forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1746 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1746 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineAddSub.cpp ----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for add, fadd, sub, and fsub.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   /// Class representing coefficient of floating-point addend.
 | |
|   /// This class needs to be highly efficient, which is especially true for
 | |
|   /// the constructor. As of I write this comment, the cost of the default
 | |
|   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
 | |
|   /// perform write-merging).
 | |
|   ///
 | |
|   class FAddendCoef {
 | |
|   public:
 | |
|     // The constructor has to initialize a APFloat, which is unnecessary for
 | |
|     // most addends which have coefficient either 1 or -1. So, the constructor
 | |
|     // is expensive. In order to avoid the cost of the constructor, we should
 | |
|     // reuse some instances whenever possible. The pre-created instances
 | |
|     // FAddCombine::Add[0-5] embodies this idea.
 | |
|     //
 | |
|     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
 | |
|     ~FAddendCoef();
 | |
| 
 | |
|     void set(short C) {
 | |
|       assert(!insaneIntVal(C) && "Insane coefficient");
 | |
|       IsFp = false; IntVal = C;
 | |
|     }
 | |
| 
 | |
|     void set(const APFloat& C);
 | |
| 
 | |
|     void negate();
 | |
| 
 | |
|     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
 | |
|     Value *getValue(Type *) const;
 | |
| 
 | |
|     // If possible, don't define operator+/operator- etc because these
 | |
|     // operators inevitably call FAddendCoef's constructor which is not cheap.
 | |
|     void operator=(const FAddendCoef &A);
 | |
|     void operator+=(const FAddendCoef &A);
 | |
|     void operator-=(const FAddendCoef &A);
 | |
|     void operator*=(const FAddendCoef &S);
 | |
| 
 | |
|     bool isOne() const { return isInt() && IntVal == 1; }
 | |
|     bool isTwo() const { return isInt() && IntVal == 2; }
 | |
|     bool isMinusOne() const { return isInt() && IntVal == -1; }
 | |
|     bool isMinusTwo() const { return isInt() && IntVal == -2; }
 | |
| 
 | |
|   private:
 | |
|     bool insaneIntVal(int V) { return V > 4 || V < -4; }
 | |
|     APFloat *getFpValPtr(void)
 | |
|       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
 | |
|     const APFloat *getFpValPtr(void) const
 | |
|       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
 | |
| 
 | |
|     const APFloat &getFpVal(void) const {
 | |
|       assert(IsFp && BufHasFpVal && "Incorret state");
 | |
|       return *getFpValPtr();
 | |
|     }
 | |
| 
 | |
|     APFloat &getFpVal(void) {
 | |
|       assert(IsFp && BufHasFpVal && "Incorret state");
 | |
|       return *getFpValPtr();
 | |
|     }
 | |
| 
 | |
|     bool isInt() const { return !IsFp; }
 | |
| 
 | |
|     // If the coefficient is represented by an integer, promote it to a
 | |
|     // floating point.
 | |
|     void convertToFpType(const fltSemantics &Sem);
 | |
| 
 | |
|     // Construct an APFloat from a signed integer.
 | |
|     // TODO: We should get rid of this function when APFloat can be constructed
 | |
|     //       from an *SIGNED* integer.
 | |
|     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
 | |
|   private:
 | |
| 
 | |
|     bool IsFp;
 | |
| 
 | |
|     // True iff FpValBuf contains an instance of APFloat.
 | |
|     bool BufHasFpVal;
 | |
| 
 | |
|     // The integer coefficient of an individual addend is either 1 or -1,
 | |
|     // and we try to simplify at most 4 addends from neighboring at most
 | |
|     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
 | |
|     // is overkill of this end.
 | |
|     short IntVal;
 | |
| 
 | |
|     AlignedCharArrayUnion<APFloat> FpValBuf;
 | |
|   };
 | |
| 
 | |
|   /// FAddend is used to represent floating-point addend. An addend is
 | |
|   /// represented as <C, V>, where the V is a symbolic value, and C is a
 | |
|   /// constant coefficient. A constant addend is represented as <C, 0>.
 | |
|   ///
 | |
|   class FAddend {
 | |
|   public:
 | |
|     FAddend() { Val = nullptr; }
 | |
| 
 | |
|     Value *getSymVal (void) const { return Val; }
 | |
|     const FAddendCoef &getCoef(void) const { return Coeff; }
 | |
| 
 | |
|     bool isConstant() const { return Val == nullptr; }
 | |
|     bool isZero() const { return Coeff.isZero(); }
 | |
| 
 | |
|     void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
 | |
|     void set(const APFloat& Coefficient, Value *V)
 | |
|       { Coeff.set(Coefficient); Val = V; }
 | |
|     void set(const ConstantFP* Coefficient, Value *V)
 | |
|       { Coeff.set(Coefficient->getValueAPF()); Val = V; }
 | |
| 
 | |
|     void negate() { Coeff.negate(); }
 | |
| 
 | |
|     /// Drill down the U-D chain one step to find the definition of V, and
 | |
|     /// try to break the definition into one or two addends.
 | |
|     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
 | |
| 
 | |
|     /// Similar to FAddend::drillDownOneStep() except that the value being
 | |
|     /// splitted is the addend itself.
 | |
|     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
 | |
| 
 | |
|     void operator+=(const FAddend &T) {
 | |
|       assert((Val == T.Val) && "Symbolic-values disagree");
 | |
|       Coeff += T.Coeff;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
 | |
| 
 | |
|     // This addend has the value of "Coeff * Val".
 | |
|     Value *Val;
 | |
|     FAddendCoef Coeff;
 | |
|   };
 | |
| 
 | |
|   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
 | |
|   /// with its neighboring at most two instructions.
 | |
|   ///
 | |
|   class FAddCombine {
 | |
|   public:
 | |
|     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
 | |
|     Value *simplify(Instruction *FAdd);
 | |
| 
 | |
|   private:
 | |
|     typedef SmallVector<const FAddend*, 4> AddendVect;
 | |
| 
 | |
|     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
 | |
| 
 | |
|     Value *performFactorization(Instruction *I);
 | |
| 
 | |
|     /// Convert given addend to a Value
 | |
|     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
 | |
| 
 | |
|     /// Return the number of instructions needed to emit the N-ary addition.
 | |
|     unsigned calcInstrNumber(const AddendVect& Vect);
 | |
|     Value *createFSub(Value *Opnd0, Value *Opnd1);
 | |
|     Value *createFAdd(Value *Opnd0, Value *Opnd1);
 | |
|     Value *createFMul(Value *Opnd0, Value *Opnd1);
 | |
|     Value *createFDiv(Value *Opnd0, Value *Opnd1);
 | |
|     Value *createFNeg(Value *V);
 | |
|     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
 | |
|     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
 | |
| 
 | |
|     InstCombiner::BuilderTy *Builder;
 | |
|     Instruction *Instr;
 | |
| 
 | |
|   private:
 | |
|      // Debugging stuff are clustered here.
 | |
|     #ifndef NDEBUG
 | |
|       unsigned CreateInstrNum;
 | |
|       void initCreateInstNum() { CreateInstrNum = 0; }
 | |
|       void incCreateInstNum() { CreateInstrNum++; }
 | |
|     #else
 | |
|       void initCreateInstNum() {}
 | |
|       void incCreateInstNum() {}
 | |
|     #endif
 | |
|   };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of
 | |
| //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| FAddendCoef::~FAddendCoef() {
 | |
|   if (BufHasFpVal)
 | |
|     getFpValPtr()->~APFloat();
 | |
| }
 | |
| 
 | |
| void FAddendCoef::set(const APFloat& C) {
 | |
|   APFloat *P = getFpValPtr();
 | |
| 
 | |
|   if (isInt()) {
 | |
|     // As the buffer is meanless byte stream, we cannot call
 | |
|     // APFloat::operator=().
 | |
|     new(P) APFloat(C);
 | |
|   } else
 | |
|     *P = C;
 | |
| 
 | |
|   IsFp = BufHasFpVal = true;
 | |
| }
 | |
| 
 | |
| void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
 | |
|   if (!isInt())
 | |
|     return;
 | |
| 
 | |
|   APFloat *P = getFpValPtr();
 | |
|   if (IntVal > 0)
 | |
|     new(P) APFloat(Sem, IntVal);
 | |
|   else {
 | |
|     new(P) APFloat(Sem, 0 - IntVal);
 | |
|     P->changeSign();
 | |
|   }
 | |
|   IsFp = BufHasFpVal = true;
 | |
| }
 | |
| 
 | |
| APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
 | |
|   if (Val >= 0)
 | |
|     return APFloat(Sem, Val);
 | |
| 
 | |
|   APFloat T(Sem, 0 - Val);
 | |
|   T.changeSign();
 | |
| 
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| void FAddendCoef::operator=(const FAddendCoef &That) {
 | |
|   if (That.isInt())
 | |
|     set(That.IntVal);
 | |
|   else
 | |
|     set(That.getFpVal());
 | |
| }
 | |
| 
 | |
| void FAddendCoef::operator+=(const FAddendCoef &That) {
 | |
|   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
 | |
|   if (isInt() == That.isInt()) {
 | |
|     if (isInt())
 | |
|       IntVal += That.IntVal;
 | |
|     else
 | |
|       getFpVal().add(That.getFpVal(), RndMode);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isInt()) {
 | |
|     const APFloat &T = That.getFpVal();
 | |
|     convertToFpType(T.getSemantics());
 | |
|     getFpVal().add(T, RndMode);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   APFloat &T = getFpVal();
 | |
|   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
 | |
| }
 | |
| 
 | |
| void FAddendCoef::operator-=(const FAddendCoef &That) {
 | |
|   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
 | |
|   if (isInt() == That.isInt()) {
 | |
|     if (isInt())
 | |
|       IntVal -= That.IntVal;
 | |
|     else
 | |
|       getFpVal().subtract(That.getFpVal(), RndMode);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isInt()) {
 | |
|     const APFloat &T = That.getFpVal();
 | |
|     convertToFpType(T.getSemantics());
 | |
|     getFpVal().subtract(T, RndMode);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   APFloat &T = getFpVal();
 | |
|   T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
 | |
| }
 | |
| 
 | |
| void FAddendCoef::operator*=(const FAddendCoef &That) {
 | |
|   if (That.isOne())
 | |
|     return;
 | |
| 
 | |
|   if (That.isMinusOne()) {
 | |
|     negate();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isInt() && That.isInt()) {
 | |
|     int Res = IntVal * (int)That.IntVal;
 | |
|     assert(!insaneIntVal(Res) && "Insane int value");
 | |
|     IntVal = Res;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const fltSemantics &Semantic =
 | |
|     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
 | |
| 
 | |
|   if (isInt())
 | |
|     convertToFpType(Semantic);
 | |
|   APFloat &F0 = getFpVal();
 | |
| 
 | |
|   if (That.isInt())
 | |
|     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
 | |
|                 APFloat::rmNearestTiesToEven);
 | |
|   else
 | |
|     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void FAddendCoef::negate() {
 | |
|   if (isInt())
 | |
|     IntVal = 0 - IntVal;
 | |
|   else
 | |
|     getFpVal().changeSign();
 | |
| }
 | |
| 
 | |
| Value *FAddendCoef::getValue(Type *Ty) const {
 | |
|   return isInt() ?
 | |
|     ConstantFP::get(Ty, float(IntVal)) :
 | |
|     ConstantFP::get(Ty->getContext(), getFpVal());
 | |
| }
 | |
| 
 | |
| // The definition of <Val>     Addends
 | |
| // =========================================
 | |
| //  A + B                     <1, A>, <1,B>
 | |
| //  A - B                     <1, A>, <1,B>
 | |
| //  0 - B                     <-1, B>
 | |
| //  C * A,                    <C, A>
 | |
| //  A + C                     <1, A> <C, NULL>
 | |
| //  0 +/- 0                   <0, NULL> (corner case)
 | |
| //
 | |
| // Legend: A and B are not constant, C is constant
 | |
| //
 | |
| unsigned FAddend::drillValueDownOneStep
 | |
|   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
 | |
|   Instruction *I = nullptr;
 | |
|   if (!Val || !(I = dyn_cast<Instruction>(Val)))
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Opcode = I->getOpcode();
 | |
| 
 | |
|   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
 | |
|     ConstantFP *C0, *C1;
 | |
|     Value *Opnd0 = I->getOperand(0);
 | |
|     Value *Opnd1 = I->getOperand(1);
 | |
|     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
 | |
|       Opnd0 = nullptr;
 | |
| 
 | |
|     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
 | |
|       Opnd1 = nullptr;
 | |
| 
 | |
|     if (Opnd0) {
 | |
|       if (!C0)
 | |
|         Addend0.set(1, Opnd0);
 | |
|       else
 | |
|         Addend0.set(C0, nullptr);
 | |
|     }
 | |
| 
 | |
|     if (Opnd1) {
 | |
|       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
 | |
|       if (!C1)
 | |
|         Addend.set(1, Opnd1);
 | |
|       else
 | |
|         Addend.set(C1, nullptr);
 | |
|       if (Opcode == Instruction::FSub)
 | |
|         Addend.negate();
 | |
|     }
 | |
| 
 | |
|     if (Opnd0 || Opnd1)
 | |
|       return Opnd0 && Opnd1 ? 2 : 1;
 | |
| 
 | |
|     // Both operands are zero. Weird!
 | |
|     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   if (I->getOpcode() == Instruction::FMul) {
 | |
|     Value *V0 = I->getOperand(0);
 | |
|     Value *V1 = I->getOperand(1);
 | |
|     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
 | |
|       Addend0.set(C, V1);
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
 | |
|       Addend0.set(C, V0);
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Try to break *this* addend into two addends. e.g. Suppose this addend is
 | |
| // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
 | |
| // i.e. <2.3, X> and <2.3, Y>.
 | |
| //
 | |
| unsigned FAddend::drillAddendDownOneStep
 | |
|   (FAddend &Addend0, FAddend &Addend1) const {
 | |
|   if (isConstant())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
 | |
|   if (!BreakNum || Coeff.isOne())
 | |
|     return BreakNum;
 | |
| 
 | |
|   Addend0.Scale(Coeff);
 | |
| 
 | |
|   if (BreakNum == 2)
 | |
|     Addend1.Scale(Coeff);
 | |
| 
 | |
|   return BreakNum;
 | |
| }
 | |
| 
 | |
| // Try to perform following optimization on the input instruction I. Return the
 | |
| // simplified expression if was successful; otherwise, return 0.
 | |
| //
 | |
| //   Instruction "I" is                Simplified into
 | |
| // -------------------------------------------------------
 | |
| //   (x * y) +/- (x * z)               x * (y +/- z)
 | |
| //   (y / x) +/- (z / x)               (y +/- z) / x
 | |
| //
 | |
| Value *FAddCombine::performFactorization(Instruction *I) {
 | |
|   assert((I->getOpcode() == Instruction::FAdd ||
 | |
|           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
 | |
| 
 | |
|   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
 | |
|   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
 | |
| 
 | |
|   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
 | |
|     return nullptr;
 | |
| 
 | |
|   bool isMpy = false;
 | |
|   if (I0->getOpcode() == Instruction::FMul)
 | |
|     isMpy = true;
 | |
|   else if (I0->getOpcode() != Instruction::FDiv)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Opnd0_0 = I0->getOperand(0);
 | |
|   Value *Opnd0_1 = I0->getOperand(1);
 | |
|   Value *Opnd1_0 = I1->getOperand(0);
 | |
|   Value *Opnd1_1 = I1->getOperand(1);
 | |
| 
 | |
|   //  Input Instr I       Factor   AddSub0  AddSub1
 | |
|   //  ----------------------------------------------
 | |
|   // (x*y) +/- (x*z)        x        y         z
 | |
|   // (y/x) +/- (z/x)        x        y         z
 | |
|   //
 | |
|   Value *Factor = nullptr;
 | |
|   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
 | |
| 
 | |
|   if (isMpy) {
 | |
|     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
 | |
|       Factor = Opnd0_0;
 | |
|     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
 | |
|       Factor = Opnd0_1;
 | |
| 
 | |
|     if (Factor) {
 | |
|       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
 | |
|       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
 | |
|     }
 | |
|   } else if (Opnd0_1 == Opnd1_1) {
 | |
|     Factor = Opnd0_1;
 | |
|     AddSub0 = Opnd0_0;
 | |
|     AddSub1 = Opnd1_0;
 | |
|   }
 | |
| 
 | |
|   if (!Factor)
 | |
|     return nullptr;
 | |
| 
 | |
|   FastMathFlags Flags;
 | |
|   Flags.setUnsafeAlgebra();
 | |
|   if (I0) Flags &= I->getFastMathFlags();
 | |
|   if (I1) Flags &= I->getFastMathFlags();
 | |
| 
 | |
|   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
 | |
|   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
 | |
|                       createFAdd(AddSub0, AddSub1) :
 | |
|                       createFSub(AddSub0, AddSub1);
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
 | |
|     const APFloat &F = CFP->getValueAPF();
 | |
|     if (!F.isNormal())
 | |
|       return nullptr;
 | |
|   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
 | |
|     II->setFastMathFlags(Flags);
 | |
| 
 | |
|   if (isMpy) {
 | |
|     Value *RI = createFMul(Factor, NewAddSub);
 | |
|     if (Instruction *II = dyn_cast<Instruction>(RI))
 | |
|       II->setFastMathFlags(Flags);
 | |
|     return RI;
 | |
|   }
 | |
| 
 | |
|   Value *RI = createFDiv(NewAddSub, Factor);
 | |
|   if (Instruction *II = dyn_cast<Instruction>(RI))
 | |
|     II->setFastMathFlags(Flags);
 | |
|   return RI;
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::simplify(Instruction *I) {
 | |
|   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
 | |
| 
 | |
|   // Currently we are not able to handle vector type.
 | |
|   if (I->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   assert((I->getOpcode() == Instruction::FAdd ||
 | |
|           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
 | |
| 
 | |
|   // Save the instruction before calling other member-functions.
 | |
|   Instr = I;
 | |
| 
 | |
|   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
 | |
| 
 | |
|   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
 | |
| 
 | |
|   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
 | |
|   unsigned Opnd0_ExpNum = 0;
 | |
|   unsigned Opnd1_ExpNum = 0;
 | |
| 
 | |
|   if (!Opnd0.isConstant())
 | |
|     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
 | |
| 
 | |
|   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
 | |
|   if (OpndNum == 2 && !Opnd1.isConstant())
 | |
|     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
 | |
| 
 | |
|   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
 | |
|   if (Opnd0_ExpNum && Opnd1_ExpNum) {
 | |
|     AddendVect AllOpnds;
 | |
|     AllOpnds.push_back(&Opnd0_0);
 | |
|     AllOpnds.push_back(&Opnd1_0);
 | |
|     if (Opnd0_ExpNum == 2)
 | |
|       AllOpnds.push_back(&Opnd0_1);
 | |
|     if (Opnd1_ExpNum == 2)
 | |
|       AllOpnds.push_back(&Opnd1_1);
 | |
| 
 | |
|     // Compute instruction quota. We should save at least one instruction.
 | |
|     unsigned InstQuota = 0;
 | |
| 
 | |
|     Value *V0 = I->getOperand(0);
 | |
|     Value *V1 = I->getOperand(1);
 | |
|     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
 | |
|                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
 | |
| 
 | |
|     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
 | |
|       return R;
 | |
|   }
 | |
| 
 | |
|   if (OpndNum != 2) {
 | |
|     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
 | |
|     // splitted into two addends, say "V = X - Y", the instruction would have
 | |
|     // been optimized into "I = Y - X" in the previous steps.
 | |
|     //
 | |
|     const FAddendCoef &CE = Opnd0.getCoef();
 | |
|     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
 | |
|   }
 | |
| 
 | |
|   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
 | |
|   if (Opnd1_ExpNum) {
 | |
|     AddendVect AllOpnds;
 | |
|     AllOpnds.push_back(&Opnd0);
 | |
|     AllOpnds.push_back(&Opnd1_0);
 | |
|     if (Opnd1_ExpNum == 2)
 | |
|       AllOpnds.push_back(&Opnd1_1);
 | |
| 
 | |
|     if (Value *R = simplifyFAdd(AllOpnds, 1))
 | |
|       return R;
 | |
|   }
 | |
| 
 | |
|   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
 | |
|   if (Opnd0_ExpNum) {
 | |
|     AddendVect AllOpnds;
 | |
|     AllOpnds.push_back(&Opnd1);
 | |
|     AllOpnds.push_back(&Opnd0_0);
 | |
|     if (Opnd0_ExpNum == 2)
 | |
|       AllOpnds.push_back(&Opnd0_1);
 | |
| 
 | |
|     if (Value *R = simplifyFAdd(AllOpnds, 1))
 | |
|       return R;
 | |
|   }
 | |
| 
 | |
|   // step 6: Try factorization as the last resort,
 | |
|   return performFactorization(I);
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
 | |
| 
 | |
|   unsigned AddendNum = Addends.size();
 | |
|   assert(AddendNum <= 4 && "Too many addends");
 | |
| 
 | |
|   // For saving intermediate results;
 | |
|   unsigned NextTmpIdx = 0;
 | |
|   FAddend TmpResult[3];
 | |
| 
 | |
|   // Points to the constant addend of the resulting simplified expression.
 | |
|   // If the resulting expr has constant-addend, this constant-addend is
 | |
|   // desirable to reside at the top of the resulting expression tree. Placing
 | |
|   // constant close to supper-expr(s) will potentially reveal some optimization
 | |
|   // opportunities in super-expr(s).
 | |
|   //
 | |
|   const FAddend *ConstAdd = nullptr;
 | |
| 
 | |
|   // Simplified addends are placed <SimpVect>.
 | |
|   AddendVect SimpVect;
 | |
| 
 | |
|   // The outer loop works on one symbolic-value at a time. Suppose the input
 | |
|   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
 | |
|   // The symbolic-values will be processed in this order: x, y, z.
 | |
|   //
 | |
|   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
 | |
| 
 | |
|     const FAddend *ThisAddend = Addends[SymIdx];
 | |
|     if (!ThisAddend) {
 | |
|       // This addend was processed before.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Value *Val = ThisAddend->getSymVal();
 | |
|     unsigned StartIdx = SimpVect.size();
 | |
|     SimpVect.push_back(ThisAddend);
 | |
| 
 | |
|     // The inner loop collects addends sharing same symbolic-value, and these
 | |
|     // addends will be later on folded into a single addend. Following above
 | |
|     // example, if the symbolic value "y" is being processed, the inner loop
 | |
|     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
 | |
|     // be later on folded into "<b1+b2, y>".
 | |
|     //
 | |
|     for (unsigned SameSymIdx = SymIdx + 1;
 | |
|          SameSymIdx < AddendNum; SameSymIdx++) {
 | |
|       const FAddend *T = Addends[SameSymIdx];
 | |
|       if (T && T->getSymVal() == Val) {
 | |
|         // Set null such that next iteration of the outer loop will not process
 | |
|         // this addend again.
 | |
|         Addends[SameSymIdx] = nullptr;
 | |
|         SimpVect.push_back(T);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If multiple addends share same symbolic value, fold them together.
 | |
|     if (StartIdx + 1 != SimpVect.size()) {
 | |
|       FAddend &R = TmpResult[NextTmpIdx ++];
 | |
|       R = *SimpVect[StartIdx];
 | |
|       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
 | |
|         R += *SimpVect[Idx];
 | |
| 
 | |
|       // Pop all addends being folded and push the resulting folded addend.
 | |
|       SimpVect.resize(StartIdx);
 | |
|       if (Val) {
 | |
|         if (!R.isZero()) {
 | |
|           SimpVect.push_back(&R);
 | |
|         }
 | |
|       } else {
 | |
|         // Don't push constant addend at this time. It will be the last element
 | |
|         // of <SimpVect>.
 | |
|         ConstAdd = &R;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
 | |
|          "out-of-bound access");
 | |
| 
 | |
|   if (ConstAdd)
 | |
|     SimpVect.push_back(ConstAdd);
 | |
| 
 | |
|   Value *Result;
 | |
|   if (!SimpVect.empty())
 | |
|     Result = createNaryFAdd(SimpVect, InstrQuota);
 | |
|   else {
 | |
|     // The addition is folded to 0.0.
 | |
|     Result = ConstantFP::get(Instr->getType(), 0.0);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::createNaryFAdd
 | |
|   (const AddendVect &Opnds, unsigned InstrQuota) {
 | |
|   assert(!Opnds.empty() && "Expect at least one addend");
 | |
| 
 | |
|   // Step 1: Check if the # of instructions needed exceeds the quota.
 | |
|   //
 | |
|   unsigned InstrNeeded = calcInstrNumber(Opnds);
 | |
|   if (InstrNeeded > InstrQuota)
 | |
|     return nullptr;
 | |
| 
 | |
|   initCreateInstNum();
 | |
| 
 | |
|   // step 2: Emit the N-ary addition.
 | |
|   // Note that at most three instructions are involved in Fadd-InstCombine: the
 | |
|   // addition in question, and at most two neighboring instructions.
 | |
|   // The resulting optimized addition should have at least one less instruction
 | |
|   // than the original addition expression tree. This implies that the resulting
 | |
|   // N-ary addition has at most two instructions, and we don't need to worry
 | |
|   // about tree-height when constructing the N-ary addition.
 | |
| 
 | |
|   Value *LastVal = nullptr;
 | |
|   bool LastValNeedNeg = false;
 | |
| 
 | |
|   // Iterate the addends, creating fadd/fsub using adjacent two addends.
 | |
|   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
 | |
|        I != E; I++) {
 | |
|     bool NeedNeg;
 | |
|     Value *V = createAddendVal(**I, NeedNeg);
 | |
|     if (!LastVal) {
 | |
|       LastVal = V;
 | |
|       LastValNeedNeg = NeedNeg;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (LastValNeedNeg == NeedNeg) {
 | |
|       LastVal = createFAdd(LastVal, V);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (LastValNeedNeg)
 | |
|       LastVal = createFSub(V, LastVal);
 | |
|     else
 | |
|       LastVal = createFSub(LastVal, V);
 | |
| 
 | |
|     LastValNeedNeg = false;
 | |
|   }
 | |
| 
 | |
|   if (LastValNeedNeg) {
 | |
|     LastVal = createFNeg(LastVal);
 | |
|   }
 | |
| 
 | |
|   #ifndef NDEBUG
 | |
|     assert(CreateInstrNum == InstrNeeded &&
 | |
|            "Inconsistent in instruction numbers");
 | |
|   #endif
 | |
| 
 | |
|   return LastVal;
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
 | |
|   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     createInstPostProc(I);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::createFNeg(Value *V) {
 | |
|   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
 | |
|   Value *NewV = createFSub(Zero, V);
 | |
|   if (Instruction *I = dyn_cast<Instruction>(NewV))
 | |
|     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
 | |
|   return NewV;
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
 | |
|   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     createInstPostProc(I);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
 | |
|   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     createInstPostProc(I);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
 | |
|   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     createInstPostProc(I);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
 | |
|   NewInstr->setDebugLoc(Instr->getDebugLoc());
 | |
| 
 | |
|   // Keep track of the number of instruction created.
 | |
|   if (!NoNumber)
 | |
|     incCreateInstNum();
 | |
| 
 | |
|   // Propagate fast-math flags
 | |
|   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
 | |
| }
 | |
| 
 | |
| // Return the number of instruction needed to emit the N-ary addition.
 | |
| // NOTE: Keep this function in sync with createAddendVal().
 | |
| unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
 | |
|   unsigned OpndNum = Opnds.size();
 | |
|   unsigned InstrNeeded = OpndNum - 1;
 | |
| 
 | |
|   // The number of addends in the form of "(-1)*x".
 | |
|   unsigned NegOpndNum = 0;
 | |
| 
 | |
|   // Adjust the number of instructions needed to emit the N-ary add.
 | |
|   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
 | |
|        I != E; I++) {
 | |
|     const FAddend *Opnd = *I;
 | |
|     if (Opnd->isConstant())
 | |
|       continue;
 | |
| 
 | |
|     const FAddendCoef &CE = Opnd->getCoef();
 | |
|     if (CE.isMinusOne() || CE.isMinusTwo())
 | |
|       NegOpndNum++;
 | |
| 
 | |
|     // Let the addend be "c * x". If "c == +/-1", the value of the addend
 | |
|     // is immediately available; otherwise, it needs exactly one instruction
 | |
|     // to evaluate the value.
 | |
|     if (!CE.isMinusOne() && !CE.isOne())
 | |
|       InstrNeeded++;
 | |
|   }
 | |
|   if (NegOpndNum == OpndNum)
 | |
|     InstrNeeded++;
 | |
|   return InstrNeeded;
 | |
| }
 | |
| 
 | |
| // Input Addend        Value           NeedNeg(output)
 | |
| // ================================================================
 | |
| // Constant C          C               false
 | |
| // <+/-1, V>           V               coefficient is -1
 | |
| // <2/-2, V>          "fadd V, V"      coefficient is -2
 | |
| // <C, V>             "fmul V, C"      false
 | |
| //
 | |
| // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
 | |
| Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
 | |
|   const FAddendCoef &Coeff = Opnd.getCoef();
 | |
| 
 | |
|   if (Opnd.isConstant()) {
 | |
|     NeedNeg = false;
 | |
|     return Coeff.getValue(Instr->getType());
 | |
|   }
 | |
| 
 | |
|   Value *OpndVal = Opnd.getSymVal();
 | |
| 
 | |
|   if (Coeff.isMinusOne() || Coeff.isOne()) {
 | |
|     NeedNeg = Coeff.isMinusOne();
 | |
|     return OpndVal;
 | |
|   }
 | |
| 
 | |
|   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
 | |
|     NeedNeg = Coeff.isMinusTwo();
 | |
|     return createFAdd(OpndVal, OpndVal);
 | |
|   }
 | |
| 
 | |
|   NeedNeg = false;
 | |
|   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
 | |
| }
 | |
| 
 | |
| // If one of the operands only has one non-zero bit, and if the other
 | |
| // operand has a known-zero bit in a more significant place than it (not
 | |
| // including the sign bit) the ripple may go up to and fill the zero, but
 | |
| // won't change the sign. For example, (X & ~4) + 1.
 | |
| static bool checkRippleForAdd(const APInt &Op0KnownZero,
 | |
|                               const APInt &Op1KnownZero) {
 | |
|   APInt Op1MaybeOne = ~Op1KnownZero;
 | |
|   // Make sure that one of the operand has at most one bit set to 1.
 | |
|   if (Op1MaybeOne.countPopulation() != 1)
 | |
|     return false;
 | |
| 
 | |
|   // Find the most significant known 0 other than the sign bit.
 | |
|   int BitWidth = Op0KnownZero.getBitWidth();
 | |
|   APInt Op0KnownZeroTemp(Op0KnownZero);
 | |
|   Op0KnownZeroTemp.clearBit(BitWidth - 1);
 | |
|   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
 | |
| 
 | |
|   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
 | |
|   assert(Op1OnePosition >= 0);
 | |
| 
 | |
|   // This also covers the case of no known zero, since in that case
 | |
|   // Op0ZeroPosition is -1.
 | |
|   return Op0ZeroPosition >= Op1OnePosition;
 | |
| }
 | |
| 
 | |
| /// WillNotOverflowSignedAdd - Return true if we can prove that:
 | |
| ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
 | |
| /// This basically requires proving that the add in the original type would not
 | |
| /// overflow to change the sign bit or have a carry out.
 | |
| bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
 | |
|                                             Instruction &CxtI) {
 | |
|   // There are different heuristics we can use for this.  Here are some simple
 | |
|   // ones.
 | |
| 
 | |
|   // If LHS and RHS each have at least two sign bits, the addition will look
 | |
|   // like
 | |
|   //
 | |
|   // XX..... +
 | |
|   // YY.....
 | |
|   //
 | |
|   // If the carry into the most significant position is 0, X and Y can't both
 | |
|   // be 1 and therefore the carry out of the addition is also 0.
 | |
|   //
 | |
|   // If the carry into the most significant position is 1, X and Y can't both
 | |
|   // be 0 and therefore the carry out of the addition is also 1.
 | |
|   //
 | |
|   // Since the carry into the most significant position is always equal to
 | |
|   // the carry out of the addition, there is no signed overflow.
 | |
|   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
 | |
|       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
 | |
|     return true;
 | |
| 
 | |
|   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
 | |
|   APInt LHSKnownZero(BitWidth, 0);
 | |
|   APInt LHSKnownOne(BitWidth, 0);
 | |
|   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
 | |
| 
 | |
|   APInt RHSKnownZero(BitWidth, 0);
 | |
|   APInt RHSKnownOne(BitWidth, 0);
 | |
|   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
 | |
| 
 | |
|   // Addition of two 2's compliment numbers having opposite signs will never
 | |
|   // overflow.
 | |
|   if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
 | |
|       (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
 | |
|     return true;
 | |
| 
 | |
|   // Check if carry bit of addition will not cause overflow.
 | |
|   if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
 | |
|     return true;
 | |
|   if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Return true if we can prove that:
 | |
| ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
 | |
| /// This basically requires proving that the add in the original type would not
 | |
| /// overflow to change the sign bit or have a carry out.
 | |
| /// TODO: Handle this for Vectors.
 | |
| bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
 | |
|                                             Instruction &CxtI) {
 | |
|   // If LHS and RHS each have at least two sign bits, the subtraction
 | |
|   // cannot overflow.
 | |
|   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
 | |
|       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
 | |
|     return true;
 | |
| 
 | |
|   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
 | |
|   APInt LHSKnownZero(BitWidth, 0);
 | |
|   APInt LHSKnownOne(BitWidth, 0);
 | |
|   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
 | |
| 
 | |
|   APInt RHSKnownZero(BitWidth, 0);
 | |
|   APInt RHSKnownOne(BitWidth, 0);
 | |
|   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
 | |
| 
 | |
|   // Subtraction of two 2's compliment numbers having identical signs will
 | |
|   // never overflow.
 | |
|   if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
 | |
|       (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
 | |
|     return true;
 | |
| 
 | |
|   // TODO: implement logic similar to checkRippleForAdd
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Return true if we can prove that:
 | |
| ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
 | |
| bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
 | |
|                                               Instruction &CxtI) {
 | |
|   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
 | |
|   bool LHSKnownNonNegative, LHSKnownNegative;
 | |
|   bool RHSKnownNonNegative, RHSKnownNegative;
 | |
|   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
 | |
|                  &CxtI);
 | |
|   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
 | |
|                  &CxtI);
 | |
|   if (LHSKnownNegative && RHSKnownNonNegative)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Checks if any operand is negative and we can convert add to sub.
 | |
| // This function checks for following negative patterns
 | |
| //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
 | |
| //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
 | |
| //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
 | |
| static Value *checkForNegativeOperand(BinaryOperator &I,
 | |
|                                       InstCombiner::BuilderTy *Builder) {
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   // This function creates 2 instructions to replace ADD, we need at least one
 | |
|   // of LHS or RHS to have one use to ensure benefit in transform.
 | |
|   if (!LHS->hasOneUse() && !RHS->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
 | |
|   const APInt *C1 = nullptr, *C2 = nullptr;
 | |
| 
 | |
|   // if ONE is on other side, swap
 | |
|   if (match(RHS, m_Add(m_Value(X), m_One())))
 | |
|     std::swap(LHS, RHS);
 | |
| 
 | |
|   if (match(LHS, m_Add(m_Value(X), m_One()))) {
 | |
|     // if XOR on other side, swap
 | |
|     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
 | |
|       std::swap(X, RHS);
 | |
| 
 | |
|     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
 | |
|       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
 | |
|       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
 | |
|       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
 | |
|         Value *NewAnd = Builder->CreateAnd(Z, *C1);
 | |
|         return Builder->CreateSub(RHS, NewAnd, "sub");
 | |
|       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
 | |
|         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
 | |
|         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
 | |
|         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
 | |
|         return Builder->CreateSub(RHS, NewOr, "sub");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Restore LHS and RHS
 | |
|   LHS = I.getOperand(0);
 | |
|   RHS = I.getOperand(1);
 | |
| 
 | |
|   // if XOR is on other side, swap
 | |
|   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
 | |
|     std::swap(LHS, RHS);
 | |
| 
 | |
|   // C2 is ODD
 | |
|   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
 | |
|   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
 | |
|   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
 | |
|     if (C1->countTrailingZeros() == 0)
 | |
|       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
 | |
|         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
 | |
|         return Builder->CreateSub(RHS, NewOr, "sub");
 | |
|       }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
 | |
|                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|    // (A*B)+(A*C) -> A*(B+C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|     // X + (signbit) --> X ^ signbit
 | |
|     const APInt &Val = CI->getValue();
 | |
|     if (Val.isSignBit())
 | |
|       return BinaryOperator::CreateXor(LHS, RHS);
 | |
| 
 | |
|     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
 | |
|     // (X & 254)+1 -> (X&254)|1
 | |
|     if (SimplifyDemandedInstructionBits(I))
 | |
|       return &I;
 | |
| 
 | |
|     // zext(bool) + C -> bool ? C + 1 : C
 | |
|     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
 | |
|       if (ZI->getSrcTy()->isIntegerTy(1))
 | |
|         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
 | |
| 
 | |
|     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
 | |
|     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
 | |
|       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
 | |
|       const APInt &RHSVal = CI->getValue();
 | |
|       unsigned ExtendAmt = 0;
 | |
|       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
 | |
|       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
 | |
|       if (XorRHS->getValue() == -RHSVal) {
 | |
|         if (RHSVal.isPowerOf2())
 | |
|           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
 | |
|         else if (XorRHS->getValue().isPowerOf2())
 | |
|           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
 | |
|       }
 | |
| 
 | |
|       if (ExtendAmt) {
 | |
|         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
 | |
|         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
 | |
|           ExtendAmt = 0;
 | |
|       }
 | |
| 
 | |
|       if (ExtendAmt) {
 | |
|         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
 | |
|         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
 | |
|         return BinaryOperator::CreateAShr(NewShl, ShAmt);
 | |
|       }
 | |
| 
 | |
|       // If this is a xor that was canonicalized from a sub, turn it back into
 | |
|       // a sub and fuse this add with it.
 | |
|       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
 | |
|         IntegerType *IT = cast<IntegerType>(I.getType());
 | |
|         APInt LHSKnownOne(IT->getBitWidth(), 0);
 | |
|         APInt LHSKnownZero(IT->getBitWidth(), 0);
 | |
|         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
 | |
|         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
 | |
|           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
 | |
|                                            XorLHS);
 | |
|       }
 | |
|       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
 | |
|       // transform them into (X + (signbit ^ C))
 | |
|       if (XorRHS->getValue().isSignBit())
 | |
|           return BinaryOperator::CreateAdd(XorLHS,
 | |
|                                            ConstantExpr::getXor(XorRHS, CI));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|       return NV;
 | |
| 
 | |
|   if (I.getType()->getScalarType()->isIntegerTy(1))
 | |
|     return BinaryOperator::CreateXor(LHS, RHS);
 | |
| 
 | |
|   // X + X --> X << 1
 | |
|   if (LHS == RHS) {
 | |
|     BinaryOperator *New =
 | |
|       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
 | |
|     New->setHasNoSignedWrap(I.hasNoSignedWrap());
 | |
|     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
 | |
|     return New;
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   // -A + -B  -->  -(A + B)
 | |
|   if (Value *LHSV = dyn_castNegVal(LHS)) {
 | |
|     if (!isa<Constant>(RHS))
 | |
|       if (Value *RHSV = dyn_castNegVal(RHS)) {
 | |
|         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
 | |
|         return BinaryOperator::CreateNeg(NewAdd);
 | |
|       }
 | |
| 
 | |
|     return BinaryOperator::CreateSub(RHS, LHSV);
 | |
|   }
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castNegVal(RHS))
 | |
|       return BinaryOperator::CreateSub(LHS, V);
 | |
| 
 | |
|   if (Value *V = checkForNegativeOperand(I, Builder))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // A+B --> A|B iff A and B have no bits set in common.
 | |
|   if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT))
 | |
|     return BinaryOperator::CreateOr(LHS, RHS);
 | |
| 
 | |
|   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
 | |
|     Value *X;
 | |
|     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
 | |
|       return BinaryOperator::CreateSub(SubOne(CRHS), X);
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | |
|     // (X & FF00) + xx00  -> (X+xx00) & FF00
 | |
|     Value *X;
 | |
|     ConstantInt *C2;
 | |
|     if (LHS->hasOneUse() &&
 | |
|         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
 | |
|         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
 | |
|       // See if all bits from the first bit set in the Add RHS up are included
 | |
|       // in the mask.  First, get the rightmost bit.
 | |
|       const APInt &AddRHSV = CRHS->getValue();
 | |
| 
 | |
|       // Form a mask of all bits from the lowest bit added through the top.
 | |
|       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
 | |
| 
 | |
|       // See if the and mask includes all of these bits.
 | |
|       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
 | |
| 
 | |
|       if (AddRHSHighBits == AddRHSHighBitsAnd) {
 | |
|         // Okay, the xform is safe.  Insert the new add pronto.
 | |
|         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
 | |
|         return BinaryOperator::CreateAnd(NewAdd, C2);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant add into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   // add (select X 0 (sub n A)) A  -->  select X A n
 | |
|   {
 | |
|     SelectInst *SI = dyn_cast<SelectInst>(LHS);
 | |
|     Value *A = RHS;
 | |
|     if (!SI) {
 | |
|       SI = dyn_cast<SelectInst>(RHS);
 | |
|       A = LHS;
 | |
|     }
 | |
|     if (SI && SI->hasOneUse()) {
 | |
|       Value *TV = SI->getTrueValue();
 | |
|       Value *FV = SI->getFalseValue();
 | |
|       Value *N;
 | |
| 
 | |
|       // Can we fold the add into the argument of the select?
 | |
|       // We check both true and false select arguments for a matching subtract.
 | |
|       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
 | |
|         // Fold the add into the true select value.
 | |
|         return SelectInst::Create(SI->getCondition(), N, A);
 | |
| 
 | |
|       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
 | |
|         // Fold the add into the false select value.
 | |
|         return SelectInst::Create(SI->getCondition(), A, N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for (add (sext x), y), see if we can merge this into an
 | |
|   // integer add followed by a sext.
 | |
|   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
 | |
|     // (add (sext x), cst) --> (sext (add x, cst'))
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
 | |
|       Constant *CI =
 | |
|         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
 | |
|       if (LHSConv->hasOneUse() &&
 | |
|           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
 | |
|         // Insert the new, smaller add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
 | |
|                                               CI, "addconv");
 | |
|         return new SExtInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (add (sext x), (sext y)) --> (sext (add int x, y))
 | |
|     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of sexts), and if the
 | |
|       // integer add will not overflow.
 | |
|       if (LHSConv->getOperand(0)->getType() ==
 | |
|               RHSConv->getOperand(0)->getType() &&
 | |
|           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
 | |
|                                    RHSConv->getOperand(0), I)) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
 | |
|                                              RHSConv->getOperand(0), "addconv");
 | |
|         return new SExtInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (add (xor A, B) (and A, B)) --> (or A, B)
 | |
|   {
 | |
|     Value *A = nullptr, *B = nullptr;
 | |
|     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
| 
 | |
|     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
 | |
|       return BinaryOperator::CreateOr(A, B);
 | |
|   }
 | |
| 
 | |
|   // (add (or A, B) (and A, B)) --> (add A, B)
 | |
|   {
 | |
|     Value *A = nullptr, *B = nullptr;
 | |
|     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|          match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
 | |
|       auto *New = BinaryOperator::CreateAdd(A, B);
 | |
|       New->setHasNoSignedWrap(I.hasNoSignedWrap());
 | |
|       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
 | |
|       return New;
 | |
|     }
 | |
| 
 | |
|     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
 | |
|          match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
 | |
|       auto *New = BinaryOperator::CreateAdd(A, B);
 | |
|       New->setHasNoSignedWrap(I.hasNoSignedWrap());
 | |
|       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
 | |
|       return New;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
 | |
|   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
 | |
|   // computeKnownBits.
 | |
|   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
 | |
|     Changed = true;
 | |
|     I.setHasNoSignedWrap(true);
 | |
|   }
 | |
|   if (!I.hasNoUnsignedWrap() &&
 | |
|       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
 | |
|           OverflowResult::NeverOverflows) {
 | |
|     Changed = true;
 | |
|     I.setHasNoUnsignedWrap(true);
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V =
 | |
|           SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (isa<Constant>(RHS)) {
 | |
|     if (isa<PHINode>(LHS))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
| 
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | |
|       if (Instruction *NV = FoldOpIntoSelect(I, SI))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   // -A + -B  -->  -(A + B)
 | |
|   if (Value *LHSV = dyn_castFNegVal(LHS)) {
 | |
|     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
 | |
|     RI->copyFastMathFlags(&I);
 | |
|     return RI;
 | |
|   }
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castFNegVal(RHS)) {
 | |
|       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
 | |
|       RI->copyFastMathFlags(&I);
 | |
|       return RI;
 | |
|     }
 | |
| 
 | |
|   // Check for (fadd double (sitofp x), y), see if we can merge this into an
 | |
|   // integer add followed by a promotion.
 | |
|   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
 | |
|     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
 | |
|     // ... if the constant fits in the integer value.  This is useful for things
 | |
|     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
 | |
|     // requires a constant pool load, and generally allows the add to be better
 | |
|     // instcombined.
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
 | |
|       Constant *CI =
 | |
|       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
 | |
|       if (LHSConv->hasOneUse() &&
 | |
|           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
 | |
|                                               CI, "addconv");
 | |
|         return new SIToFPInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
 | |
|     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of int->fp conversions),
 | |
|       // and if the integer add will not overflow.
 | |
|       if (LHSConv->getOperand(0)->getType() ==
 | |
|               RHSConv->getOperand(0)->getType() &&
 | |
|           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
 | |
|                                    RHSConv->getOperand(0), I)) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
 | |
|                                               RHSConv->getOperand(0),"addconv");
 | |
|         return new SIToFPInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // select C, 0, B + select C, A, 0 -> select C, A, B
 | |
|   {
 | |
|     Value *A1, *B1, *C1, *A2, *B2, *C2;
 | |
|     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
 | |
|         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
 | |
|       if (C1 == C2) {
 | |
|         Constant *Z1=nullptr, *Z2=nullptr;
 | |
|         Value *A, *B, *C=C1;
 | |
|         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
 | |
|             Z1 = dyn_cast<Constant>(A1); A = A2;
 | |
|             Z2 = dyn_cast<Constant>(B2); B = B1;
 | |
|         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
 | |
|             Z1 = dyn_cast<Constant>(B1); B = B2;
 | |
|             Z2 = dyn_cast<Constant>(A2); A = A1;
 | |
|         }
 | |
| 
 | |
|         if (Z1 && Z2 &&
 | |
|             (I.hasNoSignedZeros() ||
 | |
|              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
 | |
|           return SelectInst::Create(C, A, B);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (I.hasUnsafeAlgebra()) {
 | |
|     if (Value *V = FAddCombine(Builder).simplify(&I))
 | |
|       return ReplaceInstUsesWith(I, V);
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Optimize pointer differences into the same array into a size.  Consider:
 | |
| ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
 | |
| /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
 | |
| ///
 | |
| Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
 | |
|                                                Type *Ty) {
 | |
|   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
 | |
|   // this.
 | |
|   bool Swapped = false;
 | |
|   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
 | |
| 
 | |
|   // For now we require one side to be the base pointer "A" or a constant
 | |
|   // GEP derived from it.
 | |
|   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
 | |
|     // (gep X, ...) - X
 | |
|     if (LHSGEP->getOperand(0) == RHS) {
 | |
|       GEP1 = LHSGEP;
 | |
|       Swapped = false;
 | |
|     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
 | |
|       // (gep X, ...) - (gep X, ...)
 | |
|       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
 | |
|             RHSGEP->getOperand(0)->stripPointerCasts()) {
 | |
|         GEP2 = RHSGEP;
 | |
|         GEP1 = LHSGEP;
 | |
|         Swapped = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
 | |
|     // X - (gep X, ...)
 | |
|     if (RHSGEP->getOperand(0) == LHS) {
 | |
|       GEP1 = RHSGEP;
 | |
|       Swapped = true;
 | |
|     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
 | |
|       // (gep X, ...) - (gep X, ...)
 | |
|       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
 | |
|             LHSGEP->getOperand(0)->stripPointerCasts()) {
 | |
|         GEP2 = LHSGEP;
 | |
|         GEP1 = RHSGEP;
 | |
|         Swapped = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
 | |
|   // multiple users.
 | |
|   if (!GEP1 ||
 | |
|       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Emit the offset of the GEP and an intptr_t.
 | |
|   Value *Result = EmitGEPOffset(GEP1);
 | |
| 
 | |
|   // If we had a constant expression GEP on the other side offsetting the
 | |
|   // pointer, subtract it from the offset we have.
 | |
|   if (GEP2) {
 | |
|     Value *Offset = EmitGEPOffset(GEP2);
 | |
|     Result = Builder->CreateSub(Result, Offset);
 | |
|   }
 | |
| 
 | |
|   // If we have p - gep(p, ...)  then we have to negate the result.
 | |
|   if (Swapped)
 | |
|     Result = Builder->CreateNeg(Result, "diff.neg");
 | |
| 
 | |
|   return Builder->CreateIntCast(Result, Ty, true);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
 | |
|                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // (A*B)-(A*C) -> A*(B-C) etc
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A.
 | |
|   if (Value *V = dyn_castNegVal(Op1)) {
 | |
|     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
 | |
| 
 | |
|     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
 | |
|       assert(BO->getOpcode() == Instruction::Sub &&
 | |
|              "Expected a subtraction operator!");
 | |
|       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
 | |
|         Res->setHasNoSignedWrap(true);
 | |
|     } else {
 | |
|       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
 | |
|         Res->setHasNoSignedWrap(true);
 | |
|     }
 | |
| 
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   if (I.getType()->isIntegerTy(1))
 | |
|     return BinaryOperator::CreateXor(Op0, Op1);
 | |
| 
 | |
|   // Replace (-1 - A) with (~A).
 | |
|   if (match(Op0, m_AllOnes()))
 | |
|     return BinaryOperator::CreateNot(Op1);
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Op0)) {
 | |
|     // C - ~X == X + (1+C)
 | |
|     Value *X = nullptr;
 | |
|     if (match(Op1, m_Not(m_Value(X))))
 | |
|       return BinaryOperator::CreateAdd(X, AddOne(C));
 | |
| 
 | |
|     // Try to fold constant sub into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     // C-(X+C2) --> (C-C2)-X
 | |
|     Constant *C2;
 | |
|     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
 | |
|       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
 | |
| 
 | |
|     if (SimplifyDemandedInstructionBits(I))
 | |
|       return &I;
 | |
| 
 | |
|     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
 | |
|     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
 | |
|       if (X->getType()->getScalarType()->isIntegerTy(1))
 | |
|         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
 | |
| 
 | |
|     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
 | |
|     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
 | |
|       if (X->getType()->getScalarType()->isIntegerTy(1))
 | |
|         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | |
|     // -(X >>u 31) -> (X >>s 31)
 | |
|     // -(X >>s 31) -> (X >>u 31)
 | |
|     if (C->isZero()) {
 | |
|       Value *X;
 | |
|       ConstantInt *CI;
 | |
|       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
 | |
|           // Verify we are shifting out everything but the sign bit.
 | |
|           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
 | |
|         return BinaryOperator::CreateAShr(X, CI);
 | |
| 
 | |
|       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
 | |
|           // Verify we are shifting out everything but the sign bit.
 | |
|           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
 | |
|         return BinaryOperator::CreateLShr(X, CI);
 | |
|     }
 | |
| 
 | |
|     // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
 | |
|     // zero.
 | |
|     APInt IntVal = C->getValue();
 | |
|     if ((IntVal + 1).isPowerOf2()) {
 | |
|       unsigned BitWidth = I.getType()->getScalarSizeInBits();
 | |
|       APInt KnownZero(BitWidth, 0);
 | |
|       APInt KnownOne(BitWidth, 0);
 | |
|       computeKnownBits(&I, KnownZero, KnownOne, 0, &I);
 | |
|       if ((IntVal | KnownZero).isAllOnesValue()) {
 | |
|         return BinaryOperator::CreateXor(Op1, C);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   {
 | |
|     Value *Y;
 | |
|     // X-(X+Y) == -Y    X-(Y+X) == -Y
 | |
|     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
 | |
|         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
 | |
|       return BinaryOperator::CreateNeg(Y);
 | |
| 
 | |
|     // (X-Y)-X == -Y
 | |
|     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
 | |
|       return BinaryOperator::CreateNeg(Y);
 | |
|   }
 | |
| 
 | |
|   // (sub (or A, B) (xor A, B)) --> (and A, B)
 | |
|   {
 | |
|     Value *A = nullptr, *B = nullptr;
 | |
|     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
 | |
|          match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
 | |
|       return BinaryOperator::CreateAnd(A, B);
 | |
|   }
 | |
| 
 | |
|   if (Op0->hasOneUse()) {
 | |
|     Value *Y = nullptr;
 | |
|     // ((X | Y) - X) --> (~X & Y)
 | |
|     if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
 | |
|         match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
 | |
|       return BinaryOperator::CreateAnd(
 | |
|           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
 | |
|   }
 | |
| 
 | |
|   if (Op1->hasOneUse()) {
 | |
|     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
 | |
|     Constant *C = nullptr;
 | |
|     Constant *CI = nullptr;
 | |
| 
 | |
|     // (X - (Y - Z))  -->  (X + (Z - Y)).
 | |
|     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
 | |
|       return BinaryOperator::CreateAdd(Op0,
 | |
|                                       Builder->CreateSub(Z, Y, Op1->getName()));
 | |
| 
 | |
|     // (X - (X & Y))   -->   (X & ~Y)
 | |
|     //
 | |
|     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
 | |
|         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
 | |
|       return BinaryOperator::CreateAnd(Op0,
 | |
|                                   Builder->CreateNot(Y, Y->getName() + ".not"));
 | |
| 
 | |
|     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
 | |
|     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
 | |
|         C->isNotMinSignedValue() && !C->isOneValue())
 | |
|       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
 | |
| 
 | |
|     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
 | |
|     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
 | |
|       if (Value *XNeg = dyn_castNegVal(X))
 | |
|         return BinaryOperator::CreateShl(XNeg, Y);
 | |
| 
 | |
|     // X - A*-B -> X + A*B
 | |
|     // X - -A*B -> X + A*B
 | |
|     Value *A, *B;
 | |
|     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
 | |
|         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
 | |
|       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
 | |
| 
 | |
|     // X - A*CI -> X + A*-CI
 | |
|     // X - CI*A -> X + A*-CI
 | |
|     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
 | |
|         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
 | |
|       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
 | |
|       return BinaryOperator::CreateAdd(Op0, NewMul);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Optimize pointer differences into the same array into a size.  Consider:
 | |
|   //  &A[10] - &A[0]: we should compile this to "10".
 | |
|   Value *LHSOp, *RHSOp;
 | |
|   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
 | |
|       match(Op1, m_PtrToInt(m_Value(RHSOp))))
 | |
|     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
 | |
|       return ReplaceInstUsesWith(I, Res);
 | |
| 
 | |
|   // trunc(p)-trunc(q) -> trunc(p-q)
 | |
|   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
 | |
|       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
 | |
|     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
 | |
|       return ReplaceInstUsesWith(I, Res);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
 | |
|     Changed = true;
 | |
|     I.setHasNoSignedWrap(true);
 | |
|   }
 | |
|   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
 | |
|     Changed = true;
 | |
|     I.setHasNoUnsignedWrap(true);
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyVectorOp(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V =
 | |
|           SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // fsub nsz 0, X ==> fsub nsz -0.0, X
 | |
|   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
 | |
|     // Subtraction from -0.0 is the canonical form of fneg.
 | |
|     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
 | |
|     NewI->copyFastMathFlags(&I);
 | |
|     return NewI;
 | |
|   }
 | |
| 
 | |
|   if (isa<Constant>(Op0))
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *NV = FoldOpIntoSelect(I, SI))
 | |
|         return NV;
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
 | |
|   // through FP extensions/truncations along the way.
 | |
|   if (Value *V = dyn_castFNegVal(Op1)) {
 | |
|     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
 | |
|     NewI->copyFastMathFlags(&I);
 | |
|     return NewI;
 | |
|   }
 | |
|   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
 | |
|     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
 | |
|       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
 | |
|       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
 | |
|       NewI->copyFastMathFlags(&I);
 | |
|       return NewI;
 | |
|     }
 | |
|   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
 | |
|     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
 | |
|       Value *NewExt = Builder->CreateFPExt(V, I.getType());
 | |
|       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
 | |
|       NewI->copyFastMathFlags(&I);
 | |
|       return NewI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (I.hasUnsafeAlgebra()) {
 | |
|     if (Value *V = FAddCombine(Builder).simplify(&I))
 | |
|       return ReplaceInstUsesWith(I, V);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 |