forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3573 lines
		
	
	
		
			139 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3573 lines
		
	
	
		
			139 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements the SelectionDAGISel class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "ScheduleDAGSDNodes.h"
 | 
						|
#include "SelectionDAGBuilder.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/FastISel.h"
 | 
						|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
 | 
						|
#include "llvm/CodeGen/GCMetadata.h"
 | 
						|
#include "llvm/CodeGen/GCStrategy.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/CodeGen/StackProtector.h"
 | 
						|
#include "llvm/CodeGen/WinEHFuncInfo.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Timer.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetIntrinsicInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "isel"
 | 
						|
 | 
						|
STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
 | 
						|
STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
 | 
						|
STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
 | 
						|
STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
 | 
						|
STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
 | 
						|
STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
 | 
						|
STATISTIC(NumFastIselFailLowerArguments,
 | 
						|
          "Number of entry blocks where fast isel failed to lower arguments");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool>
 | 
						|
EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
 | 
						|
          cl::desc("Enable extra verbose messages in the \"fast\" "
 | 
						|
                   "instruction selector"));
 | 
						|
 | 
						|
  // Terminators
 | 
						|
STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
 | 
						|
STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
 | 
						|
STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
 | 
						|
STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
 | 
						|
STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
 | 
						|
STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
 | 
						|
STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
 | 
						|
 | 
						|
  // Standard binary operators...
 | 
						|
STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
 | 
						|
STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
 | 
						|
STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
 | 
						|
STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
 | 
						|
STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
 | 
						|
STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
 | 
						|
STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
 | 
						|
STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
 | 
						|
STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
 | 
						|
STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
 | 
						|
STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
 | 
						|
STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
 | 
						|
 | 
						|
  // Logical operators...
 | 
						|
STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
 | 
						|
STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
 | 
						|
STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
 | 
						|
 | 
						|
  // Memory instructions...
 | 
						|
STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
 | 
						|
STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
 | 
						|
STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
 | 
						|
STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
 | 
						|
STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
 | 
						|
STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
 | 
						|
STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
 | 
						|
 | 
						|
  // Convert instructions...
 | 
						|
STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
 | 
						|
STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
 | 
						|
STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
 | 
						|
STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
 | 
						|
STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
 | 
						|
STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
 | 
						|
STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
 | 
						|
STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
 | 
						|
STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
 | 
						|
STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
 | 
						|
STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
 | 
						|
STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
 | 
						|
 | 
						|
  // Other instructions...
 | 
						|
STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
 | 
						|
STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
 | 
						|
STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
 | 
						|
STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
 | 
						|
STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
 | 
						|
STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
 | 
						|
STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
 | 
						|
STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
 | 
						|
STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
 | 
						|
STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
 | 
						|
STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
 | 
						|
STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
 | 
						|
STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
 | 
						|
STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
 | 
						|
STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
 | 
						|
 | 
						|
// Intrinsic instructions...
 | 
						|
STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
 | 
						|
STATISTIC(NumFastIselFailSAddWithOverflow,
 | 
						|
          "Fast isel fails on sadd.with.overflow");
 | 
						|
STATISTIC(NumFastIselFailUAddWithOverflow,
 | 
						|
          "Fast isel fails on uadd.with.overflow");
 | 
						|
STATISTIC(NumFastIselFailSSubWithOverflow,
 | 
						|
          "Fast isel fails on ssub.with.overflow");
 | 
						|
STATISTIC(NumFastIselFailUSubWithOverflow,
 | 
						|
          "Fast isel fails on usub.with.overflow");
 | 
						|
STATISTIC(NumFastIselFailSMulWithOverflow,
 | 
						|
          "Fast isel fails on smul.with.overflow");
 | 
						|
STATISTIC(NumFastIselFailUMulWithOverflow,
 | 
						|
          "Fast isel fails on umul.with.overflow");
 | 
						|
STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
 | 
						|
STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
 | 
						|
STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
 | 
						|
STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
 | 
						|
#endif
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
 | 
						|
          cl::desc("Enable verbose messages in the \"fast\" "
 | 
						|
                   "instruction selector"));
 | 
						|
static cl::opt<int> EnableFastISelAbort(
 | 
						|
    "fast-isel-abort", cl::Hidden,
 | 
						|
    cl::desc("Enable abort calls when \"fast\" instruction selection "
 | 
						|
             "fails to lower an instruction: 0 disable the abort, 1 will "
 | 
						|
             "abort but for args, calls and terminators, 2 will also "
 | 
						|
             "abort for argument lowering, and 3 will never fallback "
 | 
						|
             "to SelectionDAG."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UseMBPI("use-mbpi",
 | 
						|
        cl::desc("use Machine Branch Probability Info"),
 | 
						|
        cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<std::string>
 | 
						|
FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
 | 
						|
                        cl::desc("Only display the basic block whose name "
 | 
						|
                                 "matches this for all view-*-dags options"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show dags before the first "
 | 
						|
                   "dag combine pass"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show dags before legalize types"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show dags before legalize"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show dags before the second "
 | 
						|
                   "dag combine pass"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show dags before the post legalize types"
 | 
						|
                   " dag combine pass"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewISelDAGs("view-isel-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show isel dags as they are selected"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | 
						|
          cl::desc("Pop up a window to show sched dags as they are processed"));
 | 
						|
static cl::opt<bool>
 | 
						|
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
 | 
						|
      cl::desc("Pop up a window to show SUnit dags after they are processed"));
 | 
						|
#else
 | 
						|
static const bool ViewDAGCombine1 = false,
 | 
						|
                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
 | 
						|
                  ViewDAGCombine2 = false,
 | 
						|
                  ViewDAGCombineLT = false,
 | 
						|
                  ViewISelDAGs = false, ViewSchedDAGs = false,
 | 
						|
                  ViewSUnitDAGs = false;
 | 
						|
#endif
 | 
						|
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// RegisterScheduler class - Track the registration of instruction schedulers.
 | 
						|
///
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
MachinePassRegistry RegisterScheduler::Registry;
 | 
						|
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// ISHeuristic command line option for instruction schedulers.
 | 
						|
///
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
 | 
						|
               RegisterPassParser<RegisterScheduler> >
 | 
						|
ISHeuristic("pre-RA-sched",
 | 
						|
            cl::init(&createDefaultScheduler), cl::Hidden,
 | 
						|
            cl::desc("Instruction schedulers available (before register"
 | 
						|
                     " allocation):"));
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
defaultListDAGScheduler("default", "Best scheduler for the target",
 | 
						|
                        createDefaultScheduler);
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// \brief This class is used by SelectionDAGISel to temporarily override
 | 
						|
  /// the optimization level on a per-function basis.
 | 
						|
  class OptLevelChanger {
 | 
						|
    SelectionDAGISel &IS;
 | 
						|
    CodeGenOpt::Level SavedOptLevel;
 | 
						|
    bool SavedFastISel;
 | 
						|
 | 
						|
  public:
 | 
						|
    OptLevelChanger(SelectionDAGISel &ISel,
 | 
						|
                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
 | 
						|
      SavedOptLevel = IS.OptLevel;
 | 
						|
      if (NewOptLevel == SavedOptLevel)
 | 
						|
        return;
 | 
						|
      IS.OptLevel = NewOptLevel;
 | 
						|
      IS.TM.setOptLevel(NewOptLevel);
 | 
						|
      DEBUG(dbgs() << "\nChanging optimization level for Function "
 | 
						|
            << IS.MF->getFunction()->getName() << "\n");
 | 
						|
      DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
 | 
						|
            << " ; After: -O" << NewOptLevel << "\n");
 | 
						|
      SavedFastISel = IS.TM.Options.EnableFastISel;
 | 
						|
      if (NewOptLevel == CodeGenOpt::None) {
 | 
						|
        IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
 | 
						|
        DEBUG(dbgs() << "\tFastISel is "
 | 
						|
              << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
 | 
						|
              << "\n");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ~OptLevelChanger() {
 | 
						|
      if (IS.OptLevel == SavedOptLevel)
 | 
						|
        return;
 | 
						|
      DEBUG(dbgs() << "\nRestoring optimization level for Function "
 | 
						|
            << IS.MF->getFunction()->getName() << "\n");
 | 
						|
      DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
 | 
						|
            << " ; After: -O" << SavedOptLevel << "\n");
 | 
						|
      IS.OptLevel = SavedOptLevel;
 | 
						|
      IS.TM.setOptLevel(SavedOptLevel);
 | 
						|
      IS.TM.setFastISel(SavedFastISel);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// createDefaultScheduler - This creates an instruction scheduler appropriate
 | 
						|
  /// for the target.
 | 
						|
  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
 | 
						|
                                             CodeGenOpt::Level OptLevel) {
 | 
						|
    const TargetLowering *TLI = IS->TLI;
 | 
						|
    const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
 | 
						|
 | 
						|
    // Try first to see if the Target has its own way of selecting a scheduler
 | 
						|
    if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
 | 
						|
      return SchedulerCtor(IS, OptLevel);
 | 
						|
    }
 | 
						|
 | 
						|
    if (OptLevel == CodeGenOpt::None ||
 | 
						|
        (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
 | 
						|
        TLI->getSchedulingPreference() == Sched::Source)
 | 
						|
      return createSourceListDAGScheduler(IS, OptLevel);
 | 
						|
    if (TLI->getSchedulingPreference() == Sched::RegPressure)
 | 
						|
      return createBURRListDAGScheduler(IS, OptLevel);
 | 
						|
    if (TLI->getSchedulingPreference() == Sched::Hybrid)
 | 
						|
      return createHybridListDAGScheduler(IS, OptLevel);
 | 
						|
    if (TLI->getSchedulingPreference() == Sched::VLIW)
 | 
						|
      return createVLIWDAGScheduler(IS, OptLevel);
 | 
						|
    assert(TLI->getSchedulingPreference() == Sched::ILP &&
 | 
						|
           "Unknown sched type!");
 | 
						|
    return createILPListDAGScheduler(IS, OptLevel);
 | 
						|
  }
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
// EmitInstrWithCustomInserter - This method should be implemented by targets
 | 
						|
// that mark instructions with the 'usesCustomInserter' flag.  These
 | 
						|
// instructions are special in various ways, which require special support to
 | 
						|
// insert.  The specified MachineInstr is created but not inserted into any
 | 
						|
// basic blocks, and this method is called to expand it into a sequence of
 | 
						|
// instructions, potentially also creating new basic blocks and control flow.
 | 
						|
// When new basic blocks are inserted and the edges from MBB to its successors
 | 
						|
// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
 | 
						|
// DenseMap.
 | 
						|
MachineBasicBlock *
 | 
						|
TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | 
						|
                                            MachineBasicBlock *MBB) const {
 | 
						|
#ifndef NDEBUG
 | 
						|
  dbgs() << "If a target marks an instruction with "
 | 
						|
          "'usesCustomInserter', it must implement "
 | 
						|
          "TargetLowering::EmitInstrWithCustomInserter!";
 | 
						|
#endif
 | 
						|
  llvm_unreachable(nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
 | 
						|
                                                   SDNode *Node) const {
 | 
						|
  assert(!MI->hasPostISelHook() &&
 | 
						|
         "If a target marks an instruction with 'hasPostISelHook', "
 | 
						|
         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SelectionDAGISel code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
 | 
						|
                                   CodeGenOpt::Level OL) :
 | 
						|
  MachineFunctionPass(ID), TM(tm),
 | 
						|
  FuncInfo(new FunctionLoweringInfo()),
 | 
						|
  CurDAG(new SelectionDAG(tm, OL)),
 | 
						|
  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
 | 
						|
  GFI(),
 | 
						|
  OptLevel(OL),
 | 
						|
  DAGSize(0) {
 | 
						|
    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
 | 
						|
    initializeBranchProbabilityInfoWrapperPassPass(
 | 
						|
        *PassRegistry::getPassRegistry());
 | 
						|
    initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
    initializeTargetLibraryInfoWrapperPassPass(
 | 
						|
        *PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
SelectionDAGISel::~SelectionDAGISel() {
 | 
						|
  delete SDB;
 | 
						|
  delete CurDAG;
 | 
						|
  delete FuncInfo;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<AAResultsWrapperPass>();
 | 
						|
  AU.addRequired<GCModuleInfo>();
 | 
						|
  AU.addRequired<StackProtector>();
 | 
						|
  AU.addPreserved<StackProtector>();
 | 
						|
  AU.addPreserved<GCModuleInfo>();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  if (UseMBPI && OptLevel != CodeGenOpt::None)
 | 
						|
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
 | 
						|
/// may trap on it.  In this case we have to split the edge so that the path
 | 
						|
/// through the predecessor block that doesn't go to the phi block doesn't
 | 
						|
/// execute the possibly trapping instruction.
 | 
						|
///
 | 
						|
/// This is required for correctness, so it must be done at -O0.
 | 
						|
///
 | 
						|
static void SplitCriticalSideEffectEdges(Function &Fn) {
 | 
						|
  // Loop for blocks with phi nodes.
 | 
						|
  for (BasicBlock &BB : Fn) {
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(BB.begin());
 | 
						|
    if (!PN) continue;
 | 
						|
 | 
						|
  ReprocessBlock:
 | 
						|
    // For each block with a PHI node, check to see if any of the input values
 | 
						|
    // are potentially trapping constant expressions.  Constant expressions are
 | 
						|
    // the only potentially trapping value that can occur as the argument to a
 | 
						|
    // PHI.
 | 
						|
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
 | 
						|
        if (!CE || !CE->canTrap()) continue;
 | 
						|
 | 
						|
        // The only case we have to worry about is when the edge is critical.
 | 
						|
        // Since this block has a PHI Node, we assume it has multiple input
 | 
						|
        // edges: check to see if the pred has multiple successors.
 | 
						|
        BasicBlock *Pred = PN->getIncomingBlock(i);
 | 
						|
        if (Pred->getTerminator()->getNumSuccessors() == 1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Okay, we have to split this edge.
 | 
						|
        SplitCriticalEdge(
 | 
						|
            Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
 | 
						|
            CriticalEdgeSplittingOptions().setMergeIdenticalEdges());
 | 
						|
        goto ReprocessBlock;
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  // Do some sanity-checking on the command-line options.
 | 
						|
  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
 | 
						|
         "-fast-isel-verbose requires -fast-isel");
 | 
						|
  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
 | 
						|
         "-fast-isel-abort > 0 requires -fast-isel");
 | 
						|
 | 
						|
  const Function &Fn = *mf.getFunction();
 | 
						|
  MF = &mf;
 | 
						|
 | 
						|
  // Reset the target options before resetting the optimization
 | 
						|
  // level below.
 | 
						|
  // FIXME: This is a horrible hack and should be processed via
 | 
						|
  // codegen looking at the optimization level explicitly when
 | 
						|
  // it wants to look at it.
 | 
						|
  TM.resetTargetOptions(Fn);
 | 
						|
  // Reset OptLevel to None for optnone functions.
 | 
						|
  CodeGenOpt::Level NewOptLevel = OptLevel;
 | 
						|
  if (Fn.hasFnAttribute(Attribute::OptimizeNone))
 | 
						|
    NewOptLevel = CodeGenOpt::None;
 | 
						|
  OptLevelChanger OLC(*this, NewOptLevel);
 | 
						|
 | 
						|
  TII = MF->getSubtarget().getInstrInfo();
 | 
						|
  TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
  RegInfo = &MF->getRegInfo();
 | 
						|
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
 | 
						|
 | 
						|
  SplitCriticalSideEffectEdges(const_cast<Function &>(Fn));
 | 
						|
 | 
						|
  CurDAG->init(*MF);
 | 
						|
  FuncInfo->set(Fn, *MF, CurDAG);
 | 
						|
 | 
						|
  if (UseMBPI && OptLevel != CodeGenOpt::None)
 | 
						|
    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
 | 
						|
  else
 | 
						|
    FuncInfo->BPI = nullptr;
 | 
						|
 | 
						|
  SDB->init(GFI, *AA, LibInfo);
 | 
						|
 | 
						|
  MF->setHasInlineAsm(false);
 | 
						|
 | 
						|
  FuncInfo->SplitCSR = false;
 | 
						|
 | 
						|
  // We split CSR if the target supports it for the given function
 | 
						|
  // and the function has only return exits.
 | 
						|
  if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
 | 
						|
    FuncInfo->SplitCSR = true;
 | 
						|
 | 
						|
    // Collect all the return blocks.
 | 
						|
    for (const BasicBlock &BB : Fn) {
 | 
						|
      if (!succ_empty(&BB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      const TerminatorInst *Term = BB.getTerminator();
 | 
						|
      if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Bail out if the exit block is not Return nor Unreachable.
 | 
						|
      FuncInfo->SplitCSR = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *EntryMBB = &MF->front();
 | 
						|
  if (FuncInfo->SplitCSR)
 | 
						|
    // This performs initialization so lowering for SplitCSR will be correct.
 | 
						|
    TLI->initializeSplitCSR(EntryMBB);
 | 
						|
 | 
						|
  SelectAllBasicBlocks(Fn);
 | 
						|
 | 
						|
  // If the first basic block in the function has live ins that need to be
 | 
						|
  // copied into vregs, emit the copies into the top of the block before
 | 
						|
  // emitting the code for the block.
 | 
						|
  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
 | 
						|
  RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
 | 
						|
 | 
						|
  // Insert copies in the entry block and the return blocks.
 | 
						|
  if (FuncInfo->SplitCSR) {
 | 
						|
    SmallVector<MachineBasicBlock*, 4> Returns;
 | 
						|
    // Collect all the return blocks.
 | 
						|
    for (MachineBasicBlock &MBB : mf) {
 | 
						|
      if (!MBB.succ_empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
 | 
						|
      if (Term != MBB.end() && Term->isReturn()) {
 | 
						|
        Returns.push_back(&MBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    TLI->insertCopiesSplitCSR(EntryMBB, Returns);
 | 
						|
  }
 | 
						|
 | 
						|
  DenseMap<unsigned, unsigned> LiveInMap;
 | 
						|
  if (!FuncInfo->ArgDbgValues.empty())
 | 
						|
    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
 | 
						|
           E = RegInfo->livein_end(); LI != E; ++LI)
 | 
						|
      if (LI->second)
 | 
						|
        LiveInMap.insert(std::make_pair(LI->first, LI->second));
 | 
						|
 | 
						|
  // Insert DBG_VALUE instructions for function arguments to the entry block.
 | 
						|
  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
 | 
						|
    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
 | 
						|
    bool hasFI = MI->getOperand(0).isFI();
 | 
						|
    unsigned Reg =
 | 
						|
        hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
      EntryMBB->insert(EntryMBB->begin(), MI);
 | 
						|
    else {
 | 
						|
      MachineInstr *Def = RegInfo->getVRegDef(Reg);
 | 
						|
      if (Def) {
 | 
						|
        MachineBasicBlock::iterator InsertPos = Def;
 | 
						|
        // FIXME: VR def may not be in entry block.
 | 
						|
        Def->getParent()->insert(std::next(InsertPos), MI);
 | 
						|
      } else
 | 
						|
        DEBUG(dbgs() << "Dropping debug info for dead vreg"
 | 
						|
              << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // If Reg is live-in then update debug info to track its copy in a vreg.
 | 
						|
    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
 | 
						|
    if (LDI != LiveInMap.end()) {
 | 
						|
      assert(!hasFI && "There's no handling of frame pointer updating here yet "
 | 
						|
                       "- add if needed");
 | 
						|
      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
 | 
						|
      MachineBasicBlock::iterator InsertPos = Def;
 | 
						|
      const MDNode *Variable = MI->getDebugVariable();
 | 
						|
      const MDNode *Expr = MI->getDebugExpression();
 | 
						|
      DebugLoc DL = MI->getDebugLoc();
 | 
						|
      bool IsIndirect = MI->isIndirectDebugValue();
 | 
						|
      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
 | 
						|
      assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
 | 
						|
             "Expected inlined-at fields to agree");
 | 
						|
      // Def is never a terminator here, so it is ok to increment InsertPos.
 | 
						|
      BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
 | 
						|
              IsIndirect, LDI->second, Offset, Variable, Expr);
 | 
						|
 | 
						|
      // If this vreg is directly copied into an exported register then
 | 
						|
      // that COPY instructions also need DBG_VALUE, if it is the only
 | 
						|
      // user of LDI->second.
 | 
						|
      MachineInstr *CopyUseMI = nullptr;
 | 
						|
      for (MachineRegisterInfo::use_instr_iterator
 | 
						|
           UI = RegInfo->use_instr_begin(LDI->second),
 | 
						|
           E = RegInfo->use_instr_end(); UI != E; ) {
 | 
						|
        MachineInstr *UseMI = &*(UI++);
 | 
						|
        if (UseMI->isDebugValue()) continue;
 | 
						|
        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
 | 
						|
          CopyUseMI = UseMI; continue;
 | 
						|
        }
 | 
						|
        // Otherwise this is another use or second copy use.
 | 
						|
        CopyUseMI = nullptr; break;
 | 
						|
      }
 | 
						|
      if (CopyUseMI) {
 | 
						|
        // Use MI's debug location, which describes where Variable was
 | 
						|
        // declared, rather than whatever is attached to CopyUseMI.
 | 
						|
        MachineInstr *NewMI =
 | 
						|
            BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
 | 
						|
                    CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
 | 
						|
        MachineBasicBlock::iterator Pos = CopyUseMI;
 | 
						|
        EntryMBB->insertAfter(Pos, NewMI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine if there are any calls in this machine function.
 | 
						|
  MachineFrameInfo *MFI = MF->getFrameInfo();
 | 
						|
  for (const auto &MBB : *MF) {
 | 
						|
    if (MFI->hasCalls() && MF->hasInlineAsm())
 | 
						|
      break;
 | 
						|
 | 
						|
    for (const auto &MI : MBB) {
 | 
						|
      const MCInstrDesc &MCID = TII->get(MI.getOpcode());
 | 
						|
      if ((MCID.isCall() && !MCID.isReturn()) ||
 | 
						|
          MI.isStackAligningInlineAsm()) {
 | 
						|
        MFI->setHasCalls(true);
 | 
						|
      }
 | 
						|
      if (MI.isInlineAsm()) {
 | 
						|
        MF->setHasInlineAsm(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine if there is a call to setjmp in the machine function.
 | 
						|
  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
 | 
						|
 | 
						|
  // Replace forward-declared registers with the registers containing
 | 
						|
  // the desired value.
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
  for (DenseMap<unsigned, unsigned>::iterator
 | 
						|
       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned From = I->first;
 | 
						|
    unsigned To = I->second;
 | 
						|
    // If To is also scheduled to be replaced, find what its ultimate
 | 
						|
    // replacement is.
 | 
						|
    for (;;) {
 | 
						|
      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
 | 
						|
      if (J == E) break;
 | 
						|
      To = J->second;
 | 
						|
    }
 | 
						|
    // Make sure the new register has a sufficiently constrained register class.
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(From) &&
 | 
						|
        TargetRegisterInfo::isVirtualRegister(To))
 | 
						|
      MRI.constrainRegClass(To, MRI.getRegClass(From));
 | 
						|
    // Replace it.
 | 
						|
 | 
						|
 | 
						|
    // Replacing one register with another won't touch the kill flags.
 | 
						|
    // We need to conservatively clear the kill flags as a kill on the old
 | 
						|
    // register might dominate existing uses of the new register.
 | 
						|
    if (!MRI.use_empty(To))
 | 
						|
      MRI.clearKillFlags(From);
 | 
						|
    MRI.replaceRegWith(From, To);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TLI->hasCopyImplyingStackAdjustment(MF))
 | 
						|
    MFI->setHasCopyImplyingStackAdjustment(true);
 | 
						|
 | 
						|
  // Freeze the set of reserved registers now that MachineFrameInfo has been
 | 
						|
  // set up. All the information required by getReservedRegs() should be
 | 
						|
  // available now.
 | 
						|
  MRI.freezeReservedRegs(*MF);
 | 
						|
 | 
						|
  // Release function-specific state. SDB and CurDAG are already cleared
 | 
						|
  // at this point.
 | 
						|
  FuncInfo->clear();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
 | 
						|
  DEBUG(MF->print(dbgs()));
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
 | 
						|
                                        BasicBlock::const_iterator End,
 | 
						|
                                        bool &HadTailCall) {
 | 
						|
  // Lower the instructions. If a call is emitted as a tail call, cease emitting
 | 
						|
  // nodes for this block.
 | 
						|
  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
 | 
						|
    SDB->visit(*I);
 | 
						|
 | 
						|
  // Make sure the root of the DAG is up-to-date.
 | 
						|
  CurDAG->setRoot(SDB->getControlRoot());
 | 
						|
  HadTailCall = SDB->HasTailCall;
 | 
						|
  SDB->clear();
 | 
						|
 | 
						|
  // Final step, emit the lowered DAG as machine code.
 | 
						|
  CodeGenAndEmitDAG();
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
 | 
						|
  SmallPtrSet<SDNode*, 16> VisitedNodes;
 | 
						|
  SmallVector<SDNode*, 128> Worklist;
 | 
						|
 | 
						|
  Worklist.push_back(CurDAG->getRoot().getNode());
 | 
						|
 | 
						|
  APInt KnownZero;
 | 
						|
  APInt KnownOne;
 | 
						|
 | 
						|
  do {
 | 
						|
    SDNode *N = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // If we've already seen this node, ignore it.
 | 
						|
    if (!VisitedNodes.insert(N).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, add all chain operands to the worklist.
 | 
						|
    for (const SDValue &Op : N->op_values())
 | 
						|
      if (Op.getValueType() == MVT::Other)
 | 
						|
        Worklist.push_back(Op.getNode());
 | 
						|
 | 
						|
    // If this is a CopyToReg with a vreg dest, process it.
 | 
						|
    if (N->getOpcode() != ISD::CopyToReg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Ignore non-scalar or non-integer values.
 | 
						|
    SDValue Src = N->getOperand(2);
 | 
						|
    EVT SrcVT = Src.getValueType();
 | 
						|
    if (!SrcVT.isInteger() || SrcVT.isVector())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
 | 
						|
    CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
 | 
						|
    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
 | 
						|
  } while (!Worklist.empty());
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::CodeGenAndEmitDAG() {
 | 
						|
  std::string GroupName;
 | 
						|
  if (TimePassesIsEnabled)
 | 
						|
    GroupName = "Instruction Selection and Scheduling";
 | 
						|
  std::string BlockName;
 | 
						|
  int BlockNumber = -1;
 | 
						|
  (void)BlockNumber;
 | 
						|
  bool MatchFilterBB = false; (void)MatchFilterBB;
 | 
						|
#ifndef NDEBUG
 | 
						|
  MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
 | 
						|
                   FilterDAGBasicBlockName ==
 | 
						|
                       FuncInfo->MBB->getBasicBlock()->getName().str());
 | 
						|
#endif
 | 
						|
#ifdef NDEBUG
 | 
						|
  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
 | 
						|
      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
 | 
						|
      ViewSUnitDAGs)
 | 
						|
#endif
 | 
						|
  {
 | 
						|
    BlockNumber = FuncInfo->MBB->getNumber();
 | 
						|
    BlockName =
 | 
						|
        (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
 | 
						|
        << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
 | 
						|
  if (ViewDAGCombine1 && MatchFilterBB)
 | 
						|
    CurDAG->viewGraph("dag-combine1 input for " + BlockName);
 | 
						|
 | 
						|
  // Run the DAG combiner in pre-legalize mode.
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
 | 
						|
    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
 | 
						|
        << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
 | 
						|
  // Second step, hack on the DAG until it only uses operations and types that
 | 
						|
  // the target supports.
 | 
						|
  if (ViewLegalizeTypesDAGs && MatchFilterBB)
 | 
						|
    CurDAG->viewGraph("legalize-types input for " + BlockName);
 | 
						|
 | 
						|
  bool Changed;
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
 | 
						|
    Changed = CurDAG->LegalizeTypes();
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
 | 
						|
        << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
 | 
						|
  CurDAG->NewNodesMustHaveLegalTypes = true;
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    if (ViewDAGCombineLT && MatchFilterBB)
 | 
						|
      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
 | 
						|
 | 
						|
    // Run the DAG combiner in post-type-legalize mode.
 | 
						|
    {
 | 
						|
      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
 | 
						|
                         TimePassesIsEnabled);
 | 
						|
      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
 | 
						|
          << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
 | 
						|
    Changed = CurDAG->LegalizeVectors();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    {
 | 
						|
      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
 | 
						|
      CurDAG->LegalizeTypes();
 | 
						|
    }
 | 
						|
 | 
						|
    if (ViewDAGCombineLT && MatchFilterBB)
 | 
						|
      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
 | 
						|
 | 
						|
    // Run the DAG combiner in post-type-legalize mode.
 | 
						|
    {
 | 
						|
      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
 | 
						|
                         TimePassesIsEnabled);
 | 
						|
      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
 | 
						|
          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
  }
 | 
						|
 | 
						|
  if (ViewLegalizeDAGs && MatchFilterBB)
 | 
						|
    CurDAG->viewGraph("legalize input for " + BlockName);
 | 
						|
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
 | 
						|
    CurDAG->Legalize();
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
 | 
						|
        << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
 | 
						|
  if (ViewDAGCombine2 && MatchFilterBB)
 | 
						|
    CurDAG->viewGraph("dag-combine2 input for " + BlockName);
 | 
						|
 | 
						|
  // Run the DAG combiner in post-legalize mode.
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
 | 
						|
    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
 | 
						|
        << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
 | 
						|
  if (OptLevel != CodeGenOpt::None)
 | 
						|
    ComputeLiveOutVRegInfo();
 | 
						|
 | 
						|
  if (ViewISelDAGs && MatchFilterBB)
 | 
						|
    CurDAG->viewGraph("isel input for " + BlockName);
 | 
						|
 | 
						|
  // Third, instruction select all of the operations to machine code, adding the
 | 
						|
  // code to the MachineBasicBlock.
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
 | 
						|
    DoInstructionSelection();
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
 | 
						|
        << " '" << BlockName << "'\n"; CurDAG->dump());
 | 
						|
 | 
						|
  if (ViewSchedDAGs && MatchFilterBB)
 | 
						|
    CurDAG->viewGraph("scheduler input for " + BlockName);
 | 
						|
 | 
						|
  // Schedule machine code.
 | 
						|
  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("Instruction Scheduling", GroupName,
 | 
						|
                       TimePassesIsEnabled);
 | 
						|
    Scheduler->Run(CurDAG, FuncInfo->MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ViewSUnitDAGs && MatchFilterBB)
 | 
						|
    Scheduler->viewGraph();
 | 
						|
 | 
						|
  // Emit machine code to BB.  This can change 'BB' to the last block being
 | 
						|
  // inserted into.
 | 
						|
  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
 | 
						|
 | 
						|
    // FuncInfo->InsertPt is passed by reference and set to the end of the
 | 
						|
    // scheduled instructions.
 | 
						|
    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the block was split, make sure we update any references that are used to
 | 
						|
  // update PHI nodes later on.
 | 
						|
  if (FirstMBB != LastMBB)
 | 
						|
    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
 | 
						|
 | 
						|
  // Free the scheduler state.
 | 
						|
  {
 | 
						|
    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
 | 
						|
                       TimePassesIsEnabled);
 | 
						|
    delete Scheduler;
 | 
						|
  }
 | 
						|
 | 
						|
  // Free the SelectionDAG state, now that we're finished with it.
 | 
						|
  CurDAG->clear();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// ISelUpdater - helper class to handle updates of the instruction selection
 | 
						|
/// graph.
 | 
						|
class ISelUpdater : public SelectionDAG::DAGUpdateListener {
 | 
						|
  SelectionDAG::allnodes_iterator &ISelPosition;
 | 
						|
public:
 | 
						|
  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
 | 
						|
    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
 | 
						|
 | 
						|
  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
 | 
						|
  /// deleted is the current ISelPosition node, update ISelPosition.
 | 
						|
  ///
 | 
						|
  void NodeDeleted(SDNode *N, SDNode *E) override {
 | 
						|
    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
 | 
						|
      ++ISelPosition;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void SelectionDAGISel::DoInstructionSelection() {
 | 
						|
  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
 | 
						|
        << FuncInfo->MBB->getNumber()
 | 
						|
        << " '" << FuncInfo->MBB->getName() << "'\n");
 | 
						|
 | 
						|
  PreprocessISelDAG();
 | 
						|
 | 
						|
  // Select target instructions for the DAG.
 | 
						|
  {
 | 
						|
    // Number all nodes with a topological order and set DAGSize.
 | 
						|
    DAGSize = CurDAG->AssignTopologicalOrder();
 | 
						|
 | 
						|
    // Create a dummy node (which is not added to allnodes), that adds
 | 
						|
    // a reference to the root node, preventing it from being deleted,
 | 
						|
    // and tracking any changes of the root.
 | 
						|
    HandleSDNode Dummy(CurDAG->getRoot());
 | 
						|
    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
 | 
						|
    ++ISelPosition;
 | 
						|
 | 
						|
    // Make sure that ISelPosition gets properly updated when nodes are deleted
 | 
						|
    // in calls made from this function.
 | 
						|
    ISelUpdater ISU(*CurDAG, ISelPosition);
 | 
						|
 | 
						|
    // The AllNodes list is now topological-sorted. Visit the
 | 
						|
    // nodes by starting at the end of the list (the root of the
 | 
						|
    // graph) and preceding back toward the beginning (the entry
 | 
						|
    // node).
 | 
						|
    while (ISelPosition != CurDAG->allnodes_begin()) {
 | 
						|
      SDNode *Node = &*--ISelPosition;
 | 
						|
      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
 | 
						|
      // but there are currently some corner cases that it misses. Also, this
 | 
						|
      // makes it theoretically possible to disable the DAGCombiner.
 | 
						|
      if (Node->use_empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      Select(Node);
 | 
						|
    }
 | 
						|
 | 
						|
    CurDAG->setRoot(Dummy.getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "===== Instruction selection ends:\n");
 | 
						|
 | 
						|
  PostprocessISelDAG();
 | 
						|
}
 | 
						|
 | 
						|
static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
 | 
						|
  for (const User *U : CPI->users()) {
 | 
						|
    if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
 | 
						|
      Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
 | 
						|
      if (IID == Intrinsic::eh_exceptionpointer ||
 | 
						|
          IID == Intrinsic::eh_exceptioncode)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
 | 
						|
/// do other setup for EH landing-pad blocks.
 | 
						|
bool SelectionDAGISel::PrepareEHLandingPad() {
 | 
						|
  MachineBasicBlock *MBB = FuncInfo->MBB;
 | 
						|
  const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
 | 
						|
  const BasicBlock *LLVMBB = MBB->getBasicBlock();
 | 
						|
  const TargetRegisterClass *PtrRC =
 | 
						|
      TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
 | 
						|
  // Catchpads have one live-in register, which typically holds the exception
 | 
						|
  // pointer or code.
 | 
						|
  if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
 | 
						|
    if (hasExceptionPointerOrCodeUser(CPI)) {
 | 
						|
      // Get or create the virtual register to hold the pointer or code.  Mark
 | 
						|
      // the live in physreg and copy into the vreg.
 | 
						|
      MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
 | 
						|
      assert(EHPhysReg && "target lacks exception pointer register");
 | 
						|
      MBB->addLiveIn(EHPhysReg);
 | 
						|
      unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
 | 
						|
      BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
 | 
						|
              TII->get(TargetOpcode::COPY), VReg)
 | 
						|
          .addReg(EHPhysReg, RegState::Kill);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LLVMBB->isLandingPad())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Add a label to mark the beginning of the landing pad.  Deletion of the
 | 
						|
  // landing pad can thus be detected via the MachineModuleInfo.
 | 
						|
  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
 | 
						|
 | 
						|
  // Assign the call site to the landing pad's begin label.
 | 
						|
  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
 | 
						|
 | 
						|
  const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
 | 
						|
  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
 | 
						|
    .addSym(Label);
 | 
						|
 | 
						|
  // Mark exception register as live in.
 | 
						|
  if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
 | 
						|
    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
 | 
						|
 | 
						|
  // Mark exception selector register as live in.
 | 
						|
  if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
 | 
						|
    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isFoldedOrDeadInstruction - Return true if the specified instruction is
 | 
						|
/// side-effect free and is either dead or folded into a generated instruction.
 | 
						|
/// Return false if it needs to be emitted.
 | 
						|
static bool isFoldedOrDeadInstruction(const Instruction *I,
 | 
						|
                                      FunctionLoweringInfo *FuncInfo) {
 | 
						|
  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
 | 
						|
         !isa<TerminatorInst>(I) &&    // Terminators aren't folded.
 | 
						|
         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
 | 
						|
         !I->isEHPad() &&              // EH pad instructions aren't folded.
 | 
						|
         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
// Collect per Instruction statistics for fast-isel misses.  Only those
 | 
						|
// instructions that cause the bail are accounted for.  It does not account for
 | 
						|
// instructions higher in the block.  Thus, summing the per instructions stats
 | 
						|
// will not add up to what is reported by NumFastIselFailures.
 | 
						|
static void collectFailStats(const Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: assert (0 && "<Invalid operator> ");
 | 
						|
 | 
						|
  // Terminators
 | 
						|
  case Instruction::Ret:         NumFastIselFailRet++; return;
 | 
						|
  case Instruction::Br:          NumFastIselFailBr++; return;
 | 
						|
  case Instruction::Switch:      NumFastIselFailSwitch++; return;
 | 
						|
  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
 | 
						|
  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
 | 
						|
  case Instruction::Resume:      NumFastIselFailResume++; return;
 | 
						|
  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
 | 
						|
 | 
						|
  // Standard binary operators...
 | 
						|
  case Instruction::Add:  NumFastIselFailAdd++; return;
 | 
						|
  case Instruction::FAdd: NumFastIselFailFAdd++; return;
 | 
						|
  case Instruction::Sub:  NumFastIselFailSub++; return;
 | 
						|
  case Instruction::FSub: NumFastIselFailFSub++; return;
 | 
						|
  case Instruction::Mul:  NumFastIselFailMul++; return;
 | 
						|
  case Instruction::FMul: NumFastIselFailFMul++; return;
 | 
						|
  case Instruction::UDiv: NumFastIselFailUDiv++; return;
 | 
						|
  case Instruction::SDiv: NumFastIselFailSDiv++; return;
 | 
						|
  case Instruction::FDiv: NumFastIselFailFDiv++; return;
 | 
						|
  case Instruction::URem: NumFastIselFailURem++; return;
 | 
						|
  case Instruction::SRem: NumFastIselFailSRem++; return;
 | 
						|
  case Instruction::FRem: NumFastIselFailFRem++; return;
 | 
						|
 | 
						|
  // Logical operators...
 | 
						|
  case Instruction::And: NumFastIselFailAnd++; return;
 | 
						|
  case Instruction::Or:  NumFastIselFailOr++; return;
 | 
						|
  case Instruction::Xor: NumFastIselFailXor++; return;
 | 
						|
 | 
						|
  // Memory instructions...
 | 
						|
  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
 | 
						|
  case Instruction::Load:          NumFastIselFailLoad++; return;
 | 
						|
  case Instruction::Store:         NumFastIselFailStore++; return;
 | 
						|
  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
 | 
						|
  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
 | 
						|
  case Instruction::Fence:         NumFastIselFailFence++; return;
 | 
						|
  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
 | 
						|
 | 
						|
  // Convert instructions...
 | 
						|
  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
 | 
						|
  case Instruction::ZExt:     NumFastIselFailZExt++; return;
 | 
						|
  case Instruction::SExt:     NumFastIselFailSExt++; return;
 | 
						|
  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
 | 
						|
  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
 | 
						|
  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
 | 
						|
  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
 | 
						|
  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
 | 
						|
  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
 | 
						|
  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
 | 
						|
  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
 | 
						|
  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
 | 
						|
 | 
						|
  // Other instructions...
 | 
						|
  case Instruction::ICmp:           NumFastIselFailICmp++; return;
 | 
						|
  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
 | 
						|
  case Instruction::PHI:            NumFastIselFailPHI++; return;
 | 
						|
  case Instruction::Select:         NumFastIselFailSelect++; return;
 | 
						|
  case Instruction::Call: {
 | 
						|
    if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
      switch (Intrinsic->getIntrinsicID()) {
 | 
						|
      default:
 | 
						|
        NumFastIselFailIntrinsicCall++; return;
 | 
						|
      case Intrinsic::sadd_with_overflow:
 | 
						|
        NumFastIselFailSAddWithOverflow++; return;
 | 
						|
      case Intrinsic::uadd_with_overflow:
 | 
						|
        NumFastIselFailUAddWithOverflow++; return;
 | 
						|
      case Intrinsic::ssub_with_overflow:
 | 
						|
        NumFastIselFailSSubWithOverflow++; return;
 | 
						|
      case Intrinsic::usub_with_overflow:
 | 
						|
        NumFastIselFailUSubWithOverflow++; return;
 | 
						|
      case Intrinsic::smul_with_overflow:
 | 
						|
        NumFastIselFailSMulWithOverflow++; return;
 | 
						|
      case Intrinsic::umul_with_overflow:
 | 
						|
        NumFastIselFailUMulWithOverflow++; return;
 | 
						|
      case Intrinsic::frameaddress:
 | 
						|
        NumFastIselFailFrameaddress++; return;
 | 
						|
      case Intrinsic::sqrt:
 | 
						|
          NumFastIselFailSqrt++; return;
 | 
						|
      case Intrinsic::experimental_stackmap:
 | 
						|
        NumFastIselFailStackMap++; return;
 | 
						|
      case Intrinsic::experimental_patchpoint_void: // fall-through
 | 
						|
      case Intrinsic::experimental_patchpoint_i64:
 | 
						|
        NumFastIselFailPatchPoint++; return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    NumFastIselFailCall++;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Instruction::Shl:            NumFastIselFailShl++; return;
 | 
						|
  case Instruction::LShr:           NumFastIselFailLShr++; return;
 | 
						|
  case Instruction::AShr:           NumFastIselFailAShr++; return;
 | 
						|
  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
 | 
						|
  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
 | 
						|
  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
 | 
						|
  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
 | 
						|
  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
 | 
						|
  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
 | 
						|
  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
/// Set up SwiftErrorVals by going through the function. If the function has
 | 
						|
/// swifterror argument, it will be the first entry.
 | 
						|
static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
 | 
						|
                                FunctionLoweringInfo *FuncInfo) {
 | 
						|
  if (!TLI->supportSwiftError())
 | 
						|
    return;
 | 
						|
 | 
						|
  FuncInfo->SwiftErrorVals.clear();
 | 
						|
  FuncInfo->SwiftErrorMap.clear();
 | 
						|
  FuncInfo->SwiftErrorWorklist.clear();
 | 
						|
 | 
						|
  // Check if function has a swifterror argument.
 | 
						|
  for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
 | 
						|
       AI != AE; ++AI)
 | 
						|
    if (AI->hasSwiftErrorAttr())
 | 
						|
      FuncInfo->SwiftErrorVals.push_back(&*AI);
 | 
						|
 | 
						|
  for (const auto &LLVMBB : Fn)
 | 
						|
    for (const auto &Inst : LLVMBB) {
 | 
						|
      if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
 | 
						|
        if (Alloca->isSwiftError())
 | 
						|
          FuncInfo->SwiftErrorVals.push_back(Alloca);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// For each basic block, merge incoming swifterror values or simply propagate
 | 
						|
/// them. The merged results will be saved in SwiftErrorMap. For predecessors
 | 
						|
/// that are not yet visited, we create virtual registers to hold the swifterror
 | 
						|
/// values and save them in SwiftErrorWorklist.
 | 
						|
static void mergeIncomingSwiftErrors(FunctionLoweringInfo *FuncInfo,
 | 
						|
                            const TargetLowering *TLI,
 | 
						|
                            const TargetInstrInfo *TII,
 | 
						|
                            const BasicBlock *LLVMBB,
 | 
						|
                            SelectionDAGBuilder *SDB) {
 | 
						|
  if (!TLI->supportSwiftError())
 | 
						|
    return;
 | 
						|
 | 
						|
  // We should only do this when we have swifterror parameter or swifterror
 | 
						|
  // alloc.
 | 
						|
  if (FuncInfo->SwiftErrorVals.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // At beginning of a basic block, insert PHI nodes or get the virtual
 | 
						|
  // register from the only predecessor, and update SwiftErrorMap; if one
 | 
						|
  // of the predecessors is not visited, update SwiftErrorWorklist.
 | 
						|
  // At end of a basic block, if a block is in SwiftErrorWorklist, insert copy
 | 
						|
  // to sync up the virtual register assignment.
 | 
						|
 | 
						|
  // Always create a virtual register for each swifterror value in entry block.
 | 
						|
  auto &DL = SDB->DAG.getDataLayout();
 | 
						|
  const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
 | 
						|
  if (pred_begin(LLVMBB) == pred_end(LLVMBB)) {
 | 
						|
    for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
 | 
						|
      unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
      // Assign Undef to Vreg. We construct MI directly to make sure it works
 | 
						|
      // with FastISel.
 | 
						|
      BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
 | 
						|
          TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
 | 
						|
      FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *UniquePred = LLVMBB->getUniquePredecessor()) {
 | 
						|
    auto *UniquePredMBB = FuncInfo->MBBMap[UniquePred];
 | 
						|
    if (!FuncInfo->SwiftErrorMap.count(UniquePredMBB)) {
 | 
						|
      // Update SwiftErrorWorklist with a new virtual register.
 | 
						|
      for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
 | 
						|
        unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
        FuncInfo->SwiftErrorWorklist[UniquePredMBB].push_back(VReg);
 | 
						|
        // Propagate the information from the single predecessor.
 | 
						|
        FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // Propagate the information from the single predecessor.
 | 
						|
    FuncInfo->SwiftErrorMap[FuncInfo->MBB] =
 | 
						|
      FuncInfo->SwiftErrorMap[UniquePredMBB];
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For the case of multiple predecessors, update SwiftErrorWorklist.
 | 
						|
  // Handle the case where we have two or more predecessors being the same.
 | 
						|
  for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
 | 
						|
       PI != PE; ++PI) {
 | 
						|
    auto *PredMBB = FuncInfo->MBBMap[*PI];
 | 
						|
    if (!FuncInfo->SwiftErrorMap.count(PredMBB) &&
 | 
						|
        !FuncInfo->SwiftErrorWorklist.count(PredMBB)) {
 | 
						|
      for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
 | 
						|
        unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
        // When we actually visit the basic block PredMBB, we will materialize
 | 
						|
        // the virtual register assignment in copySwiftErrorsToFinalVRegs.
 | 
						|
        FuncInfo->SwiftErrorWorklist[PredMBB].push_back(VReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For the case of multiple predecessors, create a virtual register for
 | 
						|
  // each swifterror value and generate Phi node.
 | 
						|
  for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) {
 | 
						|
    unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
 | 
						|
    FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg);
 | 
						|
 | 
						|
    MachineInstrBuilder SwiftErrorPHI = BuildMI(*FuncInfo->MBB,
 | 
						|
        FuncInfo->MBB->begin(), SDB->getCurDebugLoc(),
 | 
						|
        TII->get(TargetOpcode::PHI), VReg);
 | 
						|
    for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
 | 
						|
         PI != PE; ++PI) {
 | 
						|
      auto *PredMBB = FuncInfo->MBBMap[*PI];
 | 
						|
      unsigned SwiftErrorReg = FuncInfo->SwiftErrorMap.count(PredMBB) ?
 | 
						|
        FuncInfo->SwiftErrorMap[PredMBB][I] :
 | 
						|
        FuncInfo->SwiftErrorWorklist[PredMBB][I];
 | 
						|
      SwiftErrorPHI.addReg(SwiftErrorReg)
 | 
						|
                   .addMBB(PredMBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
 | 
						|
  // Initialize the Fast-ISel state, if needed.
 | 
						|
  FastISel *FastIS = nullptr;
 | 
						|
  if (TM.Options.EnableFastISel)
 | 
						|
    FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
 | 
						|
 | 
						|
  setupSwiftErrorVals(Fn, TLI, FuncInfo);
 | 
						|
 | 
						|
  // Iterate over all basic blocks in the function.
 | 
						|
  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
 | 
						|
  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
 | 
						|
       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
 | 
						|
    const BasicBlock *LLVMBB = *I;
 | 
						|
 | 
						|
    if (OptLevel != CodeGenOpt::None) {
 | 
						|
      bool AllPredsVisited = true;
 | 
						|
      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
 | 
						|
           PI != PE; ++PI) {
 | 
						|
        if (!FuncInfo->VisitedBBs.count(*PI)) {
 | 
						|
          AllPredsVisited = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (AllPredsVisited) {
 | 
						|
        for (BasicBlock::const_iterator I = LLVMBB->begin();
 | 
						|
             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
          FuncInfo->ComputePHILiveOutRegInfo(PN);
 | 
						|
      } else {
 | 
						|
        for (BasicBlock::const_iterator I = LLVMBB->begin();
 | 
						|
             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
 | 
						|
      }
 | 
						|
 | 
						|
      FuncInfo->VisitedBBs.insert(LLVMBB);
 | 
						|
    }
 | 
						|
 | 
						|
    BasicBlock::const_iterator const Begin =
 | 
						|
        LLVMBB->getFirstNonPHI()->getIterator();
 | 
						|
    BasicBlock::const_iterator const End = LLVMBB->end();
 | 
						|
    BasicBlock::const_iterator BI = End;
 | 
						|
 | 
						|
    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
 | 
						|
    if (!FuncInfo->MBB)
 | 
						|
      continue; // Some blocks like catchpads have no code or MBB.
 | 
						|
    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
 | 
						|
    mergeIncomingSwiftErrors(FuncInfo, TLI, TII, LLVMBB, SDB);
 | 
						|
 | 
						|
    // Setup an EH landing-pad block.
 | 
						|
    FuncInfo->ExceptionPointerVirtReg = 0;
 | 
						|
    FuncInfo->ExceptionSelectorVirtReg = 0;
 | 
						|
    if (LLVMBB->isEHPad())
 | 
						|
      if (!PrepareEHLandingPad())
 | 
						|
        continue;
 | 
						|
 | 
						|
    // Before doing SelectionDAG ISel, see if FastISel has been requested.
 | 
						|
    if (FastIS) {
 | 
						|
      FastIS->startNewBlock();
 | 
						|
 | 
						|
      // Emit code for any incoming arguments. This must happen before
 | 
						|
      // beginning FastISel on the entry block.
 | 
						|
      if (LLVMBB == &Fn.getEntryBlock()) {
 | 
						|
        ++NumEntryBlocks;
 | 
						|
 | 
						|
        // Lower any arguments needed in this block if this is the entry block.
 | 
						|
        if (!FastIS->lowerArguments()) {
 | 
						|
          // Fast isel failed to lower these arguments
 | 
						|
          ++NumFastIselFailLowerArguments;
 | 
						|
          if (EnableFastISelAbort > 1)
 | 
						|
            report_fatal_error("FastISel didn't lower all arguments");
 | 
						|
 | 
						|
          // Use SelectionDAG argument lowering
 | 
						|
          LowerArguments(Fn);
 | 
						|
          CurDAG->setRoot(SDB->getControlRoot());
 | 
						|
          SDB->clear();
 | 
						|
          CodeGenAndEmitDAG();
 | 
						|
        }
 | 
						|
 | 
						|
        // If we inserted any instructions at the beginning, make a note of
 | 
						|
        // where they are, so we can be sure to emit subsequent instructions
 | 
						|
        // after them.
 | 
						|
        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
 | 
						|
          FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
 | 
						|
        else
 | 
						|
          FastIS->setLastLocalValue(nullptr);
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned NumFastIselRemaining = std::distance(Begin, End);
 | 
						|
      // Do FastISel on as many instructions as possible.
 | 
						|
      for (; BI != Begin; --BI) {
 | 
						|
        const Instruction *Inst = &*std::prev(BI);
 | 
						|
 | 
						|
        // If we no longer require this instruction, skip it.
 | 
						|
        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
 | 
						|
          --NumFastIselRemaining;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Bottom-up: reset the insert pos at the top, after any local-value
 | 
						|
        // instructions.
 | 
						|
        FastIS->recomputeInsertPt();
 | 
						|
 | 
						|
        // Try to select the instruction with FastISel.
 | 
						|
        if (FastIS->selectInstruction(Inst)) {
 | 
						|
          --NumFastIselRemaining;
 | 
						|
          ++NumFastIselSuccess;
 | 
						|
          // If fast isel succeeded, skip over all the folded instructions, and
 | 
						|
          // then see if there is a load right before the selected instructions.
 | 
						|
          // Try to fold the load if so.
 | 
						|
          const Instruction *BeforeInst = Inst;
 | 
						|
          while (BeforeInst != &*Begin) {
 | 
						|
            BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
 | 
						|
            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
 | 
						|
              break;
 | 
						|
          }
 | 
						|
          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
 | 
						|
              BeforeInst->hasOneUse() &&
 | 
						|
              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
 | 
						|
            // If we succeeded, don't re-select the load.
 | 
						|
            BI = std::next(BasicBlock::const_iterator(BeforeInst));
 | 
						|
            --NumFastIselRemaining;
 | 
						|
            ++NumFastIselSuccess;
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        if (EnableFastISelVerbose2)
 | 
						|
          collectFailStats(Inst);
 | 
						|
#endif
 | 
						|
 | 
						|
        // Then handle certain instructions as single-LLVM-Instruction blocks.
 | 
						|
        if (isa<CallInst>(Inst)) {
 | 
						|
 | 
						|
          if (EnableFastISelVerbose || EnableFastISelAbort) {
 | 
						|
            dbgs() << "FastISel missed call: ";
 | 
						|
            Inst->dump();
 | 
						|
          }
 | 
						|
          if (EnableFastISelAbort > 2)
 | 
						|
            // FastISel selector couldn't handle something and bailed.
 | 
						|
            // For the purpose of debugging, just abort.
 | 
						|
            report_fatal_error("FastISel didn't select the entire block");
 | 
						|
 | 
						|
          if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
 | 
						|
              !Inst->use_empty()) {
 | 
						|
            unsigned &R = FuncInfo->ValueMap[Inst];
 | 
						|
            if (!R)
 | 
						|
              R = FuncInfo->CreateRegs(Inst->getType());
 | 
						|
          }
 | 
						|
 | 
						|
          bool HadTailCall = false;
 | 
						|
          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
 | 
						|
          SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
 | 
						|
 | 
						|
          // If the call was emitted as a tail call, we're done with the block.
 | 
						|
          // We also need to delete any previously emitted instructions.
 | 
						|
          if (HadTailCall) {
 | 
						|
            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
 | 
						|
            --BI;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          // Recompute NumFastIselRemaining as Selection DAG instruction
 | 
						|
          // selection may have handled the call, input args, etc.
 | 
						|
          unsigned RemainingNow = std::distance(Begin, BI);
 | 
						|
          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
 | 
						|
          NumFastIselRemaining = RemainingNow;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        bool ShouldAbort = EnableFastISelAbort;
 | 
						|
        if (EnableFastISelVerbose || EnableFastISelAbort) {
 | 
						|
          if (isa<TerminatorInst>(Inst)) {
 | 
						|
            // Use a different message for terminator misses.
 | 
						|
            dbgs() << "FastISel missed terminator: ";
 | 
						|
            // Don't abort unless for terminator unless the level is really high
 | 
						|
            ShouldAbort = (EnableFastISelAbort > 2);
 | 
						|
          } else {
 | 
						|
            dbgs() << "FastISel miss: ";
 | 
						|
          }
 | 
						|
          Inst->dump();
 | 
						|
        }
 | 
						|
        if (ShouldAbort)
 | 
						|
          // FastISel selector couldn't handle something and bailed.
 | 
						|
          // For the purpose of debugging, just abort.
 | 
						|
          report_fatal_error("FastISel didn't select the entire block");
 | 
						|
 | 
						|
        NumFastIselFailures += NumFastIselRemaining;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      FastIS->recomputeInsertPt();
 | 
						|
    } else {
 | 
						|
      // Lower any arguments needed in this block if this is the entry block.
 | 
						|
      if (LLVMBB == &Fn.getEntryBlock()) {
 | 
						|
        ++NumEntryBlocks;
 | 
						|
        LowerArguments(Fn);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (getAnalysis<StackProtector>().shouldEmitSDCheck(*LLVMBB))
 | 
						|
      SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB]);
 | 
						|
 | 
						|
    if (Begin != BI)
 | 
						|
      ++NumDAGBlocks;
 | 
						|
    else
 | 
						|
      ++NumFastIselBlocks;
 | 
						|
 | 
						|
    if (Begin != BI) {
 | 
						|
      // Run SelectionDAG instruction selection on the remainder of the block
 | 
						|
      // not handled by FastISel. If FastISel is not run, this is the entire
 | 
						|
      // block.
 | 
						|
      bool HadTailCall;
 | 
						|
      SelectBasicBlock(Begin, BI, HadTailCall);
 | 
						|
    }
 | 
						|
 | 
						|
    FinishBasicBlock();
 | 
						|
    FuncInfo->PHINodesToUpdate.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  delete FastIS;
 | 
						|
  SDB->clearDanglingDebugInfo();
 | 
						|
  SDB->SPDescriptor.resetPerFunctionState();
 | 
						|
}
 | 
						|
 | 
						|
/// Given that the input MI is before a partial terminator sequence TSeq, return
 | 
						|
/// true if M + TSeq also a partial terminator sequence.
 | 
						|
///
 | 
						|
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
 | 
						|
/// lowering copy vregs into physical registers, which are then passed into
 | 
						|
/// terminator instructors so we can satisfy ABI constraints. A partial
 | 
						|
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
 | 
						|
/// may be the whole terminator sequence).
 | 
						|
static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
 | 
						|
  // If we do not have a copy or an implicit def, we return true if and only if
 | 
						|
  // MI is a debug value.
 | 
						|
  if (!MI->isCopy() && !MI->isImplicitDef())
 | 
						|
    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
 | 
						|
    // physical registers if there is debug info associated with the terminator
 | 
						|
    // of our mbb. We want to include said debug info in our terminator
 | 
						|
    // sequence, so we return true in that case.
 | 
						|
    return MI->isDebugValue();
 | 
						|
 | 
						|
  // We have left the terminator sequence if we are not doing one of the
 | 
						|
  // following:
 | 
						|
  //
 | 
						|
  // 1. Copying a vreg into a physical register.
 | 
						|
  // 2. Copying a vreg into a vreg.
 | 
						|
  // 3. Defining a register via an implicit def.
 | 
						|
 | 
						|
  // OPI should always be a register definition...
 | 
						|
  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
 | 
						|
  if (!OPI->isReg() || !OPI->isDef())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Defining any register via an implicit def is always ok.
 | 
						|
  if (MI->isImplicitDef())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Grab the copy source...
 | 
						|
  MachineInstr::const_mop_iterator OPI2 = OPI;
 | 
						|
  ++OPI2;
 | 
						|
  assert(OPI2 != MI->operands_end()
 | 
						|
         && "Should have a copy implying we should have 2 arguments.");
 | 
						|
 | 
						|
  // Make sure that the copy dest is not a vreg when the copy source is a
 | 
						|
  // physical register.
 | 
						|
  if (!OPI2->isReg() ||
 | 
						|
      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
 | 
						|
       TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the split point at which to splice the end of BB into its success stack
 | 
						|
/// protector check machine basic block.
 | 
						|
///
 | 
						|
/// On many platforms, due to ABI constraints, terminators, even before register
 | 
						|
/// allocation, use physical registers. This creates an issue for us since
 | 
						|
/// physical registers at this point can not travel across basic
 | 
						|
/// blocks. Luckily, selectiondag always moves physical registers into vregs
 | 
						|
/// when they enter functions and moves them through a sequence of copies back
 | 
						|
/// into the physical registers right before the terminator creating a
 | 
						|
/// ``Terminator Sequence''. This function is searching for the beginning of the
 | 
						|
/// terminator sequence so that we can ensure that we splice off not just the
 | 
						|
/// terminator, but additionally the copies that move the vregs into the
 | 
						|
/// physical registers.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
 | 
						|
  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
 | 
						|
  //
 | 
						|
  if (SplitPoint == BB->begin())
 | 
						|
    return SplitPoint;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator Start = BB->begin();
 | 
						|
  MachineBasicBlock::iterator Previous = SplitPoint;
 | 
						|
  --Previous;
 | 
						|
 | 
						|
  while (MIIsInTerminatorSequence(Previous)) {
 | 
						|
    SplitPoint = Previous;
 | 
						|
    if (Previous == Start)
 | 
						|
      break;
 | 
						|
    --Previous;
 | 
						|
  }
 | 
						|
 | 
						|
  return SplitPoint;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SelectionDAGISel::FinishBasicBlock() {
 | 
						|
  DEBUG(dbgs() << "Total amount of phi nodes to update: "
 | 
						|
               << FuncInfo->PHINodesToUpdate.size() << "\n";
 | 
						|
        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
 | 
						|
          dbgs() << "Node " << i << " : ("
 | 
						|
                 << FuncInfo->PHINodesToUpdate[i].first
 | 
						|
                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
 | 
						|
 | 
						|
  // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | 
						|
  // PHI nodes in successors.
 | 
						|
  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
 | 
						|
    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
 | 
						|
    assert(PHI->isPHI() &&
 | 
						|
           "This is not a machine PHI node that we are updating!");
 | 
						|
    if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
 | 
						|
      continue;
 | 
						|
    PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle stack protector.
 | 
						|
  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
 | 
						|
    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
 | 
						|
    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
 | 
						|
 | 
						|
    // Find the split point to split the parent mbb. At the same time copy all
 | 
						|
    // physical registers used in the tail of parent mbb into virtual registers
 | 
						|
    // before the split point and back into physical registers after the split
 | 
						|
    // point. This prevents us needing to deal with Live-ins and many other
 | 
						|
    // register allocation issues caused by us splitting the parent mbb. The
 | 
						|
    // register allocator will clean up said virtual copies later on.
 | 
						|
    MachineBasicBlock::iterator SplitPoint =
 | 
						|
      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
 | 
						|
 | 
						|
    // Splice the terminator of ParentMBB into SuccessMBB.
 | 
						|
    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
 | 
						|
                       SplitPoint,
 | 
						|
                       ParentMBB->end());
 | 
						|
 | 
						|
    // Add compare/jump on neq/jump to the parent BB.
 | 
						|
    FuncInfo->MBB = ParentMBB;
 | 
						|
    FuncInfo->InsertPt = ParentMBB->end();
 | 
						|
    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
 | 
						|
    CurDAG->setRoot(SDB->getRoot());
 | 
						|
    SDB->clear();
 | 
						|
    CodeGenAndEmitDAG();
 | 
						|
 | 
						|
    // CodeGen Failure MBB if we have not codegened it yet.
 | 
						|
    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
 | 
						|
    if (FailureMBB->empty()) {
 | 
						|
      FuncInfo->MBB = FailureMBB;
 | 
						|
      FuncInfo->InsertPt = FailureMBB->end();
 | 
						|
      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
 | 
						|
      CurDAG->setRoot(SDB->getRoot());
 | 
						|
      SDB->clear();
 | 
						|
      CodeGenAndEmitDAG();
 | 
						|
    }
 | 
						|
 | 
						|
    // Clear the Per-BB State.
 | 
						|
    SDB->SPDescriptor.resetPerBBState();
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower each BitTestBlock.
 | 
						|
  for (auto &BTB : SDB->BitTestCases) {
 | 
						|
    // Lower header first, if it wasn't already lowered
 | 
						|
    if (!BTB.Emitted) {
 | 
						|
      // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
      FuncInfo->MBB = BTB.Parent;
 | 
						|
      FuncInfo->InsertPt = FuncInfo->MBB->end();
 | 
						|
      // Emit the code
 | 
						|
      SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
 | 
						|
      CurDAG->setRoot(SDB->getRoot());
 | 
						|
      SDB->clear();
 | 
						|
      CodeGenAndEmitDAG();
 | 
						|
    }
 | 
						|
 | 
						|
    BranchProbability UnhandledProb = BTB.Prob;
 | 
						|
    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
 | 
						|
      UnhandledProb -= BTB.Cases[j].ExtraProb;
 | 
						|
      // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
      FuncInfo->MBB = BTB.Cases[j].ThisBB;
 | 
						|
      FuncInfo->InsertPt = FuncInfo->MBB->end();
 | 
						|
      // Emit the code
 | 
						|
 | 
						|
      // If all cases cover a contiguous range, it is not necessary to jump to
 | 
						|
      // the default block after the last bit test fails. This is because the
 | 
						|
      // range check during bit test header creation has guaranteed that every
 | 
						|
      // case here doesn't go outside the range. In this case, there is no need
 | 
						|
      // to perform the last bit test, as it will always be true. Instead, make
 | 
						|
      // the second-to-last bit-test fall through to the target of the last bit
 | 
						|
      // test, and delete the last bit test.
 | 
						|
 | 
						|
      MachineBasicBlock *NextMBB;
 | 
						|
      if (BTB.ContiguousRange && j + 2 == ej) {
 | 
						|
        // Second-to-last bit-test with contiguous range: fall through to the
 | 
						|
        // target of the final bit test.
 | 
						|
        NextMBB = BTB.Cases[j + 1].TargetBB;
 | 
						|
      } else if (j + 1 == ej) {
 | 
						|
        // For the last bit test, fall through to Default.
 | 
						|
        NextMBB = BTB.Default;
 | 
						|
      } else {
 | 
						|
        // Otherwise, fall through to the next bit test.
 | 
						|
        NextMBB = BTB.Cases[j + 1].ThisBB;
 | 
						|
      }
 | 
						|
 | 
						|
      SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
 | 
						|
                            FuncInfo->MBB);
 | 
						|
 | 
						|
      CurDAG->setRoot(SDB->getRoot());
 | 
						|
      SDB->clear();
 | 
						|
      CodeGenAndEmitDAG();
 | 
						|
 | 
						|
      if (BTB.ContiguousRange && j + 2 == ej) {
 | 
						|
        // Since we're not going to use the final bit test, remove it.
 | 
						|
        BTB.Cases.pop_back();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Update PHI Nodes
 | 
						|
    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
 | 
						|
         pi != pe; ++pi) {
 | 
						|
      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
 | 
						|
      MachineBasicBlock *PHIBB = PHI->getParent();
 | 
						|
      assert(PHI->isPHI() &&
 | 
						|
             "This is not a machine PHI node that we are updating!");
 | 
						|
      // This is "default" BB. We have two jumps to it. From "header" BB and
 | 
						|
      // from last "case" BB, unless the latter was skipped.
 | 
						|
      if (PHIBB == BTB.Default) {
 | 
						|
        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
 | 
						|
        if (!BTB.ContiguousRange) {
 | 
						|
          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
 | 
						|
              .addMBB(BTB.Cases.back().ThisBB);
 | 
						|
         }
 | 
						|
      }
 | 
						|
      // One of "cases" BB.
 | 
						|
      for (unsigned j = 0, ej = BTB.Cases.size();
 | 
						|
           j != ej; ++j) {
 | 
						|
        MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
 | 
						|
        if (cBB->isSuccessor(PHIBB))
 | 
						|
          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SDB->BitTestCases.clear();
 | 
						|
 | 
						|
  // If the JumpTable record is filled in, then we need to emit a jump table.
 | 
						|
  // Updating the PHI nodes is tricky in this case, since we need to determine
 | 
						|
  // whether the PHI is a successor of the range check MBB or the jump table MBB
 | 
						|
  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
 | 
						|
    // Lower header first, if it wasn't already lowered
 | 
						|
    if (!SDB->JTCases[i].first.Emitted) {
 | 
						|
      // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
 | 
						|
      FuncInfo->InsertPt = FuncInfo->MBB->end();
 | 
						|
      // Emit the code
 | 
						|
      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
 | 
						|
                                FuncInfo->MBB);
 | 
						|
      CurDAG->setRoot(SDB->getRoot());
 | 
						|
      SDB->clear();
 | 
						|
      CodeGenAndEmitDAG();
 | 
						|
    }
 | 
						|
 | 
						|
    // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
 | 
						|
    FuncInfo->InsertPt = FuncInfo->MBB->end();
 | 
						|
    // Emit the code
 | 
						|
    SDB->visitJumpTable(SDB->JTCases[i].second);
 | 
						|
    CurDAG->setRoot(SDB->getRoot());
 | 
						|
    SDB->clear();
 | 
						|
    CodeGenAndEmitDAG();
 | 
						|
 | 
						|
    // Update PHI Nodes
 | 
						|
    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
 | 
						|
         pi != pe; ++pi) {
 | 
						|
      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
 | 
						|
      MachineBasicBlock *PHIBB = PHI->getParent();
 | 
						|
      assert(PHI->isPHI() &&
 | 
						|
             "This is not a machine PHI node that we are updating!");
 | 
						|
      // "default" BB. We can go there only from header BB.
 | 
						|
      if (PHIBB == SDB->JTCases[i].second.Default)
 | 
						|
        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
 | 
						|
           .addMBB(SDB->JTCases[i].first.HeaderBB);
 | 
						|
      // JT BB. Just iterate over successors here
 | 
						|
      if (FuncInfo->MBB->isSuccessor(PHIBB))
 | 
						|
        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SDB->JTCases.clear();
 | 
						|
 | 
						|
  // If we generated any switch lowering information, build and codegen any
 | 
						|
  // additional DAGs necessary.
 | 
						|
  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
 | 
						|
    // Set the current basic block to the mbb we wish to insert the code into
 | 
						|
    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
 | 
						|
    FuncInfo->InsertPt = FuncInfo->MBB->end();
 | 
						|
 | 
						|
    // Determine the unique successors.
 | 
						|
    SmallVector<MachineBasicBlock *, 2> Succs;
 | 
						|
    Succs.push_back(SDB->SwitchCases[i].TrueBB);
 | 
						|
    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
 | 
						|
      Succs.push_back(SDB->SwitchCases[i].FalseBB);
 | 
						|
 | 
						|
    // Emit the code. Note that this could result in FuncInfo->MBB being split.
 | 
						|
    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
 | 
						|
    CurDAG->setRoot(SDB->getRoot());
 | 
						|
    SDB->clear();
 | 
						|
    CodeGenAndEmitDAG();
 | 
						|
 | 
						|
    // Remember the last block, now that any splitting is done, for use in
 | 
						|
    // populating PHI nodes in successors.
 | 
						|
    MachineBasicBlock *ThisBB = FuncInfo->MBB;
 | 
						|
 | 
						|
    // Handle any PHI nodes in successors of this chunk, as if we were coming
 | 
						|
    // from the original BB before switch expansion.  Note that PHI nodes can
 | 
						|
    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
 | 
						|
    // handle them the right number of times.
 | 
						|
    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
 | 
						|
      FuncInfo->MBB = Succs[i];
 | 
						|
      FuncInfo->InsertPt = FuncInfo->MBB->end();
 | 
						|
      // FuncInfo->MBB may have been removed from the CFG if a branch was
 | 
						|
      // constant folded.
 | 
						|
      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
 | 
						|
        for (MachineBasicBlock::iterator
 | 
						|
             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
 | 
						|
             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
 | 
						|
          MachineInstrBuilder PHI(*MF, MBBI);
 | 
						|
          // This value for this PHI node is recorded in PHINodesToUpdate.
 | 
						|
          for (unsigned pn = 0; ; ++pn) {
 | 
						|
            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
 | 
						|
                   "Didn't find PHI entry!");
 | 
						|
            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
 | 
						|
              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SDB->SwitchCases.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Create the scheduler. If a specific scheduler was specified
 | 
						|
/// via the SchedulerRegistry, use it, otherwise select the
 | 
						|
/// one preferred by the target.
 | 
						|
///
 | 
						|
ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
 | 
						|
  return ISHeuristic(this, OptLevel);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper functions used by the generated instruction selector.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Calls to these methods are generated by tblgen.
 | 
						|
 | 
						|
/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
 | 
						|
/// the dag combiner simplified the 255, we still want to match.  RHS is the
 | 
						|
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
 | 
						|
/// specified in the .td file (e.g. 255).
 | 
						|
bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
 | 
						|
                                    int64_t DesiredMaskS) const {
 | 
						|
  const APInt &ActualMask = RHS->getAPIntValue();
 | 
						|
  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | 
						|
 | 
						|
  // If the actual mask exactly matches, success!
 | 
						|
  if (ActualMask == DesiredMask)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | 
						|
  if (ActualMask.intersects(~DesiredMask))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, the DAG Combiner may have proven that the value coming in is
 | 
						|
  // either already zero or is not demanded.  Check for known zero input bits.
 | 
						|
  APInt NeededMask = DesiredMask & ~ActualMask;
 | 
						|
  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // TODO: check to see if missing bits are just not demanded.
 | 
						|
 | 
						|
  // Otherwise, this pattern doesn't match.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
 | 
						|
/// the dag combiner simplified the 255, we still want to match.  RHS is the
 | 
						|
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
 | 
						|
/// specified in the .td file (e.g. 255).
 | 
						|
bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
 | 
						|
                                   int64_t DesiredMaskS) const {
 | 
						|
  const APInt &ActualMask = RHS->getAPIntValue();
 | 
						|
  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
 | 
						|
 | 
						|
  // If the actual mask exactly matches, success!
 | 
						|
  if (ActualMask == DesiredMask)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | 
						|
  if (ActualMask.intersects(~DesiredMask))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, the DAG Combiner may have proven that the value coming in is
 | 
						|
  // either already zero or is not demanded.  Check for known zero input bits.
 | 
						|
  APInt NeededMask = DesiredMask & ~ActualMask;
 | 
						|
 | 
						|
  APInt KnownZero, KnownOne;
 | 
						|
  CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
 | 
						|
 | 
						|
  // If all the missing bits in the or are already known to be set, match!
 | 
						|
  if ((NeededMask & KnownOne) == NeededMask)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // TODO: check to see if missing bits are just not demanded.
 | 
						|
 | 
						|
  // Otherwise, this pattern doesn't match.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | 
						|
/// by tblgen.  Others should not call it.
 | 
						|
void SelectionDAGISel::
 | 
						|
SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SDLoc DL) {
 | 
						|
  std::vector<SDValue> InOps;
 | 
						|
  std::swap(InOps, Ops);
 | 
						|
 | 
						|
  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
 | 
						|
  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
 | 
						|
  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
 | 
						|
  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
 | 
						|
 | 
						|
  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
 | 
						|
  if (InOps[e-1].getValueType() == MVT::Glue)
 | 
						|
    --e;  // Don't process a glue operand if it is here.
 | 
						|
 | 
						|
  while (i != e) {
 | 
						|
    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
 | 
						|
    if (!InlineAsm::isMemKind(Flags)) {
 | 
						|
      // Just skip over this operand, copying the operands verbatim.
 | 
						|
      Ops.insert(Ops.end(), InOps.begin()+i,
 | 
						|
                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
 | 
						|
      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
 | 
						|
    } else {
 | 
						|
      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
 | 
						|
             "Memory operand with multiple values?");
 | 
						|
 | 
						|
      unsigned TiedToOperand;
 | 
						|
      if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
 | 
						|
        // We need the constraint ID from the operand this is tied to.
 | 
						|
        unsigned CurOp = InlineAsm::Op_FirstOperand;
 | 
						|
        Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
 | 
						|
        for (; TiedToOperand; --TiedToOperand) {
 | 
						|
          CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
 | 
						|
          Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, this is a memory operand.  Ask the target to select it.
 | 
						|
      std::vector<SDValue> SelOps;
 | 
						|
      if (SelectInlineAsmMemoryOperand(InOps[i+1],
 | 
						|
                                       InlineAsm::getMemoryConstraintID(Flags),
 | 
						|
                                       SelOps))
 | 
						|
        report_fatal_error("Could not match memory address.  Inline asm"
 | 
						|
                           " failure!");
 | 
						|
 | 
						|
      // Add this to the output node.
 | 
						|
      unsigned NewFlags =
 | 
						|
        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
 | 
						|
      Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
 | 
						|
      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
 | 
						|
      i += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the glue input back if present.
 | 
						|
  if (e != InOps.size())
 | 
						|
    Ops.push_back(InOps.back());
 | 
						|
}
 | 
						|
 | 
						|
/// findGlueUse - Return use of MVT::Glue value produced by the specified
 | 
						|
/// SDNode.
 | 
						|
///
 | 
						|
static SDNode *findGlueUse(SDNode *N) {
 | 
						|
  unsigned FlagResNo = N->getNumValues()-1;
 | 
						|
  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | 
						|
    SDUse &Use = I.getUse();
 | 
						|
    if (Use.getResNo() == FlagResNo)
 | 
						|
      return Use.getUser();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
 | 
						|
/// This function recursively traverses up the operand chain, ignoring
 | 
						|
/// certain nodes.
 | 
						|
static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
 | 
						|
                          SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
 | 
						|
                          bool IgnoreChains) {
 | 
						|
  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
 | 
						|
  // greater than all of its (recursive) operands.  If we scan to a point where
 | 
						|
  // 'use' is smaller than the node we're scanning for, then we know we will
 | 
						|
  // never find it.
 | 
						|
  //
 | 
						|
  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
 | 
						|
  // happen because we scan down to newly selected nodes in the case of glue
 | 
						|
  // uses.
 | 
						|
  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't revisit nodes if we already scanned it and didn't fail, we know we
 | 
						|
  // won't fail if we scan it again.
 | 
						|
  if (!Visited.insert(Use).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (const SDValue &Op : Use->op_values()) {
 | 
						|
    // Ignore chain uses, they are validated by HandleMergeInputChains.
 | 
						|
    if (Op.getValueType() == MVT::Other && IgnoreChains)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDNode *N = Op.getNode();
 | 
						|
    if (N == Def) {
 | 
						|
      if (Use == ImmedUse || Use == Root)
 | 
						|
        continue;  // We are not looking for immediate use.
 | 
						|
      assert(N != Root);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Traverse up the operand chain.
 | 
						|
    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsProfitableToFold - Returns true if it's profitable to fold the specific
 | 
						|
/// operand node N of U during instruction selection that starts at Root.
 | 
						|
bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
 | 
						|
                                          SDNode *Root) const {
 | 
						|
  if (OptLevel == CodeGenOpt::None) return false;
 | 
						|
  return N.hasOneUse();
 | 
						|
}
 | 
						|
 | 
						|
/// IsLegalToFold - Returns true if the specific operand node N of
 | 
						|
/// U can be folded during instruction selection that starts at Root.
 | 
						|
bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
 | 
						|
                                     CodeGenOpt::Level OptLevel,
 | 
						|
                                     bool IgnoreChains) {
 | 
						|
  if (OptLevel == CodeGenOpt::None) return false;
 | 
						|
 | 
						|
  // If Root use can somehow reach N through a path that that doesn't contain
 | 
						|
  // U then folding N would create a cycle. e.g. In the following
 | 
						|
  // diagram, Root can reach N through X. If N is folded into into Root, then
 | 
						|
  // X is both a predecessor and a successor of U.
 | 
						|
  //
 | 
						|
  //          [N*]           //
 | 
						|
  //         ^   ^           //
 | 
						|
  //        /     \          //
 | 
						|
  //      [U*]    [X]?       //
 | 
						|
  //        ^     ^          //
 | 
						|
  //         \   /           //
 | 
						|
  //          \ /            //
 | 
						|
  //         [Root*]         //
 | 
						|
  //
 | 
						|
  // * indicates nodes to be folded together.
 | 
						|
  //
 | 
						|
  // If Root produces glue, then it gets (even more) interesting. Since it
 | 
						|
  // will be "glued" together with its glue use in the scheduler, we need to
 | 
						|
  // check if it might reach N.
 | 
						|
  //
 | 
						|
  //          [N*]           //
 | 
						|
  //         ^   ^           //
 | 
						|
  //        /     \          //
 | 
						|
  //      [U*]    [X]?       //
 | 
						|
  //        ^       ^        //
 | 
						|
  //         \       \       //
 | 
						|
  //          \      |       //
 | 
						|
  //         [Root*] |       //
 | 
						|
  //          ^      |       //
 | 
						|
  //          f      |       //
 | 
						|
  //          |      /       //
 | 
						|
  //         [Y]    /        //
 | 
						|
  //           ^   /         //
 | 
						|
  //           f  /          //
 | 
						|
  //           | /           //
 | 
						|
  //          [GU]           //
 | 
						|
  //
 | 
						|
  // If GU (glue use) indirectly reaches N (the load), and Root folds N
 | 
						|
  // (call it Fold), then X is a predecessor of GU and a successor of
 | 
						|
  // Fold. But since Fold and GU are glued together, this will create
 | 
						|
  // a cycle in the scheduling graph.
 | 
						|
 | 
						|
  // If the node has glue, walk down the graph to the "lowest" node in the
 | 
						|
  // glueged set.
 | 
						|
  EVT VT = Root->getValueType(Root->getNumValues()-1);
 | 
						|
  while (VT == MVT::Glue) {
 | 
						|
    SDNode *GU = findGlueUse(Root);
 | 
						|
    if (!GU)
 | 
						|
      break;
 | 
						|
    Root = GU;
 | 
						|
    VT = Root->getValueType(Root->getNumValues()-1);
 | 
						|
 | 
						|
    // If our query node has a glue result with a use, we've walked up it.  If
 | 
						|
    // the user (which has already been selected) has a chain or indirectly uses
 | 
						|
    // the chain, our WalkChainUsers predicate will not consider it.  Because of
 | 
						|
    // this, we cannot ignore chains in this predicate.
 | 
						|
    IgnoreChains = false;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  SmallPtrSet<SDNode*, 16> Visited;
 | 
						|
  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
 | 
						|
  SelectInlineAsmMemoryOperands(Ops, DL);
 | 
						|
 | 
						|
  const EVT VTs[] = {MVT::Other, MVT::Glue};
 | 
						|
  SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
 | 
						|
  New->setNodeId(-1);
 | 
						|
  ReplaceUses(N, New.getNode());
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
 | 
						|
  const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
 | 
						|
  unsigned Reg =
 | 
						|
      TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
 | 
						|
                             *CurDAG);
 | 
						|
  SDValue New = CurDAG->getCopyFromReg(
 | 
						|
                        Op->getOperand(0), dl, Reg, Op->getValueType(0));
 | 
						|
  New->setNodeId(-1);
 | 
						|
  ReplaceUses(Op, New.getNode());
 | 
						|
  CurDAG->RemoveDeadNode(Op);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
 | 
						|
  const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
 | 
						|
  unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
 | 
						|
                                        Op->getOperand(2).getValueType(),
 | 
						|
                                        *CurDAG);
 | 
						|
  SDValue New = CurDAG->getCopyToReg(
 | 
						|
                        Op->getOperand(0), dl, Reg, Op->getOperand(2));
 | 
						|
  New->setNodeId(-1);
 | 
						|
  ReplaceUses(Op, New.getNode());
 | 
						|
  CurDAG->RemoveDeadNode(Op);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::Select_UNDEF(SDNode *N) {
 | 
						|
  CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
 | 
						|
}
 | 
						|
 | 
						|
/// GetVBR - decode a vbr encoding whose top bit is set.
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
 | 
						|
GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
 | 
						|
  assert(Val >= 128 && "Not a VBR");
 | 
						|
  Val &= 127;  // Remove first vbr bit.
 | 
						|
 | 
						|
  unsigned Shift = 7;
 | 
						|
  uint64_t NextBits;
 | 
						|
  do {
 | 
						|
    NextBits = MatcherTable[Idx++];
 | 
						|
    Val |= (NextBits&127) << Shift;
 | 
						|
    Shift += 7;
 | 
						|
  } while (NextBits & 128);
 | 
						|
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
/// When a match is complete, this method updates uses of interior chain results
 | 
						|
/// to use the new results.
 | 
						|
void SelectionDAGISel::UpdateChains(
 | 
						|
    SDNode *NodeToMatch, SDValue InputChain,
 | 
						|
    const SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
 | 
						|
  SmallVector<SDNode*, 4> NowDeadNodes;
 | 
						|
 | 
						|
  // Now that all the normal results are replaced, we replace the chain and
 | 
						|
  // glue results if present.
 | 
						|
  if (!ChainNodesMatched.empty()) {
 | 
						|
    assert(InputChain.getNode() &&
 | 
						|
           "Matched input chains but didn't produce a chain");
 | 
						|
    // Loop over all of the nodes we matched that produced a chain result.
 | 
						|
    // Replace all the chain results with the final chain we ended up with.
 | 
						|
    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
 | 
						|
      SDNode *ChainNode = ChainNodesMatched[i];
 | 
						|
 | 
						|
      // If this node was already deleted, don't look at it.
 | 
						|
      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Don't replace the results of the root node if we're doing a
 | 
						|
      // MorphNodeTo.
 | 
						|
      if (ChainNode == NodeToMatch && isMorphNodeTo)
 | 
						|
        continue;
 | 
						|
 | 
						|
      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
 | 
						|
      if (ChainVal.getValueType() == MVT::Glue)
 | 
						|
        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
 | 
						|
      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
 | 
						|
      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
 | 
						|
 | 
						|
      // If the node became dead and we haven't already seen it, delete it.
 | 
						|
      if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
 | 
						|
          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
 | 
						|
        NowDeadNodes.push_back(ChainNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NowDeadNodes.empty())
 | 
						|
    CurDAG->RemoveDeadNodes(NowDeadNodes);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "ISEL: Match complete!\n");
 | 
						|
}
 | 
						|
 | 
						|
enum ChainResult {
 | 
						|
  CR_Simple,
 | 
						|
  CR_InducesCycle,
 | 
						|
  CR_LeadsToInteriorNode
 | 
						|
};
 | 
						|
 | 
						|
/// WalkChainUsers - Walk down the users of the specified chained node that is
 | 
						|
/// part of the pattern we're matching, looking at all of the users we find.
 | 
						|
/// This determines whether something is an interior node, whether we have a
 | 
						|
/// non-pattern node in between two pattern nodes (which prevent folding because
 | 
						|
/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
 | 
						|
/// between pattern nodes (in which case the TF becomes part of the pattern).
 | 
						|
///
 | 
						|
/// The walk we do here is guaranteed to be small because we quickly get down to
 | 
						|
/// already selected nodes "below" us.
 | 
						|
static ChainResult
 | 
						|
WalkChainUsers(const SDNode *ChainedNode,
 | 
						|
               SmallVectorImpl<SDNode *> &ChainedNodesInPattern,
 | 
						|
               DenseMap<const SDNode *, ChainResult> &TokenFactorResult,
 | 
						|
               SmallVectorImpl<SDNode *> &InteriorChainedNodes) {
 | 
						|
  ChainResult Result = CR_Simple;
 | 
						|
 | 
						|
  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
 | 
						|
         E = ChainedNode->use_end(); UI != E; ++UI) {
 | 
						|
    // Make sure the use is of the chain, not some other value we produce.
 | 
						|
    if (UI.getUse().getValueType() != MVT::Other) continue;
 | 
						|
 | 
						|
    SDNode *User = *UI;
 | 
						|
 | 
						|
    if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we see an already-selected machine node, then we've gone beyond the
 | 
						|
    // pattern that we're selecting down into the already selected chunk of the
 | 
						|
    // DAG.
 | 
						|
    unsigned UserOpcode = User->getOpcode();
 | 
						|
    if (User->isMachineOpcode() ||
 | 
						|
        UserOpcode == ISD::CopyToReg ||
 | 
						|
        UserOpcode == ISD::CopyFromReg ||
 | 
						|
        UserOpcode == ISD::INLINEASM ||
 | 
						|
        UserOpcode == ISD::EH_LABEL ||
 | 
						|
        UserOpcode == ISD::LIFETIME_START ||
 | 
						|
        UserOpcode == ISD::LIFETIME_END) {
 | 
						|
      // If their node ID got reset to -1 then they've already been selected.
 | 
						|
      // Treat them like a MachineOpcode.
 | 
						|
      if (User->getNodeId() == -1)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a TokenFactor, we handle it specially.
 | 
						|
    if (User->getOpcode() != ISD::TokenFactor) {
 | 
						|
      // If the node isn't a token factor and isn't part of our pattern, then it
 | 
						|
      // must be a random chained node in between two nodes we're selecting.
 | 
						|
      // This happens when we have something like:
 | 
						|
      //   x = load ptr
 | 
						|
      //   call
 | 
						|
      //   y = x+4
 | 
						|
      //   store y -> ptr
 | 
						|
      // Because we structurally match the load/store as a read/modify/write,
 | 
						|
      // but the call is chained between them.  We cannot fold in this case
 | 
						|
      // because it would induce a cycle in the graph.
 | 
						|
      if (!std::count(ChainedNodesInPattern.begin(),
 | 
						|
                      ChainedNodesInPattern.end(), User))
 | 
						|
        return CR_InducesCycle;
 | 
						|
 | 
						|
      // Otherwise we found a node that is part of our pattern.  For example in:
 | 
						|
      //   x = load ptr
 | 
						|
      //   y = x+4
 | 
						|
      //   store y -> ptr
 | 
						|
      // This would happen when we're scanning down from the load and see the
 | 
						|
      // store as a user.  Record that there is a use of ChainedNode that is
 | 
						|
      // part of the pattern and keep scanning uses.
 | 
						|
      Result = CR_LeadsToInteriorNode;
 | 
						|
      InteriorChainedNodes.push_back(User);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a TokenFactor, there are two cases to consider: first if the
 | 
						|
    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
 | 
						|
    // uses of the TF are in our pattern) we just want to ignore it.  Second,
 | 
						|
    // the TokenFactor can be sandwiched in between two chained nodes, like so:
 | 
						|
    //     [Load chain]
 | 
						|
    //         ^
 | 
						|
    //         |
 | 
						|
    //       [Load]
 | 
						|
    //       ^    ^
 | 
						|
    //       |    \                    DAG's like cheese
 | 
						|
    //      /       \                       do you?
 | 
						|
    //     /         |
 | 
						|
    // [TokenFactor] [Op]
 | 
						|
    //     ^          ^
 | 
						|
    //     |          |
 | 
						|
    //      \        /
 | 
						|
    //       \      /
 | 
						|
    //       [Store]
 | 
						|
    //
 | 
						|
    // In this case, the TokenFactor becomes part of our match and we rewrite it
 | 
						|
    // as a new TokenFactor.
 | 
						|
    //
 | 
						|
    // To distinguish these two cases, do a recursive walk down the uses.
 | 
						|
    auto MemoizeResult = TokenFactorResult.find(User);
 | 
						|
    bool Visited = MemoizeResult != TokenFactorResult.end();
 | 
						|
    // Recursively walk chain users only if the result is not memoized.
 | 
						|
    if (!Visited) {
 | 
						|
      auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult,
 | 
						|
                                InteriorChainedNodes);
 | 
						|
      MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first;
 | 
						|
    }
 | 
						|
    switch (MemoizeResult->second) {
 | 
						|
    case CR_Simple:
 | 
						|
      // If the uses of the TokenFactor are just already-selected nodes, ignore
 | 
						|
      // it, it is "below" our pattern.
 | 
						|
      continue;
 | 
						|
    case CR_InducesCycle:
 | 
						|
      // If the uses of the TokenFactor lead to nodes that are not part of our
 | 
						|
      // pattern that are not selected, folding would turn this into a cycle,
 | 
						|
      // bail out now.
 | 
						|
      return CR_InducesCycle;
 | 
						|
    case CR_LeadsToInteriorNode:
 | 
						|
      break;  // Otherwise, keep processing.
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, we know we're in the interesting interior case.  The TokenFactor
 | 
						|
    // is now going to be considered part of the pattern so that we rewrite its
 | 
						|
    // uses (it may have uses that are not part of the pattern) with the
 | 
						|
    // ultimate chain result of the generated code.  We will also add its chain
 | 
						|
    // inputs as inputs to the ultimate TokenFactor we create.
 | 
						|
    Result = CR_LeadsToInteriorNode;
 | 
						|
    if (!Visited) {
 | 
						|
      ChainedNodesInPattern.push_back(User);
 | 
						|
      InteriorChainedNodes.push_back(User);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
 | 
						|
/// operation for when the pattern matched at least one node with a chains.  The
 | 
						|
/// input vector contains a list of all of the chained nodes that we match.  We
 | 
						|
/// must determine if this is a valid thing to cover (i.e. matching it won't
 | 
						|
/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
 | 
						|
/// be used as the input node chain for the generated nodes.
 | 
						|
static SDValue
 | 
						|
HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
 | 
						|
                       SelectionDAG *CurDAG) {
 | 
						|
  // Used for memoization. Without it WalkChainUsers could take exponential
 | 
						|
  // time to run.
 | 
						|
  DenseMap<const SDNode *, ChainResult> TokenFactorResult;
 | 
						|
  // Walk all of the chained nodes we've matched, recursively scanning down the
 | 
						|
  // users of the chain result. This adds any TokenFactor nodes that are caught
 | 
						|
  // in between chained nodes to the chained and interior nodes list.
 | 
						|
  SmallVector<SDNode*, 3> InteriorChainedNodes;
 | 
						|
  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
 | 
						|
    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
 | 
						|
                       TokenFactorResult,
 | 
						|
                       InteriorChainedNodes) == CR_InducesCycle)
 | 
						|
      return SDValue(); // Would induce a cycle.
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
 | 
						|
  // that we are interested in.  Form our input TokenFactor node.
 | 
						|
  SmallVector<SDValue, 3> InputChains;
 | 
						|
  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
 | 
						|
    // Add the input chain of this node to the InputChains list (which will be
 | 
						|
    // the operands of the generated TokenFactor) if it's not an interior node.
 | 
						|
    SDNode *N = ChainNodesMatched[i];
 | 
						|
    if (N->getOpcode() != ISD::TokenFactor) {
 | 
						|
      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Otherwise, add the input chain.
 | 
						|
      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
 | 
						|
      assert(InChain.getValueType() == MVT::Other && "Not a chain");
 | 
						|
      InputChains.push_back(InChain);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a token factor, we want to add all inputs of the token factor
 | 
						|
    // that are not part of the pattern we're matching.
 | 
						|
    for (const SDValue &Op : N->op_values()) {
 | 
						|
      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
 | 
						|
                      Op.getNode()))
 | 
						|
        InputChains.push_back(Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (InputChains.size() == 1)
 | 
						|
    return InputChains[0];
 | 
						|
  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
 | 
						|
                         MVT::Other, InputChains);
 | 
						|
}
 | 
						|
 | 
						|
/// MorphNode - Handle morphing a node in place for the selector.
 | 
						|
SDNode *SelectionDAGISel::
 | 
						|
MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
 | 
						|
          ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
 | 
						|
  // It is possible we're using MorphNodeTo to replace a node with no
 | 
						|
  // normal results with one that has a normal result (or we could be
 | 
						|
  // adding a chain) and the input could have glue and chains as well.
 | 
						|
  // In this case we need to shift the operands down.
 | 
						|
  // FIXME: This is a horrible hack and broken in obscure cases, no worse
 | 
						|
  // than the old isel though.
 | 
						|
  int OldGlueResultNo = -1, OldChainResultNo = -1;
 | 
						|
 | 
						|
  unsigned NTMNumResults = Node->getNumValues();
 | 
						|
  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
 | 
						|
    OldGlueResultNo = NTMNumResults-1;
 | 
						|
    if (NTMNumResults != 1 &&
 | 
						|
        Node->getValueType(NTMNumResults-2) == MVT::Other)
 | 
						|
      OldChainResultNo = NTMNumResults-2;
 | 
						|
  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
 | 
						|
    OldChainResultNo = NTMNumResults-1;
 | 
						|
 | 
						|
  // Call the underlying SelectionDAG routine to do the transmogrification. Note
 | 
						|
  // that this deletes operands of the old node that become dead.
 | 
						|
  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
 | 
						|
 | 
						|
  // MorphNodeTo can operate in two ways: if an existing node with the
 | 
						|
  // specified operands exists, it can just return it.  Otherwise, it
 | 
						|
  // updates the node in place to have the requested operands.
 | 
						|
  if (Res == Node) {
 | 
						|
    // If we updated the node in place, reset the node ID.  To the isel,
 | 
						|
    // this should be just like a newly allocated machine node.
 | 
						|
    Res->setNodeId(-1);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ResNumResults = Res->getNumValues();
 | 
						|
  // Move the glue if needed.
 | 
						|
  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
 | 
						|
      (unsigned)OldGlueResultNo != ResNumResults-1)
 | 
						|
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
 | 
						|
                                      SDValue(Res, ResNumResults-1));
 | 
						|
 | 
						|
  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
 | 
						|
    --ResNumResults;
 | 
						|
 | 
						|
  // Move the chain reference if needed.
 | 
						|
  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
 | 
						|
      (unsigned)OldChainResultNo != ResNumResults-1)
 | 
						|
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
 | 
						|
                                      SDValue(Res, ResNumResults-1));
 | 
						|
 | 
						|
  // Otherwise, no replacement happened because the node already exists. Replace
 | 
						|
  // Uses of the old node with the new one.
 | 
						|
  if (Res != Node)
 | 
						|
    CurDAG->ReplaceAllUsesWith(Node, Res);
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckSame - Implements OP_CheckSame.
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
          SDValue N,
 | 
						|
          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
 | 
						|
  // Accept if it is exactly the same as a previously recorded node.
 | 
						|
  unsigned RecNo = MatcherTable[MatcherIndex++];
 | 
						|
  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
 | 
						|
  return N == RecordedNodes[RecNo].first;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckChildSame - Implements OP_CheckChildXSame.
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
             SDValue N,
 | 
						|
             const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
 | 
						|
             unsigned ChildNo) {
 | 
						|
  if (ChildNo >= N.getNumOperands())
 | 
						|
    return false;  // Match fails if out of range child #.
 | 
						|
  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
 | 
						|
                     RecordedNodes);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
                      const SelectionDAGISel &SDISel) {
 | 
						|
  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckNodePredicate - Implements OP_CheckNodePredicate.
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
                   const SelectionDAGISel &SDISel, SDNode *N) {
 | 
						|
  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
            SDNode *N) {
 | 
						|
  uint16_t Opc = MatcherTable[MatcherIndex++];
 | 
						|
  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | 
						|
  return N->getOpcode() == Opc;
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
 | 
						|
          const TargetLowering *TLI, const DataLayout &DL) {
 | 
						|
  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | 
						|
  if (N.getValueType() == VT) return true;
 | 
						|
 | 
						|
  // Handle the case when VT is iPTR.
 | 
						|
  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
               SDValue N, const TargetLowering *TLI, const DataLayout &DL,
 | 
						|
               unsigned ChildNo) {
 | 
						|
  if (ChildNo >= N.getNumOperands())
 | 
						|
    return false;  // Match fails if out of range child #.
 | 
						|
  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
 | 
						|
                     DL);
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
              SDValue N) {
 | 
						|
  return cast<CondCodeSDNode>(N)->get() ==
 | 
						|
      (ISD::CondCode)MatcherTable[MatcherIndex++];
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
               SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
 | 
						|
  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | 
						|
  if (cast<VTSDNode>(N)->getVT() == VT)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Handle the case when VT is iPTR.
 | 
						|
  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
             SDValue N) {
 | 
						|
  int64_t Val = MatcherTable[MatcherIndex++];
 | 
						|
  if (Val & 128)
 | 
						|
    Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | 
						|
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
 | 
						|
  return C && C->getSExtValue() == Val;
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
                  SDValue N, unsigned ChildNo) {
 | 
						|
  if (ChildNo >= N.getNumOperands())
 | 
						|
    return false;  // Match fails if out of range child #.
 | 
						|
  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
            SDValue N, const SelectionDAGISel &SDISel) {
 | 
						|
  int64_t Val = MatcherTable[MatcherIndex++];
 | 
						|
  if (Val & 128)
 | 
						|
    Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | 
						|
 | 
						|
  if (N->getOpcode() != ISD::AND) return false;
 | 
						|
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
 | 
						|
}
 | 
						|
 | 
						|
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
 | 
						|
CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
 | 
						|
           SDValue N, const SelectionDAGISel &SDISel) {
 | 
						|
  int64_t Val = MatcherTable[MatcherIndex++];
 | 
						|
  if (Val & 128)
 | 
						|
    Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | 
						|
 | 
						|
  if (N->getOpcode() != ISD::OR) return false;
 | 
						|
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
 | 
						|
}
 | 
						|
 | 
						|
/// IsPredicateKnownToFail - If we know how and can do so without pushing a
 | 
						|
/// scope, evaluate the current node.  If the current predicate is known to
 | 
						|
/// fail, set Result=true and return anything.  If the current predicate is
 | 
						|
/// known to pass, set Result=false and return the MatcherIndex to continue
 | 
						|
/// with.  If the current predicate is unknown, set Result=false and return the
 | 
						|
/// MatcherIndex to continue with.
 | 
						|
static unsigned IsPredicateKnownToFail(const unsigned char *Table,
 | 
						|
                                       unsigned Index, SDValue N,
 | 
						|
                                       bool &Result,
 | 
						|
                                       const SelectionDAGISel &SDISel,
 | 
						|
                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
 | 
						|
  switch (Table[Index++]) {
 | 
						|
  default:
 | 
						|
    Result = false;
 | 
						|
    return Index-1;  // Could not evaluate this predicate.
 | 
						|
  case SelectionDAGISel::OPC_CheckSame:
 | 
						|
    Result = !::CheckSame(Table, Index, N, RecordedNodes);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckChild0Same:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild1Same:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild2Same:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild3Same:
 | 
						|
    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
 | 
						|
                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckPatternPredicate:
 | 
						|
    Result = !::CheckPatternPredicate(Table, Index, SDISel);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckPredicate:
 | 
						|
    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckOpcode:
 | 
						|
    Result = !::CheckOpcode(Table, Index, N.getNode());
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckType:
 | 
						|
    Result = !::CheckType(Table, Index, N, SDISel.TLI,
 | 
						|
                          SDISel.CurDAG->getDataLayout());
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckChild0Type:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild1Type:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild2Type:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild3Type:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild4Type:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild5Type:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild6Type:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild7Type:
 | 
						|
    Result = !::CheckChildType(
 | 
						|
                 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
 | 
						|
                 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckCondCode:
 | 
						|
    Result = !::CheckCondCode(Table, Index, N);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckValueType:
 | 
						|
    Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
 | 
						|
                               SDISel.CurDAG->getDataLayout());
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckInteger:
 | 
						|
    Result = !::CheckInteger(Table, Index, N);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckChild0Integer:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild1Integer:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild2Integer:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild3Integer:
 | 
						|
  case SelectionDAGISel::OPC_CheckChild4Integer:
 | 
						|
    Result = !::CheckChildInteger(Table, Index, N,
 | 
						|
                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckAndImm:
 | 
						|
    Result = !::CheckAndImm(Table, Index, N, SDISel);
 | 
						|
    return Index;
 | 
						|
  case SelectionDAGISel::OPC_CheckOrImm:
 | 
						|
    Result = !::CheckOrImm(Table, Index, N, SDISel);
 | 
						|
    return Index;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct MatchScope {
 | 
						|
  /// FailIndex - If this match fails, this is the index to continue with.
 | 
						|
  unsigned FailIndex;
 | 
						|
 | 
						|
  /// NodeStack - The node stack when the scope was formed.
 | 
						|
  SmallVector<SDValue, 4> NodeStack;
 | 
						|
 | 
						|
  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
 | 
						|
  unsigned NumRecordedNodes;
 | 
						|
 | 
						|
  /// NumMatchedMemRefs - The number of matched memref entries.
 | 
						|
  unsigned NumMatchedMemRefs;
 | 
						|
 | 
						|
  /// InputChain/InputGlue - The current chain/glue
 | 
						|
  SDValue InputChain, InputGlue;
 | 
						|
 | 
						|
  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
 | 
						|
  bool HasChainNodesMatched;
 | 
						|
};
 | 
						|
 | 
						|
/// \\brief A DAG update listener to keep the matching state
 | 
						|
/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
 | 
						|
/// change the DAG while matching.  X86 addressing mode matcher is an example
 | 
						|
/// for this.
 | 
						|
class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
 | 
						|
{
 | 
						|
      SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
 | 
						|
      SmallVectorImpl<MatchScope> &MatchScopes;
 | 
						|
public:
 | 
						|
  MatchStateUpdater(SelectionDAG &DAG,
 | 
						|
                    SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
 | 
						|
                    SmallVectorImpl<MatchScope> &MS) :
 | 
						|
    SelectionDAG::DAGUpdateListener(DAG),
 | 
						|
    RecordedNodes(RN), MatchScopes(MS) { }
 | 
						|
 | 
						|
  void NodeDeleted(SDNode *N, SDNode *E) override {
 | 
						|
    // Some early-returns here to avoid the search if we deleted the node or
 | 
						|
    // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
 | 
						|
    // do, so it's unnecessary to update matching state at that point).
 | 
						|
    // Neither of these can occur currently because we only install this
 | 
						|
    // update listener during matching a complex patterns.
 | 
						|
    if (!E || E->isMachineOpcode())
 | 
						|
      return;
 | 
						|
    // Performing linear search here does not matter because we almost never
 | 
						|
    // run this code.  You'd have to have a CSE during complex pattern
 | 
						|
    // matching.
 | 
						|
    for (auto &I : RecordedNodes)
 | 
						|
      if (I.first.getNode() == N)
 | 
						|
        I.first.setNode(E);
 | 
						|
 | 
						|
    for (auto &I : MatchScopes)
 | 
						|
      for (auto &J : I.NodeStack)
 | 
						|
        if (J.getNode() == N)
 | 
						|
          J.setNode(E);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
 | 
						|
                                        const unsigned char *MatcherTable,
 | 
						|
                                        unsigned TableSize) {
 | 
						|
  // FIXME: Should these even be selected?  Handle these cases in the caller?
 | 
						|
  switch (NodeToMatch->getOpcode()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case ISD::EntryToken:       // These nodes remain the same.
 | 
						|
  case ISD::BasicBlock:
 | 
						|
  case ISD::Register:
 | 
						|
  case ISD::RegisterMask:
 | 
						|
  case ISD::HANDLENODE:
 | 
						|
  case ISD::MDNODE_SDNODE:
 | 
						|
  case ISD::TargetConstant:
 | 
						|
  case ISD::TargetConstantFP:
 | 
						|
  case ISD::TargetConstantPool:
 | 
						|
  case ISD::TargetFrameIndex:
 | 
						|
  case ISD::TargetExternalSymbol:
 | 
						|
  case ISD::MCSymbol:
 | 
						|
  case ISD::TargetBlockAddress:
 | 
						|
  case ISD::TargetJumpTable:
 | 
						|
  case ISD::TargetGlobalTLSAddress:
 | 
						|
  case ISD::TargetGlobalAddress:
 | 
						|
  case ISD::TokenFactor:
 | 
						|
  case ISD::CopyFromReg:
 | 
						|
  case ISD::CopyToReg:
 | 
						|
  case ISD::EH_LABEL:
 | 
						|
  case ISD::LIFETIME_START:
 | 
						|
  case ISD::LIFETIME_END:
 | 
						|
    NodeToMatch->setNodeId(-1); // Mark selected.
 | 
						|
    return;
 | 
						|
  case ISD::AssertSext:
 | 
						|
  case ISD::AssertZext:
 | 
						|
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
 | 
						|
                                      NodeToMatch->getOperand(0));
 | 
						|
    CurDAG->RemoveDeadNode(NodeToMatch);
 | 
						|
    return;
 | 
						|
  case ISD::INLINEASM:
 | 
						|
    Select_INLINEASM(NodeToMatch);
 | 
						|
    return;
 | 
						|
  case ISD::READ_REGISTER:
 | 
						|
    Select_READ_REGISTER(NodeToMatch);
 | 
						|
    return;
 | 
						|
  case ISD::WRITE_REGISTER:
 | 
						|
    Select_WRITE_REGISTER(NodeToMatch);
 | 
						|
    return;
 | 
						|
  case ISD::UNDEF:
 | 
						|
    Select_UNDEF(NodeToMatch);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
 | 
						|
 | 
						|
  // Set up the node stack with NodeToMatch as the only node on the stack.
 | 
						|
  SmallVector<SDValue, 8> NodeStack;
 | 
						|
  SDValue N = SDValue(NodeToMatch, 0);
 | 
						|
  NodeStack.push_back(N);
 | 
						|
 | 
						|
  // MatchScopes - Scopes used when matching, if a match failure happens, this
 | 
						|
  // indicates where to continue checking.
 | 
						|
  SmallVector<MatchScope, 8> MatchScopes;
 | 
						|
 | 
						|
  // RecordedNodes - This is the set of nodes that have been recorded by the
 | 
						|
  // state machine.  The second value is the parent of the node, or null if the
 | 
						|
  // root is recorded.
 | 
						|
  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
 | 
						|
 | 
						|
  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
 | 
						|
  // pattern.
 | 
						|
  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
 | 
						|
 | 
						|
  // These are the current input chain and glue for use when generating nodes.
 | 
						|
  // Various Emit operations change these.  For example, emitting a copytoreg
 | 
						|
  // uses and updates these.
 | 
						|
  SDValue InputChain, InputGlue;
 | 
						|
 | 
						|
  // ChainNodesMatched - If a pattern matches nodes that have input/output
 | 
						|
  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
 | 
						|
  // which ones they are.  The result is captured into this list so that we can
 | 
						|
  // update the chain results when the pattern is complete.
 | 
						|
  SmallVector<SDNode*, 3> ChainNodesMatched;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
 | 
						|
        NodeToMatch->dump(CurDAG);
 | 
						|
        dbgs() << '\n');
 | 
						|
 | 
						|
  // Determine where to start the interpreter.  Normally we start at opcode #0,
 | 
						|
  // but if the state machine starts with an OPC_SwitchOpcode, then we
 | 
						|
  // accelerate the first lookup (which is guaranteed to be hot) with the
 | 
						|
  // OpcodeOffset table.
 | 
						|
  unsigned MatcherIndex = 0;
 | 
						|
 | 
						|
  if (!OpcodeOffset.empty()) {
 | 
						|
    // Already computed the OpcodeOffset table, just index into it.
 | 
						|
    if (N.getOpcode() < OpcodeOffset.size())
 | 
						|
      MatcherIndex = OpcodeOffset[N.getOpcode()];
 | 
						|
    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
 | 
						|
 | 
						|
  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
 | 
						|
    // Otherwise, the table isn't computed, but the state machine does start
 | 
						|
    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
 | 
						|
    // is the first time we're selecting an instruction.
 | 
						|
    unsigned Idx = 1;
 | 
						|
    while (1) {
 | 
						|
      // Get the size of this case.
 | 
						|
      unsigned CaseSize = MatcherTable[Idx++];
 | 
						|
      if (CaseSize & 128)
 | 
						|
        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
 | 
						|
      if (CaseSize == 0) break;
 | 
						|
 | 
						|
      // Get the opcode, add the index to the table.
 | 
						|
      uint16_t Opc = MatcherTable[Idx++];
 | 
						|
      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
 | 
						|
      if (Opc >= OpcodeOffset.size())
 | 
						|
        OpcodeOffset.resize((Opc+1)*2);
 | 
						|
      OpcodeOffset[Opc] = Idx;
 | 
						|
      Idx += CaseSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, do the lookup for the first opcode.
 | 
						|
    if (N.getOpcode() < OpcodeOffset.size())
 | 
						|
      MatcherIndex = OpcodeOffset[N.getOpcode()];
 | 
						|
  }
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    assert(MatcherIndex < TableSize && "Invalid index");
 | 
						|
#ifndef NDEBUG
 | 
						|
    unsigned CurrentOpcodeIndex = MatcherIndex;
 | 
						|
#endif
 | 
						|
    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
 | 
						|
    switch (Opcode) {
 | 
						|
    case OPC_Scope: {
 | 
						|
      // Okay, the semantics of this operation are that we should push a scope
 | 
						|
      // then evaluate the first child.  However, pushing a scope only to have
 | 
						|
      // the first check fail (which then pops it) is inefficient.  If we can
 | 
						|
      // determine immediately that the first check (or first several) will
 | 
						|
      // immediately fail, don't even bother pushing a scope for them.
 | 
						|
      unsigned FailIndex;
 | 
						|
 | 
						|
      while (1) {
 | 
						|
        unsigned NumToSkip = MatcherTable[MatcherIndex++];
 | 
						|
        if (NumToSkip & 128)
 | 
						|
          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
 | 
						|
        // Found the end of the scope with no match.
 | 
						|
        if (NumToSkip == 0) {
 | 
						|
          FailIndex = 0;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        FailIndex = MatcherIndex+NumToSkip;
 | 
						|
 | 
						|
        unsigned MatcherIndexOfPredicate = MatcherIndex;
 | 
						|
        (void)MatcherIndexOfPredicate; // silence warning.
 | 
						|
 | 
						|
        // If we can't evaluate this predicate without pushing a scope (e.g. if
 | 
						|
        // it is a 'MoveParent') or if the predicate succeeds on this node, we
 | 
						|
        // push the scope and evaluate the full predicate chain.
 | 
						|
        bool Result;
 | 
						|
        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
 | 
						|
                                              Result, *this, RecordedNodes);
 | 
						|
        if (!Result)
 | 
						|
          break;
 | 
						|
 | 
						|
        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
 | 
						|
                     << "index " << MatcherIndexOfPredicate
 | 
						|
                     << ", continuing at " << FailIndex << "\n");
 | 
						|
        ++NumDAGIselRetries;
 | 
						|
 | 
						|
        // Otherwise, we know that this case of the Scope is guaranteed to fail,
 | 
						|
        // move to the next case.
 | 
						|
        MatcherIndex = FailIndex;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the whole scope failed to match, bail.
 | 
						|
      if (FailIndex == 0) break;
 | 
						|
 | 
						|
      // Push a MatchScope which indicates where to go if the first child fails
 | 
						|
      // to match.
 | 
						|
      MatchScope NewEntry;
 | 
						|
      NewEntry.FailIndex = FailIndex;
 | 
						|
      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
 | 
						|
      NewEntry.NumRecordedNodes = RecordedNodes.size();
 | 
						|
      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
 | 
						|
      NewEntry.InputChain = InputChain;
 | 
						|
      NewEntry.InputGlue = InputGlue;
 | 
						|
      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
 | 
						|
      MatchScopes.push_back(NewEntry);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case OPC_RecordNode: {
 | 
						|
      // Remember this node, it may end up being an operand in the pattern.
 | 
						|
      SDNode *Parent = nullptr;
 | 
						|
      if (NodeStack.size() > 1)
 | 
						|
        Parent = NodeStack[NodeStack.size()-2].getNode();
 | 
						|
      RecordedNodes.push_back(std::make_pair(N, Parent));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_RecordChild0: case OPC_RecordChild1:
 | 
						|
    case OPC_RecordChild2: case OPC_RecordChild3:
 | 
						|
    case OPC_RecordChild4: case OPC_RecordChild5:
 | 
						|
    case OPC_RecordChild6: case OPC_RecordChild7: {
 | 
						|
      unsigned ChildNo = Opcode-OPC_RecordChild0;
 | 
						|
      if (ChildNo >= N.getNumOperands())
 | 
						|
        break;  // Match fails if out of range child #.
 | 
						|
 | 
						|
      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
 | 
						|
                                             N.getNode()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case OPC_RecordMemRef:
 | 
						|
      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_CaptureGlueInput:
 | 
						|
      // If the current node has an input glue, capture it in InputGlue.
 | 
						|
      if (N->getNumOperands() != 0 &&
 | 
						|
          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
 | 
						|
        InputGlue = N->getOperand(N->getNumOperands()-1);
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_MoveChild: {
 | 
						|
      unsigned ChildNo = MatcherTable[MatcherIndex++];
 | 
						|
      if (ChildNo >= N.getNumOperands())
 | 
						|
        break;  // Match fails if out of range child #.
 | 
						|
      N = N.getOperand(ChildNo);
 | 
						|
      NodeStack.push_back(N);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_MoveChild0: case OPC_MoveChild1:
 | 
						|
    case OPC_MoveChild2: case OPC_MoveChild3:
 | 
						|
    case OPC_MoveChild4: case OPC_MoveChild5:
 | 
						|
    case OPC_MoveChild6: case OPC_MoveChild7: {
 | 
						|
      unsigned ChildNo = Opcode-OPC_MoveChild0;
 | 
						|
      if (ChildNo >= N.getNumOperands())
 | 
						|
        break;  // Match fails if out of range child #.
 | 
						|
      N = N.getOperand(ChildNo);
 | 
						|
      NodeStack.push_back(N);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_MoveParent:
 | 
						|
      // Pop the current node off the NodeStack.
 | 
						|
      NodeStack.pop_back();
 | 
						|
      assert(!NodeStack.empty() && "Node stack imbalance!");
 | 
						|
      N = NodeStack.back();
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_CheckSame:
 | 
						|
      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
 | 
						|
    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
 | 
						|
      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
 | 
						|
                            Opcode-OPC_CheckChild0Same))
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_CheckPatternPredicate:
 | 
						|
      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckPredicate:
 | 
						|
      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
 | 
						|
                                N.getNode()))
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckComplexPat: {
 | 
						|
      unsigned CPNum = MatcherTable[MatcherIndex++];
 | 
						|
      unsigned RecNo = MatcherTable[MatcherIndex++];
 | 
						|
      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
 | 
						|
 | 
						|
      // If target can modify DAG during matching, keep the matching state
 | 
						|
      // consistent.
 | 
						|
      std::unique_ptr<MatchStateUpdater> MSU;
 | 
						|
      if (ComplexPatternFuncMutatesDAG())
 | 
						|
        MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
 | 
						|
                                        MatchScopes));
 | 
						|
 | 
						|
      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
 | 
						|
                               RecordedNodes[RecNo].first, CPNum,
 | 
						|
                               RecordedNodes))
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case OPC_CheckOpcode:
 | 
						|
      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_CheckType:
 | 
						|
      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
 | 
						|
                       CurDAG->getDataLayout()))
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_SwitchOpcode: {
 | 
						|
      unsigned CurNodeOpcode = N.getOpcode();
 | 
						|
      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
 | 
						|
      unsigned CaseSize;
 | 
						|
      while (1) {
 | 
						|
        // Get the size of this case.
 | 
						|
        CaseSize = MatcherTable[MatcherIndex++];
 | 
						|
        if (CaseSize & 128)
 | 
						|
          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
 | 
						|
        if (CaseSize == 0) break;
 | 
						|
 | 
						|
        uint16_t Opc = MatcherTable[MatcherIndex++];
 | 
						|
        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | 
						|
 | 
						|
        // If the opcode matches, then we will execute this case.
 | 
						|
        if (CurNodeOpcode == Opc)
 | 
						|
          break;
 | 
						|
 | 
						|
        // Otherwise, skip over this case.
 | 
						|
        MatcherIndex += CaseSize;
 | 
						|
      }
 | 
						|
 | 
						|
      // If no cases matched, bail out.
 | 
						|
      if (CaseSize == 0) break;
 | 
						|
 | 
						|
      // Otherwise, execute the case we found.
 | 
						|
      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
 | 
						|
                   << " to " << MatcherIndex << "\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_SwitchType: {
 | 
						|
      MVT CurNodeVT = N.getSimpleValueType();
 | 
						|
      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
 | 
						|
      unsigned CaseSize;
 | 
						|
      while (1) {
 | 
						|
        // Get the size of this case.
 | 
						|
        CaseSize = MatcherTable[MatcherIndex++];
 | 
						|
        if (CaseSize & 128)
 | 
						|
          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
 | 
						|
        if (CaseSize == 0) break;
 | 
						|
 | 
						|
        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | 
						|
        if (CaseVT == MVT::iPTR)
 | 
						|
          CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
 | 
						|
 | 
						|
        // If the VT matches, then we will execute this case.
 | 
						|
        if (CurNodeVT == CaseVT)
 | 
						|
          break;
 | 
						|
 | 
						|
        // Otherwise, skip over this case.
 | 
						|
        MatcherIndex += CaseSize;
 | 
						|
      }
 | 
						|
 | 
						|
      // If no cases matched, bail out.
 | 
						|
      if (CaseSize == 0) break;
 | 
						|
 | 
						|
      // Otherwise, execute the case we found.
 | 
						|
      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
 | 
						|
                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
 | 
						|
    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
 | 
						|
    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
 | 
						|
    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
 | 
						|
      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
 | 
						|
                            CurDAG->getDataLayout(),
 | 
						|
                            Opcode - OPC_CheckChild0Type))
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckCondCode:
 | 
						|
      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckValueType:
 | 
						|
      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
 | 
						|
                            CurDAG->getDataLayout()))
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckInteger:
 | 
						|
      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
 | 
						|
    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
 | 
						|
    case OPC_CheckChild4Integer:
 | 
						|
      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
 | 
						|
                               Opcode-OPC_CheckChild0Integer)) break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckAndImm:
 | 
						|
      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
 | 
						|
      continue;
 | 
						|
    case OPC_CheckOrImm:
 | 
						|
      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
 | 
						|
      continue;
 | 
						|
 | 
						|
    case OPC_CheckFoldableChainNode: {
 | 
						|
      assert(NodeStack.size() != 1 && "No parent node");
 | 
						|
      // Verify that all intermediate nodes between the root and this one have
 | 
						|
      // a single use.
 | 
						|
      bool HasMultipleUses = false;
 | 
						|
      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
 | 
						|
        if (!NodeStack[i].hasOneUse()) {
 | 
						|
          HasMultipleUses = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      if (HasMultipleUses) break;
 | 
						|
 | 
						|
      // Check to see that the target thinks this is profitable to fold and that
 | 
						|
      // we can fold it without inducing cycles in the graph.
 | 
						|
      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
 | 
						|
                              NodeToMatch) ||
 | 
						|
          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
 | 
						|
                         NodeToMatch, OptLevel,
 | 
						|
                         true/*We validate our own chains*/))
 | 
						|
        break;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case OPC_EmitInteger: {
 | 
						|
      MVT::SimpleValueType VT =
 | 
						|
        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | 
						|
      int64_t Val = MatcherTable[MatcherIndex++];
 | 
						|
      if (Val & 128)
 | 
						|
        Val = GetVBR(Val, MatcherTable, MatcherIndex);
 | 
						|
      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | 
						|
                              CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
 | 
						|
                                                        VT), nullptr));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case OPC_EmitRegister: {
 | 
						|
      MVT::SimpleValueType VT =
 | 
						|
        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | 
						|
      unsigned RegNo = MatcherTable[MatcherIndex++];
 | 
						|
      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | 
						|
                              CurDAG->getRegister(RegNo, VT), nullptr));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    case OPC_EmitRegister2: {
 | 
						|
      // For targets w/ more than 256 register names, the register enum
 | 
						|
      // values are stored in two bytes in the matcher table (just like
 | 
						|
      // opcodes).
 | 
						|
      MVT::SimpleValueType VT =
 | 
						|
        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | 
						|
      unsigned RegNo = MatcherTable[MatcherIndex++];
 | 
						|
      RegNo |= MatcherTable[MatcherIndex++] << 8;
 | 
						|
      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
 | 
						|
                              CurDAG->getRegister(RegNo, VT), nullptr));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_EmitConvertToTarget:  {
 | 
						|
      // Convert from IMM/FPIMM to target version.
 | 
						|
      unsigned RecNo = MatcherTable[MatcherIndex++];
 | 
						|
      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
 | 
						|
      SDValue Imm = RecordedNodes[RecNo].first;
 | 
						|
 | 
						|
      if (Imm->getOpcode() == ISD::Constant) {
 | 
						|
        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
 | 
						|
        Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
 | 
						|
                                        Imm.getValueType());
 | 
						|
      } else if (Imm->getOpcode() == ISD::ConstantFP) {
 | 
						|
        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
 | 
						|
        Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
 | 
						|
                                          Imm.getValueType());
 | 
						|
      }
 | 
						|
 | 
						|
      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
 | 
						|
    case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
 | 
						|
    case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
 | 
						|
      // These are space-optimized forms of OPC_EmitMergeInputChains.
 | 
						|
      assert(!InputChain.getNode() &&
 | 
						|
             "EmitMergeInputChains should be the first chain producing node");
 | 
						|
      assert(ChainNodesMatched.empty() &&
 | 
						|
             "Should only have one EmitMergeInputChains per match");
 | 
						|
 | 
						|
      // Read all of the chained nodes.
 | 
						|
      unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
 | 
						|
      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
 | 
						|
      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
 | 
						|
 | 
						|
      // FIXME: What if other value results of the node have uses not matched
 | 
						|
      // by this pattern?
 | 
						|
      if (ChainNodesMatched.back() != NodeToMatch &&
 | 
						|
          !RecordedNodes[RecNo].first.hasOneUse()) {
 | 
						|
        ChainNodesMatched.clear();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Merge the input chains if they are not intra-pattern references.
 | 
						|
      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
 | 
						|
 | 
						|
      if (!InputChain.getNode())
 | 
						|
        break;  // Failed to merge.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_EmitMergeInputChains: {
 | 
						|
      assert(!InputChain.getNode() &&
 | 
						|
             "EmitMergeInputChains should be the first chain producing node");
 | 
						|
      // This node gets a list of nodes we matched in the input that have
 | 
						|
      // chains.  We want to token factor all of the input chains to these nodes
 | 
						|
      // together.  However, if any of the input chains is actually one of the
 | 
						|
      // nodes matched in this pattern, then we have an intra-match reference.
 | 
						|
      // Ignore these because the newly token factored chain should not refer to
 | 
						|
      // the old nodes.
 | 
						|
      unsigned NumChains = MatcherTable[MatcherIndex++];
 | 
						|
      assert(NumChains != 0 && "Can't TF zero chains");
 | 
						|
 | 
						|
      assert(ChainNodesMatched.empty() &&
 | 
						|
             "Should only have one EmitMergeInputChains per match");
 | 
						|
 | 
						|
      // Read all of the chained nodes.
 | 
						|
      for (unsigned i = 0; i != NumChains; ++i) {
 | 
						|
        unsigned RecNo = MatcherTable[MatcherIndex++];
 | 
						|
        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
 | 
						|
        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
 | 
						|
 | 
						|
        // FIXME: What if other value results of the node have uses not matched
 | 
						|
        // by this pattern?
 | 
						|
        if (ChainNodesMatched.back() != NodeToMatch &&
 | 
						|
            !RecordedNodes[RecNo].first.hasOneUse()) {
 | 
						|
          ChainNodesMatched.clear();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If the inner loop broke out, the match fails.
 | 
						|
      if (ChainNodesMatched.empty())
 | 
						|
        break;
 | 
						|
 | 
						|
      // Merge the input chains if they are not intra-pattern references.
 | 
						|
      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
 | 
						|
 | 
						|
      if (!InputChain.getNode())
 | 
						|
        break;  // Failed to merge.
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_EmitCopyToReg: {
 | 
						|
      unsigned RecNo = MatcherTable[MatcherIndex++];
 | 
						|
      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
 | 
						|
      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
 | 
						|
 | 
						|
      if (!InputChain.getNode())
 | 
						|
        InputChain = CurDAG->getEntryNode();
 | 
						|
 | 
						|
      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
 | 
						|
                                        DestPhysReg, RecordedNodes[RecNo].first,
 | 
						|
                                        InputGlue);
 | 
						|
 | 
						|
      InputGlue = InputChain.getValue(1);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_EmitNodeXForm: {
 | 
						|
      unsigned XFormNo = MatcherTable[MatcherIndex++];
 | 
						|
      unsigned RecNo = MatcherTable[MatcherIndex++];
 | 
						|
      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
 | 
						|
      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
 | 
						|
      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_EmitNode:     case OPC_MorphNodeTo:
 | 
						|
    case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
 | 
						|
    case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
 | 
						|
      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
 | 
						|
      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
 | 
						|
      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
 | 
						|
      // Get the result VT list.
 | 
						|
      unsigned NumVTs;
 | 
						|
      // If this is one of the compressed forms, get the number of VTs based
 | 
						|
      // on the Opcode. Otherwise read the next byte from the table.
 | 
						|
      if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
 | 
						|
        NumVTs = Opcode - OPC_MorphNodeTo0;
 | 
						|
      else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
 | 
						|
        NumVTs = Opcode - OPC_EmitNode0;
 | 
						|
      else
 | 
						|
        NumVTs = MatcherTable[MatcherIndex++];
 | 
						|
      SmallVector<EVT, 4> VTs;
 | 
						|
      for (unsigned i = 0; i != NumVTs; ++i) {
 | 
						|
        MVT::SimpleValueType VT =
 | 
						|
          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
 | 
						|
        if (VT == MVT::iPTR)
 | 
						|
          VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
 | 
						|
        VTs.push_back(VT);
 | 
						|
      }
 | 
						|
 | 
						|
      if (EmitNodeInfo & OPFL_Chain)
 | 
						|
        VTs.push_back(MVT::Other);
 | 
						|
      if (EmitNodeInfo & OPFL_GlueOutput)
 | 
						|
        VTs.push_back(MVT::Glue);
 | 
						|
 | 
						|
      // This is hot code, so optimize the two most common cases of 1 and 2
 | 
						|
      // results.
 | 
						|
      SDVTList VTList;
 | 
						|
      if (VTs.size() == 1)
 | 
						|
        VTList = CurDAG->getVTList(VTs[0]);
 | 
						|
      else if (VTs.size() == 2)
 | 
						|
        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
 | 
						|
      else
 | 
						|
        VTList = CurDAG->getVTList(VTs);
 | 
						|
 | 
						|
      // Get the operand list.
 | 
						|
      unsigned NumOps = MatcherTable[MatcherIndex++];
 | 
						|
      SmallVector<SDValue, 8> Ops;
 | 
						|
      for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
        unsigned RecNo = MatcherTable[MatcherIndex++];
 | 
						|
        if (RecNo & 128)
 | 
						|
          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
 | 
						|
 | 
						|
        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
 | 
						|
        Ops.push_back(RecordedNodes[RecNo].first);
 | 
						|
      }
 | 
						|
 | 
						|
      // If there are variadic operands to add, handle them now.
 | 
						|
      if (EmitNodeInfo & OPFL_VariadicInfo) {
 | 
						|
        // Determine the start index to copy from.
 | 
						|
        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
 | 
						|
        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
 | 
						|
        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
 | 
						|
               "Invalid variadic node");
 | 
						|
        // Copy all of the variadic operands, not including a potential glue
 | 
						|
        // input.
 | 
						|
        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
 | 
						|
             i != e; ++i) {
 | 
						|
          SDValue V = NodeToMatch->getOperand(i);
 | 
						|
          if (V.getValueType() == MVT::Glue) break;
 | 
						|
          Ops.push_back(V);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If this has chain/glue inputs, add them.
 | 
						|
      if (EmitNodeInfo & OPFL_Chain)
 | 
						|
        Ops.push_back(InputChain);
 | 
						|
      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
 | 
						|
        Ops.push_back(InputGlue);
 | 
						|
 | 
						|
      // Create the node.
 | 
						|
      SDNode *Res = nullptr;
 | 
						|
      bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
 | 
						|
                     (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
 | 
						|
      if (!IsMorphNodeTo) {
 | 
						|
        // If this is a normal EmitNode command, just create the new node and
 | 
						|
        // add the results to the RecordedNodes list.
 | 
						|
        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
 | 
						|
                                     VTList, Ops);
 | 
						|
 | 
						|
        // Add all the non-glue/non-chain results to the RecordedNodes list.
 | 
						|
        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
 | 
						|
          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
 | 
						|
          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
 | 
						|
                                                             nullptr));
 | 
						|
        }
 | 
						|
 | 
						|
      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
 | 
						|
        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
 | 
						|
      } else {
 | 
						|
        // NodeToMatch was eliminated by CSE when the target changed the DAG.
 | 
						|
        // We will visit the equivalent node later.
 | 
						|
        DEBUG(dbgs() << "Node was eliminated by CSE\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the node had chain/glue results, update our notion of the current
 | 
						|
      // chain and glue.
 | 
						|
      if (EmitNodeInfo & OPFL_GlueOutput) {
 | 
						|
        InputGlue = SDValue(Res, VTs.size()-1);
 | 
						|
        if (EmitNodeInfo & OPFL_Chain)
 | 
						|
          InputChain = SDValue(Res, VTs.size()-2);
 | 
						|
      } else if (EmitNodeInfo & OPFL_Chain)
 | 
						|
        InputChain = SDValue(Res, VTs.size()-1);
 | 
						|
 | 
						|
      // If the OPFL_MemRefs glue is set on this node, slap all of the
 | 
						|
      // accumulated memrefs onto it.
 | 
						|
      //
 | 
						|
      // FIXME: This is vastly incorrect for patterns with multiple outputs
 | 
						|
      // instructions that access memory and for ComplexPatterns that match
 | 
						|
      // loads.
 | 
						|
      if (EmitNodeInfo & OPFL_MemRefs) {
 | 
						|
        // Only attach load or store memory operands if the generated
 | 
						|
        // instruction may load or store.
 | 
						|
        const MCInstrDesc &MCID = TII->get(TargetOpc);
 | 
						|
        bool mayLoad = MCID.mayLoad();
 | 
						|
        bool mayStore = MCID.mayStore();
 | 
						|
 | 
						|
        unsigned NumMemRefs = 0;
 | 
						|
        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
 | 
						|
               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
 | 
						|
          if ((*I)->isLoad()) {
 | 
						|
            if (mayLoad)
 | 
						|
              ++NumMemRefs;
 | 
						|
          } else if ((*I)->isStore()) {
 | 
						|
            if (mayStore)
 | 
						|
              ++NumMemRefs;
 | 
						|
          } else {
 | 
						|
            ++NumMemRefs;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        MachineSDNode::mmo_iterator MemRefs =
 | 
						|
          MF->allocateMemRefsArray(NumMemRefs);
 | 
						|
 | 
						|
        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
 | 
						|
        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
 | 
						|
               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
 | 
						|
          if ((*I)->isLoad()) {
 | 
						|
            if (mayLoad)
 | 
						|
              *MemRefsPos++ = *I;
 | 
						|
          } else if ((*I)->isStore()) {
 | 
						|
            if (mayStore)
 | 
						|
              *MemRefsPos++ = *I;
 | 
						|
          } else {
 | 
						|
            *MemRefsPos++ = *I;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        cast<MachineSDNode>(Res)
 | 
						|
          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
 | 
						|
      }
 | 
						|
 | 
						|
      DEBUG(dbgs() << "  "
 | 
						|
                   << (IsMorphNodeTo ? "Morphed" : "Created")
 | 
						|
                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
 | 
						|
 | 
						|
      // If this was a MorphNodeTo then we're completely done!
 | 
						|
      if (IsMorphNodeTo) {
 | 
						|
        // Update chain uses.
 | 
						|
        UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, true);
 | 
						|
        if (Res != NodeToMatch) {
 | 
						|
          ReplaceUses(NodeToMatch, Res);
 | 
						|
          CurDAG->RemoveDeadNode(NodeToMatch);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    case OPC_CompleteMatch: {
 | 
						|
      // The match has been completed, and any new nodes (if any) have been
 | 
						|
      // created.  Patch up references to the matched dag to use the newly
 | 
						|
      // created nodes.
 | 
						|
      unsigned NumResults = MatcherTable[MatcherIndex++];
 | 
						|
 | 
						|
      for (unsigned i = 0; i != NumResults; ++i) {
 | 
						|
        unsigned ResSlot = MatcherTable[MatcherIndex++];
 | 
						|
        if (ResSlot & 128)
 | 
						|
          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
 | 
						|
 | 
						|
        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
 | 
						|
        SDValue Res = RecordedNodes[ResSlot].first;
 | 
						|
 | 
						|
        assert(i < NodeToMatch->getNumValues() &&
 | 
						|
               NodeToMatch->getValueType(i) != MVT::Other &&
 | 
						|
               NodeToMatch->getValueType(i) != MVT::Glue &&
 | 
						|
               "Invalid number of results to complete!");
 | 
						|
        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
 | 
						|
                NodeToMatch->getValueType(i) == MVT::iPTR ||
 | 
						|
                Res.getValueType() == MVT::iPTR ||
 | 
						|
                NodeToMatch->getValueType(i).getSizeInBits() ==
 | 
						|
                    Res.getValueType().getSizeInBits()) &&
 | 
						|
               "invalid replacement");
 | 
						|
        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
 | 
						|
      }
 | 
						|
 | 
						|
      // Update chain uses.
 | 
						|
      UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
 | 
						|
 | 
						|
      // If the root node defines glue, we need to update it to the glue result.
 | 
						|
      // TODO: This never happens in our tests and I think it can be removed /
 | 
						|
      // replaced with an assert, but if we do it this the way the change is
 | 
						|
      // NFC.
 | 
						|
      if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
 | 
						|
              MVT::Glue &&
 | 
						|
          InputGlue.getNode())
 | 
						|
        CurDAG->ReplaceAllUsesOfValueWith(
 | 
						|
            SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue);
 | 
						|
 | 
						|
      assert(NodeToMatch->use_empty() &&
 | 
						|
             "Didn't replace all uses of the node?");
 | 
						|
      CurDAG->RemoveDeadNode(NodeToMatch);
 | 
						|
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the code reached this point, then the match failed.  See if there is
 | 
						|
    // another child to try in the current 'Scope', otherwise pop it until we
 | 
						|
    // find a case to check.
 | 
						|
    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
 | 
						|
    ++NumDAGIselRetries;
 | 
						|
    while (1) {
 | 
						|
      if (MatchScopes.empty()) {
 | 
						|
        CannotYetSelect(NodeToMatch);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Restore the interpreter state back to the point where the scope was
 | 
						|
      // formed.
 | 
						|
      MatchScope &LastScope = MatchScopes.back();
 | 
						|
      RecordedNodes.resize(LastScope.NumRecordedNodes);
 | 
						|
      NodeStack.clear();
 | 
						|
      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
 | 
						|
      N = NodeStack.back();
 | 
						|
 | 
						|
      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
 | 
						|
        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
 | 
						|
      MatcherIndex = LastScope.FailIndex;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
 | 
						|
 | 
						|
      InputChain = LastScope.InputChain;
 | 
						|
      InputGlue = LastScope.InputGlue;
 | 
						|
      if (!LastScope.HasChainNodesMatched)
 | 
						|
        ChainNodesMatched.clear();
 | 
						|
 | 
						|
      // Check to see what the offset is at the new MatcherIndex.  If it is zero
 | 
						|
      // we have reached the end of this scope, otherwise we have another child
 | 
						|
      // in the current scope to try.
 | 
						|
      unsigned NumToSkip = MatcherTable[MatcherIndex++];
 | 
						|
      if (NumToSkip & 128)
 | 
						|
        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
 | 
						|
 | 
						|
      // If we have another child in this scope to match, update FailIndex and
 | 
						|
      // try it.
 | 
						|
      if (NumToSkip != 0) {
 | 
						|
        LastScope.FailIndex = MatcherIndex+NumToSkip;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // End of this scope, pop it and try the next child in the containing
 | 
						|
      // scope.
 | 
						|
      MatchScopes.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::CannotYetSelect(SDNode *N) {
 | 
						|
  std::string msg;
 | 
						|
  raw_string_ostream Msg(msg);
 | 
						|
  Msg << "Cannot select: ";
 | 
						|
 | 
						|
  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
 | 
						|
      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
      N->getOpcode() != ISD::INTRINSIC_VOID) {
 | 
						|
    N->printrFull(Msg, CurDAG);
 | 
						|
    Msg << "\nIn function: " << MF->getName();
 | 
						|
  } else {
 | 
						|
    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
 | 
						|
    unsigned iid =
 | 
						|
      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
 | 
						|
    if (iid < Intrinsic::num_intrinsics)
 | 
						|
      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
 | 
						|
    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
 | 
						|
      Msg << "target intrinsic %" << TII->getName(iid);
 | 
						|
    else
 | 
						|
      Msg << "unknown intrinsic #" << iid;
 | 
						|
  }
 | 
						|
  report_fatal_error(Msg.str());
 | 
						|
}
 | 
						|
 | 
						|
char SelectionDAGISel::ID = 0;
 |