forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1521 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1521 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements a simple loop reroller.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-reroll"
 | |
| 
 | |
| STATISTIC(NumRerolledLoops, "Number of rerolled loops");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
 | |
|   cl::desc("The maximum increment for loop rerolling"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
 | |
|                           cl::Hidden,
 | |
|                           cl::desc("The maximum number of failures to tolerate"
 | |
|                                    " during fuzzy matching. (default: 400)"));
 | |
| 
 | |
| // This loop re-rolling transformation aims to transform loops like this:
 | |
| //
 | |
| // int foo(int a);
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 500; i += 3) {
 | |
| //     foo(i);
 | |
| //     foo(i+1);
 | |
| //     foo(i+2);
 | |
| //   }
 | |
| // }
 | |
| //
 | |
| // into a loop like this:
 | |
| //
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 500; ++i)
 | |
| //     foo(i);
 | |
| // }
 | |
| //
 | |
| // It does this by looking for loops that, besides the latch code, are composed
 | |
| // of isomorphic DAGs of instructions, with each DAG rooted at some increment
 | |
| // to the induction variable, and where each DAG is isomorphic to the DAG
 | |
| // rooted at the induction variable (excepting the sub-DAGs which root the
 | |
| // other induction-variable increments). In other words, we're looking for loop
 | |
| // bodies of the form:
 | |
| //
 | |
| // %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | |
| // f(%iv)
 | |
| // %iv.1 = add %iv, 1                <-- a root increment
 | |
| // f(%iv.1)
 | |
| // %iv.2 = add %iv, 2                <-- a root increment
 | |
| // f(%iv.2)
 | |
| // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | |
| // f(%iv.scale_m_1)
 | |
| // ...
 | |
| // %iv.next = add %iv, scale
 | |
| // %cmp = icmp(%iv, ...)
 | |
| // br %cmp, header, exit
 | |
| //
 | |
| // where each f(i) is a set of instructions that, collectively, are a function
 | |
| // only of i (and other loop-invariant values).
 | |
| //
 | |
| // As a special case, we can also reroll loops like this:
 | |
| //
 | |
| // int foo(int);
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 500; ++i) {
 | |
| //     x[3*i] = foo(0);
 | |
| //     x[3*i+1] = foo(0);
 | |
| //     x[3*i+2] = foo(0);
 | |
| //   }
 | |
| // }
 | |
| //
 | |
| // into this:
 | |
| //
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 1500; ++i)
 | |
| //     x[i] = foo(0);
 | |
| // }
 | |
| //
 | |
| // in which case, we're looking for inputs like this:
 | |
| //
 | |
| // %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | |
| // %scaled.iv = mul %iv, scale
 | |
| // f(%scaled.iv)
 | |
| // %scaled.iv.1 = add %scaled.iv, 1
 | |
| // f(%scaled.iv.1)
 | |
| // %scaled.iv.2 = add %scaled.iv, 2
 | |
| // f(%scaled.iv.2)
 | |
| // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
 | |
| // f(%scaled.iv.scale_m_1)
 | |
| // ...
 | |
| // %iv.next = add %iv, 1
 | |
| // %cmp = icmp(%iv, ...)
 | |
| // br %cmp, header, exit
 | |
| 
 | |
| namespace {
 | |
|   enum IterationLimits {
 | |
|     /// The maximum number of iterations that we'll try and reroll. This
 | |
|     /// has to be less than 25 in order to fit into a SmallBitVector.
 | |
|     IL_MaxRerollIterations = 16,
 | |
|     /// The bitvector index used by loop induction variables and other
 | |
|     /// instructions that belong to all iterations.
 | |
|     IL_All,
 | |
|     IL_End
 | |
|   };
 | |
| 
 | |
|   class LoopReroll : public LoopPass {
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     LoopReroll() : LoopPass(ID) {
 | |
|       initializeLoopRerollPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<LoopInfoWrapperPass>();
 | |
|       AU.addPreserved<LoopInfoWrapperPass>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     }
 | |
| 
 | |
|   protected:
 | |
|     AliasAnalysis *AA;
 | |
|     LoopInfo *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     TargetLibraryInfo *TLI;
 | |
|     DominatorTree *DT;
 | |
| 
 | |
|     typedef SmallVector<Instruction *, 16> SmallInstructionVector;
 | |
|     typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
 | |
| 
 | |
|     // A chain of isomorphic instructions, indentified by a single-use PHI,
 | |
|     // representing a reduction. Only the last value may be used outside the
 | |
|     // loop.
 | |
|     struct SimpleLoopReduction {
 | |
|       SimpleLoopReduction(Instruction *P, Loop *L)
 | |
|         : Valid(false), Instructions(1, P) {
 | |
|         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
 | |
|         add(L);
 | |
|       }
 | |
| 
 | |
|       bool valid() const {
 | |
|         return Valid;
 | |
|       }
 | |
| 
 | |
|       Instruction *getPHI() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions.front();
 | |
|       }
 | |
| 
 | |
|       Instruction *getReducedValue() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions.back();
 | |
|       }
 | |
| 
 | |
|       Instruction *get(size_t i) const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions[i+1];
 | |
|       }
 | |
| 
 | |
|       Instruction *operator [] (size_t i) const { return get(i); }
 | |
| 
 | |
|       // The size, ignoring the initial PHI.
 | |
|       size_t size() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions.size()-1;
 | |
|       }
 | |
| 
 | |
|       typedef SmallInstructionVector::iterator iterator;
 | |
|       typedef SmallInstructionVector::const_iterator const_iterator;
 | |
| 
 | |
|       iterator begin() {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return std::next(Instructions.begin());
 | |
|       }
 | |
| 
 | |
|       const_iterator begin() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return std::next(Instructions.begin());
 | |
|       }
 | |
| 
 | |
|       iterator end() { return Instructions.end(); }
 | |
|       const_iterator end() const { return Instructions.end(); }
 | |
| 
 | |
|     protected:
 | |
|       bool Valid;
 | |
|       SmallInstructionVector Instructions;
 | |
| 
 | |
|       void add(Loop *L);
 | |
|     };
 | |
| 
 | |
|     // The set of all reductions, and state tracking of possible reductions
 | |
|     // during loop instruction processing.
 | |
|     struct ReductionTracker {
 | |
|       typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
 | |
| 
 | |
|       // Add a new possible reduction.
 | |
|       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
 | |
| 
 | |
|       // Setup to track possible reductions corresponding to the provided
 | |
|       // rerolling scale. Only reductions with a number of non-PHI instructions
 | |
|       // that is divisible by the scale are considered. Three instructions sets
 | |
|       // are filled in:
 | |
|       //   - A set of all possible instructions in eligible reductions.
 | |
|       //   - A set of all PHIs in eligible reductions
 | |
|       //   - A set of all reduced values (last instructions) in eligible
 | |
|       //     reductions.
 | |
|       void restrictToScale(uint64_t Scale,
 | |
|                            SmallInstructionSet &PossibleRedSet,
 | |
|                            SmallInstructionSet &PossibleRedPHISet,
 | |
|                            SmallInstructionSet &PossibleRedLastSet) {
 | |
|         PossibleRedIdx.clear();
 | |
|         PossibleRedIter.clear();
 | |
|         Reds.clear();
 | |
| 
 | |
|         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
 | |
|           if (PossibleReds[i].size() % Scale == 0) {
 | |
|             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
 | |
|             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
 | |
| 
 | |
|             PossibleRedSet.insert(PossibleReds[i].getPHI());
 | |
|             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
 | |
|             for (Instruction *J : PossibleReds[i]) {
 | |
|               PossibleRedSet.insert(J);
 | |
|               PossibleRedIdx[J] = i;
 | |
|             }
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       // The functions below are used while processing the loop instructions.
 | |
| 
 | |
|       // Are the two instructions both from reductions, and furthermore, from
 | |
|       // the same reduction?
 | |
|       bool isPairInSame(Instruction *J1, Instruction *J2) {
 | |
|         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
 | |
|         if (J1I != PossibleRedIdx.end()) {
 | |
|           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
 | |
|           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // The two provided instructions, the first from the base iteration, and
 | |
|       // the second from iteration i, form a matched pair. If these are part of
 | |
|       // a reduction, record that fact.
 | |
|       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
 | |
|         if (PossibleRedIdx.count(J1)) {
 | |
|           assert(PossibleRedIdx.count(J2) &&
 | |
|                  "Recording reduction vs. non-reduction instruction?");
 | |
| 
 | |
|           PossibleRedIter[J1] = 0;
 | |
|           PossibleRedIter[J2] = i;
 | |
| 
 | |
|           int Idx = PossibleRedIdx[J1];
 | |
|           assert(Idx == PossibleRedIdx[J2] &&
 | |
|                  "Recording pair from different reductions?");
 | |
|           Reds.insert(Idx);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // The functions below can be called after we've finished processing all
 | |
|       // instructions in the loop, and we know which reductions were selected.
 | |
| 
 | |
|       // Is the provided instruction the PHI of a reduction selected for
 | |
|       // rerolling?
 | |
|       bool isSelectedPHI(Instruction *J) {
 | |
|         if (!isa<PHINode>(J))
 | |
|           return false;
 | |
| 
 | |
|         for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | |
|              RI != RIE; ++RI) {
 | |
|           int i = *RI;
 | |
|           if (cast<Instruction>(J) == PossibleReds[i].getPHI())
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       bool validateSelected();
 | |
|       void replaceSelected();
 | |
| 
 | |
|     protected:
 | |
|       // The vector of all possible reductions (for any scale).
 | |
|       SmallReductionVector PossibleReds;
 | |
| 
 | |
|       DenseMap<Instruction *, int> PossibleRedIdx;
 | |
|       DenseMap<Instruction *, int> PossibleRedIter;
 | |
|       DenseSet<int> Reds;
 | |
|     };
 | |
| 
 | |
|     // A DAGRootSet models an induction variable being used in a rerollable
 | |
|     // loop. For example,
 | |
|     //
 | |
|     //   x[i*3+0] = y1
 | |
|     //   x[i*3+1] = y2
 | |
|     //   x[i*3+2] = y3
 | |
|     //
 | |
|     //   Base instruction -> i*3               
 | |
|     //                    +---+----+
 | |
|     //                   /    |     \
 | |
|     //               ST[y1]  +1     +2  <-- Roots
 | |
|     //                        |      |
 | |
|     //                      ST[y2] ST[y3]
 | |
|     //
 | |
|     // There may be multiple DAGRoots, for example:
 | |
|     //
 | |
|     //   x[i*2+0] = ...   (1)
 | |
|     //   x[i*2+1] = ...   (1)
 | |
|     //   x[i*2+4] = ...   (2)
 | |
|     //   x[i*2+5] = ...   (2)
 | |
|     //   x[(i+1234)*2+5678] = ... (3)
 | |
|     //   x[(i+1234)*2+5679] = ... (3)
 | |
|     //
 | |
|     // The loop will be rerolled by adding a new loop induction variable,
 | |
|     // one for the Base instruction in each DAGRootSet.
 | |
|     //
 | |
|     struct DAGRootSet {
 | |
|       Instruction *BaseInst;
 | |
|       SmallInstructionVector Roots;
 | |
|       // The instructions between IV and BaseInst (but not including BaseInst).
 | |
|       SmallInstructionSet SubsumedInsts;
 | |
|     };
 | |
| 
 | |
|     // The set of all DAG roots, and state tracking of all roots
 | |
|     // for a particular induction variable.
 | |
|     struct DAGRootTracker {
 | |
|       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
 | |
|                      ScalarEvolution *SE, AliasAnalysis *AA,
 | |
|                      TargetLibraryInfo *TLI)
 | |
|           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV) {}
 | |
| 
 | |
|       /// Stage 1: Find all the DAG roots for the induction variable.
 | |
|       bool findRoots();
 | |
|       /// Stage 2: Validate if the found roots are valid.
 | |
|       bool validate(ReductionTracker &Reductions);
 | |
|       /// Stage 3: Assuming validate() returned true, perform the
 | |
|       /// replacement.
 | |
|       /// @param IterCount The maximum iteration count of L.
 | |
|       void replace(const SCEV *IterCount);
 | |
| 
 | |
|     protected:
 | |
|       typedef MapVector<Instruction*, SmallBitVector> UsesTy;
 | |
| 
 | |
|       bool findRootsRecursive(Instruction *IVU,
 | |
|                               SmallInstructionSet SubsumedInsts);
 | |
|       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
 | |
|       bool collectPossibleRoots(Instruction *Base,
 | |
|                                 std::map<int64_t,Instruction*> &Roots);
 | |
| 
 | |
|       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
 | |
|       void collectInLoopUserSet(const SmallInstructionVector &Roots,
 | |
|                                 const SmallInstructionSet &Exclude,
 | |
|                                 const SmallInstructionSet &Final,
 | |
|                                 DenseSet<Instruction *> &Users);
 | |
|       void collectInLoopUserSet(Instruction *Root,
 | |
|                                 const SmallInstructionSet &Exclude,
 | |
|                                 const SmallInstructionSet &Final,
 | |
|                                 DenseSet<Instruction *> &Users);
 | |
| 
 | |
|       UsesTy::iterator nextInstr(int Val, UsesTy &In,
 | |
|                                  const SmallInstructionSet &Exclude,
 | |
|                                  UsesTy::iterator *StartI=nullptr);
 | |
|       bool isBaseInst(Instruction *I);
 | |
|       bool isRootInst(Instruction *I);
 | |
|       bool instrDependsOn(Instruction *I,
 | |
|                           UsesTy::iterator Start,
 | |
|                           UsesTy::iterator End);
 | |
| 
 | |
|       LoopReroll *Parent;
 | |
| 
 | |
|       // Members of Parent, replicated here for brevity.
 | |
|       Loop *L;
 | |
|       ScalarEvolution *SE;
 | |
|       AliasAnalysis *AA;
 | |
|       TargetLibraryInfo *TLI;
 | |
| 
 | |
|       // The loop induction variable.
 | |
|       Instruction *IV;
 | |
|       // Loop step amount.
 | |
|       uint64_t Inc;
 | |
|       // Loop reroll count; if Inc == 1, this records the scaling applied
 | |
|       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
 | |
|       // If Inc is not 1, Scale = Inc.
 | |
|       uint64_t Scale;
 | |
|       // The roots themselves.
 | |
|       SmallVector<DAGRootSet,16> RootSets;
 | |
|       // All increment instructions for IV.
 | |
|       SmallInstructionVector LoopIncs;
 | |
|       // Map of all instructions in the loop (in order) to the iterations
 | |
|       // they are used in (or specially, IL_All for instructions
 | |
|       // used in the loop increment mechanism).
 | |
|       UsesTy Uses;
 | |
|     };
 | |
| 
 | |
|     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
 | |
|     void collectPossibleReductions(Loop *L,
 | |
|            ReductionTracker &Reductions);
 | |
|     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
 | |
|                 ReductionTracker &Reductions);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopReroll::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | |
| 
 | |
| Pass *llvm::createLoopRerollPass() {
 | |
|   return new LoopReroll;
 | |
| }
 | |
| 
 | |
| // Returns true if the provided instruction is used outside the given loop.
 | |
| // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
 | |
| // non-loop blocks to be outside the loop.
 | |
| static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
 | |
|   for (User *U : I->users()) {
 | |
|     if (!L->contains(cast<Instruction>(U)))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Collect the list of loop induction variables with respect to which it might
 | |
| // be possible to reroll the loop.
 | |
| void LoopReroll::collectPossibleIVs(Loop *L,
 | |
|                                     SmallInstructionVector &PossibleIVs) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   for (BasicBlock::iterator I = Header->begin(),
 | |
|        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | |
|     if (!isa<PHINode>(I))
 | |
|       continue;
 | |
|     if (!I->getType()->isIntegerTy())
 | |
|       continue;
 | |
| 
 | |
|     if (const SCEVAddRecExpr *PHISCEV =
 | |
|         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
 | |
|       if (PHISCEV->getLoop() != L)
 | |
|         continue;
 | |
|       if (!PHISCEV->isAffine())
 | |
|         continue;
 | |
|       if (const SCEVConstant *IncSCEV =
 | |
|           dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
 | |
|         if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
 | |
|           continue;
 | |
|         if (IncSCEV->getValue()->uge(MaxInc))
 | |
|           continue;
 | |
| 
 | |
|         DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
 | |
|               *PHISCEV << "\n");
 | |
|         PossibleIVs.push_back(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Add the remainder of the reduction-variable chain to the instruction vector
 | |
| // (the initial PHINode has already been added). If successful, the object is
 | |
| // marked as valid.
 | |
| void LoopReroll::SimpleLoopReduction::add(Loop *L) {
 | |
|   assert(!Valid && "Cannot add to an already-valid chain");
 | |
| 
 | |
|   // The reduction variable must be a chain of single-use instructions
 | |
|   // (including the PHI), except for the last value (which is used by the PHI
 | |
|   // and also outside the loop).
 | |
|   Instruction *C = Instructions.front();
 | |
|   if (C->user_empty())
 | |
|     return;
 | |
| 
 | |
|   do {
 | |
|     C = cast<Instruction>(*C->user_begin());
 | |
|     if (C->hasOneUse()) {
 | |
|       if (!C->isBinaryOp())
 | |
|         return;
 | |
| 
 | |
|       if (!(isa<PHINode>(Instructions.back()) ||
 | |
|             C->isSameOperationAs(Instructions.back())))
 | |
|         return;
 | |
| 
 | |
|       Instructions.push_back(C);
 | |
|     }
 | |
|   } while (C->hasOneUse());
 | |
| 
 | |
|   if (Instructions.size() < 2 ||
 | |
|       !C->isSameOperationAs(Instructions.back()) ||
 | |
|       C->use_empty())
 | |
|     return;
 | |
| 
 | |
|   // C is now the (potential) last instruction in the reduction chain.
 | |
|   for (User *U : C->users()) {
 | |
|     // The only in-loop user can be the initial PHI.
 | |
|     if (L->contains(cast<Instruction>(U)))
 | |
|       if (cast<Instruction>(U) != Instructions.front())
 | |
|         return;
 | |
|   }
 | |
| 
 | |
|   Instructions.push_back(C);
 | |
|   Valid = true;
 | |
| }
 | |
| 
 | |
| // Collect the vector of possible reduction variables.
 | |
| void LoopReroll::collectPossibleReductions(Loop *L,
 | |
|   ReductionTracker &Reductions) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   for (BasicBlock::iterator I = Header->begin(),
 | |
|        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | |
|     if (!isa<PHINode>(I))
 | |
|       continue;
 | |
|     if (!I->getType()->isSingleValueType())
 | |
|       continue;
 | |
| 
 | |
|     SimpleLoopReduction SLR(I, L);
 | |
|     if (!SLR.valid())
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
 | |
|           SLR.size() << " chained instructions)\n");
 | |
|     Reductions.addSLR(SLR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Collect the set of all users of the provided root instruction. This set of
 | |
| // users contains not only the direct users of the root instruction, but also
 | |
| // all users of those users, and so on. There are two exceptions:
 | |
| //
 | |
| //   1. Instructions in the set of excluded instructions are never added to the
 | |
| //   use set (even if they are users). This is used, for example, to exclude
 | |
| //   including root increments in the use set of the primary IV.
 | |
| //
 | |
| //   2. Instructions in the set of final instructions are added to the use set
 | |
| //   if they are users, but their users are not added. This is used, for
 | |
| //   example, to prevent a reduction update from forcing all later reduction
 | |
| //   updates into the use set.
 | |
| void LoopReroll::DAGRootTracker::collectInLoopUserSet(
 | |
|   Instruction *Root, const SmallInstructionSet &Exclude,
 | |
|   const SmallInstructionSet &Final,
 | |
|   DenseSet<Instruction *> &Users) {
 | |
|   SmallInstructionVector Queue(1, Root);
 | |
|   while (!Queue.empty()) {
 | |
|     Instruction *I = Queue.pop_back_val();
 | |
|     if (!Users.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     if (!Final.count(I))
 | |
|       for (Use &U : I->uses()) {
 | |
|         Instruction *User = cast<Instruction>(U.getUser());
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|           // Ignore "wrap-around" uses to PHIs of this loop's header.
 | |
|           if (PN->getIncomingBlock(U) == L->getHeader())
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (L->contains(User) && !Exclude.count(User)) {
 | |
|           Queue.push_back(User);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // We also want to collect single-user "feeder" values.
 | |
|     for (User::op_iterator OI = I->op_begin(),
 | |
|          OIE = I->op_end(); OI != OIE; ++OI) {
 | |
|       if (Instruction *Op = dyn_cast<Instruction>(*OI))
 | |
|         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
 | |
|             !Final.count(Op))
 | |
|           Queue.push_back(Op);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Collect all of the users of all of the provided root instructions (combined
 | |
| // into a single set).
 | |
| void LoopReroll::DAGRootTracker::collectInLoopUserSet(
 | |
|   const SmallInstructionVector &Roots,
 | |
|   const SmallInstructionSet &Exclude,
 | |
|   const SmallInstructionSet &Final,
 | |
|   DenseSet<Instruction *> &Users) {
 | |
|   for (SmallInstructionVector::const_iterator I = Roots.begin(),
 | |
|        IE = Roots.end(); I != IE; ++I)
 | |
|     collectInLoopUserSet(*I, Exclude, Final, Users);
 | |
| }
 | |
| 
 | |
| static bool isSimpleLoadStore(Instruction *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isSimple();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isSimple();
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | |
|     return !MI->isVolatile();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if IVU is a "simple" arithmetic operation.
 | |
| /// This is used for narrowing the search space for DAGRoots; only arithmetic
 | |
| /// and GEPs can be part of a DAGRoot.
 | |
| static bool isSimpleArithmeticOp(User *IVU) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
 | |
|     switch (I->getOpcode()) {
 | |
|     default: return false;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::GetElementPtr:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isLoopIncrement(User *U, Instruction *IV) {
 | |
|   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
 | |
|   if (!BO || BO->getOpcode() != Instruction::Add)
 | |
|     return false;
 | |
| 
 | |
|   for (auto *UU : BO->users()) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(UU);
 | |
|     if (PN && PN == IV)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::
 | |
| collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
 | |
|   SmallInstructionVector BaseUsers;
 | |
| 
 | |
|   for (auto *I : Base->users()) {
 | |
|     ConstantInt *CI = nullptr;
 | |
| 
 | |
|     if (isLoopIncrement(I, IV)) {
 | |
|       LoopIncs.push_back(cast<Instruction>(I));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The root nodes must be either GEPs, ORs or ADDs.
 | |
|     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|       if (BO->getOpcode() == Instruction::Add ||
 | |
|           BO->getOpcode() == Instruction::Or)
 | |
|         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
 | |
|     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
 | |
|       CI = dyn_cast<ConstantInt>(LastOperand);
 | |
|     }
 | |
| 
 | |
|     if (!CI) {
 | |
|       if (Instruction *II = dyn_cast<Instruction>(I)) {
 | |
|         BaseUsers.push_back(II);
 | |
|         continue;
 | |
|       } else {
 | |
|         DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     int64_t V = CI->getValue().getSExtValue();
 | |
|     if (Roots.find(V) != Roots.end())
 | |
|       // No duplicates, please.
 | |
|       return false;
 | |
| 
 | |
|     // FIXME: Add support for negative values.
 | |
|     if (V < 0) {
 | |
|       DEBUG(dbgs() << "LRR: Aborting due to negative value: " << V << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Roots[V] = cast<Instruction>(I);
 | |
|   }
 | |
| 
 | |
|   if (Roots.empty())
 | |
|     return false;
 | |
| 
 | |
|   // If we found non-loop-inc, non-root users of Base, assume they are
 | |
|   // for the zeroth root index. This is because "add %a, 0" gets optimized
 | |
|   // away.
 | |
|   if (BaseUsers.size()) {
 | |
|     if (Roots.find(0) != Roots.end()) {
 | |
|       DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
 | |
|       return false;
 | |
|     }
 | |
|     Roots[0] = Base;
 | |
|   }
 | |
| 
 | |
|   // Calculate the number of users of the base, or lowest indexed, iteration.
 | |
|   unsigned NumBaseUses = BaseUsers.size();
 | |
|   if (NumBaseUses == 0)
 | |
|     NumBaseUses = Roots.begin()->second->getNumUses();
 | |
|   
 | |
|   // Check that every node has the same number of users.
 | |
|   for (auto &KV : Roots) {
 | |
|     if (KV.first == 0)
 | |
|       continue;
 | |
|     if (KV.second->getNumUses() != NumBaseUses) {
 | |
|       DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
 | |
|             << "#Base=" << NumBaseUses << ", #Root=" <<
 | |
|             KV.second->getNumUses() << "\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true; 
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::
 | |
| findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
 | |
|   // Does the user look like it could be part of a root set?
 | |
|   // All its users must be simple arithmetic ops.
 | |
|   if (I->getNumUses() > IL_MaxRerollIterations)
 | |
|     return false;
 | |
| 
 | |
|   if ((I->getOpcode() == Instruction::Mul ||
 | |
|        I->getOpcode() == Instruction::PHI) &&
 | |
|       I != IV &&
 | |
|       findRootsBase(I, SubsumedInsts))
 | |
|     return true;
 | |
| 
 | |
|   SubsumedInsts.insert(I);
 | |
| 
 | |
|   for (User *V : I->users()) {
 | |
|     Instruction *I = dyn_cast<Instruction>(V);
 | |
|     if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
 | |
|       continue;
 | |
| 
 | |
|     if (!I || !isSimpleArithmeticOp(I) ||
 | |
|         !findRootsRecursive(I, SubsumedInsts))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::
 | |
| findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
 | |
| 
 | |
|   // The base instruction needs to be a multiply so
 | |
|   // that we can erase it.
 | |
|   if (IVU->getOpcode() != Instruction::Mul &&
 | |
|       IVU->getOpcode() != Instruction::PHI)
 | |
|     return false;
 | |
| 
 | |
|   std::map<int64_t, Instruction*> V;
 | |
|   if (!collectPossibleRoots(IVU, V))
 | |
|     return false;
 | |
| 
 | |
|   // If we didn't get a root for index zero, then IVU must be 
 | |
|   // subsumed.
 | |
|   if (V.find(0) == V.end())
 | |
|     SubsumedInsts.insert(IVU);
 | |
| 
 | |
|   // Partition the vector into monotonically increasing indexes.
 | |
|   DAGRootSet DRS;
 | |
|   DRS.BaseInst = nullptr;
 | |
| 
 | |
|   for (auto &KV : V) {
 | |
|     if (!DRS.BaseInst) {
 | |
|       DRS.BaseInst = KV.second;
 | |
|       DRS.SubsumedInsts = SubsumedInsts;
 | |
|     } else if (DRS.Roots.empty()) {
 | |
|       DRS.Roots.push_back(KV.second);
 | |
|     } else if (V.find(KV.first - 1) != V.end()) {
 | |
|       DRS.Roots.push_back(KV.second);
 | |
|     } else {
 | |
|       // Linear sequence terminated.
 | |
|       RootSets.push_back(DRS);
 | |
|       DRS.BaseInst = KV.second;
 | |
|       DRS.SubsumedInsts = SubsumedInsts;
 | |
|       DRS.Roots.clear();
 | |
|     }
 | |
|   }
 | |
|   RootSets.push_back(DRS);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::findRoots() {
 | |
| 
 | |
|   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
 | |
|   Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
 | |
|     getValue()->getZExtValue();
 | |
| 
 | |
|   assert(RootSets.empty() && "Unclean state!");
 | |
|   if (Inc == 1) {
 | |
|     for (auto *IVU : IV->users()) {
 | |
|       if (isLoopIncrement(IVU, IV))
 | |
|         LoopIncs.push_back(cast<Instruction>(IVU));
 | |
|     }
 | |
|     if (!findRootsRecursive(IV, SmallInstructionSet()))
 | |
|       return false;
 | |
|     LoopIncs.push_back(IV);
 | |
|   } else {
 | |
|     if (!findRootsBase(IV, SmallInstructionSet()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Ensure all sets have the same size.
 | |
|   if (RootSets.empty()) {
 | |
|     DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
 | |
|     return false;
 | |
|   }
 | |
|   for (auto &V : RootSets) {
 | |
|     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
 | |
|       DEBUG(dbgs()
 | |
|             << "LRR: Aborting because not all root sets have the same size\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // And ensure all loop iterations are consecutive. We rely on std::map
 | |
|   // providing ordered traversal.
 | |
|   for (auto &V : RootSets) {
 | |
|     const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
 | |
|     if (!ADR)
 | |
|       return false;
 | |
| 
 | |
|     // Consider a DAGRootSet with N-1 roots (so N different values including
 | |
|     //   BaseInst).
 | |
|     // Define d = Roots[0] - BaseInst, which should be the same as
 | |
|     //   Roots[I] - Roots[I-1] for all I in [1..N).
 | |
|     // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
 | |
|     //   loop iteration J.
 | |
|     //
 | |
|     // Now, For the loop iterations to be consecutive:
 | |
|     //   D = d * N
 | |
| 
 | |
|     unsigned N = V.Roots.size() + 1;
 | |
|     const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
 | |
|     const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
 | |
|     if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
 | |
|       DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   Scale = RootSets[0].Roots.size() + 1;
 | |
| 
 | |
|   if (Scale > IL_MaxRerollIterations) {
 | |
|     DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
 | |
|           << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
 | |
|           << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
 | |
|   // Populate the MapVector with all instructions in the block, in order first,
 | |
|   // so we can iterate over the contents later in perfect order.
 | |
|   for (auto &I : *L->getHeader()) {
 | |
|     Uses[&I].resize(IL_End);
 | |
|   }
 | |
| 
 | |
|   SmallInstructionSet Exclude;
 | |
|   for (auto &DRS : RootSets) {
 | |
|     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
 | |
|     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
 | |
|     Exclude.insert(DRS.BaseInst);
 | |
|   }
 | |
|   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
 | |
| 
 | |
|   for (auto &DRS : RootSets) {
 | |
|     DenseSet<Instruction*> VBase;
 | |
|     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
 | |
|     for (auto *I : VBase) {
 | |
|       Uses[I].set(0);
 | |
|     }
 | |
| 
 | |
|     unsigned Idx = 1;
 | |
|     for (auto *Root : DRS.Roots) {
 | |
|       DenseSet<Instruction*> V;
 | |
|       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
 | |
| 
 | |
|       // While we're here, check the use sets are the same size.
 | |
|       if (V.size() != VBase.size()) {
 | |
|         DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       for (auto *I : V) {
 | |
|         Uses[I].set(Idx);
 | |
|       }
 | |
|       ++Idx;
 | |
|     }
 | |
| 
 | |
|     // Make sure our subsumed instructions are remembered too.
 | |
|     for (auto *I : DRS.SubsumedInsts) {
 | |
|       Uses[I].set(IL_All);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure the loop increments are also accounted for.
 | |
| 
 | |
|   Exclude.clear();
 | |
|   for (auto &DRS : RootSets) {
 | |
|     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
 | |
|     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
 | |
|     Exclude.insert(DRS.BaseInst);
 | |
|   }
 | |
| 
 | |
|   DenseSet<Instruction*> V;
 | |
|   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
 | |
|   for (auto *I : V) {
 | |
|     Uses[I].set(IL_All);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Get the next instruction in "In" that is a member of set Val.
 | |
| /// Start searching from StartI, and do not return anything in Exclude.
 | |
| /// If StartI is not given, start from In.begin().
 | |
| LoopReroll::DAGRootTracker::UsesTy::iterator
 | |
| LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
 | |
|                                       const SmallInstructionSet &Exclude,
 | |
|                                       UsesTy::iterator *StartI) {
 | |
|   UsesTy::iterator I = StartI ? *StartI : In.begin();
 | |
|   while (I != In.end() && (I->second.test(Val) == 0 ||
 | |
|                            Exclude.count(I->first) != 0))
 | |
|     ++I;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
 | |
|   for (auto &DRS : RootSets) {
 | |
|     if (DRS.BaseInst == I)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
 | |
|   for (auto &DRS : RootSets) {
 | |
|     if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if instruction I depends on any instruction between
 | |
| /// Start and End.
 | |
| bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
 | |
|                                                 UsesTy::iterator Start,
 | |
|                                                 UsesTy::iterator End) {
 | |
|   for (auto *U : I->users()) {
 | |
|     for (auto It = Start; It != End; ++It)
 | |
|       if (U == It->first)
 | |
|         return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
 | |
|   // We now need to check for equivalence of the use graph of each root with
 | |
|   // that of the primary induction variable (excluding the roots). Our goal
 | |
|   // here is not to solve the full graph isomorphism problem, but rather to
 | |
|   // catch common cases without a lot of work. As a result, we will assume
 | |
|   // that the relative order of the instructions in each unrolled iteration
 | |
|   // is the same (although we will not make an assumption about how the
 | |
|   // different iterations are intermixed). Note that while the order must be
 | |
|   // the same, the instructions may not be in the same basic block.
 | |
| 
 | |
|   // An array of just the possible reductions for this scale factor. When we
 | |
|   // collect the set of all users of some root instructions, these reduction
 | |
|   // instructions are treated as 'final' (their uses are not considered).
 | |
|   // This is important because we don't want the root use set to search down
 | |
|   // the reduction chain.
 | |
|   SmallInstructionSet PossibleRedSet;
 | |
|   SmallInstructionSet PossibleRedLastSet;
 | |
|   SmallInstructionSet PossibleRedPHISet;
 | |
|   Reductions.restrictToScale(Scale, PossibleRedSet,
 | |
|                              PossibleRedPHISet, PossibleRedLastSet);
 | |
| 
 | |
|   // Populate "Uses" with where each instruction is used.
 | |
|   if (!collectUsedInstructions(PossibleRedSet))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure we mark the reduction PHIs as used in all iterations.
 | |
|   for (auto *I : PossibleRedPHISet) {
 | |
|     Uses[I].set(IL_All);
 | |
|   }
 | |
| 
 | |
|   // Make sure all instructions in the loop are in one and only one
 | |
|   // set.
 | |
|   for (auto &KV : Uses) {
 | |
|     if (KV.second.count() != 1) {
 | |
|       DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
 | |
|             << *KV.first << " (#uses=" << KV.second.count() << ")\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(
 | |
|     for (auto &KV : Uses) {
 | |
|       dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
 | |
|     }
 | |
|     );
 | |
| 
 | |
|   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
 | |
|     // In addition to regular aliasing information, we need to look for
 | |
|     // instructions from later (future) iterations that have side effects
 | |
|     // preventing us from reordering them past other instructions with side
 | |
|     // effects.
 | |
|     bool FutureSideEffects = false;
 | |
|     AliasSetTracker AST(*AA);
 | |
|     // The map between instructions in f(%iv.(i+1)) and f(%iv).
 | |
|     DenseMap<Value *, Value *> BaseMap;
 | |
| 
 | |
|     // Compare iteration Iter to the base.
 | |
|     SmallInstructionSet Visited;
 | |
|     auto BaseIt = nextInstr(0, Uses, Visited);
 | |
|     auto RootIt = nextInstr(Iter, Uses, Visited);
 | |
|     auto LastRootIt = Uses.begin();
 | |
| 
 | |
|     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
 | |
|       Instruction *BaseInst = BaseIt->first;
 | |
|       Instruction *RootInst = RootIt->first;
 | |
| 
 | |
|       // Skip over the IV or root instructions; only match their users.
 | |
|       bool Continue = false;
 | |
|       if (isBaseInst(BaseInst)) {
 | |
|         Visited.insert(BaseInst);
 | |
|         BaseIt = nextInstr(0, Uses, Visited);
 | |
|         Continue = true;
 | |
|       }
 | |
|       if (isRootInst(RootInst)) {
 | |
|         LastRootIt = RootIt;
 | |
|         Visited.insert(RootInst);
 | |
|         RootIt = nextInstr(Iter, Uses, Visited);
 | |
|         Continue = true;
 | |
|       }
 | |
|       if (Continue) continue;
 | |
| 
 | |
|       if (!BaseInst->isSameOperationAs(RootInst)) {
 | |
|         // Last chance saloon. We don't try and solve the full isomorphism
 | |
|         // problem, but try and at least catch the case where two instructions
 | |
|         // *of different types* are round the wrong way. We won't be able to
 | |
|         // efficiently tell, given two ADD instructions, which way around we
 | |
|         // should match them, but given an ADD and a SUB, we can at least infer
 | |
|         // which one is which.
 | |
|         //
 | |
|         // This should allow us to deal with a greater subset of the isomorphism
 | |
|         // problem. It does however change a linear algorithm into a quadratic
 | |
|         // one, so limit the number of probes we do.
 | |
|         auto TryIt = RootIt;
 | |
|         unsigned N = NumToleratedFailedMatches;
 | |
|         while (TryIt != Uses.end() &&
 | |
|                !BaseInst->isSameOperationAs(TryIt->first) &&
 | |
|                N--) {
 | |
|           ++TryIt;
 | |
|           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
 | |
|         }
 | |
| 
 | |
|         if (TryIt == Uses.end() || TryIt == RootIt ||
 | |
|             instrDependsOn(TryIt->first, RootIt, TryIt)) {
 | |
|           DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | |
|                 " vs. " << *RootInst << "\n");
 | |
|           return false;
 | |
|         }
 | |
|         
 | |
|         RootIt = TryIt;
 | |
|         RootInst = TryIt->first;
 | |
|       }
 | |
| 
 | |
|       // All instructions between the last root and this root
 | |
|       // may belong to some other iteration. If they belong to a 
 | |
|       // future iteration, then they're dangerous to alias with.
 | |
|       // 
 | |
|       // Note that because we allow a limited amount of flexibility in the order
 | |
|       // that we visit nodes, LastRootIt might be *before* RootIt, in which
 | |
|       // case we've already checked this set of instructions so we shouldn't
 | |
|       // do anything.
 | |
|       for (; LastRootIt < RootIt; ++LastRootIt) {
 | |
|         Instruction *I = LastRootIt->first;
 | |
|         if (LastRootIt->second.find_first() < (int)Iter)
 | |
|           continue;
 | |
|         if (I->mayWriteToMemory())
 | |
|           AST.add(I);
 | |
|         // Note: This is specifically guarded by a check on isa<PHINode>,
 | |
|         // which while a valid (somewhat arbitrary) micro-optimization, is
 | |
|         // needed because otherwise isSafeToSpeculativelyExecute returns
 | |
|         // false on PHI nodes.
 | |
|         if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
 | |
|             !isSafeToSpeculativelyExecute(I))
 | |
|           // Intervening instructions cause side effects.
 | |
|           FutureSideEffects = true;
 | |
|       }
 | |
| 
 | |
|       // Make sure that this instruction, which is in the use set of this
 | |
|       // root instruction, does not also belong to the base set or the set of
 | |
|       // some other root instruction.
 | |
|       if (RootIt->second.count() > 1) {
 | |
|         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | |
|                         " vs. " << *RootInst << " (prev. case overlap)\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Make sure that we don't alias with any instruction in the alias set
 | |
|       // tracker. If we do, then we depend on a future iteration, and we
 | |
|       // can't reroll.
 | |
|       if (RootInst->mayReadFromMemory())
 | |
|         for (auto &K : AST) {
 | |
|           if (K.aliasesUnknownInst(RootInst, *AA)) {
 | |
|             DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | |
|                             " vs. " << *RootInst << " (depends on future store)\n");
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       // If we've past an instruction from a future iteration that may have
 | |
|       // side effects, and this instruction might also, then we can't reorder
 | |
|       // them, and this matching fails. As an exception, we allow the alias
 | |
|       // set tracker to handle regular (simple) load/store dependencies.
 | |
|       if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
 | |
|                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
 | |
|                                 (!isSimpleLoadStore(RootInst) &&
 | |
|                                  !isSafeToSpeculativelyExecute(RootInst)))) {
 | |
|         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | |
|                         " vs. " << *RootInst <<
 | |
|                         " (side effects prevent reordering)\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // For instructions that are part of a reduction, if the operation is
 | |
|       // associative, then don't bother matching the operands (because we
 | |
|       // already know that the instructions are isomorphic, and the order
 | |
|       // within the iteration does not matter). For non-associative reductions,
 | |
|       // we do need to match the operands, because we need to reject
 | |
|       // out-of-order instructions within an iteration!
 | |
|       // For example (assume floating-point addition), we need to reject this:
 | |
|       //   x += a[i]; x += b[i];
 | |
|       //   x += a[i+1]; x += b[i+1];
 | |
|       //   x += b[i+2]; x += a[i+2];
 | |
|       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
 | |
| 
 | |
|       if (!(InReduction && BaseInst->isAssociative())) {
 | |
|         bool Swapped = false, SomeOpMatched = false;
 | |
|         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
 | |
|           Value *Op2 = RootInst->getOperand(j);
 | |
| 
 | |
|           // If this is part of a reduction (and the operation is not
 | |
|           // associatve), then we match all operands, but not those that are
 | |
|           // part of the reduction.
 | |
|           if (InReduction)
 | |
|             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
 | |
|               if (Reductions.isPairInSame(RootInst, Op2I))
 | |
|                 continue;
 | |
| 
 | |
|           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
 | |
|           if (BMI != BaseMap.end()) {
 | |
|             Op2 = BMI->second;
 | |
|           } else {
 | |
|             for (auto &DRS : RootSets) {
 | |
|               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
 | |
|                 Op2 = DRS.BaseInst;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
 | |
|             // If we've not already decided to swap the matched operands, and
 | |
|             // we've not already matched our first operand (note that we could
 | |
|             // have skipped matching the first operand because it is part of a
 | |
|             // reduction above), and the instruction is commutative, then try
 | |
|             // the swapped match.
 | |
|             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
 | |
|                 BaseInst->getOperand(!j) == Op2) {
 | |
|               Swapped = true;
 | |
|             } else {
 | |
|               DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
 | |
|                     << " vs. " << *RootInst << " (operand " << j << ")\n");
 | |
|               return false;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           SomeOpMatched = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if ((!PossibleRedLastSet.count(BaseInst) &&
 | |
|            hasUsesOutsideLoop(BaseInst, L)) ||
 | |
|           (!PossibleRedLastSet.count(RootInst) &&
 | |
|            hasUsesOutsideLoop(RootInst, L))) {
 | |
|         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
 | |
|                         " vs. " << *RootInst << " (uses outside loop)\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       Reductions.recordPair(BaseInst, RootInst, Iter);
 | |
|       BaseMap.insert(std::make_pair(RootInst, BaseInst));
 | |
| 
 | |
|       LastRootIt = RootIt;
 | |
|       Visited.insert(BaseInst);
 | |
|       Visited.insert(RootInst);
 | |
|       BaseIt = nextInstr(0, Uses, Visited);
 | |
|       RootIt = nextInstr(Iter, Uses, Visited);
 | |
|     }
 | |
|     assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
 | |
|             "Mismatched set sizes!");
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
 | |
|                   *IV << "\n");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   // Remove instructions associated with non-base iterations.
 | |
|   for (BasicBlock::reverse_iterator J = Header->rbegin();
 | |
|        J != Header->rend();) {
 | |
|     unsigned I = Uses[&*J].find_first();
 | |
|     if (I > 0 && I < IL_All) {
 | |
|       Instruction *D = &*J;
 | |
|       DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
 | |
|       D->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ++J;
 | |
|   }
 | |
|   const DataLayout &DL = Header->getModule()->getDataLayout();
 | |
| 
 | |
|   // We need to create a new induction variable for each different BaseInst.
 | |
|   for (auto &DRS : RootSets) {
 | |
|     // Insert the new induction variable.
 | |
|     const SCEVAddRecExpr *RealIVSCEV =
 | |
|       cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
 | |
|     const SCEV *Start = RealIVSCEV->getStart();
 | |
|     const SCEVAddRecExpr *H = cast<SCEVAddRecExpr>
 | |
|       (SE->getAddRecExpr(Start,
 | |
|                          SE->getConstant(RealIVSCEV->getType(), 1),
 | |
|                          L, SCEV::FlagAnyWrap));
 | |
|     { // Limit the lifetime of SCEVExpander.
 | |
|       SCEVExpander Expander(*SE, DL, "reroll");
 | |
|       Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
 | |
| 
 | |
|       for (auto &KV : Uses) {
 | |
|         if (KV.second.find_first() == 0)
 | |
|           KV.first->replaceUsesOfWith(DRS.BaseInst, NewIV);
 | |
|       }
 | |
| 
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
 | |
|         // FIXME: Why do we need this check?
 | |
|         if (Uses[BI].find_first() == IL_All) {
 | |
|           const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
 | |
| 
 | |
|           // Iteration count SCEV minus 1
 | |
|           const SCEV *ICMinus1SCEV =
 | |
|             SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
 | |
| 
 | |
|           Value *ICMinus1; // Iteration count minus 1
 | |
|           if (isa<SCEVConstant>(ICMinus1SCEV)) {
 | |
|             ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
 | |
|           } else {
 | |
|             BasicBlock *Preheader = L->getLoopPreheader();
 | |
|             if (!Preheader)
 | |
|               Preheader = InsertPreheaderForLoop(L, Parent);
 | |
| 
 | |
|             ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
 | |
|                                               Preheader->getTerminator());
 | |
|           }
 | |
| 
 | |
|           Value *Cond =
 | |
|             new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, "exitcond");
 | |
|           BI->setCondition(Cond);
 | |
| 
 | |
|           if (BI->getSuccessor(1) != Header)
 | |
|             BI->swapSuccessors();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SimplifyInstructionsInBlock(Header, TLI);
 | |
|   DeleteDeadPHIs(Header, TLI);
 | |
| }
 | |
| 
 | |
| // Validate the selected reductions. All iterations must have an isomorphic
 | |
| // part of the reduction chain and, for non-associative reductions, the chain
 | |
| // entries must appear in order.
 | |
| bool LoopReroll::ReductionTracker::validateSelected() {
 | |
|   // For a non-associative reduction, the chain entries must appear in order.
 | |
|   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | |
|        RI != RIE; ++RI) {
 | |
|     int i = *RI;
 | |
|     int PrevIter = 0, BaseCount = 0, Count = 0;
 | |
|     for (Instruction *J : PossibleReds[i]) {
 | |
|       // Note that all instructions in the chain must have been found because
 | |
|       // all instructions in the function must have been assigned to some
 | |
|       // iteration.
 | |
|       int Iter = PossibleRedIter[J];
 | |
|       if (Iter != PrevIter && Iter != PrevIter + 1 &&
 | |
|           !PossibleReds[i].getReducedValue()->isAssociative()) {
 | |
|         DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
 | |
|                         J << "\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (Iter != PrevIter) {
 | |
|         if (Count != BaseCount) {
 | |
|           DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
 | |
|                 " reduction use count " << Count <<
 | |
|                 " is not equal to the base use count " <<
 | |
|                 BaseCount << "\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         Count = 0;
 | |
|       }
 | |
| 
 | |
|       ++Count;
 | |
|       if (Iter == 0)
 | |
|         ++BaseCount;
 | |
| 
 | |
|       PrevIter = Iter;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // For all selected reductions, remove all parts except those in the first
 | |
| // iteration (and the PHI). Replace outside uses of the reduced value with uses
 | |
| // of the first-iteration reduced value (in other words, reroll the selected
 | |
| // reductions).
 | |
| void LoopReroll::ReductionTracker::replaceSelected() {
 | |
|   // Fixup reductions to refer to the last instruction associated with the
 | |
|   // first iteration (not the last).
 | |
|   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | |
|        RI != RIE; ++RI) {
 | |
|     int i = *RI;
 | |
|     int j = 0;
 | |
|     for (int e = PossibleReds[i].size(); j != e; ++j)
 | |
|       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
 | |
|         --j;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // Replace users with the new end-of-chain value.
 | |
|     SmallInstructionVector Users;
 | |
|     for (User *U : PossibleReds[i].getReducedValue()->users()) {
 | |
|       Users.push_back(cast<Instruction>(U));
 | |
|     }
 | |
| 
 | |
|     for (SmallInstructionVector::iterator J = Users.begin(),
 | |
|          JE = Users.end(); J != JE; ++J)
 | |
|       (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
 | |
|                               PossibleReds[i][j]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Reroll the provided loop with respect to the provided induction variable.
 | |
| // Generally, we're looking for a loop like this:
 | |
| //
 | |
| // %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | |
| // f(%iv)
 | |
| // %iv.1 = add %iv, 1                <-- a root increment
 | |
| // f(%iv.1)
 | |
| // %iv.2 = add %iv, 2                <-- a root increment
 | |
| // f(%iv.2)
 | |
| // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | |
| // f(%iv.scale_m_1)
 | |
| // ...
 | |
| // %iv.next = add %iv, scale
 | |
| // %cmp = icmp(%iv, ...)
 | |
| // br %cmp, header, exit
 | |
| //
 | |
| // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
 | |
| // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
 | |
| // be intermixed with eachother. The restriction imposed by this algorithm is
 | |
| // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
 | |
| // etc. be the same.
 | |
| //
 | |
| // First, we collect the use set of %iv, excluding the other increment roots.
 | |
| // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
 | |
| // times, having collected the use set of f(%iv.(i+1)), during which we:
 | |
| //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
 | |
| //     the next unmatched instruction in f(%iv.(i+1)).
 | |
| //   - Ensure that both matched instructions don't have any external users
 | |
| //     (with the exception of last-in-chain reduction instructions).
 | |
| //   - Track the (aliasing) write set, and other side effects, of all
 | |
| //     instructions that belong to future iterations that come before the matched
 | |
| //     instructions. If the matched instructions read from that write set, then
 | |
| //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
 | |
| //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
 | |
| //     if any of these future instructions had side effects (could not be
 | |
| //     speculatively executed), and so do the matched instructions, when we
 | |
| //     cannot reorder those side-effect-producing instructions, and rerolling
 | |
| //     fails.
 | |
| //
 | |
| // Finally, we make sure that all loop instructions are either loop increment
 | |
| // roots, belong to simple latch code, parts of validated reductions, part of
 | |
| // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
 | |
| // have been validated), then we reroll the loop.
 | |
| bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
 | |
|                         const SCEV *IterCount,
 | |
|                         ReductionTracker &Reductions) {
 | |
|   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI);
 | |
| 
 | |
|   if (!DAGRoots.findRoots())
 | |
|     return false;
 | |
|   DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
 | |
|                   *IV << "\n");
 | |
|   
 | |
|   if (!DAGRoots.validate(Reductions))
 | |
|     return false;
 | |
|   if (!Reductions.validateSelected())
 | |
|     return false;
 | |
|   // At this point, we've validated the rerolling, and we're committed to
 | |
|   // making changes!
 | |
| 
 | |
|   Reductions.replaceSelected();
 | |
|   DAGRoots.replace(IterCount);
 | |
| 
 | |
|   ++NumRerolledLoops;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipOptnoneFunction(L))
 | |
|     return false;
 | |
| 
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
 | |
|         "] Loop %" << Header->getName() << " (" <<
 | |
|         L->getNumBlocks() << " block(s))\n");
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // For now, we'll handle only single BB loops.
 | |
|   if (L->getNumBlocks() > 1)
 | |
|     return Changed;
 | |
| 
 | |
|   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
 | |
|     return Changed;
 | |
| 
 | |
|   const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
 | |
|   const SCEV *IterCount =
 | |
|     SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
 | |
|   DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
 | |
| 
 | |
|   // First, we need to find the induction variable with respect to which we can
 | |
|   // reroll (there may be several possible options).
 | |
|   SmallInstructionVector PossibleIVs;
 | |
|   collectPossibleIVs(L, PossibleIVs);
 | |
| 
 | |
|   if (PossibleIVs.empty()) {
 | |
|     DEBUG(dbgs() << "LRR: No possible IVs found\n");
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   ReductionTracker Reductions;
 | |
|   collectPossibleReductions(L, Reductions);
 | |
| 
 | |
|   // For each possible IV, collect the associated possible set of 'root' nodes
 | |
|   // (i+1, i+2, etc.).
 | |
|   for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
 | |
|        IE = PossibleIVs.end(); I != IE; ++I)
 | |
|     if (reroll(*I, L, Header, IterCount, Reductions)) {
 | |
|       Changed = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 |