forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities. It does not define any
 | 
						|
// actual pass or policy, but provides a single function to perform loop
 | 
						|
// unrolling.
 | 
						|
//
 | 
						|
// The process of unrolling can produce extraneous basic blocks linked with
 | 
						|
// unconditional branches.  This will be corrected in the future.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AssumptionTracker.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
// TODO: Should these be here or in LoopUnroll?
 | 
						|
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
 | 
						|
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
 | 
						|
 | 
						|
/// RemapInstruction - Convert the instruction operands from referencing the
 | 
						|
/// current values into those specified by VMap.
 | 
						|
static inline void RemapInstruction(Instruction *I,
 | 
						|
                                    ValueToValueMapTy &VMap) {
 | 
						|
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | 
						|
    Value *Op = I->getOperand(op);
 | 
						|
    ValueToValueMapTy::iterator It = VMap.find(Op);
 | 
						|
    if (It != VMap.end())
 | 
						|
      I->setOperand(op, It->second);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
 | 
						|
      if (It != VMap.end())
 | 
						|
        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
 | 
						|
/// only has one predecessor, and that predecessor only has one successor.
 | 
						|
/// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
 | 
						|
/// successful references to the containing loop must be removed from
 | 
						|
/// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
 | 
						|
/// references to the eliminated BB.  The argument ForgottenLoops contains a set
 | 
						|
/// of loops that have already been forgotten to prevent redundant, expensive
 | 
						|
/// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
 | 
						|
static BasicBlock *
 | 
						|
FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
 | 
						|
                         SmallPtrSetImpl<Loop *> &ForgottenLoops) {
 | 
						|
  // Merge basic blocks into their predecessor if there is only one distinct
 | 
						|
  // pred, and if there is only one distinct successor of the predecessor, and
 | 
						|
  // if there are no PHI nodes.
 | 
						|
  BasicBlock *OnlyPred = BB->getSinglePredecessor();
 | 
						|
  if (!OnlyPred) return nullptr;
 | 
						|
 | 
						|
  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
 | 
						|
 | 
						|
  // Resolve any PHI nodes at the start of the block.  They are all
 | 
						|
  // guaranteed to have exactly one entry if they exist, unless there are
 | 
						|
  // multiple duplicate (but guaranteed to be equal) entries for the
 | 
						|
  // incoming edges.  This occurs when there are multiple edges from
 | 
						|
  // OnlyPred to OnlySucc.
 | 
						|
  FoldSingleEntryPHINodes(BB);
 | 
						|
 | 
						|
  // Delete the unconditional branch from the predecessor...
 | 
						|
  OnlyPred->getInstList().pop_back();
 | 
						|
 | 
						|
  // Make all PHI nodes that referred to BB now refer to Pred as their
 | 
						|
  // source...
 | 
						|
  BB->replaceAllUsesWith(OnlyPred);
 | 
						|
 | 
						|
  // Move all definitions in the successor to the predecessor...
 | 
						|
  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | 
						|
 | 
						|
  // OldName will be valid until erased.
 | 
						|
  StringRef OldName = BB->getName();
 | 
						|
 | 
						|
  // Erase basic block from the function...
 | 
						|
 | 
						|
  // ScalarEvolution holds references to loop exit blocks.
 | 
						|
  if (LPM) {
 | 
						|
    if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
 | 
						|
      if (Loop *L = LI->getLoopFor(BB)) {
 | 
						|
        if (ForgottenLoops.insert(L))
 | 
						|
          SE->forgetLoop(L);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LI->removeBlock(BB);
 | 
						|
 | 
						|
  // Inherit predecessor's name if it exists...
 | 
						|
  if (!OldName.empty() && !OnlyPred->hasName())
 | 
						|
    OnlyPred->setName(OldName);
 | 
						|
 | 
						|
  BB->eraseFromParent();
 | 
						|
 | 
						|
  return OnlyPred;
 | 
						|
}
 | 
						|
 | 
						|
/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
 | 
						|
/// if unrolling was successful, or false if the loop was unmodified. Unrolling
 | 
						|
/// can only fail when the loop's latch block is not terminated by a conditional
 | 
						|
/// branch instruction. However, if the trip count (and multiple) are not known,
 | 
						|
/// loop unrolling will mostly produce more code that is no faster.
 | 
						|
///
 | 
						|
/// TripCount is generally defined as the number of times the loop header
 | 
						|
/// executes. UnrollLoop relaxes the definition to permit early exits: here
 | 
						|
/// TripCount is the iteration on which control exits LatchBlock if no early
 | 
						|
/// exits were taken. Note that UnrollLoop assumes that the loop counter test
 | 
						|
/// terminates LatchBlock in order to remove unnecesssary instances of the
 | 
						|
/// test. In other words, control may exit the loop prior to TripCount
 | 
						|
/// iterations via an early branch, but control may not exit the loop from the
 | 
						|
/// LatchBlock's terminator prior to TripCount iterations.
 | 
						|
///
 | 
						|
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
 | 
						|
/// execute without exiting the loop.
 | 
						|
///
 | 
						|
/// The LoopInfo Analysis that is passed will be kept consistent.
 | 
						|
///
 | 
						|
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
 | 
						|
/// removed from the LoopPassManager as well. LPM can also be NULL.
 | 
						|
///
 | 
						|
/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
 | 
						|
/// available from the Pass it must also preserve those analyses.
 | 
						|
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
 | 
						|
                      bool AllowRuntime, unsigned TripMultiple,
 | 
						|
                      LoopInfo *LI, Pass *PP, LPPassManager *LPM,
 | 
						|
                      AssumptionTracker *AT) {
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  if (!LatchBlock) {
 | 
						|
    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loops with indirectbr cannot be cloned.
 | 
						|
  if (!L->isSafeToClone()) {
 | 
						|
    DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | 
						|
 | 
						|
  if (!BI || BI->isUnconditional()) {
 | 
						|
    // The loop-rotate pass can be helpful to avoid this in many cases.
 | 
						|
    DEBUG(dbgs() <<
 | 
						|
             "  Can't unroll; loop not terminated by a conditional branch.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Header->hasAddressTaken()) {
 | 
						|
    // The loop-rotate pass can be helpful to avoid this in many cases.
 | 
						|
    DEBUG(dbgs() <<
 | 
						|
          "  Won't unroll loop: address of header block is taken.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TripCount != 0)
 | 
						|
    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
 | 
						|
  if (TripMultiple != 1)
 | 
						|
    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
 | 
						|
 | 
						|
  // Effectively "DCE" unrolled iterations that are beyond the tripcount
 | 
						|
  // and will never be executed.
 | 
						|
  if (TripCount != 0 && Count > TripCount)
 | 
						|
    Count = TripCount;
 | 
						|
 | 
						|
  // Don't enter the unroll code if there is nothing to do. This way we don't
 | 
						|
  // need to support "partial unrolling by 1".
 | 
						|
  if (TripCount == 0 && Count < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Count > 0);
 | 
						|
  assert(TripMultiple > 0);
 | 
						|
  assert(TripCount == 0 || TripCount % TripMultiple == 0);
 | 
						|
 | 
						|
  // Are we eliminating the loop control altogether?
 | 
						|
  bool CompletelyUnroll = Count == TripCount;
 | 
						|
 | 
						|
  // We assume a run-time trip count if the compiler cannot
 | 
						|
  // figure out the loop trip count and the unroll-runtime
 | 
						|
  // flag is specified.
 | 
						|
  bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
 | 
						|
 | 
						|
  if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Notify ScalarEvolution that the loop will be substantially changed,
 | 
						|
  // if not outright eliminated.
 | 
						|
  if (PP) {
 | 
						|
    ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
 | 
						|
    if (SE)
 | 
						|
      SE->forgetLoop(L);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we know the trip count, we know the multiple...
 | 
						|
  unsigned BreakoutTrip = 0;
 | 
						|
  if (TripCount != 0) {
 | 
						|
    BreakoutTrip = TripCount % Count;
 | 
						|
    TripMultiple = 0;
 | 
						|
  } else {
 | 
						|
    // Figure out what multiple to use.
 | 
						|
    BreakoutTrip = TripMultiple =
 | 
						|
      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
 | 
						|
  }
 | 
						|
 | 
						|
  // Report the unrolling decision.
 | 
						|
  DebugLoc LoopLoc = L->getStartLoc();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  LLVMContext &Ctx = F->getContext();
 | 
						|
 | 
						|
  if (CompletelyUnroll) {
 | 
						|
    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
 | 
						|
          << " with trip count " << TripCount << "!\n");
 | 
						|
    emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
 | 
						|
                           Twine("completely unrolled loop with ") +
 | 
						|
                               Twine(TripCount) + " iterations");
 | 
						|
  } else {
 | 
						|
    auto EmitDiag = [&](const Twine &T) {
 | 
						|
      emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
 | 
						|
                             "unrolled loop by a factor of " + Twine(Count) +
 | 
						|
                                 T);
 | 
						|
    };
 | 
						|
 | 
						|
    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
 | 
						|
          << " by " << Count);
 | 
						|
    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
 | 
						|
      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
 | 
						|
      EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
 | 
						|
    } else if (TripMultiple != 1) {
 | 
						|
      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
 | 
						|
      EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
 | 
						|
    } else if (RuntimeTripCount) {
 | 
						|
      DEBUG(dbgs() << " with run-time trip count");
 | 
						|
      EmitDiag(" with run-time trip count");
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "!\n");
 | 
						|
  }
 | 
						|
 | 
						|
  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
 | 
						|
  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
 | 
						|
 | 
						|
  // For the first iteration of the loop, we should use the precloned values for
 | 
						|
  // PHI nodes.  Insert associations now.
 | 
						|
  ValueToValueMapTy LastValueMap;
 | 
						|
  std::vector<PHINode*> OrigPHINode;
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    OrigPHINode.push_back(cast<PHINode>(I));
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<BasicBlock*> Headers;
 | 
						|
  std::vector<BasicBlock*> Latches;
 | 
						|
  Headers.push_back(Header);
 | 
						|
  Latches.push_back(LatchBlock);
 | 
						|
 | 
						|
  // The current on-the-fly SSA update requires blocks to be processed in
 | 
						|
  // reverse postorder so that LastValueMap contains the correct value at each
 | 
						|
  // exit.
 | 
						|
  LoopBlocksDFS DFS(L);
 | 
						|
  DFS.perform(LI);
 | 
						|
 | 
						|
  // Stash the DFS iterators before adding blocks to the loop.
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
 | 
						|
 | 
						|
  for (unsigned It = 1; It != Count; ++It) {
 | 
						|
    std::vector<BasicBlock*> NewBlocks;
 | 
						|
 | 
						|
    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
      ValueToValueMapTy VMap;
 | 
						|
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
 | 
						|
      Header->getParent()->getBasicBlockList().push_back(New);
 | 
						|
 | 
						|
      // Loop over all of the PHI nodes in the block, changing them to use the
 | 
						|
      // incoming values from the previous block.
 | 
						|
      if (*BB == Header)
 | 
						|
        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | 
						|
          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
 | 
						|
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
 | 
						|
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
 | 
						|
            if (It > 1 && L->contains(InValI))
 | 
						|
              InVal = LastValueMap[InValI];
 | 
						|
          VMap[OrigPHINode[i]] = InVal;
 | 
						|
          New->getInstList().erase(NewPHI);
 | 
						|
        }
 | 
						|
 | 
						|
      // Update our running map of newest clones
 | 
						|
      LastValueMap[*BB] = New;
 | 
						|
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
 | 
						|
           VI != VE; ++VI)
 | 
						|
        LastValueMap[VI->first] = VI->second;
 | 
						|
 | 
						|
      L->addBasicBlockToLoop(New, LI->getBase());
 | 
						|
 | 
						|
      // Add phi entries for newly created values to all exit blocks.
 | 
						|
      for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
 | 
						|
           SI != SE; ++SI) {
 | 
						|
        if (L->contains(*SI))
 | 
						|
          continue;
 | 
						|
        for (BasicBlock::iterator BBI = (*SI)->begin();
 | 
						|
             PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
 | 
						|
          Value *Incoming = phi->getIncomingValueForBlock(*BB);
 | 
						|
          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
 | 
						|
          if (It != LastValueMap.end())
 | 
						|
            Incoming = It->second;
 | 
						|
          phi->addIncoming(Incoming, New);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Keep track of new headers and latches as we create them, so that
 | 
						|
      // we can insert the proper branches later.
 | 
						|
      if (*BB == Header)
 | 
						|
        Headers.push_back(New);
 | 
						|
      if (*BB == LatchBlock)
 | 
						|
        Latches.push_back(New);
 | 
						|
 | 
						|
      NewBlocks.push_back(New);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remap all instructions in the most recent iteration
 | 
						|
    for (unsigned i = 0; i < NewBlocks.size(); ++i)
 | 
						|
      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | 
						|
           E = NewBlocks[i]->end(); I != E; ++I)
 | 
						|
        ::RemapInstruction(I, LastValueMap);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the PHI nodes in the original block, setting incoming values.
 | 
						|
  for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | 
						|
    PHINode *PN = OrigPHINode[i];
 | 
						|
    if (CompletelyUnroll) {
 | 
						|
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
 | 
						|
      Header->getInstList().erase(PN);
 | 
						|
    }
 | 
						|
    else if (Count > 1) {
 | 
						|
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
 | 
						|
      // If this value was defined in the loop, take the value defined by the
 | 
						|
      // last iteration of the loop.
 | 
						|
      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
 | 
						|
        if (L->contains(InValI))
 | 
						|
          InVal = LastValueMap[InVal];
 | 
						|
      }
 | 
						|
      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
 | 
						|
      PN->addIncoming(InVal, Latches.back());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all the basic blocks for the unrolled iterations are in place,
 | 
						|
  // set up the branches to connect them.
 | 
						|
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | 
						|
    // The original branch was replicated in each unrolled iteration.
 | 
						|
    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | 
						|
 | 
						|
    // The branch destination.
 | 
						|
    unsigned j = (i + 1) % e;
 | 
						|
    BasicBlock *Dest = Headers[j];
 | 
						|
    bool NeedConditional = true;
 | 
						|
 | 
						|
    if (RuntimeTripCount && j != 0) {
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // For a complete unroll, make the last iteration end with a branch
 | 
						|
    // to the exit block.
 | 
						|
    if (CompletelyUnroll && j == 0) {
 | 
						|
      Dest = LoopExit;
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we know the trip count or a multiple of it, we can safely use an
 | 
						|
    // unconditional branch for some iterations.
 | 
						|
    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedConditional) {
 | 
						|
      // Update the conditional branch's successor for the following
 | 
						|
      // iteration.
 | 
						|
      Term->setSuccessor(!ContinueOnTrue, Dest);
 | 
						|
    } else {
 | 
						|
      // Remove phi operands at this loop exit
 | 
						|
      if (Dest != LoopExit) {
 | 
						|
        BasicBlock *BB = Latches[i];
 | 
						|
        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | 
						|
             SI != SE; ++SI) {
 | 
						|
          if (*SI == Headers[i])
 | 
						|
            continue;
 | 
						|
          for (BasicBlock::iterator BBI = (*SI)->begin();
 | 
						|
               PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
 | 
						|
            Phi->removeIncomingValue(BB, false);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Replace the conditional branch with an unconditional one.
 | 
						|
      BranchInst::Create(Dest, Term);
 | 
						|
      Term->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge adjacent basic blocks, if possible.
 | 
						|
  SmallPtrSet<Loop *, 4> ForgottenLoops;
 | 
						|
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | 
						|
    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | 
						|
    if (Term->isUnconditional()) {
 | 
						|
      BasicBlock *Dest = Term->getSuccessor(0);
 | 
						|
      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM,
 | 
						|
                                                      ForgottenLoops))
 | 
						|
        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We could register any cloned assumptions instead of clearing the
 | 
						|
  // whole function's cache.
 | 
						|
  AT->forgetCachedAssumptions(F);
 | 
						|
 | 
						|
  DominatorTree *DT = nullptr;
 | 
						|
  if (PP) {
 | 
						|
    // FIXME: Reconstruct dom info, because it is not preserved properly.
 | 
						|
    // Incrementally updating domtree after loop unrolling would be easy.
 | 
						|
    if (DominatorTreeWrapperPass *DTWP =
 | 
						|
            PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
 | 
						|
      DT = &DTWP->getDomTree();
 | 
						|
      DT->recalculate(*L->getHeader()->getParent());
 | 
						|
    }
 | 
						|
 | 
						|
    // Simplify any new induction variables in the partially unrolled loop.
 | 
						|
    ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
 | 
						|
    if (SE && !CompletelyUnroll) {
 | 
						|
      SmallVector<WeakVH, 16> DeadInsts;
 | 
						|
      simplifyLoopIVs(L, SE, LPM, DeadInsts);
 | 
						|
 | 
						|
      // Aggressively clean up dead instructions that simplifyLoopIVs already
 | 
						|
      // identified. Any remaining should be cleaned up below.
 | 
						|
      while (!DeadInsts.empty())
 | 
						|
        if (Instruction *Inst =
 | 
						|
            dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
 | 
						|
          RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // At this point, the code is well formed.  We now do a quick sweep over the
 | 
						|
  // inserted code, doing constant propagation and dead code elimination as we
 | 
						|
  // go.
 | 
						|
  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
 | 
						|
  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
 | 
						|
       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
 | 
						|
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
 | 
						|
      Instruction *Inst = I++;
 | 
						|
 | 
						|
      if (isInstructionTriviallyDead(Inst))
 | 
						|
        (*BB)->getInstList().erase(Inst);
 | 
						|
      else if (Value *V = SimplifyInstruction(Inst))
 | 
						|
        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
 | 
						|
          Inst->replaceAllUsesWith(V);
 | 
						|
          (*BB)->getInstList().erase(Inst);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  NumCompletelyUnrolled += CompletelyUnroll;
 | 
						|
  ++NumUnrolled;
 | 
						|
 | 
						|
  Loop *OuterL = L->getParentLoop();
 | 
						|
  // Remove the loop from the LoopPassManager if it's completely removed.
 | 
						|
  if (CompletelyUnroll && LPM != nullptr)
 | 
						|
    LPM->deleteLoopFromQueue(L);
 | 
						|
 | 
						|
  // If we have a pass and a DominatorTree we should re-simplify impacted loops
 | 
						|
  // to ensure subsequent analyses can rely on this form. We want to simplify
 | 
						|
  // at least one layer outside of the loop that was unrolled so that any
 | 
						|
  // changes to the parent loop exposed by the unrolling are considered.
 | 
						|
  if (PP && DT) {
 | 
						|
    if (!OuterL && !CompletelyUnroll)
 | 
						|
      OuterL = L;
 | 
						|
    if (OuterL) {
 | 
						|
      DataLayoutPass *DLP = PP->getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
      const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
 | 
						|
      ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
 | 
						|
      simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL, AT);
 | 
						|
 | 
						|
      // LCSSA must be performed on the outermost affected loop. The unrolled
 | 
						|
      // loop's last loop latch is guaranteed to be in the outermost loop after
 | 
						|
      // deleteLoopFromQueue updates LoopInfo.
 | 
						|
      Loop *LatchLoop = LI->getLoopFor(Latches.back());
 | 
						|
      if (!OuterL->contains(LatchLoop))
 | 
						|
        while (OuterL->getParentLoop() != LatchLoop)
 | 
						|
          OuterL = OuterL->getParentLoop();
 | 
						|
 | 
						|
      formLCSSARecursively(*OuterL, *DT, SE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |