Expand);
 | |
|     }
 | |
| 
 | |
|     for (ISD::CondCode FPExpCCV4 :
 | |
|          {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
 | |
|           ISD::SETUO, ISD::SETO}) {
 | |
|       setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
 | |
|       setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handling of indexed loads/stores: default is "expand".
 | |
|   //
 | |
|   for (MVT LSXTy : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
 | |
|     setIndexedLoadAction(ISD::POST_INC, LSXTy, Legal);
 | |
|     setIndexedStoreAction(ISD::POST_INC, LSXTy, Legal);
 | |
|   }
 | |
| 
 | |
|   computeRegisterProperties(&HRI);
 | |
| 
 | |
|   //
 | |
|   // Library calls for unsupported operations
 | |
|   //
 | |
|   bool FastMath  = EnableFastMath;
 | |
| 
 | |
|   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
 | |
|   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
 | |
|   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
 | |
|   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
 | |
|   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
 | |
|   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
 | |
|   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
 | |
|   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
 | |
| 
 | |
|   setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
 | |
|   setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
 | |
|   setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
 | |
|   setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
 | |
|   setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
 | |
|   setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
 | |
| 
 | |
|   if (IsV4) {
 | |
|     // Handle single-precision floating point operations on V4.
 | |
|     if (FastMath) {
 | |
|       setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
 | |
|       setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
 | |
|       setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
 | |
|       setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
 | |
|       setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
 | |
|       // Double-precision compares.
 | |
|       setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
 | |
|       setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
 | |
|     } else {
 | |
|       setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
 | |
|       setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
 | |
|       setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
 | |
|       setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
 | |
|       setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
 | |
|       // Double-precision compares.
 | |
|       setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
 | |
|       setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is the only fast library function for sqrtd.
 | |
|   if (FastMath)
 | |
|     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
 | |
| 
 | |
|   // Prefix is: nothing  for "slow-math",
 | |
|   //            "fast2_" for V4 fast-math and V5+ fast-math double-precision
 | |
|   // (actually, keep fast-math and fast-math2 separate for now)
 | |
|   if (FastMath) {
 | |
|     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
 | |
|     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
 | |
|     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
 | |
|     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
 | |
|     // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
 | |
|     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
 | |
|   } else {
 | |
|     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
 | |
|     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
 | |
|     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
 | |
|     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
 | |
|     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasV5TOps()) {
 | |
|     if (FastMath)
 | |
|       setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
 | |
|     else
 | |
|       setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
 | |
|   } else {
 | |
|     // V4
 | |
|     setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
 | |
|     setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
 | |
|     setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
 | |
|     setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
 | |
|     setLibcallName(RTLIB::FPEXT_F32_F64,    "__hexagon_extendsfdf2");
 | |
|     setLibcallName(RTLIB::FPROUND_F64_F32,  "__hexagon_truncdfsf2");
 | |
|     setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
 | |
|     setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
 | |
|     setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
 | |
|     setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
 | |
|     setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
 | |
|     setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
 | |
|     setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
 | |
|     setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
 | |
|     setLibcallName(RTLIB::UO_F32,  "__hexagon_unordsf2");
 | |
|     setLibcallName(RTLIB::UO_F64,  "__hexagon_unorddf2");
 | |
|     setLibcallName(RTLIB::O_F32,   "__hexagon_unordsf2");
 | |
|     setLibcallName(RTLIB::O_F64,   "__hexagon_unorddf2");
 | |
|   }
 | |
| 
 | |
|   // These cause problems when the shift amount is non-constant.
 | |
|   setLibcallName(RTLIB::SHL_I128, nullptr);
 | |
|   setLibcallName(RTLIB::SRL_I128, nullptr);
 | |
|   setLibcallName(RTLIB::SRA_I128, nullptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch ((HexagonISD::NodeType)Opcode) {
 | |
|   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
 | |
|   case HexagonISD::ARGEXTEND:     return "HexagonISD::ARGEXTEND";
 | |
|   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
 | |
|   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
 | |
|   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
 | |
|   case HexagonISD::BR_JT:         return "HexagonISD::BR_JT";
 | |
|   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
 | |
|   case HexagonISD::CALLv3nr:      return "HexagonISD::CALLv3nr";
 | |
|   case HexagonISD::CALLv3:        return "HexagonISD::CALLv3";
 | |
|   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
 | |
|   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
 | |
|   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
 | |
|   case HexagonISD::CP:            return "HexagonISD::CP";
 | |
|   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
 | |
|   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
 | |
|   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
 | |
|   case HexagonISD::EXTRACTURP:    return "HexagonISD::EXTRACTURP";
 | |
|   case HexagonISD::FCONST32:      return "HexagonISD::FCONST32";
 | |
|   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
 | |
|   case HexagonISD::INSERTRP:      return "HexagonISD::INSERTRP";
 | |
|   case HexagonISD::JT:            return "HexagonISD::JT";
 | |
|   case HexagonISD::PACKHL:        return "HexagonISD::PACKHL";
 | |
|   case HexagonISD::PIC_ADD:       return "HexagonISD::PIC_ADD";
 | |
|   case HexagonISD::POPCOUNT:      return "HexagonISD::POPCOUNT";
 | |
|   case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
 | |
|   case HexagonISD::SHUFFEB:       return "HexagonISD::SHUFFEB";
 | |
|   case HexagonISD::SHUFFEH:       return "HexagonISD::SHUFFEH";
 | |
|   case HexagonISD::SHUFFOB:       return "HexagonISD::SHUFFOB";
 | |
|   case HexagonISD::SHUFFOH:       return "HexagonISD::SHUFFOH";
 | |
|   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
 | |
|   case HexagonISD::VCMPBEQ:       return "HexagonISD::VCMPBEQ";
 | |
|   case HexagonISD::VCMPBGT:       return "HexagonISD::VCMPBGT";
 | |
|   case HexagonISD::VCMPBGTU:      return "HexagonISD::VCMPBGTU";
 | |
|   case HexagonISD::VCMPHEQ:       return "HexagonISD::VCMPHEQ";
 | |
|   case HexagonISD::VCMPHGT:       return "HexagonISD::VCMPHGT";
 | |
|   case HexagonISD::VCMPHGTU:      return "HexagonISD::VCMPHGTU";
 | |
|   case HexagonISD::VCMPWEQ:       return "HexagonISD::VCMPWEQ";
 | |
|   case HexagonISD::VCMPWGT:       return "HexagonISD::VCMPWGT";
 | |
|   case HexagonISD::VCMPWGTU:      return "HexagonISD::VCMPWGTU";
 | |
|   case HexagonISD::VSHLH:         return "HexagonISD::VSHLH";
 | |
|   case HexagonISD::VSHLW:         return "HexagonISD::VSHLW";
 | |
|   case HexagonISD::VSPLATB:       return "HexagonISD::VSPLTB";
 | |
|   case HexagonISD::VSPLATH:       return "HexagonISD::VSPLATH";
 | |
|   case HexagonISD::VSRAH:         return "HexagonISD::VSRAH";
 | |
|   case HexagonISD::VSRAW:         return "HexagonISD::VSRAW";
 | |
|   case HexagonISD::VSRLH:         return "HexagonISD::VSRLH";
 | |
|   case HexagonISD::VSRLW:         return "HexagonISD::VSRLW";
 | |
|   case HexagonISD::VSXTBH:        return "HexagonISD::VSXTBH";
 | |
|   case HexagonISD::VSXTBW:        return "HexagonISD::VSXTBW";
 | |
|   case HexagonISD::OP_END:        break;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|   EVT MTy1 = EVT::getEVT(Ty1);
 | |
|   EVT MTy2 = EVT::getEVT(Ty2);
 | |
|   if (!MTy1.isSimple() || !MTy2.isSimple())
 | |
|     return false;
 | |
|   return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32);
 | |
| }
 | |
| 
 | |
| bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|   if (!VT1.isSimple() || !VT2.isSimple())
 | |
|     return false;
 | |
|   return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32);
 | |
| }
 | |
| 
 | |
| // shouldExpandBuildVectorWithShuffles
 | |
| // Should we expand the build vector with shuffles?
 | |
| bool
 | |
| HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
 | |
|                                   unsigned DefinedValues) const {
 | |
| 
 | |
|   // Hexagon vector shuffle operates on element sizes of bytes or halfwords
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   int EltBits = EltVT.getSizeInBits();
 | |
|   if ((EltBits != 8) && (EltBits != 16))
 | |
|     return false;
 | |
| 
 | |
|   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
 | |
| }
 | |
| 
 | |
| // LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3).  V1 and
 | |
| // V2 are the two vectors to select data from, V3 is the permutation.
 | |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
 | |
|   const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   if (V2.getOpcode() == ISD::UNDEF)
 | |
|     V2 = V1;
 | |
| 
 | |
|   if (SVN->isSplat()) {
 | |
|     int Lane = SVN->getSplatIndex();
 | |
|     if (Lane == -1) Lane = 0;
 | |
| 
 | |
|     // Test if V1 is a SCALAR_TO_VECTOR.
 | |
|     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|       return createSplat(DAG, dl, VT, V1.getOperand(0));
 | |
| 
 | |
|     // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
 | |
|     // (and probably will turn into a SCALAR_TO_VECTOR once legalization
 | |
|     // reaches it).
 | |
|     if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         !isa<ConstantSDNode>(V1.getOperand(0))) {
 | |
|       bool IsScalarToVector = true;
 | |
|       for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
 | |
|         if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
 | |
|           IsScalarToVector = false;
 | |
|           break;
 | |
|         }
 | |
|       if (IsScalarToVector)
 | |
|         return createSplat(DAG, dl, VT, V1.getOperand(0));
 | |
|     }
 | |
|     return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   // FIXME: We need to support more general vector shuffles.  See
 | |
|   // below the comment from the ARM backend that deals in the general
 | |
|   // case with the vector shuffles.  For now, let expand handle these.
 | |
|   return SDValue();
 | |
| 
 | |
|   // If the shuffle is not directly supported and it has 4 elements, use
 | |
|   // the PerfectShuffle-generated table to synthesize it from other shuffles.
 | |
| }
 | |
| 
 | |
| // If BUILD_VECTOR has same base element repeated several times,
 | |
| // report true.
 | |
| static bool isCommonSplatElement(BuildVectorSDNode *BVN) {
 | |
|   unsigned NElts = BVN->getNumOperands();
 | |
|   SDValue V0 = BVN->getOperand(0);
 | |
| 
 | |
|   for (unsigned i = 1, e = NElts; i != e; ++i) {
 | |
|     if (BVN->getOperand(i) != V0)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // LowerVECTOR_SHIFT - Lower a vector shift. Try to convert
 | |
| // <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific
 | |
| // <VT> = SHL/SRA/SRL <VT> by <IT/i32>.
 | |
| static SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) {
 | |
|   BuildVectorSDNode *BVN = 0;
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   SDValue V3;
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) &&
 | |
|       isCommonSplatElement(BVN))
 | |
|     V3 = V2;
 | |
|   else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) &&
 | |
|            isCommonSplatElement(BVN))
 | |
|     V3 = V1;
 | |
|   else
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue CommonSplat = BVN->getOperand(0);
 | |
|   SDValue Result;
 | |
| 
 | |
|   if (VT.getSimpleVT() == MVT::v4i16) {
 | |
|     switch (Op.getOpcode()) {
 | |
|     case ISD::SRA:
 | |
|       Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat);
 | |
|       break;
 | |
|     case ISD::SHL:
 | |
|       Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat);
 | |
|       break;
 | |
|     case ISD::SRL:
 | |
|       Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat);
 | |
|       break;
 | |
|     default:
 | |
|       return SDValue();
 | |
|     }
 | |
|   } else if (VT.getSimpleVT() == MVT::v2i32) {
 | |
|     switch (Op.getOpcode()) {
 | |
|     case ISD::SRA:
 | |
|       Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat);
 | |
|       break;
 | |
|     case ISD::SHL:
 | |
|       Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat);
 | |
|       break;
 | |
|     case ISD::SRL:
 | |
|       Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat);
 | |
|       break;
 | |
|     default:
 | |
|       return SDValue();
 | |
|     }
 | |
|   } else {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, Result);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   unsigned Size = VT.getSizeInBits();
 | |
| 
 | |
|   // A vector larger than 64 bits cannot be represented in Hexagon.
 | |
|   // Expand will split the vector.
 | |
|   if (Size > 64)
 | |
|     return SDValue();
 | |
| 
 | |
|   APInt APSplatBits, APSplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   unsigned NElts = BVN->getNumOperands();
 | |
| 
 | |
|   // Try to generate a SPLAT instruction.
 | |
|   if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) &&
 | |
|       (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | |
|                             HasAnyUndefs, 0, true) && SplatBitSize <= 16)) {
 | |
|     unsigned SplatBits = APSplatBits.getZExtValue();
 | |
|     int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >>
 | |
|                        (32 - SplatBitSize));
 | |
|     return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   // Try to generate COMBINE to build v2i32 vectors.
 | |
|   if (VT.getSimpleVT() == MVT::v2i32) {
 | |
|     SDValue V0 = BVN->getOperand(0);
 | |
|     SDValue V1 = BVN->getOperand(1);
 | |
| 
 | |
|     if (V0.getOpcode() == ISD::UNDEF)
 | |
|       V0 = DAG.getConstant(0, dl, MVT::i32);
 | |
|     if (V1.getOpcode() == ISD::UNDEF)
 | |
|       V1 = DAG.getConstant(0, dl, MVT::i32);
 | |
| 
 | |
|     ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0);
 | |
|     ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1);
 | |
|     // If the element isn't a constant, it is in a register:
 | |
|     // generate a COMBINE Register Register instruction.
 | |
|     if (!C0 || !C1)
 | |
|       return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
 | |
| 
 | |
|     // If one of the operands is an 8 bit integer constant, generate
 | |
|     // a COMBINE Immediate Immediate instruction.
 | |
|     if (isInt<8>(C0->getSExtValue()) ||
 | |
|         isInt<8>(C1->getSExtValue()))
 | |
|       return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
 | |
|   }
 | |
| 
 | |
|   // Try to generate a S2_packhl to build v2i16 vectors.
 | |
|   if (VT.getSimpleVT() == MVT::v2i16) {
 | |
|     for (unsigned i = 0, e = NElts; i != e; ++i) {
 | |
|       if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|         continue;
 | |
|       ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i));
 | |
|       // If the element isn't a constant, it is in a register:
 | |
|       // generate a S2_packhl instruction.
 | |
|       if (!Cst) {
 | |
|         SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16,
 | |
|                                    BVN->getOperand(1), BVN->getOperand(0));
 | |
| 
 | |
|         return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16,
 | |
|                                           pack);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In the general case, generate a CONST32 or a CONST64 for constant vectors,
 | |
|   // and insert_vector_elt for all the other cases.
 | |
|   uint64_t Res = 0;
 | |
|   unsigned EltSize = Size / NElts;
 | |
|   SDValue ConstVal;
 | |
|   uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize);
 | |
|   bool HasNonConstantElements = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = NElts; i != e; ++i) {
 | |
|     // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's
 | |
|     // combine, const64, etc. are Big Endian.
 | |
|     unsigned OpIdx = NElts - i - 1;
 | |
|     SDValue Operand = BVN->getOperand(OpIdx);
 | |
|     if (Operand.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
| 
 | |
|     int64_t Val = 0;
 | |
|     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand))
 | |
|       Val = Cst->getSExtValue();
 | |
|     else
 | |
|       HasNonConstantElements = true;
 | |
| 
 | |
|     Val &= Mask;
 | |
|     Res = (Res << EltSize) | Val;
 | |
|   }
 | |
| 
 | |
|   if (Size == 64)
 | |
|     ConstVal = DAG.getConstant(Res, dl, MVT::i64);
 | |
|   else
 | |
|     ConstVal = DAG.getConstant(Res, dl, MVT::i32);
 | |
| 
 | |
|   // When there are non constant operands, add them with INSERT_VECTOR_ELT to
 | |
|   // ConstVal, the constant part of the vector.
 | |
|   if (HasNonConstantElements) {
 | |
|     EVT EltVT = VT.getVectorElementType();
 | |
|     SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64);
 | |
|     SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
 | |
|                                   DAG.getConstant(32, dl, MVT::i64));
 | |
| 
 | |
|     for (unsigned i = 0, e = NElts; i != e; ++i) {
 | |
|       // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon
 | |
|       // is Big Endian.
 | |
|       unsigned OpIdx = NElts - i - 1;
 | |
|       SDValue Operand = BVN->getOperand(OpIdx);
 | |
|       if (isa<ConstantSDNode>(Operand))
 | |
|         // This operand is already in ConstVal.
 | |
|         continue;
 | |
| 
 | |
|       if (VT.getSizeInBits() == 64 &&
 | |
|           Operand.getValueType().getSizeInBits() == 32) {
 | |
|         SDValue C = DAG.getConstant(0, dl, MVT::i32);
 | |
|         Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand);
 | |
|       }
 | |
| 
 | |
|       SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64);
 | |
|       SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width);
 | |
|       SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
 | |
|       const SDValue Ops[] = {ConstVal, Operand, Combined};
 | |
| 
 | |
|       if (VT.getSizeInBits() == 32)
 | |
|         ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
 | |
|       else
 | |
|         ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned NElts = Op.getNumOperands();
 | |
|   SDValue Vec = Op.getOperand(0);
 | |
|   EVT VecVT = Vec.getValueType();
 | |
|   SDValue Width = DAG.getConstant(VecVT.getSizeInBits(), dl, MVT::i64);
 | |
|   SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
 | |
|                                 DAG.getConstant(32, dl, MVT::i64));
 | |
|   SDValue ConstVal = DAG.getConstant(0, dl, MVT::i64);
 | |
| 
 | |
|   ConstantSDNode *W = dyn_cast<ConstantSDNode>(Width);
 | |
|   ConstantSDNode *S = dyn_cast<ConstantSDNode>(Shifted);
 | |
| 
 | |
|   if ((VecVT.getSimpleVT() == MVT::v2i16) && (NElts == 2) && W && S) {
 | |
|     if ((W->getZExtValue() == 32) && ((S->getZExtValue() >> 32) == 32)) {
 | |
|       // We are trying to concat two v2i16 to a single v4i16.
 | |
|       SDValue Vec0 = Op.getOperand(1);
 | |
|       SDValue Combined  = DAG.getNode(HexagonISD::COMBINE, dl, VT, Vec0, Vec);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, VT, Combined);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if ((VecVT.getSimpleVT() == MVT::v4i8) && (NElts == 2) && W && S) {
 | |
|     if ((W->getZExtValue() == 32) && ((S->getZExtValue() >> 32) == 32)) {
 | |
|       // We are trying to concat two v4i8 to a single v8i8.
 | |
|       SDValue Vec0 = Op.getOperand(1);
 | |
|       SDValue Combined  = DAG.getNode(HexagonISD::COMBINE, dl, VT, Vec0, Vec);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, VT, Combined);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = NElts; i != e; ++i) {
 | |
|     unsigned OpIdx = NElts - i - 1;
 | |
|     SDValue Operand = Op.getOperand(OpIdx);
 | |
| 
 | |
|     if (VT.getSizeInBits() == 64 &&
 | |
|         Operand.getValueType().getSizeInBits() == 32) {
 | |
|       SDValue C = DAG.getConstant(0, dl, MVT::i32);
 | |
|       Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand);
 | |
|     }
 | |
| 
 | |
|     SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64);
 | |
|     SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width);
 | |
|     SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
 | |
|     const SDValue Ops[] = {ConstVal, Operand, Combined};
 | |
| 
 | |
|     if (VT.getSizeInBits() == 32)
 | |
|       ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
 | |
|     else
 | |
|       ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Idx = Op.getOperand(1);
 | |
|   SDValue Vec = Op.getOperand(0);
 | |
|   EVT VecVT = Vec.getValueType();
 | |
|   EVT EltVT = VecVT.getVectorElementType();
 | |
|   int EltSize = EltVT.getSizeInBits();
 | |
|   SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ?
 | |
|                                   EltSize : VTN * EltSize, dl, MVT::i64);
 | |
| 
 | |
|   // Constant element number.
 | |
|   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) {
 | |
|     uint64_t X = CI->getZExtValue();
 | |
|     SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32);
 | |
|     const SDValue Ops[] = {Vec, Width, Offset};
 | |
| 
 | |
|     ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width);
 | |
|     assert(CW && "Non constant width in LowerEXTRACT_VECTOR");
 | |
| 
 | |
|     SDValue N;
 | |
|     MVT SVT = VecVT.getSimpleVT();
 | |
|     uint64_t W = CW->getZExtValue();
 | |
| 
 | |
|     if (W == 32) {
 | |
|       // Translate this node into EXTRACT_SUBREG.
 | |
|       unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0;
 | |
| 
 | |
|       if (X == 0)
 | |
|         Subreg = Hexagon::subreg_loreg;
 | |
|       else if (SVT == MVT::v2i32 && X == 1)
 | |
|         Subreg = Hexagon::subreg_hireg;
 | |
|       else if (SVT == MVT::v4i16 && X == 2)
 | |
|         Subreg = Hexagon::subreg_hireg;
 | |
|       else if (SVT == MVT::v8i8 && X == 4)
 | |
|         Subreg = Hexagon::subreg_hireg;
 | |
|       else
 | |
|         llvm_unreachable("Bad offset");
 | |
|       N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec);
 | |
| 
 | |
|     } else if (VecVT.getSizeInBits() == 32) {
 | |
|       N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops);
 | |
|     } else {
 | |
|       N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops);
 | |
|       if (VT.getSizeInBits() == 32)
 | |
|         N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::BITCAST, dl, VT, N);
 | |
|   }
 | |
| 
 | |
|   // Variable element number.
 | |
|   SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
 | |
|                                DAG.getConstant(EltSize, dl, MVT::i32));
 | |
|   SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
 | |
|                                 DAG.getConstant(32, dl, MVT::i64));
 | |
|   SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
 | |
| 
 | |
|   const SDValue Ops[] = {Vec, Combined};
 | |
| 
 | |
|   SDValue N;
 | |
|   if (VecVT.getSizeInBits() == 32) {
 | |
|     N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops);
 | |
|   } else {
 | |
|     N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops);
 | |
|     if (VT.getSizeInBits() == 32)
 | |
|       N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
 | |
|   }
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, N);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
 | |
|   SDLoc dl(Op);
 | |
|   SDValue Vec = Op.getOperand(0);
 | |
|   SDValue Val = Op.getOperand(1);
 | |
|   SDValue Idx = Op.getOperand(2);
 | |
|   EVT VecVT = Vec.getValueType();
 | |
|   EVT EltVT = VecVT.getVectorElementType();
 | |
|   int EltSize = EltVT.getSizeInBits();
 | |
|   SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ?
 | |
|                                   EltSize : VTN * EltSize, dl, MVT::i64);
 | |
| 
 | |
|   if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) {
 | |
|     SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32);
 | |
|     const SDValue Ops[] = {Vec, Val, Width, Offset};
 | |
| 
 | |
|     SDValue N;
 | |
|     if (VT.getSizeInBits() == 32)
 | |
|       N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops);
 | |
|     else
 | |
|       N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops);
 | |
| 
 | |
|     return DAG.getNode(ISD::BITCAST, dl, VT, N);
 | |
|   }
 | |
| 
 | |
|   // Variable element number.
 | |
|   SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
 | |
|                                DAG.getConstant(EltSize, dl, MVT::i32));
 | |
|   SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
 | |
|                                 DAG.getConstant(32, dl, MVT::i64));
 | |
|   SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
 | |
| 
 | |
|   if (VT.getSizeInBits() == 64 &&
 | |
|       Val.getValueType().getSizeInBits() == 32) {
 | |
|     SDValue C = DAG.getConstant(0, dl, MVT::i32);
 | |
|     Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val);
 | |
|   }
 | |
| 
 | |
|   const SDValue Ops[] = {Vec, Val, Combined};
 | |
| 
 | |
|   SDValue N;
 | |
|   if (VT.getSizeInBits() == 32)
 | |
|     N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
 | |
|   else
 | |
|     N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
 | |
| 
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, N);
 | |
| }
 | |
| 
 | |
| bool
 | |
| HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
 | |
|   // Assuming the caller does not have either a signext or zeroext modifier, and
 | |
|   // only one value is accepted, any reasonable truncation is allowed.
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: in principle up to 64-bit could be made safe, but it would be very
 | |
|   // fragile at the moment: any support for multiple value returns would be
 | |
|   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
 | |
|   return Ty1->getPrimitiveSizeInBits() <= 32;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain     = Op.getOperand(0);
 | |
|   SDValue Offset    = Op.getOperand(1);
 | |
|   SDValue Handler   = Op.getOperand(2);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Mark function as containing a call to EH_RETURN.
 | |
|   HexagonMachineFunctionInfo *FuncInfo =
 | |
|     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
 | |
|   FuncInfo->setHasEHReturn();
 | |
| 
 | |
|   unsigned OffsetReg = Hexagon::R28;
 | |
| 
 | |
|   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                                   DAG.getRegister(Hexagon::R30, getPointerTy()),
 | |
|                                   DAG.getIntPtrConstant(4, dl));
 | |
|   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
 | |
|                        false, false, 0);
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
 | |
| 
 | |
|   // Not needed we already use it as explict input to EH_RETURN.
 | |
|   // MF.getRegInfo().addLiveOut(OffsetReg);
 | |
| 
 | |
|   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   unsigned Opc = Op.getOpcode();
 | |
|   switch (Opc) {
 | |
|     default:
 | |
| #ifndef NDEBUG
 | |
|       Op.getNode()->dumpr(&DAG);
 | |
|       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
 | |
|         errs() << "Check for a non-legal type in this operation\n";
 | |
| #endif
 | |
|       llvm_unreachable("Should not custom lower this!");
 | |
|     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
 | |
|     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_VECTOR(Op, DAG);
 | |
|     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR(Op, DAG);
 | |
|     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_VECTOR(Op, DAG);
 | |
|     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR(Op, DAG);
 | |
|     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
 | |
|     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|     case ISD::SRA:
 | |
|     case ISD::SHL:
 | |
|     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
 | |
|     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
 | |
|     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
 | |
|       // Frame & Return address. Currently unimplemented.
 | |
|     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
 | |
|     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
 | |
|     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
 | |
|     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
 | |
|     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
 | |
|     case ISD::VASTART:              return LowerVASTART(Op, DAG);
 | |
|     case ISD::BR_JT:                return LowerBR_JT(Op, DAG);
 | |
|     // Custom lower some vector loads.
 | |
|     case ISD::LOAD:                 return LowerLOAD(Op, DAG);
 | |
|     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|     case ISD::SETCC:                return LowerSETCC(Op, DAG);
 | |
|     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
 | |
|     case ISD::CTPOP:                return LowerCTPOP(Op, DAG);
 | |
|     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|     case ISD::INLINEASM:            return LowerINLINEASM(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                    MachineBasicBlock *BB)
 | |
|       const {
 | |
|   switch (MI->getOpcode()) {
 | |
|     case Hexagon::ALLOCA: {
 | |
|       MachineFunction *MF = BB->getParent();
 | |
|       auto *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>();
 | |
|       FuncInfo->addAllocaAdjustInst(MI);
 | |
|       return BB;
 | |
|     }
 | |
|     default: llvm_unreachable("Unexpected instr type to insert");
 | |
|   } // switch
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| HexagonTargetLowering::getRegForInlineAsmConstraint(
 | |
|     const TargetRegisterInfo *TRI, const std::string &Constraint,
 | |
|     MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'r':   // R0-R31
 | |
|        switch (VT.SimpleTy) {
 | |
|        default:
 | |
|          llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
 | |
|        case MVT::i32:
 | |
|        case MVT::i16:
 | |
|        case MVT::i8:
 | |
|        case MVT::f32:
 | |
|          return std::make_pair(0U, &Hexagon::IntRegsRegClass);
 | |
|        case MVT::i64:
 | |
|        case MVT::f64:
 | |
|          return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
 | |
|       }
 | |
|     default:
 | |
|       llvm_unreachable("Unknown asm register class");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | |
| }
 | |
| 
 | |
| /// isFPImmLegal - Returns true if the target can instruction select the
 | |
| /// specified FP immediate natively. If false, the legalizer will
 | |
| /// materialize the FP immediate as a load from a constant pool.
 | |
| bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   return Subtarget.hasV5TOps();
 | |
| }
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented by
 | |
| /// AM is legal for this target, for a load/store of the specified type.
 | |
| bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                                   Type *Ty,
 | |
|                                                   unsigned AS) const {
 | |
|   // Allows a signed-extended 11-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1)
 | |
|     return false;
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   int Scale = AM.Scale;
 | |
|   if (Scale < 0) Scale = -Scale;
 | |
|   switch (Scale) {
 | |
|   case 0:  // No scale reg, "r+i", "r", or just "i".
 | |
|     break;
 | |
|   default: // No scaled addressing mode.
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal
 | |
| /// icmp immediate, that is the target has icmp instructions which can compare
 | |
| /// a register against the immediate without having to materialize the
 | |
| /// immediate into a register.
 | |
| bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   return Imm >= -512 && Imm <= 511;
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
 | |
|                                  SDValue Callee,
 | |
|                                  CallingConv::ID CalleeCC,
 | |
|                                  bool isVarArg,
 | |
|                                  bool isCalleeStructRet,
 | |
|                                  bool isCallerStructRet,
 | |
|                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                  const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                  const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                  SelectionDAG& DAG) const {
 | |
|   const Function *CallerF = DAG.getMachineFunction().getFunction();
 | |
|   CallingConv::ID CallerCC = CallerF->getCallingConv();
 | |
|   bool CCMatch = CallerCC == CalleeCC;
 | |
| 
 | |
|   // ***************************************************************************
 | |
|   //  Look for obvious safe cases to perform tail call optimization that do not
 | |
|   //  require ABI changes.
 | |
|   // ***************************************************************************
 | |
| 
 | |
|   // If this is a tail call via a function pointer, then don't do it!
 | |
|   if (!(dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|       && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do not optimize if the calling conventions do not match.
 | |
|   if (!CCMatch)
 | |
|     return false;
 | |
| 
 | |
|   // Do not tail call optimize vararg calls.
 | |
|   if (isVarArg)
 | |
|     return false;
 | |
| 
 | |
|   // Also avoid tail call optimization if either caller or callee uses struct
 | |
|   // return semantics.
 | |
|   if (isCalleeStructRet || isCallerStructRet)
 | |
|     return false;
 | |
| 
 | |
|   // In addition to the cases above, we also disable Tail Call Optimization if
 | |
|   // the calling convention code that at least one outgoing argument needs to
 | |
|   // go on the stack. We cannot check that here because at this point that
 | |
|   // information is not available.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return true when the given node fits in a positive half word.
 | |
| bool llvm::isPositiveHalfWord(SDNode *N) {
 | |
|   ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | |
|   if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
 | |
|     return true;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     return true;
 | |
|   }
 | |
| }
 |