forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1110 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1110 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Nate Begeman and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs a strength reduction on array references inside loops that
 | 
						|
// have as one or more of their components the loop induction variable.  This is
 | 
						|
// accomplished by creating a new Value to hold the initial value of the array
 | 
						|
// access for the first iteration, and then creating a new GEP instruction in
 | 
						|
// the loop to increment the value by the appropriate amount.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-reduce"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumReduced ("loop-reduce", "Number of GEPs strength reduced");
 | 
						|
  Statistic<> NumInserted("loop-reduce", "Number of PHIs inserted");
 | 
						|
  Statistic<> NumVariable("loop-reduce","Number of PHIs with variable strides");
 | 
						|
 | 
						|
  /// IVStrideUse - Keep track of one use of a strided induction variable, where
 | 
						|
  /// the stride is stored externally.  The Offset member keeps track of the 
 | 
						|
  /// offset from the IV, User is the actual user of the operand, and 'Operand'
 | 
						|
  /// is the operand # of the User that is the use.
 | 
						|
  struct IVStrideUse {
 | 
						|
    SCEVHandle Offset;
 | 
						|
    Instruction *User;
 | 
						|
    Value *OperandValToReplace;
 | 
						|
 | 
						|
    // isUseOfPostIncrementedValue - True if this should use the
 | 
						|
    // post-incremented version of this IV, not the preincremented version.
 | 
						|
    // This can only be set in special cases, such as the terminating setcc
 | 
						|
    // instruction for a loop or uses dominated by the loop.
 | 
						|
    bool isUseOfPostIncrementedValue;
 | 
						|
    
 | 
						|
    IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
 | 
						|
      : Offset(Offs), User(U), OperandValToReplace(O),
 | 
						|
        isUseOfPostIncrementedValue(false) {}
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// IVUsersOfOneStride - This structure keeps track of all instructions that
 | 
						|
  /// have an operand that is based on the trip count multiplied by some stride.
 | 
						|
  /// The stride for all of these users is common and kept external to this
 | 
						|
  /// structure.
 | 
						|
  struct IVUsersOfOneStride {
 | 
						|
    /// Users - Keep track of all of the users of this stride as well as the
 | 
						|
    /// initial value and the operand that uses the IV.
 | 
						|
    std::vector<IVStrideUse> Users;
 | 
						|
    
 | 
						|
    void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
 | 
						|
      Users.push_back(IVStrideUse(Offset, User, Operand));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  class LoopStrengthReduce : public FunctionPass {
 | 
						|
    LoopInfo *LI;
 | 
						|
    DominatorSet *DS;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    const TargetData *TD;
 | 
						|
    const Type *UIntPtrTy;
 | 
						|
    bool Changed;
 | 
						|
 | 
						|
    /// MaxTargetAMSize - This is the maximum power-of-two scale value that the
 | 
						|
    /// target can handle for free with its addressing modes.
 | 
						|
    unsigned MaxTargetAMSize;
 | 
						|
 | 
						|
    /// IVUsesByStride - Keep track of all uses of induction variables that we
 | 
						|
    /// are interested in.  The key of the map is the stride of the access.
 | 
						|
    std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
 | 
						|
 | 
						|
    /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
 | 
						|
    /// We use this to iterate over the IVUsesByStride collection without being
 | 
						|
    /// dependent on random ordering of pointers in the process.
 | 
						|
    std::vector<SCEVHandle> StrideOrder;
 | 
						|
 | 
						|
    /// CastedValues - As we need to cast values to uintptr_t, this keeps track
 | 
						|
    /// of the casted version of each value.  This is accessed by
 | 
						|
    /// getCastedVersionOf.
 | 
						|
    std::map<Value*, Value*> CastedPointers;
 | 
						|
 | 
						|
    /// DeadInsts - Keep track of instructions we may have made dead, so that
 | 
						|
    /// we can remove them after we are done working.
 | 
						|
    std::set<Instruction*> DeadInsts;
 | 
						|
  public:
 | 
						|
    LoopStrengthReduce(unsigned MTAMS = 1)
 | 
						|
      : MaxTargetAMSize(MTAMS) {
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnFunction(Function &) {
 | 
						|
      LI = &getAnalysis<LoopInfo>();
 | 
						|
      DS = &getAnalysis<DominatorSet>();
 | 
						|
      SE = &getAnalysis<ScalarEvolution>();
 | 
						|
      TD = &getAnalysis<TargetData>();
 | 
						|
      UIntPtrTy = TD->getIntPtrType();
 | 
						|
      Changed = false;
 | 
						|
 | 
						|
      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
        runOnLoop(*I);
 | 
						|
      
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      // We split critical edges, so we change the CFG.  However, we do update
 | 
						|
      // many analyses if they are around.
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
      AU.addPreserved<DominatorSet>();
 | 
						|
      AU.addPreserved<ImmediateDominators>();
 | 
						|
      AU.addPreserved<DominanceFrontier>();
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addRequired<DominatorSet>();
 | 
						|
      AU.addRequired<TargetData>();
 | 
						|
      AU.addRequired<ScalarEvolution>();
 | 
						|
    }
 | 
						|
    
 | 
						|
    /// getCastedVersionOf - Return the specified value casted to uintptr_t.
 | 
						|
    ///
 | 
						|
    Value *getCastedVersionOf(Value *V);
 | 
						|
private:
 | 
						|
    void runOnLoop(Loop *L);
 | 
						|
    bool AddUsersIfInteresting(Instruction *I, Loop *L,
 | 
						|
                               std::set<Instruction*> &Processed);
 | 
						|
    SCEVHandle GetExpressionSCEV(Instruction *E, Loop *L);
 | 
						|
 | 
						|
    void OptimizeIndvars(Loop *L);
 | 
						|
 | 
						|
    void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
 | 
						|
                                      IVUsersOfOneStride &Uses,
 | 
						|
                                      Loop *L, bool isOnlyStride);
 | 
						|
    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
 | 
						|
  };
 | 
						|
  RegisterOpt<LoopStrengthReduce> X("loop-reduce",
 | 
						|
                                    "Loop Strength Reduction");
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createLoopStrengthReducePass(unsigned MaxTargetAMSize) {
 | 
						|
  return new LoopStrengthReduce(MaxTargetAMSize);
 | 
						|
}
 | 
						|
 | 
						|
/// getCastedVersionOf - Return the specified value casted to uintptr_t.
 | 
						|
///
 | 
						|
Value *LoopStrengthReduce::getCastedVersionOf(Value *V) {
 | 
						|
  if (V->getType() == UIntPtrTy) return V;
 | 
						|
  if (Constant *CB = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getCast(CB, UIntPtrTy);
 | 
						|
 | 
						|
  Value *&New = CastedPointers[V];
 | 
						|
  if (New) return New;
 | 
						|
  
 | 
						|
  BasicBlock::iterator InsertPt;
 | 
						|
  if (Argument *Arg = dyn_cast<Argument>(V)) {
 | 
						|
    // Insert into the entry of the function, after any allocas.
 | 
						|
    InsertPt = Arg->getParent()->begin()->begin();
 | 
						|
    while (isa<AllocaInst>(InsertPt)) ++InsertPt;
 | 
						|
  } else {
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
 | 
						|
      InsertPt = II->getNormalDest()->begin();
 | 
						|
    } else {
 | 
						|
      InsertPt = cast<Instruction>(V);
 | 
						|
      ++InsertPt;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not insert casts into the middle of PHI node blocks.
 | 
						|
    while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
  }
 | 
						|
  
 | 
						|
  New = new CastInst(V, UIntPtrTy, V->getName(), InsertPt);
 | 
						|
  DeadInsts.insert(cast<Instruction>(New));
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | 
						|
/// specified set are trivially dead, delete them and see if this makes any of
 | 
						|
/// their operands subsequently dead.
 | 
						|
void LoopStrengthReduce::
 | 
						|
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 | 
						|
  while (!Insts.empty()) {
 | 
						|
    Instruction *I = *Insts.begin();
 | 
						|
    Insts.erase(Insts.begin());
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
          Insts.insert(U);
 | 
						|
      SE->deleteInstructionFromRecords(I);
 | 
						|
      I->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetExpressionSCEV - Compute and return the SCEV for the specified
 | 
						|
/// instruction.
 | 
						|
SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp, Loop *L) {
 | 
						|
  // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions.
 | 
						|
  // If this is a GEP that SE doesn't know about, compute it now and insert it.
 | 
						|
  // If this is not a GEP, or if we have already done this computation, just let
 | 
						|
  // SE figure it out.
 | 
						|
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp);
 | 
						|
  if (!GEP || SE->hasSCEV(GEP))
 | 
						|
    return SE->getSCEV(Exp);
 | 
						|
    
 | 
						|
  // Analyze all of the subscripts of this getelementptr instruction, looking
 | 
						|
  // for uses that are determined by the trip count of L.  First, skip all
 | 
						|
  // operands the are not dependent on the IV.
 | 
						|
 | 
						|
  // Build up the base expression.  Insert an LLVM cast of the pointer to
 | 
						|
  // uintptr_t first.
 | 
						|
  SCEVHandle GEPVal = SCEVUnknown::get(getCastedVersionOf(GEP->getOperand(0)));
 | 
						|
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  
 | 
						|
  for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
    // If this is a use of a recurrence that we can analyze, and it comes before
 | 
						|
    // Op does in the GEP operand list, we will handle this when we process this
 | 
						|
    // operand.
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
      const StructLayout *SL = TD->getStructLayout(STy);
 | 
						|
      unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
 | 
						|
      uint64_t Offset = SL->MemberOffsets[Idx];
 | 
						|
      GEPVal = SCEVAddExpr::get(GEPVal,
 | 
						|
                                SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy));
 | 
						|
    } else {
 | 
						|
      Value *OpVal = getCastedVersionOf(GEP->getOperand(i));
 | 
						|
      SCEVHandle Idx = SE->getSCEV(OpVal);
 | 
						|
 | 
						|
      uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
 | 
						|
      if (TypeSize != 1)
 | 
						|
        Idx = SCEVMulExpr::get(Idx,
 | 
						|
                               SCEVConstant::get(ConstantUInt::get(UIntPtrTy,
 | 
						|
                                                                   TypeSize)));
 | 
						|
      GEPVal = SCEVAddExpr::get(GEPVal, Idx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SE->setSCEV(GEP, GEPVal);
 | 
						|
  return GEPVal;
 | 
						|
}
 | 
						|
 | 
						|
/// getSCEVStartAndStride - Compute the start and stride of this expression,
 | 
						|
/// returning false if the expression is not a start/stride pair, or true if it
 | 
						|
/// is.  The stride must be a loop invariant expression, but the start may be
 | 
						|
/// a mix of loop invariant and loop variant expressions.
 | 
						|
static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
 | 
						|
                                  SCEVHandle &Start, SCEVHandle &Stride) {
 | 
						|
  SCEVHandle TheAddRec = Start;   // Initialize to zero.
 | 
						|
 | 
						|
  // If the outer level is an AddExpr, the operands are all start values except
 | 
						|
  // for a nested AddRecExpr.
 | 
						|
  if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
 | 
						|
    for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
 | 
						|
      if (SCEVAddRecExpr *AddRec =
 | 
						|
             dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
 | 
						|
        if (AddRec->getLoop() == L)
 | 
						|
          TheAddRec = SCEVAddExpr::get(AddRec, TheAddRec);
 | 
						|
        else
 | 
						|
          return false;  // Nested IV of some sort?
 | 
						|
      } else {
 | 
						|
        Start = SCEVAddExpr::get(Start, AE->getOperand(i));
 | 
						|
      }
 | 
						|
        
 | 
						|
  } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SH)) {
 | 
						|
    TheAddRec = SH;
 | 
						|
  } else {
 | 
						|
    return false;  // not analyzable.
 | 
						|
  }
 | 
						|
  
 | 
						|
  SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
 | 
						|
  if (!AddRec || AddRec->getLoop() != L) return false;
 | 
						|
  
 | 
						|
  // FIXME: Generalize to non-affine IV's.
 | 
						|
  if (!AddRec->isAffine()) return false;
 | 
						|
 | 
						|
  Start = SCEVAddExpr::get(Start, AddRec->getOperand(0));
 | 
						|
  
 | 
						|
  if (!isa<SCEVConstant>(AddRec->getOperand(1)))
 | 
						|
    DEBUG(std::cerr << "[" << L->getHeader()->getName()
 | 
						|
                    << "] Variable stride: " << *AddRec << "\n");
 | 
						|
 | 
						|
  Stride = AddRec->getOperand(1);
 | 
						|
  // Check that all constant strides are the unsigned type, we don't want to
 | 
						|
  // have two IV's one of signed stride 4 and one of unsigned stride 4 to not be
 | 
						|
  // merged.
 | 
						|
  assert((!isa<SCEVConstant>(Stride) || Stride->getType()->isUnsigned()) &&
 | 
						|
         "Constants should be canonicalized to unsigned!");
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
 | 
						|
/// and now we need to decide whether the user should use the preinc or post-inc
 | 
						|
/// value.  If this user should use the post-inc version of the IV, return true.
 | 
						|
///
 | 
						|
/// Choosing wrong here can break dominance properties (if we choose to use the
 | 
						|
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
 | 
						|
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
 | 
						|
/// should use the post-inc value).
 | 
						|
static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
 | 
						|
                                       Loop *L, DominatorSet *DS, Pass *P) {
 | 
						|
  // If the user is in the loop, use the preinc value.
 | 
						|
  if (L->contains(User->getParent())) return false;
 | 
						|
  
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  
 | 
						|
  // Ok, the user is outside of the loop.  If it is dominated by the latch
 | 
						|
  // block, use the post-inc value.
 | 
						|
  if (DS->dominates(LatchBlock, User->getParent()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // There is one case we have to be careful of: PHI nodes.  These little guys
 | 
						|
  // can live in blocks that do not dominate the latch block, but (since their
 | 
						|
  // uses occur in the predecessor block, not the block the PHI lives in) should
 | 
						|
  // still use the post-inc value.  Check for this case now.
 | 
						|
  PHINode *PN = dyn_cast<PHINode>(User);
 | 
						|
  if (!PN) return false;  // not a phi, not dominated by latch block.
 | 
						|
  
 | 
						|
  // Look at all of the uses of IV by the PHI node.  If any use corresponds to
 | 
						|
  // a block that is not dominated by the latch block, give up and use the
 | 
						|
  // preincremented value.
 | 
						|
  unsigned NumUses = 0;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
    if (PN->getIncomingValue(i) == IV) {
 | 
						|
      ++NumUses;
 | 
						|
      if (!DS->dominates(LatchBlock, PN->getIncomingBlock(i)))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // Okay, all uses of IV by PN are in predecessor blocks that really are
 | 
						|
  // dominated by the latch block.  Split the critical edges and use the
 | 
						|
  // post-incremented value.
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
    if (PN->getIncomingValue(i) == IV) {
 | 
						|
      SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P);
 | 
						|
      if (--NumUses == 0) break;
 | 
						|
    }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
  
 | 
						|
 | 
						|
/// AddUsersIfInteresting - Inspect the specified instruction.  If it is a
 | 
						|
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
 | 
						|
/// return true.  Otherwise, return false.
 | 
						|
bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
 | 
						|
                                            std::set<Instruction*> &Processed) {
 | 
						|
  if (I->getType() == Type::VoidTy) return false;
 | 
						|
  if (!Processed.insert(I).second)
 | 
						|
    return true;    // Instruction already handled.
 | 
						|
  
 | 
						|
  // Get the symbolic expression for this instruction.
 | 
						|
  SCEVHandle ISE = GetExpressionSCEV(I, L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(ISE)) return false;
 | 
						|
  
 | 
						|
  // Get the start and stride for this expression.
 | 
						|
  SCEVHandle Start = SCEVUnknown::getIntegerSCEV(0, ISE->getType());
 | 
						|
  SCEVHandle Stride = Start;
 | 
						|
  if (!getSCEVStartAndStride(ISE, L, Start, Stride))
 | 
						|
    return false;  // Non-reducible symbolic expression, bail out.
 | 
						|
  
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Do not infinitely recurse on PHI nodes.
 | 
						|
    if (isa<PHINode>(User) && Processed.count(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this is an instruction defined in a nested loop, or outside this loop,
 | 
						|
    // don't recurse into it.
 | 
						|
    bool AddUserToIVUsers = false;
 | 
						|
    if (LI->getLoopFor(User->getParent()) != L) {
 | 
						|
      DEBUG(std::cerr << "FOUND USER in other loop: " << *User
 | 
						|
            << "   OF SCEV: " << *ISE << "\n");
 | 
						|
      AddUserToIVUsers = true;
 | 
						|
    } else if (!AddUsersIfInteresting(User, L, Processed)) {
 | 
						|
      DEBUG(std::cerr << "FOUND USER: " << *User
 | 
						|
            << "   OF SCEV: " << *ISE << "\n");
 | 
						|
      AddUserToIVUsers = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AddUserToIVUsers) {
 | 
						|
      IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
 | 
						|
      if (StrideUses.Users.empty())     // First occurance of this stride?
 | 
						|
        StrideOrder.push_back(Stride);
 | 
						|
      
 | 
						|
      // Okay, we found a user that we cannot reduce.  Analyze the instruction
 | 
						|
      // and decide what to do with it.  If we are a use inside of the loop, use
 | 
						|
      // the value before incrementation, otherwise use it after incrementation.
 | 
						|
      if (IVUseShouldUsePostIncValue(User, I, L, DS, this)) {
 | 
						|
        // The value used will be incremented by the stride more than we are
 | 
						|
        // expecting, so subtract this off.
 | 
						|
        SCEVHandle NewStart = SCEV::getMinusSCEV(Start, Stride);
 | 
						|
        StrideUses.addUser(NewStart, User, I);
 | 
						|
        StrideUses.Users.back().isUseOfPostIncrementedValue = true;
 | 
						|
        DEBUG(std::cerr << "   USING POSTINC SCEV, START=" << *NewStart<< "\n");
 | 
						|
      } else {        
 | 
						|
        StrideUses.addUser(Start, User, I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// BasedUser - For a particular base value, keep information about how we've
 | 
						|
  /// partitioned the expression so far.
 | 
						|
  struct BasedUser {
 | 
						|
    /// Base - The Base value for the PHI node that needs to be inserted for
 | 
						|
    /// this use.  As the use is processed, information gets moved from this
 | 
						|
    /// field to the Imm field (below).  BasedUser values are sorted by this
 | 
						|
    /// field.
 | 
						|
    SCEVHandle Base;
 | 
						|
    
 | 
						|
    /// Inst - The instruction using the induction variable.
 | 
						|
    Instruction *Inst;
 | 
						|
 | 
						|
    /// OperandValToReplace - The operand value of Inst to replace with the
 | 
						|
    /// EmittedBase.
 | 
						|
    Value *OperandValToReplace;
 | 
						|
 | 
						|
    /// Imm - The immediate value that should be added to the base immediately
 | 
						|
    /// before Inst, because it will be folded into the imm field of the
 | 
						|
    /// instruction.
 | 
						|
    SCEVHandle Imm;
 | 
						|
 | 
						|
    /// EmittedBase - The actual value* to use for the base value of this
 | 
						|
    /// operation.  This is null if we should just use zero so far.
 | 
						|
    Value *EmittedBase;
 | 
						|
 | 
						|
    // isUseOfPostIncrementedValue - True if this should use the
 | 
						|
    // post-incremented version of this IV, not the preincremented version.
 | 
						|
    // This can only be set in special cases, such as the terminating setcc
 | 
						|
    // instruction for a loop and uses outside the loop that are dominated by
 | 
						|
    // the loop.
 | 
						|
    bool isUseOfPostIncrementedValue;
 | 
						|
    
 | 
						|
    BasedUser(IVStrideUse &IVSU)
 | 
						|
      : Base(IVSU.Offset), Inst(IVSU.User), 
 | 
						|
        OperandValToReplace(IVSU.OperandValToReplace), 
 | 
						|
        Imm(SCEVUnknown::getIntegerSCEV(0, Base->getType())), EmittedBase(0),
 | 
						|
        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
 | 
						|
 | 
						|
    // Once we rewrite the code to insert the new IVs we want, update the
 | 
						|
    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | 
						|
    // to it.
 | 
						|
    void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
 | 
						|
                                        SCEVExpander &Rewriter, Loop *L,
 | 
						|
                                        Pass *P);
 | 
						|
 | 
						|
    // Sort by the Base field.
 | 
						|
    bool operator<(const BasedUser &BU) const { return Base < BU.Base; }
 | 
						|
 | 
						|
    void dump() const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void BasedUser::dump() const {
 | 
						|
  std::cerr << " Base=" << *Base;
 | 
						|
  std::cerr << " Imm=" << *Imm;
 | 
						|
  if (EmittedBase)
 | 
						|
    std::cerr << "  EB=" << *EmittedBase;
 | 
						|
 | 
						|
  std::cerr << "   Inst: " << *Inst;
 | 
						|
}
 | 
						|
 | 
						|
// Once we rewrite the code to insert the new IVs we want, update the
 | 
						|
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
 | 
						|
// to it.
 | 
						|
void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
 | 
						|
                                               SCEVExpander &Rewriter,
 | 
						|
                                               Loop *L, Pass *P) {
 | 
						|
  if (!isa<PHINode>(Inst)) {
 | 
						|
    SCEVHandle NewValSCEV = SCEVAddExpr::get(NewBase, Imm);
 | 
						|
    Value *NewVal = Rewriter.expandCodeFor(NewValSCEV, Inst,
 | 
						|
                                           OperandValToReplace->getType());
 | 
						|
    // Replace the use of the operand Value with the new Phi we just created.
 | 
						|
    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
 | 
						|
    DEBUG(std::cerr << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
 | 
						|
  // expression into each operand block that uses it.  Note that PHI nodes can
 | 
						|
  // have multiple entries for the same predecessor.  We use a map to make sure
 | 
						|
  // that a PHI node only has a single Value* for each predecessor (which also
 | 
						|
  // prevents us from inserting duplicate code in some blocks).
 | 
						|
  std::map<BasicBlock*, Value*> InsertedCode;
 | 
						|
  PHINode *PN = cast<PHINode>(Inst);
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (PN->getIncomingValue(i) == OperandValToReplace) {
 | 
						|
      // If this is a critical edge, split the edge so that we do not insert the
 | 
						|
      // code on all predecessor/successor paths.  We do this unless this is the
 | 
						|
      // canonical backedge for this loop, as this can make some inserted code
 | 
						|
      // be in an illegal position.
 | 
						|
      BasicBlock *PHIPred = PN->getIncomingBlock(i);
 | 
						|
      if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
 | 
						|
          (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
 | 
						|
        
 | 
						|
        // First step, split the critical edge.
 | 
						|
        SplitCriticalEdge(PHIPred, PN->getParent(), P);
 | 
						|
            
 | 
						|
        // Next step: move the basic block.  In particular, if the PHI node
 | 
						|
        // is outside of the loop, and PredTI is in the loop, we want to
 | 
						|
        // move the block to be immediately before the PHI block, not
 | 
						|
        // immediately after PredTI.
 | 
						|
        if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
 | 
						|
          BasicBlock *NewBB = PN->getIncomingBlock(i);
 | 
						|
          NewBB->moveBefore(PN->getParent());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
 | 
						|
      if (!Code) {
 | 
						|
        // Insert the code into the end of the predecessor block.
 | 
						|
        BasicBlock::iterator InsertPt =PN->getIncomingBlock(i)->getTerminator();
 | 
						|
      
 | 
						|
        SCEVHandle NewValSCEV = SCEVAddExpr::get(NewBase, Imm);
 | 
						|
        Code = Rewriter.expandCodeFor(NewValSCEV, InsertPt,
 | 
						|
                                      OperandValToReplace->getType());
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Replace the use of the operand Value with the new Phi we just created.
 | 
						|
      PN->setIncomingValue(i, Code);
 | 
						|
      Rewriter.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(std::cerr << "    CHANGED: IMM =" << *Imm << "  Inst = " << *Inst);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isTargetConstant - Return true if the following can be referenced by the
 | 
						|
/// immediate field of a target instruction.
 | 
						|
static bool isTargetConstant(const SCEVHandle &V) {
 | 
						|
 | 
						|
  // FIXME: Look at the target to decide if &GV is a legal constant immediate.
 | 
						|
  if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
 | 
						|
    // PPC allows a sign-extended 16-bit immediate field.
 | 
						|
    if ((int64_t)SC->getValue()->getRawValue() > -(1 << 16) &&
 | 
						|
        (int64_t)SC->getValue()->getRawValue() < (1 << 16)-1)
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;     // ENABLE this for x86
 | 
						|
 | 
						|
  if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
 | 
						|
      if (CE->getOpcode() == Instruction::Cast)
 | 
						|
        if (isa<GlobalValue>(CE->getOperand(0)))
 | 
						|
          // FIXME: should check to see that the dest is uintptr_t!
 | 
						|
          return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MoveLoopVariantsToImediateField - Move any subexpressions from Val that are
 | 
						|
/// loop varying to the Imm operand.
 | 
						|
static void MoveLoopVariantsToImediateField(SCEVHandle &Val, SCEVHandle &Imm,
 | 
						|
                                            Loop *L) {
 | 
						|
  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
 | 
						|
  
 | 
						|
  if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | 
						|
    std::vector<SCEVHandle> NewOps;
 | 
						|
    NewOps.reserve(SAE->getNumOperands());
 | 
						|
    
 | 
						|
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
 | 
						|
      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
 | 
						|
        // If this is a loop-variant expression, it must stay in the immediate
 | 
						|
        // field of the expression.
 | 
						|
        Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
 | 
						|
      } else {
 | 
						|
        NewOps.push_back(SAE->getOperand(i));
 | 
						|
      }
 | 
						|
 | 
						|
    if (NewOps.empty())
 | 
						|
      Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | 
						|
    else
 | 
						|
      Val = SCEVAddExpr::get(NewOps);
 | 
						|
  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | 
						|
    // Try to pull immediates out of the start value of nested addrec's.
 | 
						|
    SCEVHandle Start = SARE->getStart();
 | 
						|
    MoveLoopVariantsToImediateField(Start, Imm, L);
 | 
						|
    
 | 
						|
    std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | 
						|
    Ops[0] = Start;
 | 
						|
    Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
 | 
						|
  } else {
 | 
						|
    // Otherwise, all of Val is variant, move the whole thing over.
 | 
						|
    Imm = SCEVAddExpr::get(Imm, Val);
 | 
						|
    Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// MoveImmediateValues - Look at Val, and pull out any additions of constants
 | 
						|
/// that can fit into the immediate field of instructions in the target.
 | 
						|
/// Accumulate these immediate values into the Imm value.
 | 
						|
static void MoveImmediateValues(SCEVHandle &Val, SCEVHandle &Imm,
 | 
						|
                                bool isAddress, Loop *L) {
 | 
						|
  if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
 | 
						|
    std::vector<SCEVHandle> NewOps;
 | 
						|
    NewOps.reserve(SAE->getNumOperands());
 | 
						|
    
 | 
						|
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
 | 
						|
      if (isAddress && isTargetConstant(SAE->getOperand(i))) {
 | 
						|
        Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
 | 
						|
      } else if (!SAE->getOperand(i)->isLoopInvariant(L)) {
 | 
						|
        // If this is a loop-variant expression, it must stay in the immediate
 | 
						|
        // field of the expression.
 | 
						|
        Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
 | 
						|
      } else {
 | 
						|
        NewOps.push_back(SAE->getOperand(i));
 | 
						|
      }
 | 
						|
 | 
						|
    if (NewOps.empty())
 | 
						|
      Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | 
						|
    else
 | 
						|
      Val = SCEVAddExpr::get(NewOps);
 | 
						|
    return;
 | 
						|
  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
 | 
						|
    // Try to pull immediates out of the start value of nested addrec's.
 | 
						|
    SCEVHandle Start = SARE->getStart();
 | 
						|
    MoveImmediateValues(Start, Imm, isAddress, L);
 | 
						|
    
 | 
						|
    if (Start != SARE->getStart()) {
 | 
						|
      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | 
						|
      Ops[0] = Start;
 | 
						|
      Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop-variant expressions must stay in the immediate field of the
 | 
						|
  // expression.
 | 
						|
  if ((isAddress && isTargetConstant(Val)) ||
 | 
						|
      !Val->isLoopInvariant(L)) {
 | 
						|
    Imm = SCEVAddExpr::get(Imm, Val);
 | 
						|
    Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, no immediates to move.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// IncrementAddExprUses - Decompose the specified expression into its added
 | 
						|
/// subexpressions, and increment SubExpressionUseCounts for each of these
 | 
						|
/// decomposed parts.
 | 
						|
static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
 | 
						|
                             SCEVHandle Expr) {
 | 
						|
  if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
 | 
						|
    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
 | 
						|
      SeparateSubExprs(SubExprs, AE->getOperand(j));
 | 
						|
  } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
 | 
						|
    SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Expr->getType());
 | 
						|
    if (SARE->getOperand(0) == Zero) {
 | 
						|
      SubExprs.push_back(Expr);
 | 
						|
    } else {
 | 
						|
      // Compute the addrec with zero as its base.
 | 
						|
      std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
 | 
						|
      Ops[0] = Zero;   // Start with zero base.
 | 
						|
      SubExprs.push_back(SCEVAddRecExpr::get(Ops, SARE->getLoop()));
 | 
						|
      
 | 
						|
 | 
						|
      SeparateSubExprs(SubExprs, SARE->getOperand(0));
 | 
						|
    }
 | 
						|
  } else if (!isa<SCEVConstant>(Expr) ||
 | 
						|
             !cast<SCEVConstant>(Expr)->getValue()->isNullValue()) {
 | 
						|
    // Do not add zero.
 | 
						|
    SubExprs.push_back(Expr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// RemoveCommonExpressionsFromUseBases - Look through all of the uses in Bases,
 | 
						|
/// removing any common subexpressions from it.  Anything truly common is
 | 
						|
/// removed, accumulated, and returned.  This looks for things like (a+b+c) and
 | 
						|
/// (a+c+d) -> (a+c).  The common expression is *removed* from the Bases.
 | 
						|
static SCEVHandle 
 | 
						|
RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses) {
 | 
						|
  unsigned NumUses = Uses.size();
 | 
						|
 | 
						|
  // Only one use?  Use its base, regardless of what it is!
 | 
						|
  SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Uses[0].Base->getType());
 | 
						|
  SCEVHandle Result = Zero;
 | 
						|
  if (NumUses == 1) {
 | 
						|
    std::swap(Result, Uses[0].Base);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // To find common subexpressions, count how many of Uses use each expression.
 | 
						|
  // If any subexpressions are used Uses.size() times, they are common.
 | 
						|
  std::map<SCEVHandle, unsigned> SubExpressionUseCounts;
 | 
						|
  
 | 
						|
  std::vector<SCEVHandle> SubExprs;
 | 
						|
  for (unsigned i = 0; i != NumUses; ++i) {
 | 
						|
    // If the base is zero (which is common), return zero now, there are no
 | 
						|
    // CSEs we can find.
 | 
						|
    if (Uses[i].Base == Zero) return Zero;
 | 
						|
 | 
						|
    // Split the expression into subexprs.
 | 
						|
    SeparateSubExprs(SubExprs, Uses[i].Base);
 | 
						|
    // Add one to SubExpressionUseCounts for each subexpr present.
 | 
						|
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
 | 
						|
      SubExpressionUseCounts[SubExprs[j]]++;
 | 
						|
    SubExprs.clear();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Now that we know how many times each is used, build Result.
 | 
						|
  for (std::map<SCEVHandle, unsigned>::iterator I =
 | 
						|
       SubExpressionUseCounts.begin(), E = SubExpressionUseCounts.end();
 | 
						|
       I != E; )
 | 
						|
    if (I->second == NumUses) {  // Found CSE!
 | 
						|
      Result = SCEVAddExpr::get(Result, I->first);
 | 
						|
      ++I;
 | 
						|
    } else {
 | 
						|
      // Remove non-cse's from SubExpressionUseCounts.
 | 
						|
      SubExpressionUseCounts.erase(I++);
 | 
						|
    }
 | 
						|
  
 | 
						|
  // If we found no CSE's, return now.
 | 
						|
  if (Result == Zero) return Result;
 | 
						|
  
 | 
						|
  // Otherwise, remove all of the CSE's we found from each of the base values.
 | 
						|
  for (unsigned i = 0; i != NumUses; ++i) {
 | 
						|
    // Split the expression into subexprs.
 | 
						|
    SeparateSubExprs(SubExprs, Uses[i].Base);
 | 
						|
 | 
						|
    // Remove any common subexpressions.
 | 
						|
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
 | 
						|
      if (SubExpressionUseCounts.count(SubExprs[j])) {
 | 
						|
        SubExprs.erase(SubExprs.begin()+j);
 | 
						|
        --j; --e;
 | 
						|
      }
 | 
						|
    
 | 
						|
    // Finally, the non-shared expressions together.
 | 
						|
    if (SubExprs.empty())
 | 
						|
      Uses[i].Base = Zero;
 | 
						|
    else
 | 
						|
      Uses[i].Base = SCEVAddExpr::get(SubExprs);
 | 
						|
    SubExprs.clear();
 | 
						|
  }
 | 
						|
 
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
 | 
						|
/// stride of IV.  All of the users may have different starting values, and this
 | 
						|
/// may not be the only stride (we know it is if isOnlyStride is true).
 | 
						|
void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
 | 
						|
                                                      IVUsersOfOneStride &Uses,
 | 
						|
                                                      Loop *L,
 | 
						|
                                                      bool isOnlyStride) {
 | 
						|
  // Transform our list of users and offsets to a bit more complex table.  In
 | 
						|
  // this new vector, each 'BasedUser' contains 'Base' the base of the
 | 
						|
  // strided accessas well as the old information from Uses.  We progressively
 | 
						|
  // move information from the Base field to the Imm field, until we eventually
 | 
						|
  // have the full access expression to rewrite the use.
 | 
						|
  std::vector<BasedUser> UsersToProcess;
 | 
						|
  UsersToProcess.reserve(Uses.Users.size());
 | 
						|
  for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
 | 
						|
    UsersToProcess.push_back(Uses.Users[i]);
 | 
						|
    
 | 
						|
    // Move any loop invariant operands from the offset field to the immediate
 | 
						|
    // field of the use, so that we don't try to use something before it is
 | 
						|
    // computed.
 | 
						|
    MoveLoopVariantsToImediateField(UsersToProcess.back().Base,
 | 
						|
                                    UsersToProcess.back().Imm, L);
 | 
						|
    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
 | 
						|
           "Base value is not loop invariant!");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We now have a whole bunch of uses of like-strided induction variables, but
 | 
						|
  // they might all have different bases.  We want to emit one PHI node for this
 | 
						|
  // stride which we fold as many common expressions (between the IVs) into as
 | 
						|
  // possible.  Start by identifying the common expressions in the base values 
 | 
						|
  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
 | 
						|
  // "A+B"), emit it to the preheader, then remove the expression from the
 | 
						|
  // UsersToProcess base values.
 | 
						|
  SCEVHandle CommonExprs = RemoveCommonExpressionsFromUseBases(UsersToProcess);
 | 
						|
  
 | 
						|
  // Next, figure out what we can represent in the immediate fields of
 | 
						|
  // instructions.  If we can represent anything there, move it to the imm
 | 
						|
  // fields of the BasedUsers.  We do this so that it increases the commonality
 | 
						|
  // of the remaining uses.
 | 
						|
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
 | 
						|
    // If the user is not in the current loop, this means it is using the exit
 | 
						|
    // value of the IV.  Do not put anything in the base, make sure it's all in
 | 
						|
    // the immediate field to allow as much factoring as possible.
 | 
						|
    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
 | 
						|
      UsersToProcess[i].Imm = SCEVAddExpr::get(UsersToProcess[i].Imm,
 | 
						|
                                               UsersToProcess[i].Base);
 | 
						|
      UsersToProcess[i].Base = 
 | 
						|
        SCEVUnknown::getIntegerSCEV(0, UsersToProcess[i].Base->getType());
 | 
						|
    } else {
 | 
						|
      
 | 
						|
      // Addressing modes can be folded into loads and stores.  Be careful that
 | 
						|
      // the store is through the expression, not of the expression though.
 | 
						|
      bool isAddress = isa<LoadInst>(UsersToProcess[i].Inst);
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst))
 | 
						|
        if (SI->getOperand(1) == UsersToProcess[i].OperandValToReplace)
 | 
						|
          isAddress = true;
 | 
						|
      
 | 
						|
      MoveImmediateValues(UsersToProcess[i].Base, UsersToProcess[i].Imm,
 | 
						|
                          isAddress, L);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 
 | 
						|
  // Now that we know what we need to do, insert the PHI node itself.
 | 
						|
  //
 | 
						|
  DEBUG(std::cerr << "INSERTING IV of STRIDE " << *Stride << " and BASE "
 | 
						|
        << *CommonExprs << " :\n");
 | 
						|
    
 | 
						|
  SCEVExpander Rewriter(*SE, *LI);
 | 
						|
  SCEVExpander PreheaderRewriter(*SE, *LI);
 | 
						|
  
 | 
						|
  BasicBlock  *Preheader = L->getLoopPreheader();
 | 
						|
  Instruction *PreInsertPt = Preheader->getTerminator();
 | 
						|
  Instruction *PhiInsertBefore = L->getHeader()->begin();
 | 
						|
  
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  
 | 
						|
  // Create a new Phi for this base, and stick it in the loop header.
 | 
						|
  const Type *ReplacedTy = CommonExprs->getType();
 | 
						|
  PHINode *NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
 | 
						|
  ++NumInserted;
 | 
						|
  
 | 
						|
  // Insert the stride into the preheader.
 | 
						|
  Value *StrideV = PreheaderRewriter.expandCodeFor(Stride, PreInsertPt,
 | 
						|
                                                   ReplacedTy);
 | 
						|
  if (!isa<ConstantInt>(StrideV)) ++NumVariable;
 | 
						|
 | 
						|
 | 
						|
  // Emit the initial base value into the loop preheader, and add it to the
 | 
						|
  // Phi node.
 | 
						|
  Value *PHIBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt,
 | 
						|
                                                    ReplacedTy);
 | 
						|
  NewPHI->addIncoming(PHIBaseV, Preheader);
 | 
						|
  
 | 
						|
  // Emit the increment of the base value before the terminator of the loop
 | 
						|
  // latch block, and add it to the Phi node.
 | 
						|
  SCEVHandle IncExp = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
 | 
						|
                                       SCEVUnknown::get(StrideV));
 | 
						|
  
 | 
						|
  Value *IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator(),
 | 
						|
                                       ReplacedTy);
 | 
						|
  IncV->setName(NewPHI->getName()+".inc");
 | 
						|
  NewPHI->addIncoming(IncV, LatchBlock);
 | 
						|
 | 
						|
  // Sort by the base value, so that all IVs with identical bases are next to
 | 
						|
  // each other.
 | 
						|
  std::sort(UsersToProcess.begin(), UsersToProcess.end());
 | 
						|
  while (!UsersToProcess.empty()) {
 | 
						|
    SCEVHandle Base = UsersToProcess.front().Base;
 | 
						|
 | 
						|
    DEBUG(std::cerr << "  INSERTING code for BASE = " << *Base << ":\n");
 | 
						|
   
 | 
						|
    // Emit the code for Base into the preheader.
 | 
						|
    Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt,
 | 
						|
                                                   ReplacedTy);
 | 
						|
    
 | 
						|
    // If BaseV is a constant other than 0, make sure that it gets inserted into
 | 
						|
    // the preheader, instead of being forward substituted into the uses.  We do
 | 
						|
    // this by forcing a noop cast to be inserted into the preheader in this
 | 
						|
    // case.
 | 
						|
    if (Constant *C = dyn_cast<Constant>(BaseV))
 | 
						|
      if (!C->isNullValue() && !isTargetConstant(Base)) {
 | 
						|
        // We want this constant emitted into the preheader!
 | 
						|
        BaseV = new CastInst(BaseV, BaseV->getType(), "preheaderinsert",
 | 
						|
                             PreInsertPt);       
 | 
						|
      }
 | 
						|
    
 | 
						|
    // Emit the code to add the immediate offset to the Phi value, just before
 | 
						|
    // the instructions that we identified as using this stride and base.
 | 
						|
    while (!UsersToProcess.empty() && UsersToProcess.front().Base == Base) {
 | 
						|
      BasedUser &User = UsersToProcess.front();
 | 
						|
 | 
						|
      // If this instruction wants to use the post-incremented value, move it
 | 
						|
      // after the post-inc and use its value instead of the PHI.
 | 
						|
      Value *RewriteOp = NewPHI;
 | 
						|
      if (User.isUseOfPostIncrementedValue) {
 | 
						|
        RewriteOp = IncV;
 | 
						|
 | 
						|
        // If this user is in the loop, make sure it is the last thing in the
 | 
						|
        // loop to ensure it is dominated by the increment.
 | 
						|
        if (L->contains(User.Inst->getParent()))
 | 
						|
          User.Inst->moveBefore(LatchBlock->getTerminator());
 | 
						|
      }
 | 
						|
      SCEVHandle RewriteExpr = SCEVUnknown::get(RewriteOp);
 | 
						|
 | 
						|
      // Clear the SCEVExpander's expression map so that we are guaranteed
 | 
						|
      // to have the code emitted where we expect it.
 | 
						|
      Rewriter.clear();
 | 
						|
     
 | 
						|
      // Now that we know what we need to do, insert code before User for the
 | 
						|
      // immediate and any loop-variant expressions.
 | 
						|
      if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isNullValue())
 | 
						|
        // Add BaseV to the PHI value if needed.
 | 
						|
        RewriteExpr = SCEVAddExpr::get(RewriteExpr, SCEVUnknown::get(BaseV));
 | 
						|
      
 | 
						|
      User.RewriteInstructionToUseNewBase(RewriteExpr, Rewriter, L, this);
 | 
						|
 | 
						|
      // Mark old value we replaced as possibly dead, so that it is elminated
 | 
						|
      // if we just replaced the last use of that value.
 | 
						|
      DeadInsts.insert(cast<Instruction>(User.OperandValToReplace));
 | 
						|
 | 
						|
      UsersToProcess.erase(UsersToProcess.begin());
 | 
						|
      ++NumReduced;
 | 
						|
    }
 | 
						|
    // TODO: Next, find out which base index is the most common, pull it out.
 | 
						|
  }
 | 
						|
 | 
						|
  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
 | 
						|
  // different starting values, into different PHIs.
 | 
						|
}
 | 
						|
 | 
						|
// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
 | 
						|
// uses in the loop, look to see if we can eliminate some, in favor of using
 | 
						|
// common indvars for the different uses.
 | 
						|
void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
 | 
						|
  // TODO: implement optzns here.
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // Finally, get the terminating condition for the loop if possible.  If we
 | 
						|
  // can, we want to change it to use a post-incremented version of its
 | 
						|
  // induction variable, to allow coallescing the live ranges for the IV into
 | 
						|
  // one register value.
 | 
						|
  PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
 | 
						|
  BasicBlock  *Preheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *LatchBlock =
 | 
						|
   SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
 | 
						|
  BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | 
						|
  if (!TermBr || TermBr->isUnconditional() ||
 | 
						|
      !isa<SetCondInst>(TermBr->getCondition()))
 | 
						|
    return;
 | 
						|
  SetCondInst *Cond = cast<SetCondInst>(TermBr->getCondition());
 | 
						|
 | 
						|
  // Search IVUsesByStride to find Cond's IVUse if there is one.
 | 
						|
  IVStrideUse *CondUse = 0;
 | 
						|
  const SCEVHandle *CondStride = 0;
 | 
						|
 | 
						|
  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
 | 
						|
       ++Stride) {
 | 
						|
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
 | 
						|
      IVUsesByStride.find(StrideOrder[Stride]);
 | 
						|
    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
    
 | 
						|
    for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
 | 
						|
           E = SI->second.Users.end(); UI != E; ++UI)
 | 
						|
      if (UI->User == Cond) {
 | 
						|
        CondUse = &*UI;
 | 
						|
        CondStride = &SI->first;
 | 
						|
        // NOTE: we could handle setcc instructions with multiple uses here, but
 | 
						|
        // InstCombine does it as well for simple uses, it's not clear that it
 | 
						|
        // occurs enough in real life to handle.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  if (!CondUse) return;  // setcc doesn't use the IV.
 | 
						|
 | 
						|
  // setcc stride is complex, don't mess with users.
 | 
						|
  // FIXME: Evaluate whether this is a good idea or not.
 | 
						|
  if (!isa<SCEVConstant>(*CondStride)) return;
 | 
						|
 | 
						|
  // It's possible for the setcc instruction to be anywhere in the loop, and
 | 
						|
  // possible for it to have multiple users.  If it is not immediately before
 | 
						|
  // the latch block branch, move it.
 | 
						|
  if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
 | 
						|
    if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
 | 
						|
      Cond->moveBefore(TermBr);
 | 
						|
    } else {
 | 
						|
      // Otherwise, clone the terminating condition and insert into the loopend.
 | 
						|
      Cond = cast<SetCondInst>(Cond->clone());
 | 
						|
      Cond->setName(L->getHeader()->getName() + ".termcond");
 | 
						|
      LatchBlock->getInstList().insert(TermBr, Cond);
 | 
						|
      
 | 
						|
      // Clone the IVUse, as the old use still exists!
 | 
						|
      IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
 | 
						|
                                         CondUse->OperandValToReplace);
 | 
						|
      CondUse = &IVUsesByStride[*CondStride].Users.back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get to here, we know that we can transform the setcc instruction to
 | 
						|
  // use the post-incremented version of the IV, allowing us to coallesce the
 | 
						|
  // live ranges for the IV correctly.
 | 
						|
  CondUse->Offset = SCEV::getMinusSCEV(CondUse->Offset, *CondStride);
 | 
						|
  CondUse->isUseOfPostIncrementedValue = true;
 | 
						|
}
 | 
						|
 | 
						|
void LoopStrengthReduce::runOnLoop(Loop *L) {
 | 
						|
  // First step, transform all loops nesting inside of this loop.
 | 
						|
  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    runOnLoop(*I);
 | 
						|
 | 
						|
  // Next, find all uses of induction variables in this loop, and catagorize
 | 
						|
  // them by stride.  Start by finding all of the PHI nodes in the header for
 | 
						|
  // this loop.  If they are induction variables, inspect their uses.
 | 
						|
  std::set<Instruction*> Processed;   // Don't reprocess instructions.
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
 | 
						|
    AddUsersIfInteresting(I, L, Processed);
 | 
						|
 | 
						|
  // If we have nothing to do, return.
 | 
						|
  if (IVUsesByStride.empty()) return;
 | 
						|
 | 
						|
  // Optimize induction variables.  Some indvar uses can be transformed to use
 | 
						|
  // strides that will be needed for other purposes.  A common example of this
 | 
						|
  // is the exit test for the loop, which can often be rewritten to use the
 | 
						|
  // computation of some other indvar to decide when to terminate the loop.
 | 
						|
  OptimizeIndvars(L);
 | 
						|
 | 
						|
 | 
						|
  // FIXME: We can widen subreg IV's here for RISC targets.  e.g. instead of
 | 
						|
  // doing computation in byte values, promote to 32-bit values if safe.
 | 
						|
 | 
						|
  // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
 | 
						|
  // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
 | 
						|
  // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.  Need
 | 
						|
  // to be careful that IV's are all the same type.  Only works for intptr_t
 | 
						|
  // indvars.
 | 
						|
 | 
						|
  // If we only have one stride, we can more aggressively eliminate some things.
 | 
						|
  bool HasOneStride = IVUsesByStride.size() == 1;
 | 
						|
  
 | 
						|
  // Note: this processes each stride/type pair individually.  All users passed
 | 
						|
  // into StrengthReduceStridedIVUsers have the same type AND stride.  Also,
 | 
						|
  // node that we iterate over IVUsesByStride indirectly by using StrideOrder.
 | 
						|
  // This extra layer of indirection makes the ordering of strides deterministic
 | 
						|
  // - not dependent on map order.
 | 
						|
  for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
 | 
						|
    std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI = 
 | 
						|
      IVUsesByStride.find(StrideOrder[Stride]);
 | 
						|
    assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
 | 
						|
    StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
 | 
						|
  }
 | 
						|
 | 
						|
  // Clean up after ourselves
 | 
						|
  if (!DeadInsts.empty()) {
 | 
						|
    DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
 | 
						|
    BasicBlock::iterator I = L->getHeader()->begin();
 | 
						|
    PHINode *PN;
 | 
						|
    while ((PN = dyn_cast<PHINode>(I))) {
 | 
						|
      ++I;  // Preincrement iterator to avoid invalidating it when deleting PN.
 | 
						|
      
 | 
						|
      // At this point, we know that we have killed one or more GEP
 | 
						|
      // instructions.  It is worth checking to see if the cann indvar is also
 | 
						|
      // dead, so that we can remove it as well.  The requirements for the cann
 | 
						|
      // indvar to be considered dead are:
 | 
						|
      // 1. the cann indvar has one use
 | 
						|
      // 2. the use is an add instruction
 | 
						|
      // 3. the add has one use
 | 
						|
      // 4. the add is used by the cann indvar
 | 
						|
      // If all four cases above are true, then we can remove both the add and
 | 
						|
      // the cann indvar.
 | 
						|
      // FIXME: this needs to eliminate an induction variable even if it's being
 | 
						|
      // compared against some value to decide loop termination.
 | 
						|
      if (PN->hasOneUse()) {
 | 
						|
        BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
 | 
						|
        if (BO && BO->hasOneUse()) {
 | 
						|
          if (PN == *(BO->use_begin())) {
 | 
						|
            DeadInsts.insert(BO);
 | 
						|
            // Break the cycle, then delete the PHI.
 | 
						|
            PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | 
						|
            SE->deleteInstructionFromRecords(PN);
 | 
						|
            PN->eraseFromParent();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
  }
 | 
						|
 | 
						|
  CastedPointers.clear();
 | 
						|
  IVUsesByStride.clear();
 | 
						|
  StrideOrder.clear();
 | 
						|
  return;
 | 
						|
}
 |