forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			340 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass that finds instructions that can be
 | |
| // re-written as LEA instructions in order to reduce pipeline delays.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-fixup-LEAs"
 | |
| 
 | |
| STATISTIC(NumLEAs, "Number of LEA instructions created");
 | |
| 
 | |
| namespace {
 | |
| class FixupLEAPass : public MachineFunctionPass {
 | |
|   enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
 | |
|   static char ID;
 | |
|   /// \brief Loop over all of the instructions in the basic block
 | |
|   /// replacing applicable instructions with LEA instructions,
 | |
|   /// where appropriate.
 | |
|   bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
 | |
| 
 | |
|   const char *getPassName() const override { return "X86 LEA Fixup"; }
 | |
| 
 | |
|   /// \brief Given a machine register, look for the instruction
 | |
|   /// which writes it in the current basic block. If found,
 | |
|   /// try to replace it with an equivalent LEA instruction.
 | |
|   /// If replacement succeeds, then also process the the newly created
 | |
|   /// instruction.
 | |
|   void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
 | |
|                     MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// \brief Given a memory access or LEA instruction
 | |
|   /// whose address mode uses a base and/or index register, look for
 | |
|   /// an opportunity to replace the instruction which sets the base or index
 | |
|   /// register with an equivalent LEA instruction.
 | |
|   void processInstruction(MachineBasicBlock::iterator &I,
 | |
|                           MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// \brief Given a LEA instruction which is unprofitable
 | |
|   /// on Silvermont try to replace it with an equivalent ADD instruction
 | |
|   void processInstructionForSLM(MachineBasicBlock::iterator &I,
 | |
|                                 MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// \brief Determine if an instruction references a machine register
 | |
|   /// and, if so, whether it reads or writes the register.
 | |
|   RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
 | |
| 
 | |
|   /// \brief Step backwards through a basic block, looking
 | |
|   /// for an instruction which writes a register within
 | |
|   /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
 | |
|   MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
 | |
|                                               MachineBasicBlock::iterator &I,
 | |
|                                               MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// \brief if an instruction can be converted to an
 | |
|   /// equivalent LEA, insert the new instruction into the basic block
 | |
|   /// and return a pointer to it. Otherwise, return zero.
 | |
|   MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
 | |
|                                    MachineBasicBlock::iterator &MBBI) const;
 | |
| 
 | |
| public:
 | |
|   FixupLEAPass() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|   /// \brief Loop over all of the basic blocks,
 | |
|   /// replacing instructions by equivalent LEA instructions
 | |
|   /// if needed and when possible.
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
| private:
 | |
|   MachineFunction *MF;
 | |
|   const X86InstrInfo *TII; // Machine instruction info.
 | |
| };
 | |
| char FixupLEAPass::ID = 0;
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
 | |
|                                  MachineBasicBlock::iterator &MBBI) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   MachineInstr *NewMI;
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::MOV32rr:
 | |
|   case X86::MOV64rr: {
 | |
|     const MachineOperand &Src = MI->getOperand(1);
 | |
|     const MachineOperand &Dest = MI->getOperand(0);
 | |
|     NewMI = BuildMI(*MF, MI->getDebugLoc(),
 | |
|                     TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
 | |
|                                                              : X86::LEA64r))
 | |
|                 .addOperand(Dest)
 | |
|                 .addOperand(Src)
 | |
|                 .addImm(1)
 | |
|                 .addReg(0)
 | |
|                 .addImm(0)
 | |
|                 .addReg(0);
 | |
|     MFI->insert(MBBI, NewMI); // Insert the new inst
 | |
|     return NewMI;
 | |
|   }
 | |
|   case X86::ADD64ri32:
 | |
|   case X86::ADD64ri8:
 | |
|   case X86::ADD64ri32_DB:
 | |
|   case X86::ADD64ri8_DB:
 | |
|   case X86::ADD32ri:
 | |
|   case X86::ADD32ri8:
 | |
|   case X86::ADD32ri_DB:
 | |
|   case X86::ADD32ri8_DB:
 | |
|   case X86::ADD16ri:
 | |
|   case X86::ADD16ri8:
 | |
|   case X86::ADD16ri_DB:
 | |
|   case X86::ADD16ri8_DB:
 | |
|     if (!MI->getOperand(2).isImm()) {
 | |
|       // convertToThreeAddress will call getImm()
 | |
|       // which requires isImm() to be true
 | |
|       return nullptr;
 | |
|     }
 | |
|     break;
 | |
|   case X86::ADD16rr:
 | |
|   case X86::ADD16rr_DB:
 | |
|     if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
 | |
|       // if src1 != src2, then convertToThreeAddress will
 | |
|       // need to create a Virtual register, which we cannot do
 | |
|       // after register allocation.
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
|   return TII->convertToThreeAddress(MFI, MBBI, nullptr);
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
 | |
| 
 | |
| bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
 | |
|   MF = &Func;
 | |
|   const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
 | |
|   if (!ST.LEAusesAG() && !ST.slowLEA())
 | |
|     return false;
 | |
| 
 | |
|   TII = ST.getInstrInfo();
 | |
| 
 | |
|   DEBUG(dbgs() << "Start X86FixupLEAs\n";);
 | |
|   // Process all basic blocks.
 | |
|   for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
 | |
|     processBasicBlock(Func, I);
 | |
|   DEBUG(dbgs() << "End X86FixupLEAs\n";);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FixupLEAPass::RegUsageState
 | |
| FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
 | |
|   RegUsageState RegUsage = RU_NotUsed;
 | |
|   MachineInstr *MI = I;
 | |
| 
 | |
|   for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
 | |
|     MachineOperand &opnd = MI->getOperand(i);
 | |
|     if (opnd.isReg() && opnd.getReg() == p.getReg()) {
 | |
|       if (opnd.isDef())
 | |
|         return RU_Write;
 | |
|       RegUsage = RU_Read;
 | |
|     }
 | |
|   }
 | |
|   return RegUsage;
 | |
| }
 | |
| 
 | |
| /// getPreviousInstr - Given a reference to an instruction in a basic
 | |
| /// block, return a reference to the previous instruction in the block,
 | |
| /// wrapping around to the last instruction of the block if the block
 | |
| /// branches to itself.
 | |
| static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
 | |
|                                     MachineFunction::iterator MFI) {
 | |
|   if (I == MFI->begin()) {
 | |
|     if (MFI->isPredecessor(MFI)) {
 | |
|       I = --MFI->end();
 | |
|       return true;
 | |
|     } else
 | |
|       return false;
 | |
|   }
 | |
|   --I;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator
 | |
| FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
 | |
|                               MachineFunction::iterator MFI) {
 | |
|   int InstrDistance = 1;
 | |
|   MachineBasicBlock::iterator CurInst;
 | |
|   static const int INSTR_DISTANCE_THRESHOLD = 5;
 | |
| 
 | |
|   CurInst = I;
 | |
|   bool Found;
 | |
|   Found = getPreviousInstr(CurInst, MFI);
 | |
|   while (Found && I != CurInst) {
 | |
|     if (CurInst->isCall() || CurInst->isInlineAsm())
 | |
|       break;
 | |
|     if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
 | |
|       break; // too far back to make a difference
 | |
|     if (usesRegister(p, CurInst) == RU_Write) {
 | |
|       return CurInst;
 | |
|     }
 | |
|     InstrDistance += TII->getInstrLatency(
 | |
|         MF->getSubtarget().getInstrItineraryData(), CurInst);
 | |
|     Found = getPreviousInstr(CurInst, MFI);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
 | |
|                                       MachineFunction::iterator MFI) {
 | |
|   // Process a load, store, or LEA instruction.
 | |
|   MachineInstr *MI = I;
 | |
|   int opcode = MI->getOpcode();
 | |
|   const MCInstrDesc &Desc = MI->getDesc();
 | |
|   int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
 | |
|   if (AddrOffset >= 0) {
 | |
|     AddrOffset += X86II::getOperandBias(Desc);
 | |
|     MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
 | |
|     if (p.isReg() && p.getReg() != X86::ESP) {
 | |
|       seekLEAFixup(p, I, MFI);
 | |
|     }
 | |
|     MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
 | |
|     if (q.isReg() && q.getReg() != X86::ESP) {
 | |
|       seekLEAFixup(q, I, MFI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::seekLEAFixup(MachineOperand &p,
 | |
|                                 MachineBasicBlock::iterator &I,
 | |
|                                 MachineFunction::iterator MFI) {
 | |
|   MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
 | |
|   if (MBI) {
 | |
|     MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
 | |
|     if (NewMI) {
 | |
|       ++NumLEAs;
 | |
|       DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
 | |
|       // now to replace with an equivalent LEA...
 | |
|       DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
 | |
|       MFI->erase(MBI);
 | |
|       MachineBasicBlock::iterator J =
 | |
|           static_cast<MachineBasicBlock::iterator>(NewMI);
 | |
|       processInstruction(J, MFI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
 | |
|                                             MachineFunction::iterator MFI) {
 | |
|   MachineInstr *MI = I;
 | |
|   const int opcode = MI->getOpcode();
 | |
|   if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
 | |
|       opcode != X86::LEA64_32r)
 | |
|     return;
 | |
|   if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
 | |
|       !TII->isSafeToClobberEFLAGS(*MFI, I))
 | |
|     return;
 | |
|   const unsigned DstR = MI->getOperand(0).getReg();
 | |
|   const unsigned SrcR1 = MI->getOperand(1).getReg();
 | |
|   const unsigned SrcR2 = MI->getOperand(3).getReg();
 | |
|   if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
 | |
|     return;
 | |
|   if (MI->getOperand(2).getImm() > 1)
 | |
|     return;
 | |
|   int addrr_opcode, addri_opcode;
 | |
|   switch (opcode) {
 | |
|   default: llvm_unreachable("Unexpected LEA instruction");
 | |
|   case X86::LEA16r:
 | |
|     addrr_opcode = X86::ADD16rr;
 | |
|     addri_opcode = X86::ADD16ri;
 | |
|     break;
 | |
|   case X86::LEA32r:
 | |
|     addrr_opcode = X86::ADD32rr;
 | |
|     addri_opcode = X86::ADD32ri;
 | |
|     break;
 | |
|   case X86::LEA64_32r:
 | |
|   case X86::LEA64r:
 | |
|     addrr_opcode = X86::ADD64rr;
 | |
|     addri_opcode = X86::ADD64ri32;
 | |
|     break;
 | |
|   }
 | |
|   DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
 | |
|   DEBUG(dbgs() << "FixLEA: Replaced by: ";);
 | |
|   MachineInstr *NewMI = nullptr;
 | |
|   const MachineOperand &Dst = MI->getOperand(0);
 | |
|   // Make ADD instruction for two registers writing to LEA's destination
 | |
|   if (SrcR1 != 0 && SrcR2 != 0) {
 | |
|     const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
 | |
|     const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
 | |
|     NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
 | |
|                 .addOperand(Dst)
 | |
|                 .addOperand(Src1)
 | |
|                 .addOperand(Src2);
 | |
|     MFI->insert(I, NewMI);
 | |
|     DEBUG(NewMI->dump(););
 | |
|   }
 | |
|   // Make ADD instruction for immediate
 | |
|   if (MI->getOperand(4).getImm() != 0) {
 | |
|     const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
 | |
|     NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
 | |
|                 .addOperand(Dst)
 | |
|                 .addOperand(SrcR)
 | |
|                 .addImm(MI->getOperand(4).getImm());
 | |
|     MFI->insert(I, NewMI);
 | |
|     DEBUG(NewMI->dump(););
 | |
|   }
 | |
|   if (NewMI) {
 | |
|     MFI->erase(I);
 | |
|     I = static_cast<MachineBasicBlock::iterator>(NewMI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
 | |
|                                      MachineFunction::iterator MFI) {
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
 | |
|     if (MF.getSubtarget<X86Subtarget>().isSLM())
 | |
|       processInstructionForSLM(I, MFI);
 | |
|     else
 | |
|       processInstruction(I, MFI);
 | |
|   }
 | |
|   return false;
 | |
| }
 |