forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3257 lines
		
	
	
		
			127 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3257 lines
		
	
	
		
			127 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for Objective C declarations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/AST/ASTConsumer.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTMutationListener.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/ExternalSemaSource.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// Check whether the given method, which must be in the 'init'
 | 
						|
/// family, is a valid member of that family.
 | 
						|
///
 | 
						|
/// \param receiverTypeIfCall - if null, check this as if declaring it;
 | 
						|
///   if non-null, check this as if making a call to it with the given
 | 
						|
///   receiver type
 | 
						|
///
 | 
						|
/// \return true to indicate that there was an error and appropriate
 | 
						|
///   actions were taken
 | 
						|
bool Sema::checkInitMethod(ObjCMethodDecl *method,
 | 
						|
                           QualType receiverTypeIfCall) {
 | 
						|
  if (method->isInvalidDecl()) return true;
 | 
						|
 | 
						|
  // This castAs is safe: methods that don't return an object
 | 
						|
  // pointer won't be inferred as inits and will reject an explicit
 | 
						|
  // objc_method_family(init).
 | 
						|
 | 
						|
  // We ignore protocols here.  Should we?  What about Class?
 | 
						|
 | 
						|
  const ObjCObjectType *result = method->getResultType()
 | 
						|
    ->castAs<ObjCObjectPointerType>()->getObjectType();
 | 
						|
 | 
						|
  if (result->isObjCId()) {
 | 
						|
    return false;
 | 
						|
  } else if (result->isObjCClass()) {
 | 
						|
    // fall through: always an error
 | 
						|
  } else {
 | 
						|
    ObjCInterfaceDecl *resultClass = result->getInterface();
 | 
						|
    assert(resultClass && "unexpected object type!");
 | 
						|
 | 
						|
    // It's okay for the result type to still be a forward declaration
 | 
						|
    // if we're checking an interface declaration.
 | 
						|
    if (!resultClass->hasDefinition()) {
 | 
						|
      if (receiverTypeIfCall.isNull() &&
 | 
						|
          !isa<ObjCImplementationDecl>(method->getDeclContext()))
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Otherwise, we try to compare class types.
 | 
						|
    } else {
 | 
						|
      // If this method was declared in a protocol, we can't check
 | 
						|
      // anything unless we have a receiver type that's an interface.
 | 
						|
      const ObjCInterfaceDecl *receiverClass = 0;
 | 
						|
      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
 | 
						|
        if (receiverTypeIfCall.isNull())
 | 
						|
          return false;
 | 
						|
 | 
						|
        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
 | 
						|
          ->getInterfaceDecl();
 | 
						|
 | 
						|
        // This can be null for calls to e.g. id<Foo>.
 | 
						|
        if (!receiverClass) return false;
 | 
						|
      } else {
 | 
						|
        receiverClass = method->getClassInterface();
 | 
						|
        assert(receiverClass && "method not associated with a class!");
 | 
						|
      }
 | 
						|
 | 
						|
      // If either class is a subclass of the other, it's fine.
 | 
						|
      if (receiverClass->isSuperClassOf(resultClass) ||
 | 
						|
          resultClass->isSuperClassOf(receiverClass))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation loc = method->getLocation();
 | 
						|
 | 
						|
  // If we're in a system header, and this is not a call, just make
 | 
						|
  // the method unusable.
 | 
						|
  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
 | 
						|
    method->addAttr(new (Context) UnavailableAttr(loc, Context,
 | 
						|
                "init method returns a type unrelated to its receiver type"));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it's an error.
 | 
						|
  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
 | 
						|
  method->setInvalidDecl();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 
 | 
						|
                                   const ObjCMethodDecl *Overridden) {
 | 
						|
  if (Overridden->hasRelatedResultType() && 
 | 
						|
      !NewMethod->hasRelatedResultType()) {
 | 
						|
    // This can only happen when the method follows a naming convention that
 | 
						|
    // implies a related result type, and the original (overridden) method has
 | 
						|
    // a suitable return type, but the new (overriding) method does not have
 | 
						|
    // a suitable return type.
 | 
						|
    QualType ResultType = NewMethod->getResultType();
 | 
						|
    SourceRange ResultTypeRange;
 | 
						|
    if (const TypeSourceInfo *ResultTypeInfo 
 | 
						|
                                        = NewMethod->getResultTypeSourceInfo())
 | 
						|
      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
 | 
						|
    
 | 
						|
    // Figure out which class this method is part of, if any.
 | 
						|
    ObjCInterfaceDecl *CurrentClass 
 | 
						|
      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
 | 
						|
    if (!CurrentClass) {
 | 
						|
      DeclContext *DC = NewMethod->getDeclContext();
 | 
						|
      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
 | 
						|
        CurrentClass = Cat->getClassInterface();
 | 
						|
      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
 | 
						|
        CurrentClass = Impl->getClassInterface();
 | 
						|
      else if (ObjCCategoryImplDecl *CatImpl
 | 
						|
               = dyn_cast<ObjCCategoryImplDecl>(DC))
 | 
						|
        CurrentClass = CatImpl->getClassInterface();
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (CurrentClass) {
 | 
						|
      Diag(NewMethod->getLocation(), 
 | 
						|
           diag::warn_related_result_type_compatibility_class)
 | 
						|
        << Context.getObjCInterfaceType(CurrentClass)
 | 
						|
        << ResultType
 | 
						|
        << ResultTypeRange;
 | 
						|
    } else {
 | 
						|
      Diag(NewMethod->getLocation(), 
 | 
						|
           diag::warn_related_result_type_compatibility_protocol)
 | 
						|
        << ResultType
 | 
						|
        << ResultTypeRange;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
 | 
						|
      Diag(Overridden->getLocation(), 
 | 
						|
           diag::note_related_result_type_overridden_family)
 | 
						|
        << Family;
 | 
						|
    else
 | 
						|
      Diag(Overridden->getLocation(), 
 | 
						|
           diag::note_related_result_type_overridden);
 | 
						|
  }
 | 
						|
  if (getLangOpts().ObjCAutoRefCount) {
 | 
						|
    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
 | 
						|
         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
 | 
						|
        Diag(NewMethod->getLocation(),
 | 
						|
             diag::err_nsreturns_retained_attribute_mismatch) << 1;
 | 
						|
        Diag(Overridden->getLocation(), diag::note_previous_decl) 
 | 
						|
        << "method";
 | 
						|
    }
 | 
						|
    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
 | 
						|
              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
 | 
						|
        Diag(NewMethod->getLocation(),
 | 
						|
             diag::err_nsreturns_retained_attribute_mismatch) << 0;
 | 
						|
        Diag(Overridden->getLocation(), diag::note_previous_decl) 
 | 
						|
        << "method";
 | 
						|
    }
 | 
						|
    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
 | 
						|
                                         oe = Overridden->param_end();
 | 
						|
    for (ObjCMethodDecl::param_iterator
 | 
						|
           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
 | 
						|
         ni != ne && oi != oe; ++ni, ++oi) {
 | 
						|
      const ParmVarDecl *oldDecl = (*oi);
 | 
						|
      ParmVarDecl *newDecl = (*ni);
 | 
						|
      if (newDecl->hasAttr<NSConsumedAttr>() != 
 | 
						|
          oldDecl->hasAttr<NSConsumedAttr>()) {
 | 
						|
        Diag(newDecl->getLocation(),
 | 
						|
             diag::err_nsconsumed_attribute_mismatch);
 | 
						|
        Diag(oldDecl->getLocation(), diag::note_previous_decl) 
 | 
						|
          << "parameter";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a method declaration for compatibility with the Objective-C
 | 
						|
/// ARC conventions.
 | 
						|
static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
 | 
						|
  ObjCMethodFamily family = method->getMethodFamily();
 | 
						|
  switch (family) {
 | 
						|
  case OMF_None:
 | 
						|
  case OMF_finalize:
 | 
						|
  case OMF_retain:
 | 
						|
  case OMF_release:
 | 
						|
  case OMF_autorelease:
 | 
						|
  case OMF_retainCount:
 | 
						|
  case OMF_self:
 | 
						|
  case OMF_performSelector:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case OMF_dealloc:
 | 
						|
    if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) {
 | 
						|
      SourceRange ResultTypeRange;
 | 
						|
      if (const TypeSourceInfo *ResultTypeInfo
 | 
						|
          = method->getResultTypeSourceInfo())
 | 
						|
        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
 | 
						|
      if (ResultTypeRange.isInvalid())
 | 
						|
        S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 
 | 
						|
          << method->getResultType() 
 | 
						|
          << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
 | 
						|
      else
 | 
						|
        S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type) 
 | 
						|
          << method->getResultType() 
 | 
						|
          << FixItHint::CreateReplacement(ResultTypeRange, "void");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
      
 | 
						|
  case OMF_init:
 | 
						|
    // If the method doesn't obey the init rules, don't bother annotating it.
 | 
						|
    if (S.checkInitMethod(method, QualType()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
 | 
						|
                                                       S.Context));
 | 
						|
 | 
						|
    // Don't add a second copy of this attribute, but otherwise don't
 | 
						|
    // let it be suppressed.
 | 
						|
    if (method->hasAttr<NSReturnsRetainedAttr>())
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  case OMF_alloc:
 | 
						|
  case OMF_copy:
 | 
						|
  case OMF_mutableCopy:
 | 
						|
  case OMF_new:
 | 
						|
    if (method->hasAttr<NSReturnsRetainedAttr>() ||
 | 
						|
        method->hasAttr<NSReturnsNotRetainedAttr>() ||
 | 
						|
        method->hasAttr<NSReturnsAutoreleasedAttr>())
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
 | 
						|
                                                        S.Context));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseObjCImplementedDeprecations(Sema &S,
 | 
						|
                                                NamedDecl *ND,
 | 
						|
                                                SourceLocation ImplLoc,
 | 
						|
                                                int select) {
 | 
						|
  if (ND && ND->isDeprecated()) {
 | 
						|
    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
 | 
						|
    if (select == 0)
 | 
						|
      S.Diag(ND->getLocation(), diag::note_method_declared_at)
 | 
						|
        << ND->getDeclName();
 | 
						|
    else
 | 
						|
      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
 | 
						|
/// pool.
 | 
						|
void Sema::AddAnyMethodToGlobalPool(Decl *D) {
 | 
						|
  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
 | 
						|
    
 | 
						|
  // If we don't have a valid method decl, simply return.
 | 
						|
  if (!MDecl)
 | 
						|
    return;
 | 
						|
  if (MDecl->isInstanceMethod())
 | 
						|
    AddInstanceMethodToGlobalPool(MDecl, true);
 | 
						|
  else
 | 
						|
    AddFactoryMethodToGlobalPool(MDecl, true);
 | 
						|
}
 | 
						|
 | 
						|
/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
 | 
						|
/// has explicit ownership attribute; false otherwise.
 | 
						|
static bool
 | 
						|
HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
 | 
						|
  QualType T = Param->getType();
 | 
						|
  
 | 
						|
  if (const PointerType *PT = T->getAs<PointerType>()) {
 | 
						|
    T = PT->getPointeeType();
 | 
						|
  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
 | 
						|
    T = RT->getPointeeType();
 | 
						|
  } else {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have a lifetime qualifier, but it's local, we must have 
 | 
						|
  // inferred it. So, it is implicit.
 | 
						|
  return !T.getLocalQualifiers().hasObjCLifetime();
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
 | 
						|
/// and user declared, in the method definition's AST.
 | 
						|
void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
 | 
						|
  assert((getCurMethodDecl() == 0) && "Methodparsing confused");
 | 
						|
  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
 | 
						|
  
 | 
						|
  // If we don't have a valid method decl, simply return.
 | 
						|
  if (!MDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Allow all of Sema to see that we are entering a method definition.
 | 
						|
  PushDeclContext(FnBodyScope, MDecl);
 | 
						|
  PushFunctionScope();
 | 
						|
  
 | 
						|
  // Create Decl objects for each parameter, entrring them in the scope for
 | 
						|
  // binding to their use.
 | 
						|
 | 
						|
  // Insert the invisible arguments, self and _cmd!
 | 
						|
  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
 | 
						|
 | 
						|
  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
 | 
						|
  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
 | 
						|
 | 
						|
  // Introduce all of the other parameters into this scope.
 | 
						|
  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
 | 
						|
       E = MDecl->param_end(); PI != E; ++PI) {
 | 
						|
    ParmVarDecl *Param = (*PI);
 | 
						|
    if (!Param->isInvalidDecl() &&
 | 
						|
        RequireCompleteType(Param->getLocation(), Param->getType(),
 | 
						|
                            diag::err_typecheck_decl_incomplete_type))
 | 
						|
          Param->setInvalidDecl();
 | 
						|
    if (!Param->isInvalidDecl() &&
 | 
						|
        getLangOpts().ObjCAutoRefCount &&
 | 
						|
        !HasExplicitOwnershipAttr(*this, Param))
 | 
						|
      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
 | 
						|
            Param->getType();
 | 
						|
    
 | 
						|
    if ((*PI)->getIdentifier())
 | 
						|
      PushOnScopeChains(*PI, FnBodyScope);
 | 
						|
  }
 | 
						|
 | 
						|
  // In ARC, disallow definition of retain/release/autorelease/retainCount
 | 
						|
  if (getLangOpts().ObjCAutoRefCount) {
 | 
						|
    switch (MDecl->getMethodFamily()) {
 | 
						|
    case OMF_retain:
 | 
						|
    case OMF_retainCount:
 | 
						|
    case OMF_release:
 | 
						|
    case OMF_autorelease:
 | 
						|
      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
 | 
						|
        << MDecl->getSelector();
 | 
						|
      break;
 | 
						|
 | 
						|
    case OMF_None:
 | 
						|
    case OMF_dealloc:
 | 
						|
    case OMF_finalize:
 | 
						|
    case OMF_alloc:
 | 
						|
    case OMF_init:
 | 
						|
    case OMF_mutableCopy:
 | 
						|
    case OMF_copy:
 | 
						|
    case OMF_new:
 | 
						|
    case OMF_self:
 | 
						|
    case OMF_performSelector:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn on deprecated methods under -Wdeprecated-implementations,
 | 
						|
  // and prepare for warning on missing super calls.
 | 
						|
  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
 | 
						|
    ObjCMethodDecl *IMD = 
 | 
						|
      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
 | 
						|
    
 | 
						|
    if (IMD) {
 | 
						|
      ObjCImplDecl *ImplDeclOfMethodDef = 
 | 
						|
        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
 | 
						|
      ObjCContainerDecl *ContDeclOfMethodDecl = 
 | 
						|
        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
 | 
						|
      ObjCImplDecl *ImplDeclOfMethodDecl = 0;
 | 
						|
      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
 | 
						|
        ImplDeclOfMethodDecl = OID->getImplementation();
 | 
						|
      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
 | 
						|
        ImplDeclOfMethodDecl = CD->getImplementation();
 | 
						|
      // No need to issue deprecated warning if deprecated mehod in class/category
 | 
						|
      // is being implemented in its own implementation (no overriding is involved).
 | 
						|
      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
 | 
						|
        DiagnoseObjCImplementedDeprecations(*this, 
 | 
						|
                                          dyn_cast<NamedDecl>(IMD), 
 | 
						|
                                          MDecl->getLocation(), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is "dealloc" or "finalize", set some bit here.
 | 
						|
    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
 | 
						|
    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
 | 
						|
    // Only do this if the current class actually has a superclass.
 | 
						|
    if (IC->getSuperClass()) {
 | 
						|
      ObjCMethodFamily Family = MDecl->getMethodFamily();
 | 
						|
      if (Family == OMF_dealloc) {
 | 
						|
        if (!(getLangOpts().ObjCAutoRefCount ||
 | 
						|
              getLangOpts().getGC() == LangOptions::GCOnly))
 | 
						|
          getCurFunction()->ObjCShouldCallSuper = true;
 | 
						|
 | 
						|
      } else if (Family == OMF_finalize) {
 | 
						|
        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
 | 
						|
          getCurFunction()->ObjCShouldCallSuper = true;
 | 
						|
        
 | 
						|
      } else {
 | 
						|
        const ObjCMethodDecl *SuperMethod =
 | 
						|
          IC->getSuperClass()->lookupMethod(MDecl->getSelector(),
 | 
						|
                                            MDecl->isInstanceMethod());
 | 
						|
        getCurFunction()->ObjCShouldCallSuper = 
 | 
						|
          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Callback to only accept typo corrections that are Objective-C classes.
 | 
						|
// If an ObjCInterfaceDecl* is given to the constructor, then the validation
 | 
						|
// function will reject corrections to that class.
 | 
						|
class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
 | 
						|
  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
 | 
						|
      : CurrentIDecl(IDecl) {}
 | 
						|
 | 
						|
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | 
						|
    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | 
						|
    return ID && !declaresSameEntity(ID, CurrentIDecl);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  ObjCInterfaceDecl *CurrentIDecl;
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::
 | 
						|
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
 | 
						|
                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | 
						|
                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
 | 
						|
                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
 | 
						|
                         const SourceLocation *ProtoLocs, 
 | 
						|
                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
 | 
						|
  assert(ClassName && "Missing class identifier");
 | 
						|
 | 
						|
  // Check for another declaration kind with the same name.
 | 
						|
  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
 | 
						|
                                         LookupOrdinaryName, ForRedeclaration);
 | 
						|
 | 
						|
  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a declaration to describe this @interface.
 | 
						|
  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
  ObjCInterfaceDecl *IDecl
 | 
						|
    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
 | 
						|
                                PrevIDecl, ClassLoc);
 | 
						|
  
 | 
						|
  if (PrevIDecl) {
 | 
						|
    // Class already seen. Was it a definition?
 | 
						|
    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
 | 
						|
      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
 | 
						|
        << PrevIDecl->getDeclName();
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      IDecl->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (AttrList)
 | 
						|
    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
 | 
						|
  PushOnScopeChains(IDecl, TUScope);
 | 
						|
 | 
						|
  // Start the definition of this class. If we're in a redefinition case, there 
 | 
						|
  // may already be a definition, so we'll end up adding to it.
 | 
						|
  if (!IDecl->hasDefinition())
 | 
						|
    IDecl->startDefinition();
 | 
						|
  
 | 
						|
  if (SuperName) {
 | 
						|
    // Check if a different kind of symbol declared in this scope.
 | 
						|
    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
 | 
						|
                                LookupOrdinaryName);
 | 
						|
 | 
						|
    if (!PrevDecl) {
 | 
						|
      // Try to correct for a typo in the superclass name without correcting
 | 
						|
      // to the class we're defining.
 | 
						|
      ObjCInterfaceValidatorCCC Validator(IDecl);
 | 
						|
      if (TypoCorrection Corrected = CorrectTypo(
 | 
						|
          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
 | 
						|
          NULL, Validator)) {
 | 
						|
        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | 
						|
        Diag(SuperLoc, diag::err_undef_superclass_suggest)
 | 
						|
          << SuperName << ClassName << PrevDecl->getDeclName();
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
 | 
						|
          << PrevDecl->getDeclName();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (declaresSameEntity(PrevDecl, IDecl)) {
 | 
						|
      Diag(SuperLoc, diag::err_recursive_superclass)
 | 
						|
        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | 
						|
      IDecl->setEndOfDefinitionLoc(ClassLoc);
 | 
						|
    } else {
 | 
						|
      ObjCInterfaceDecl *SuperClassDecl =
 | 
						|
                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
 | 
						|
      // Diagnose classes that inherit from deprecated classes.
 | 
						|
      if (SuperClassDecl)
 | 
						|
        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
 | 
						|
 | 
						|
      if (PrevDecl && SuperClassDecl == 0) {
 | 
						|
        // The previous declaration was not a class decl. Check if we have a
 | 
						|
        // typedef. If we do, get the underlying class type.
 | 
						|
        if (const TypedefNameDecl *TDecl =
 | 
						|
              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
 | 
						|
          QualType T = TDecl->getUnderlyingType();
 | 
						|
          if (T->isObjCObjectType()) {
 | 
						|
            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
 | 
						|
              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // This handles the following case:
 | 
						|
        //
 | 
						|
        // typedef int SuperClass;
 | 
						|
        // @interface MyClass : SuperClass {} @end
 | 
						|
        //
 | 
						|
        if (!SuperClassDecl) {
 | 
						|
          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
 | 
						|
          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
 | 
						|
        if (!SuperClassDecl)
 | 
						|
          Diag(SuperLoc, diag::err_undef_superclass)
 | 
						|
            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | 
						|
        else if (RequireCompleteType(SuperLoc, 
 | 
						|
                                  Context.getObjCInterfaceType(SuperClassDecl),
 | 
						|
                                     diag::err_forward_superclass,
 | 
						|
                                     SuperClassDecl->getDeclName(),
 | 
						|
                                     ClassName,
 | 
						|
                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
 | 
						|
          SuperClassDecl = 0;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      IDecl->setSuperClass(SuperClassDecl);
 | 
						|
      IDecl->setSuperClassLoc(SuperLoc);
 | 
						|
      IDecl->setEndOfDefinitionLoc(SuperLoc);
 | 
						|
    }
 | 
						|
  } else { // we have a root class.
 | 
						|
    IDecl->setEndOfDefinitionLoc(ClassLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check then save referenced protocols.
 | 
						|
  if (NumProtoRefs) {
 | 
						|
    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | 
						|
                           ProtoLocs, Context);
 | 
						|
    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(IDecl);
 | 
						|
  return ActOnObjCContainerStartDefinition(IDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCompatibilityAlias - this action is called after complete parsing of
 | 
						|
/// a \@compatibility_alias declaration. It sets up the alias relationships.
 | 
						|
Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
 | 
						|
                                    IdentifierInfo *AliasName,
 | 
						|
                                    SourceLocation AliasLocation,
 | 
						|
                                    IdentifierInfo *ClassName,
 | 
						|
                                    SourceLocation ClassLocation) {
 | 
						|
  // Look for previous declaration of alias name
 | 
						|
  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
 | 
						|
                                      LookupOrdinaryName, ForRedeclaration);
 | 
						|
  if (ADecl) {
 | 
						|
    if (isa<ObjCCompatibleAliasDecl>(ADecl))
 | 
						|
      Diag(AliasLocation, diag::warn_previous_alias_decl);
 | 
						|
    else
 | 
						|
      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
 | 
						|
    Diag(ADecl->getLocation(), diag::note_previous_declaration);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  // Check for class declaration
 | 
						|
  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
 | 
						|
                                       LookupOrdinaryName, ForRedeclaration);
 | 
						|
  if (const TypedefNameDecl *TDecl =
 | 
						|
        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
 | 
						|
    QualType T = TDecl->getUnderlyingType();
 | 
						|
    if (T->isObjCObjectType()) {
 | 
						|
      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
 | 
						|
        ClassName = IDecl->getIdentifier();
 | 
						|
        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
 | 
						|
                                  LookupOrdinaryName, ForRedeclaration);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
 | 
						|
  if (CDecl == 0) {
 | 
						|
    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
 | 
						|
    if (CDeclU)
 | 
						|
      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything checked out, instantiate a new alias declaration AST.
 | 
						|
  ObjCCompatibleAliasDecl *AliasDecl =
 | 
						|
    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
 | 
						|
 | 
						|
  if (!CheckObjCDeclScope(AliasDecl))
 | 
						|
    PushOnScopeChains(AliasDecl, TUScope);
 | 
						|
 | 
						|
  return AliasDecl;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
 | 
						|
  IdentifierInfo *PName,
 | 
						|
  SourceLocation &Ploc, SourceLocation PrevLoc,
 | 
						|
  const ObjCList<ObjCProtocolDecl> &PList) {
 | 
						|
  
 | 
						|
  bool res = false;
 | 
						|
  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
 | 
						|
       E = PList.end(); I != E; ++I) {
 | 
						|
    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
 | 
						|
                                                 Ploc)) {
 | 
						|
      if (PDecl->getIdentifier() == PName) {
 | 
						|
        Diag(Ploc, diag::err_protocol_has_circular_dependency);
 | 
						|
        Diag(PrevLoc, diag::note_previous_definition);
 | 
						|
        res = true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (!PDecl->hasDefinition())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
 | 
						|
            PDecl->getLocation(), PDecl->getReferencedProtocols()))
 | 
						|
        res = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
Decl *
 | 
						|
Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
 | 
						|
                                  IdentifierInfo *ProtocolName,
 | 
						|
                                  SourceLocation ProtocolLoc,
 | 
						|
                                  Decl * const *ProtoRefs,
 | 
						|
                                  unsigned NumProtoRefs,
 | 
						|
                                  const SourceLocation *ProtoLocs,
 | 
						|
                                  SourceLocation EndProtoLoc,
 | 
						|
                                  AttributeList *AttrList) {
 | 
						|
  bool err = false;
 | 
						|
  // FIXME: Deal with AttrList.
 | 
						|
  assert(ProtocolName && "Missing protocol identifier");
 | 
						|
  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
 | 
						|
                                              ForRedeclaration);
 | 
						|
  ObjCProtocolDecl *PDecl = 0;
 | 
						|
  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
 | 
						|
    // If we already have a definition, complain.
 | 
						|
    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
 | 
						|
    Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
 | 
						|
    // Create a new protocol that is completely distinct from previous
 | 
						|
    // declarations, and do not make this protocol available for name lookup.
 | 
						|
    // That way, we'll end up completely ignoring the duplicate.
 | 
						|
    // FIXME: Can we turn this into an error?
 | 
						|
    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
 | 
						|
                                     ProtocolLoc, AtProtoInterfaceLoc,
 | 
						|
                                     /*PrevDecl=*/0);
 | 
						|
    PDecl->startDefinition();
 | 
						|
  } else {
 | 
						|
    if (PrevDecl) {
 | 
						|
      // Check for circular dependencies among protocol declarations. This can
 | 
						|
      // only happen if this protocol was forward-declared.
 | 
						|
      ObjCList<ObjCProtocolDecl> PList;
 | 
						|
      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
 | 
						|
      err = CheckForwardProtocolDeclarationForCircularDependency(
 | 
						|
              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the new declaration.
 | 
						|
    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
 | 
						|
                                     ProtocolLoc, AtProtoInterfaceLoc,
 | 
						|
                                     /*PrevDecl=*/PrevDecl);
 | 
						|
    
 | 
						|
    PushOnScopeChains(PDecl, TUScope);
 | 
						|
    PDecl->startDefinition();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (AttrList)
 | 
						|
    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
 | 
						|
  
 | 
						|
  // Merge attributes from previous declarations.
 | 
						|
  if (PrevDecl)
 | 
						|
    mergeDeclAttributes(PDecl, PrevDecl);
 | 
						|
 | 
						|
  if (!err && NumProtoRefs ) {
 | 
						|
    /// Check then save referenced protocols.
 | 
						|
    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | 
						|
                           ProtoLocs, Context);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(PDecl);
 | 
						|
  return ActOnObjCContainerStartDefinition(PDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// FindProtocolDeclaration - This routine looks up protocols and
 | 
						|
/// issues an error if they are not declared. It returns list of
 | 
						|
/// protocol declarations in its 'Protocols' argument.
 | 
						|
void
 | 
						|
Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
 | 
						|
                              const IdentifierLocPair *ProtocolId,
 | 
						|
                              unsigned NumProtocols,
 | 
						|
                              SmallVectorImpl<Decl *> &Protocols) {
 | 
						|
  for (unsigned i = 0; i != NumProtocols; ++i) {
 | 
						|
    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
 | 
						|
                                             ProtocolId[i].second);
 | 
						|
    if (!PDecl) {
 | 
						|
      DeclFilterCCC<ObjCProtocolDecl> Validator;
 | 
						|
      TypoCorrection Corrected = CorrectTypo(
 | 
						|
          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
 | 
						|
          LookupObjCProtocolName, TUScope, NULL, Validator);
 | 
						|
      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
 | 
						|
        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
 | 
						|
          << ProtocolId[i].first << Corrected.getCorrection();
 | 
						|
        Diag(PDecl->getLocation(), diag::note_previous_decl)
 | 
						|
          << PDecl->getDeclName();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PDecl) {
 | 
						|
      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
 | 
						|
        << ProtocolId[i].first;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
 | 
						|
 | 
						|
    // If this is a forward declaration and we are supposed to warn in this
 | 
						|
    // case, do it.
 | 
						|
    // FIXME: Recover nicely in the hidden case.
 | 
						|
    if (WarnOnDeclarations &&
 | 
						|
        (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
 | 
						|
      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
 | 
						|
        << ProtocolId[i].first;
 | 
						|
    Protocols.push_back(PDecl);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
 | 
						|
/// a class method in its extension.
 | 
						|
///
 | 
						|
void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
 | 
						|
                                            ObjCInterfaceDecl *ID) {
 | 
						|
  if (!ID)
 | 
						|
    return;  // Possibly due to previous error
 | 
						|
 | 
						|
  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
 | 
						|
  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
 | 
						|
       e =  ID->meth_end(); i != e; ++i) {
 | 
						|
    ObjCMethodDecl *MD = *i;
 | 
						|
    MethodMap[MD->getSelector()] = MD;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MethodMap.empty())
 | 
						|
    return;
 | 
						|
  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
 | 
						|
       e =  CAT->meth_end(); i != e; ++i) {
 | 
						|
    ObjCMethodDecl *Method = *i;
 | 
						|
    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
 | 
						|
    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
 | 
						|
      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
            << Method->getDeclName();
 | 
						|
      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
 | 
						|
                                      const IdentifierLocPair *IdentList,
 | 
						|
                                      unsigned NumElts,
 | 
						|
                                      AttributeList *attrList) {
 | 
						|
  SmallVector<Decl *, 8> DeclsInGroup;
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    IdentifierInfo *Ident = IdentList[i].first;
 | 
						|
    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
 | 
						|
                                                ForRedeclaration);
 | 
						|
    ObjCProtocolDecl *PDecl
 | 
						|
      = ObjCProtocolDecl::Create(Context, CurContext, Ident, 
 | 
						|
                                 IdentList[i].second, AtProtocolLoc,
 | 
						|
                                 PrevDecl);
 | 
						|
        
 | 
						|
    PushOnScopeChains(PDecl, TUScope);
 | 
						|
    CheckObjCDeclScope(PDecl);
 | 
						|
    
 | 
						|
    if (attrList)
 | 
						|
      ProcessDeclAttributeList(TUScope, PDecl, attrList);
 | 
						|
    
 | 
						|
    if (PrevDecl)
 | 
						|
      mergeDeclAttributes(PDecl, PrevDecl);
 | 
						|
 | 
						|
    DeclsInGroup.push_back(PDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::
 | 
						|
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
 | 
						|
                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | 
						|
                            IdentifierInfo *CategoryName,
 | 
						|
                            SourceLocation CategoryLoc,
 | 
						|
                            Decl * const *ProtoRefs,
 | 
						|
                            unsigned NumProtoRefs,
 | 
						|
                            const SourceLocation *ProtoLocs,
 | 
						|
                            SourceLocation EndProtoLoc) {
 | 
						|
  ObjCCategoryDecl *CDecl;
 | 
						|
  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | 
						|
 | 
						|
  /// Check that class of this category is already completely declared.
 | 
						|
 | 
						|
  if (!IDecl 
 | 
						|
      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | 
						|
                             diag::err_category_forward_interface,
 | 
						|
                             CategoryName == 0)) {
 | 
						|
    // Create an invalid ObjCCategoryDecl to serve as context for
 | 
						|
    // the enclosing method declarations.  We mark the decl invalid
 | 
						|
    // to make it clear that this isn't a valid AST.
 | 
						|
    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | 
						|
                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
 | 
						|
    CDecl->setInvalidDecl();
 | 
						|
    CurContext->addDecl(CDecl);
 | 
						|
        
 | 
						|
    if (!IDecl)
 | 
						|
      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | 
						|
    return ActOnObjCContainerStartDefinition(CDecl);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CategoryName && IDecl->getImplementation()) {
 | 
						|
    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
 | 
						|
    Diag(IDecl->getImplementation()->getLocation(), 
 | 
						|
          diag::note_implementation_declared);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CategoryName) {
 | 
						|
    /// Check for duplicate interface declaration for this category
 | 
						|
    if (ObjCCategoryDecl *Previous
 | 
						|
          = IDecl->FindCategoryDeclaration(CategoryName)) {
 | 
						|
      // Class extensions can be declared multiple times, categories cannot.
 | 
						|
      Diag(CategoryLoc, diag::warn_dup_category_def)
 | 
						|
        << ClassName << CategoryName;
 | 
						|
      Diag(Previous->getLocation(), diag::note_previous_definition);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | 
						|
                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
 | 
						|
  // FIXME: PushOnScopeChains?
 | 
						|
  CurContext->addDecl(CDecl);
 | 
						|
 | 
						|
  if (NumProtoRefs) {
 | 
						|
    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs, 
 | 
						|
                           ProtoLocs, Context);
 | 
						|
    // Protocols in the class extension belong to the class.
 | 
						|
    if (CDecl->IsClassExtension())
 | 
						|
     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 
 | 
						|
                                            NumProtoRefs, Context); 
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(CDecl);
 | 
						|
  return ActOnObjCContainerStartDefinition(CDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnStartCategoryImplementation - Perform semantic checks on the
 | 
						|
/// category implementation declaration and build an ObjCCategoryImplDecl
 | 
						|
/// object.
 | 
						|
Decl *Sema::ActOnStartCategoryImplementation(
 | 
						|
                      SourceLocation AtCatImplLoc,
 | 
						|
                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | 
						|
                      IdentifierInfo *CatName, SourceLocation CatLoc) {
 | 
						|
  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | 
						|
  ObjCCategoryDecl *CatIDecl = 0;
 | 
						|
  if (IDecl && IDecl->hasDefinition()) {
 | 
						|
    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
 | 
						|
    if (!CatIDecl) {
 | 
						|
      // Category @implementation with no corresponding @interface.
 | 
						|
      // Create and install one.
 | 
						|
      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
 | 
						|
                                          ClassLoc, CatLoc,
 | 
						|
                                          CatName, IDecl);
 | 
						|
      CatIDecl->setImplicit();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCCategoryImplDecl *CDecl =
 | 
						|
    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
 | 
						|
                                 ClassLoc, AtCatImplLoc, CatLoc);
 | 
						|
  /// Check that class of this category is already completely declared.
 | 
						|
  if (!IDecl) {
 | 
						|
    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | 
						|
    CDecl->setInvalidDecl();
 | 
						|
  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | 
						|
                                 diag::err_undef_interface)) {
 | 
						|
    CDecl->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: PushOnScopeChains?
 | 
						|
  CurContext->addDecl(CDecl);
 | 
						|
 | 
						|
  // If the interface is deprecated/unavailable, warn/error about it.
 | 
						|
  if (IDecl)
 | 
						|
    DiagnoseUseOfDecl(IDecl, ClassLoc);
 | 
						|
 | 
						|
  /// Check that CatName, category name, is not used in another implementation.
 | 
						|
  if (CatIDecl) {
 | 
						|
    if (CatIDecl->getImplementation()) {
 | 
						|
      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
 | 
						|
        << CatName;
 | 
						|
      Diag(CatIDecl->getImplementation()->getLocation(),
 | 
						|
           diag::note_previous_definition);
 | 
						|
    } else {
 | 
						|
      CatIDecl->setImplementation(CDecl);
 | 
						|
      // Warn on implementating category of deprecated class under 
 | 
						|
      // -Wdeprecated-implementations flag.
 | 
						|
      DiagnoseObjCImplementedDeprecations(*this, 
 | 
						|
                                          dyn_cast<NamedDecl>(IDecl), 
 | 
						|
                                          CDecl->getLocation(), 2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CheckObjCDeclScope(CDecl);
 | 
						|
  return ActOnObjCContainerStartDefinition(CDecl);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnStartClassImplementation(
 | 
						|
                      SourceLocation AtClassImplLoc,
 | 
						|
                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | 
						|
                      IdentifierInfo *SuperClassname,
 | 
						|
                      SourceLocation SuperClassLoc) {
 | 
						|
  ObjCInterfaceDecl* IDecl = 0;
 | 
						|
  // Check for another declaration kind with the same name.
 | 
						|
  NamedDecl *PrevDecl
 | 
						|
    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
 | 
						|
                       ForRedeclaration);
 | 
						|
  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
 | 
						|
    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | 
						|
                        diag::warn_undef_interface);
 | 
						|
  } else {
 | 
						|
    // We did not find anything with the name ClassName; try to correct for 
 | 
						|
    // typos in the class name.
 | 
						|
    ObjCInterfaceValidatorCCC Validator;
 | 
						|
    if (TypoCorrection Corrected = CorrectTypo(
 | 
						|
        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
 | 
						|
        NULL, Validator)) {
 | 
						|
      // Suggest the (potentially) correct interface name. However, put the
 | 
						|
      // fix-it hint itself in a separate note, since changing the name in 
 | 
						|
      // the warning would make the fix-it change semantics.However, don't
 | 
						|
      // provide a code-modification hint or use the typo name for recovery,
 | 
						|
      // because this is just a warning. The program may actually be correct.
 | 
						|
      IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | 
						|
      DeclarationName CorrectedName = Corrected.getCorrection();
 | 
						|
      Diag(ClassLoc, diag::warn_undef_interface_suggest)
 | 
						|
        << ClassName << CorrectedName;
 | 
						|
      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
 | 
						|
        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
 | 
						|
      IDecl = 0;
 | 
						|
    } else {
 | 
						|
      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that super class name is valid class name
 | 
						|
  ObjCInterfaceDecl* SDecl = 0;
 | 
						|
  if (SuperClassname) {
 | 
						|
    // Check if a different kind of symbol declared in this scope.
 | 
						|
    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
 | 
						|
                                LookupOrdinaryName);
 | 
						|
    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
 | 
						|
        << SuperClassname;
 | 
						|
      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
    } else {
 | 
						|
      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
      if (SDecl && !SDecl->hasDefinition())
 | 
						|
        SDecl = 0;
 | 
						|
      if (!SDecl)
 | 
						|
        Diag(SuperClassLoc, diag::err_undef_superclass)
 | 
						|
          << SuperClassname << ClassName;
 | 
						|
      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
 | 
						|
        // This implementation and its interface do not have the same
 | 
						|
        // super class.
 | 
						|
        Diag(SuperClassLoc, diag::err_conflicting_super_class)
 | 
						|
          << SDecl->getDeclName();
 | 
						|
        Diag(SDecl->getLocation(), diag::note_previous_definition);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IDecl) {
 | 
						|
    // Legacy case of @implementation with no corresponding @interface.
 | 
						|
    // Build, chain & install the interface decl into the identifier.
 | 
						|
 | 
						|
    // FIXME: Do we support attributes on the @implementation? If so we should
 | 
						|
    // copy them over.
 | 
						|
    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
 | 
						|
                                      ClassName, /*PrevDecl=*/0, ClassLoc, 
 | 
						|
                                      true);
 | 
						|
    IDecl->startDefinition();
 | 
						|
    if (SDecl) {
 | 
						|
      IDecl->setSuperClass(SDecl);
 | 
						|
      IDecl->setSuperClassLoc(SuperClassLoc);
 | 
						|
      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
 | 
						|
    } else {
 | 
						|
      IDecl->setEndOfDefinitionLoc(ClassLoc);
 | 
						|
    }
 | 
						|
    
 | 
						|
    PushOnScopeChains(IDecl, TUScope);
 | 
						|
  } else {
 | 
						|
    // Mark the interface as being completed, even if it was just as
 | 
						|
    //   @class ....;
 | 
						|
    // declaration; the user cannot reopen it.
 | 
						|
    if (!IDecl->hasDefinition())
 | 
						|
      IDecl->startDefinition();
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCImplementationDecl* IMPDecl =
 | 
						|
    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
 | 
						|
                                   ClassLoc, AtClassImplLoc);
 | 
						|
 | 
						|
  if (CheckObjCDeclScope(IMPDecl))
 | 
						|
    return ActOnObjCContainerStartDefinition(IMPDecl);
 | 
						|
 | 
						|
  // Check that there is no duplicate implementation of this class.
 | 
						|
  if (IDecl->getImplementation()) {
 | 
						|
    // FIXME: Don't leak everything!
 | 
						|
    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
 | 
						|
    Diag(IDecl->getImplementation()->getLocation(),
 | 
						|
         diag::note_previous_definition);
 | 
						|
  } else { // add it to the list.
 | 
						|
    IDecl->setImplementation(IMPDecl);
 | 
						|
    PushOnScopeChains(IMPDecl, TUScope);
 | 
						|
    // Warn on implementating deprecated class under 
 | 
						|
    // -Wdeprecated-implementations flag.
 | 
						|
    DiagnoseObjCImplementedDeprecations(*this, 
 | 
						|
                                        dyn_cast<NamedDecl>(IDecl), 
 | 
						|
                                        IMPDecl->getLocation(), 1);
 | 
						|
  }
 | 
						|
  return ActOnObjCContainerStartDefinition(IMPDecl);
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
 | 
						|
  SmallVector<Decl *, 64> DeclsInGroup;
 | 
						|
  DeclsInGroup.reserve(Decls.size() + 1);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
 | 
						|
    Decl *Dcl = Decls[i];
 | 
						|
    if (!Dcl)
 | 
						|
      continue;
 | 
						|
    if (Dcl->getDeclContext()->isFileContext())
 | 
						|
      Dcl->setTopLevelDeclInObjCContainer();
 | 
						|
    DeclsInGroup.push_back(Dcl);
 | 
						|
  }
 | 
						|
 | 
						|
  DeclsInGroup.push_back(ObjCImpDecl);
 | 
						|
 | 
						|
  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
 | 
						|
                                    ObjCIvarDecl **ivars, unsigned numIvars,
 | 
						|
                                    SourceLocation RBrace) {
 | 
						|
  assert(ImpDecl && "missing implementation decl");
 | 
						|
  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
 | 
						|
  if (!IDecl)
 | 
						|
    return;
 | 
						|
  /// Check case of non-existing \@interface decl.
 | 
						|
  /// (legacy objective-c \@implementation decl without an \@interface decl).
 | 
						|
  /// Add implementations's ivar to the synthesize class's ivar list.
 | 
						|
  if (IDecl->isImplicitInterfaceDecl()) {
 | 
						|
    IDecl->setEndOfDefinitionLoc(RBrace);
 | 
						|
    // Add ivar's to class's DeclContext.
 | 
						|
    for (unsigned i = 0, e = numIvars; i != e; ++i) {
 | 
						|
      ivars[i]->setLexicalDeclContext(ImpDecl);
 | 
						|
      IDecl->makeDeclVisibleInContext(ivars[i]);
 | 
						|
      ImpDecl->addDecl(ivars[i]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // If implementation has empty ivar list, just return.
 | 
						|
  if (numIvars == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(ivars && "missing @implementation ivars");
 | 
						|
  if (LangOpts.ObjCRuntime.isNonFragile()) {
 | 
						|
    if (ImpDecl->getSuperClass())
 | 
						|
      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
 | 
						|
    for (unsigned i = 0; i < numIvars; i++) {
 | 
						|
      ObjCIvarDecl* ImplIvar = ivars[i];
 | 
						|
      if (const ObjCIvarDecl *ClsIvar = 
 | 
						|
            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
 | 
						|
        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 
 | 
						|
        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Instance ivar to Implementation's DeclContext.
 | 
						|
      ImplIvar->setLexicalDeclContext(ImpDecl);
 | 
						|
      IDecl->makeDeclVisibleInContext(ImplIvar);
 | 
						|
      ImpDecl->addDecl(ImplIvar);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Check interface's Ivar list against those in the implementation.
 | 
						|
  // names and types must match.
 | 
						|
  //
 | 
						|
  unsigned j = 0;
 | 
						|
  ObjCInterfaceDecl::ivar_iterator
 | 
						|
    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
 | 
						|
  for (; numIvars > 0 && IVI != IVE; ++IVI) {
 | 
						|
    ObjCIvarDecl* ImplIvar = ivars[j++];
 | 
						|
    ObjCIvarDecl* ClsIvar = *IVI;
 | 
						|
    assert (ImplIvar && "missing implementation ivar");
 | 
						|
    assert (ClsIvar && "missing class ivar");
 | 
						|
 | 
						|
    // First, make sure the types match.
 | 
						|
    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
 | 
						|
      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
 | 
						|
        << ImplIvar->getIdentifier()
 | 
						|
        << ImplIvar->getType() << ClsIvar->getType();
 | 
						|
      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
 | 
						|
               ImplIvar->getBitWidthValue(Context) !=
 | 
						|
               ClsIvar->getBitWidthValue(Context)) {
 | 
						|
      Diag(ImplIvar->getBitWidth()->getLocStart(),
 | 
						|
           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
 | 
						|
      Diag(ClsIvar->getBitWidth()->getLocStart(),
 | 
						|
           diag::note_previous_definition);
 | 
						|
    }
 | 
						|
    // Make sure the names are identical.
 | 
						|
    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
 | 
						|
      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
 | 
						|
        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
 | 
						|
      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
    }
 | 
						|
    --numIvars;
 | 
						|
  }
 | 
						|
 | 
						|
  if (numIvars > 0)
 | 
						|
    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
 | 
						|
  else if (IVI != IVE)
 | 
						|
    Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
 | 
						|
                               bool &IncompleteImpl, unsigned DiagID) {
 | 
						|
  // No point warning no definition of method which is 'unavailable'.
 | 
						|
  switch (method->getAvailability()) {
 | 
						|
  case AR_Available:
 | 
						|
  case AR_Deprecated:
 | 
						|
    break;
 | 
						|
 | 
						|
      // Don't warn about unavailable or not-yet-introduced methods.
 | 
						|
  case AR_NotYetIntroduced:
 | 
						|
  case AR_Unavailable:
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!IncompleteImpl) {
 | 
						|
    Diag(ImpLoc, diag::warn_incomplete_impl);
 | 
						|
    IncompleteImpl = true;
 | 
						|
  }
 | 
						|
  if (DiagID == diag::warn_unimplemented_protocol_method)
 | 
						|
    Diag(ImpLoc, DiagID) << method->getDeclName();
 | 
						|
  else
 | 
						|
    Diag(method->getLocation(), DiagID) << method->getDeclName();
 | 
						|
}
 | 
						|
 | 
						|
/// Determines if type B can be substituted for type A.  Returns true if we can
 | 
						|
/// guarantee that anything that the user will do to an object of type A can 
 | 
						|
/// also be done to an object of type B.  This is trivially true if the two 
 | 
						|
/// types are the same, or if B is a subclass of A.  It becomes more complex
 | 
						|
/// in cases where protocols are involved.
 | 
						|
///
 | 
						|
/// Object types in Objective-C describe the minimum requirements for an
 | 
						|
/// object, rather than providing a complete description of a type.  For
 | 
						|
/// example, if A is a subclass of B, then B* may refer to an instance of A.
 | 
						|
/// The principle of substitutability means that we may use an instance of A
 | 
						|
/// anywhere that we may use an instance of B - it will implement all of the
 | 
						|
/// ivars of B and all of the methods of B.  
 | 
						|
///
 | 
						|
/// This substitutability is important when type checking methods, because 
 | 
						|
/// the implementation may have stricter type definitions than the interface.
 | 
						|
/// The interface specifies minimum requirements, but the implementation may
 | 
						|
/// have more accurate ones.  For example, a method may privately accept 
 | 
						|
/// instances of B, but only publish that it accepts instances of A.  Any
 | 
						|
/// object passed to it will be type checked against B, and so will implicitly
 | 
						|
/// by a valid A*.  Similarly, a method may return a subclass of the class that
 | 
						|
/// it is declared as returning.
 | 
						|
///
 | 
						|
/// This is most important when considering subclassing.  A method in a
 | 
						|
/// subclass must accept any object as an argument that its superclass's
 | 
						|
/// implementation accepts.  It may, however, accept a more general type
 | 
						|
/// without breaking substitutability (i.e. you can still use the subclass
 | 
						|
/// anywhere that you can use the superclass, but not vice versa).  The
 | 
						|
/// converse requirement applies to return types: the return type for a
 | 
						|
/// subclass method must be a valid object of the kind that the superclass
 | 
						|
/// advertises, but it may be specified more accurately.  This avoids the need
 | 
						|
/// for explicit down-casting by callers.
 | 
						|
///
 | 
						|
/// Note: This is a stricter requirement than for assignment.  
 | 
						|
static bool isObjCTypeSubstitutable(ASTContext &Context,
 | 
						|
                                    const ObjCObjectPointerType *A,
 | 
						|
                                    const ObjCObjectPointerType *B,
 | 
						|
                                    bool rejectId) {
 | 
						|
  // Reject a protocol-unqualified id.
 | 
						|
  if (rejectId && B->isObjCIdType()) return false;
 | 
						|
 | 
						|
  // If B is a qualified id, then A must also be a qualified id and it must
 | 
						|
  // implement all of the protocols in B.  It may not be a qualified class.
 | 
						|
  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
 | 
						|
  // stricter definition so it is not substitutable for id<A>.
 | 
						|
  if (B->isObjCQualifiedIdType()) {
 | 
						|
    return A->isObjCQualifiedIdType() &&
 | 
						|
           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
 | 
						|
                                                     QualType(B,0),
 | 
						|
                                                     false);
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
  // id is a special type that bypasses type checking completely.  We want a
 | 
						|
  // warning when it is used in one place but not another.
 | 
						|
  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
 | 
						|
 | 
						|
 | 
						|
  // If B is a qualified id, then A must also be a qualified id (which it isn't
 | 
						|
  // if we've got this far)
 | 
						|
  if (B->isObjCQualifiedIdType()) return false;
 | 
						|
  */
 | 
						|
 | 
						|
  // Now we know that A and B are (potentially-qualified) class types.  The
 | 
						|
  // normal rules for assignment apply.
 | 
						|
  return Context.canAssignObjCInterfaces(A, B);
 | 
						|
}
 | 
						|
 | 
						|
static SourceRange getTypeRange(TypeSourceInfo *TSI) {
 | 
						|
  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckMethodOverrideReturn(Sema &S,
 | 
						|
                                      ObjCMethodDecl *MethodImpl,
 | 
						|
                                      ObjCMethodDecl *MethodDecl,
 | 
						|
                                      bool IsProtocolMethodDecl,
 | 
						|
                                      bool IsOverridingMode,
 | 
						|
                                      bool Warn) {
 | 
						|
  if (IsProtocolMethodDecl &&
 | 
						|
      (MethodDecl->getObjCDeclQualifier() !=
 | 
						|
       MethodImpl->getObjCDeclQualifier())) {
 | 
						|
    if (Warn) {
 | 
						|
        S.Diag(MethodImpl->getLocation(), 
 | 
						|
               (IsOverridingMode ? 
 | 
						|
                 diag::warn_conflicting_overriding_ret_type_modifiers 
 | 
						|
                 : diag::warn_conflicting_ret_type_modifiers))
 | 
						|
          << MethodImpl->getDeclName()
 | 
						|
          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
 | 
						|
        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
 | 
						|
          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
 | 
						|
    }
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
 | 
						|
                                       MethodDecl->getResultType()))
 | 
						|
    return true;
 | 
						|
  if (!Warn)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned DiagID = 
 | 
						|
    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 
 | 
						|
                     : diag::warn_conflicting_ret_types;
 | 
						|
 | 
						|
  // Mismatches between ObjC pointers go into a different warning
 | 
						|
  // category, and sometimes they're even completely whitelisted.
 | 
						|
  if (const ObjCObjectPointerType *ImplPtrTy =
 | 
						|
        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
 | 
						|
    if (const ObjCObjectPointerType *IfacePtrTy =
 | 
						|
          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
 | 
						|
      // Allow non-matching return types as long as they don't violate
 | 
						|
      // the principle of substitutability.  Specifically, we permit
 | 
						|
      // return types that are subclasses of the declared return type,
 | 
						|
      // or that are more-qualified versions of the declared type.
 | 
						|
      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
 | 
						|
        return false;
 | 
						|
 | 
						|
      DiagID = 
 | 
						|
        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 
 | 
						|
                          : diag::warn_non_covariant_ret_types;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(MethodImpl->getLocation(), DiagID)
 | 
						|
    << MethodImpl->getDeclName()
 | 
						|
    << MethodDecl->getResultType()
 | 
						|
    << MethodImpl->getResultType()
 | 
						|
    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
 | 
						|
  S.Diag(MethodDecl->getLocation(), 
 | 
						|
         IsOverridingMode ? diag::note_previous_declaration 
 | 
						|
                          : diag::note_previous_definition)
 | 
						|
    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckMethodOverrideParam(Sema &S,
 | 
						|
                                     ObjCMethodDecl *MethodImpl,
 | 
						|
                                     ObjCMethodDecl *MethodDecl,
 | 
						|
                                     ParmVarDecl *ImplVar,
 | 
						|
                                     ParmVarDecl *IfaceVar,
 | 
						|
                                     bool IsProtocolMethodDecl,
 | 
						|
                                     bool IsOverridingMode,
 | 
						|
                                     bool Warn) {
 | 
						|
  if (IsProtocolMethodDecl &&
 | 
						|
      (ImplVar->getObjCDeclQualifier() !=
 | 
						|
       IfaceVar->getObjCDeclQualifier())) {
 | 
						|
    if (Warn) {
 | 
						|
      if (IsOverridingMode)
 | 
						|
        S.Diag(ImplVar->getLocation(), 
 | 
						|
               diag::warn_conflicting_overriding_param_modifiers)
 | 
						|
            << getTypeRange(ImplVar->getTypeSourceInfo())
 | 
						|
            << MethodImpl->getDeclName();
 | 
						|
      else S.Diag(ImplVar->getLocation(), 
 | 
						|
             diag::warn_conflicting_param_modifiers)
 | 
						|
          << getTypeRange(ImplVar->getTypeSourceInfo())
 | 
						|
          << MethodImpl->getDeclName();
 | 
						|
      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
 | 
						|
          << getTypeRange(IfaceVar->getTypeSourceInfo());   
 | 
						|
    }
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
      
 | 
						|
  QualType ImplTy = ImplVar->getType();
 | 
						|
  QualType IfaceTy = IfaceVar->getType();
 | 
						|
  
 | 
						|
  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  if (!Warn)
 | 
						|
    return false;
 | 
						|
  unsigned DiagID = 
 | 
						|
    IsOverridingMode ? diag::warn_conflicting_overriding_param_types 
 | 
						|
                     : diag::warn_conflicting_param_types;
 | 
						|
 | 
						|
  // Mismatches between ObjC pointers go into a different warning
 | 
						|
  // category, and sometimes they're even completely whitelisted.
 | 
						|
  if (const ObjCObjectPointerType *ImplPtrTy =
 | 
						|
        ImplTy->getAs<ObjCObjectPointerType>()) {
 | 
						|
    if (const ObjCObjectPointerType *IfacePtrTy =
 | 
						|
          IfaceTy->getAs<ObjCObjectPointerType>()) {
 | 
						|
      // Allow non-matching argument types as long as they don't
 | 
						|
      // violate the principle of substitutability.  Specifically, the
 | 
						|
      // implementation must accept any objects that the superclass
 | 
						|
      // accepts, however it may also accept others.
 | 
						|
      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
 | 
						|
        return false;
 | 
						|
 | 
						|
      DiagID = 
 | 
						|
      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 
 | 
						|
                       :  diag::warn_non_contravariant_param_types;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(ImplVar->getLocation(), DiagID)
 | 
						|
    << getTypeRange(ImplVar->getTypeSourceInfo())
 | 
						|
    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
 | 
						|
  S.Diag(IfaceVar->getLocation(), 
 | 
						|
         (IsOverridingMode ? diag::note_previous_declaration 
 | 
						|
                        : diag::note_previous_definition))
 | 
						|
    << getTypeRange(IfaceVar->getTypeSourceInfo());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// In ARC, check whether the conventional meanings of the two methods
 | 
						|
/// match.  If they don't, it's a hard error.
 | 
						|
static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
 | 
						|
                                      ObjCMethodDecl *decl) {
 | 
						|
  ObjCMethodFamily implFamily = impl->getMethodFamily();
 | 
						|
  ObjCMethodFamily declFamily = decl->getMethodFamily();
 | 
						|
  if (implFamily == declFamily) return false;
 | 
						|
 | 
						|
  // Since conventions are sorted by selector, the only possibility is
 | 
						|
  // that the types differ enough to cause one selector or the other
 | 
						|
  // to fall out of the family.
 | 
						|
  assert(implFamily == OMF_None || declFamily == OMF_None);
 | 
						|
 | 
						|
  // No further diagnostics required on invalid declarations.
 | 
						|
  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
 | 
						|
 | 
						|
  const ObjCMethodDecl *unmatched = impl;
 | 
						|
  ObjCMethodFamily family = declFamily;
 | 
						|
  unsigned errorID = diag::err_arc_lost_method_convention;
 | 
						|
  unsigned noteID = diag::note_arc_lost_method_convention;
 | 
						|
  if (declFamily == OMF_None) {
 | 
						|
    unmatched = decl;
 | 
						|
    family = implFamily;
 | 
						|
    errorID = diag::err_arc_gained_method_convention;
 | 
						|
    noteID = diag::note_arc_gained_method_convention;
 | 
						|
  }
 | 
						|
 | 
						|
  // Indexes into a %select clause in the diagnostic.
 | 
						|
  enum FamilySelector {
 | 
						|
    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
 | 
						|
  };
 | 
						|
  FamilySelector familySelector = FamilySelector();
 | 
						|
 | 
						|
  switch (family) {
 | 
						|
  case OMF_None: llvm_unreachable("logic error, no method convention");
 | 
						|
  case OMF_retain:
 | 
						|
  case OMF_release:
 | 
						|
  case OMF_autorelease:
 | 
						|
  case OMF_dealloc:
 | 
						|
  case OMF_finalize:
 | 
						|
  case OMF_retainCount:
 | 
						|
  case OMF_self:
 | 
						|
  case OMF_performSelector:
 | 
						|
    // Mismatches for these methods don't change ownership
 | 
						|
    // conventions, so we don't care.
 | 
						|
    return false;
 | 
						|
 | 
						|
  case OMF_init: familySelector = F_init; break;
 | 
						|
  case OMF_alloc: familySelector = F_alloc; break;
 | 
						|
  case OMF_copy: familySelector = F_copy; break;
 | 
						|
  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
 | 
						|
  case OMF_new: familySelector = F_new; break;
 | 
						|
  }
 | 
						|
 | 
						|
  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
 | 
						|
  ReasonSelector reasonSelector;
 | 
						|
 | 
						|
  // The only reason these methods don't fall within their families is
 | 
						|
  // due to unusual result types.
 | 
						|
  if (unmatched->getResultType()->isObjCObjectPointerType()) {
 | 
						|
    reasonSelector = R_UnrelatedReturn;
 | 
						|
  } else {
 | 
						|
    reasonSelector = R_NonObjectReturn;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
 | 
						|
  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
 | 
						|
                                       ObjCMethodDecl *MethodDecl,
 | 
						|
                                       bool IsProtocolMethodDecl) {
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
 | 
						|
    return;
 | 
						|
 | 
						|
  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
 | 
						|
                            IsProtocolMethodDecl, false, 
 | 
						|
                            true);
 | 
						|
 | 
						|
  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
 | 
						|
       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
 | 
						|
       EF = MethodDecl->param_end();
 | 
						|
       IM != EM && IF != EF; ++IM, ++IF) {
 | 
						|
    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
 | 
						|
                             IsProtocolMethodDecl, false, true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
 | 
						|
    Diag(ImpMethodDecl->getLocation(), 
 | 
						|
         diag::warn_conflicting_variadic);
 | 
						|
    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
 | 
						|
                                       ObjCMethodDecl *Overridden,
 | 
						|
                                       bool IsProtocolMethodDecl) {
 | 
						|
  
 | 
						|
  CheckMethodOverrideReturn(*this, Method, Overridden, 
 | 
						|
                            IsProtocolMethodDecl, true, 
 | 
						|
                            true);
 | 
						|
  
 | 
						|
  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
 | 
						|
       IF = Overridden->param_begin(), EM = Method->param_end(),
 | 
						|
       EF = Overridden->param_end();
 | 
						|
       IM != EM && IF != EF; ++IM, ++IF) {
 | 
						|
    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
 | 
						|
                             IsProtocolMethodDecl, true, true);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Method->isVariadic() != Overridden->isVariadic()) {
 | 
						|
    Diag(Method->getLocation(), 
 | 
						|
         diag::warn_conflicting_overriding_variadic);
 | 
						|
    Diag(Overridden->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// WarnExactTypedMethods - This routine issues a warning if method
 | 
						|
/// implementation declaration matches exactly that of its declaration.
 | 
						|
void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
 | 
						|
                                 ObjCMethodDecl *MethodDecl,
 | 
						|
                                 bool IsProtocolMethodDecl) {
 | 
						|
  // don't issue warning when protocol method is optional because primary
 | 
						|
  // class is not required to implement it and it is safe for protocol
 | 
						|
  // to implement it.
 | 
						|
  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
 | 
						|
    return;
 | 
						|
  // don't issue warning when primary class's method is 
 | 
						|
  // depecated/unavailable.
 | 
						|
  if (MethodDecl->hasAttr<UnavailableAttr>() ||
 | 
						|
      MethodDecl->hasAttr<DeprecatedAttr>())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
 | 
						|
                                      IsProtocolMethodDecl, false, false);
 | 
						|
  if (match)
 | 
						|
    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
 | 
						|
         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
 | 
						|
         EF = MethodDecl->param_end();
 | 
						|
         IM != EM && IF != EF; ++IM, ++IF) {
 | 
						|
      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 
 | 
						|
                                       *IM, *IF,
 | 
						|
                                       IsProtocolMethodDecl, false, false);
 | 
						|
      if (!match)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  if (match)
 | 
						|
    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
 | 
						|
  if (match)
 | 
						|
    match = !(MethodDecl->isClassMethod() &&
 | 
						|
              MethodDecl->getSelector() == GetNullarySelector("load", Context));
 | 
						|
  
 | 
						|
  if (match) {
 | 
						|
    Diag(ImpMethodDecl->getLocation(), 
 | 
						|
         diag::warn_category_method_impl_match);
 | 
						|
    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
 | 
						|
      << MethodDecl->getDeclName();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
 | 
						|
/// improve the efficiency of selector lookups and type checking by associating
 | 
						|
/// with each protocol / interface / category the flattened instance tables. If
 | 
						|
/// we used an immutable set to keep the table then it wouldn't add significant
 | 
						|
/// memory cost and it would be handy for lookups.
 | 
						|
 | 
						|
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
 | 
						|
/// Declared in protocol, and those referenced by it.
 | 
						|
void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
 | 
						|
                                   ObjCProtocolDecl *PDecl,
 | 
						|
                                   bool& IncompleteImpl,
 | 
						|
                                   const SelectorSet &InsMap,
 | 
						|
                                   const SelectorSet &ClsMap,
 | 
						|
                                   ObjCContainerDecl *CDecl) {
 | 
						|
  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
 | 
						|
  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 
 | 
						|
                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
 | 
						|
  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
 | 
						|
  
 | 
						|
  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
 | 
						|
  ObjCInterfaceDecl *NSIDecl = 0;
 | 
						|
  if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
 | 
						|
    // check to see if class implements forwardInvocation method and objects
 | 
						|
    // of this class are derived from 'NSProxy' so that to forward requests
 | 
						|
    // from one object to another.
 | 
						|
    // Under such conditions, which means that every method possible is
 | 
						|
    // implemented in the class, we should not issue "Method definition not
 | 
						|
    // found" warnings.
 | 
						|
    // FIXME: Use a general GetUnarySelector method for this.
 | 
						|
    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
 | 
						|
    Selector fISelector = Context.Selectors.getSelector(1, &II);
 | 
						|
    if (InsMap.count(fISelector))
 | 
						|
      // Is IDecl derived from 'NSProxy'? If so, no instance methods
 | 
						|
      // need be implemented in the implementation.
 | 
						|
      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a forward protocol declaration, get its definition.
 | 
						|
  if (!PDecl->isThisDeclarationADefinition() &&
 | 
						|
      PDecl->getDefinition())
 | 
						|
    PDecl = PDecl->getDefinition();
 | 
						|
  
 | 
						|
  // If a method lookup fails locally we still need to look and see if
 | 
						|
  // the method was implemented by a base class or an inherited
 | 
						|
  // protocol. This lookup is slow, but occurs rarely in correct code
 | 
						|
  // and otherwise would terminate in a warning.
 | 
						|
 | 
						|
  // check unimplemented instance methods.
 | 
						|
  if (!NSIDecl)
 | 
						|
    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
 | 
						|
         E = PDecl->instmeth_end(); I != E; ++I) {
 | 
						|
      ObjCMethodDecl *method = *I;
 | 
						|
      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | 
						|
          !method->isPropertyAccessor() &&
 | 
						|
          !InsMap.count(method->getSelector()) &&
 | 
						|
          (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
 | 
						|
            // If a method is not implemented in the category implementation but
 | 
						|
            // has been declared in its primary class, superclass,
 | 
						|
            // or in one of their protocols, no need to issue the warning. 
 | 
						|
            // This is because method will be implemented in the primary class 
 | 
						|
            // or one of its super class implementation.
 | 
						|
            
 | 
						|
            // Ugly, but necessary. Method declared in protcol might have
 | 
						|
            // have been synthesized due to a property declared in the class which
 | 
						|
            // uses the protocol.
 | 
						|
            if (ObjCMethodDecl *MethodInClass =
 | 
						|
                  IDecl->lookupInstanceMethod(method->getSelector(), 
 | 
						|
                                              true /*shallowCategoryLookup*/))
 | 
						|
              if (C || MethodInClass->isPropertyAccessor())
 | 
						|
                continue;
 | 
						|
            unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | 
						|
            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
 | 
						|
                != DiagnosticsEngine::Ignored) {
 | 
						|
              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
 | 
						|
              Diag(method->getLocation(), diag::note_method_declared_at)
 | 
						|
                << method->getDeclName();
 | 
						|
              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
 | 
						|
                << PDecl->getDeclName();
 | 
						|
            }
 | 
						|
          }
 | 
						|
    }
 | 
						|
  // check unimplemented class methods
 | 
						|
  for (ObjCProtocolDecl::classmeth_iterator
 | 
						|
         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    ObjCMethodDecl *method = *I;
 | 
						|
    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | 
						|
        !ClsMap.count(method->getSelector()) &&
 | 
						|
        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
 | 
						|
      // See above comment for instance method lookups.
 | 
						|
      if (C && IDecl->lookupClassMethod(method->getSelector(), 
 | 
						|
                                        true /*shallowCategoryLookup*/))
 | 
						|
        continue;
 | 
						|
      unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | 
						|
      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
 | 
						|
            DiagnosticsEngine::Ignored) {
 | 
						|
        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
 | 
						|
        Diag(method->getLocation(), diag::note_method_declared_at)
 | 
						|
          << method->getDeclName();
 | 
						|
        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
 | 
						|
          PDecl->getDeclName();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Check on this protocols's referenced protocols, recursively.
 | 
						|
  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
 | 
						|
       E = PDecl->protocol_end(); PI != E; ++PI)
 | 
						|
    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// MatchAllMethodDeclarations - Check methods declared in interface
 | 
						|
/// or protocol against those declared in their implementations.
 | 
						|
///
 | 
						|
void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
 | 
						|
                                      const SelectorSet &ClsMap,
 | 
						|
                                      SelectorSet &InsMapSeen,
 | 
						|
                                      SelectorSet &ClsMapSeen,
 | 
						|
                                      ObjCImplDecl* IMPDecl,
 | 
						|
                                      ObjCContainerDecl* CDecl,
 | 
						|
                                      bool &IncompleteImpl,
 | 
						|
                                      bool ImmediateClass,
 | 
						|
                                      bool WarnCategoryMethodImpl) {
 | 
						|
  // Check and see if instance methods in class interface have been
 | 
						|
  // implemented in the implementation class. If so, their types match.
 | 
						|
  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
 | 
						|
       E = CDecl->instmeth_end(); I != E; ++I) {
 | 
						|
    if (InsMapSeen.count((*I)->getSelector()))
 | 
						|
        continue;
 | 
						|
    InsMapSeen.insert((*I)->getSelector());
 | 
						|
    if (!(*I)->isPropertyAccessor() &&
 | 
						|
        !InsMap.count((*I)->getSelector())) {
 | 
						|
      if (ImmediateClass)
 | 
						|
        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
 | 
						|
                            diag::note_undef_method_impl);
 | 
						|
      continue;
 | 
						|
    } else {
 | 
						|
      ObjCMethodDecl *ImpMethodDecl =
 | 
						|
        IMPDecl->getInstanceMethod((*I)->getSelector());
 | 
						|
      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
 | 
						|
             "Expected to find the method through lookup as well");
 | 
						|
      ObjCMethodDecl *MethodDecl = *I;
 | 
						|
      // ImpMethodDecl may be null as in a @dynamic property.
 | 
						|
      if (ImpMethodDecl) {
 | 
						|
        if (!WarnCategoryMethodImpl)
 | 
						|
          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
 | 
						|
                                      isa<ObjCProtocolDecl>(CDecl));
 | 
						|
        else if (!MethodDecl->isPropertyAccessor())
 | 
						|
          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
 | 
						|
                                isa<ObjCProtocolDecl>(CDecl));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check and see if class methods in class interface have been
 | 
						|
  // implemented in the implementation class. If so, their types match.
 | 
						|
   for (ObjCInterfaceDecl::classmeth_iterator
 | 
						|
       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
 | 
						|
     if (ClsMapSeen.count((*I)->getSelector()))
 | 
						|
       continue;
 | 
						|
     ClsMapSeen.insert((*I)->getSelector());
 | 
						|
    if (!ClsMap.count((*I)->getSelector())) {
 | 
						|
      if (ImmediateClass)
 | 
						|
        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
 | 
						|
                            diag::note_undef_method_impl);
 | 
						|
    } else {
 | 
						|
      ObjCMethodDecl *ImpMethodDecl =
 | 
						|
        IMPDecl->getClassMethod((*I)->getSelector());
 | 
						|
      assert(CDecl->getClassMethod((*I)->getSelector()) &&
 | 
						|
             "Expected to find the method through lookup as well");
 | 
						|
      ObjCMethodDecl *MethodDecl = *I;
 | 
						|
      if (!WarnCategoryMethodImpl)
 | 
						|
        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 
 | 
						|
                                    isa<ObjCProtocolDecl>(CDecl));
 | 
						|
      else
 | 
						|
        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
 | 
						|
                              isa<ObjCProtocolDecl>(CDecl));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | 
						|
    // when checking that methods in implementation match their declaration,
 | 
						|
    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
 | 
						|
    // extension; as well as those in categories.
 | 
						|
    if (!WarnCategoryMethodImpl) {
 | 
						|
      for (ObjCInterfaceDecl::visible_categories_iterator
 | 
						|
             Cat = I->visible_categories_begin(),
 | 
						|
           CatEnd = I->visible_categories_end();
 | 
						|
           Cat != CatEnd; ++Cat) {
 | 
						|
        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                   IMPDecl, *Cat, IncompleteImpl, false,
 | 
						|
                                   WarnCategoryMethodImpl);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Also methods in class extensions need be looked at next.
 | 
						|
      for (ObjCInterfaceDecl::visible_extensions_iterator
 | 
						|
             Ext = I->visible_extensions_begin(),
 | 
						|
             ExtEnd = I->visible_extensions_end();
 | 
						|
           Ext != ExtEnd; ++Ext) {
 | 
						|
        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                   IMPDecl, *Ext, IncompleteImpl, false,
 | 
						|
                                   WarnCategoryMethodImpl);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for any implementation of a methods declared in protocol.
 | 
						|
    for (ObjCInterfaceDecl::all_protocol_iterator
 | 
						|
          PI = I->all_referenced_protocol_begin(),
 | 
						|
          E = I->all_referenced_protocol_end(); PI != E; ++PI)
 | 
						|
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                 IMPDecl,
 | 
						|
                                 (*PI), IncompleteImpl, false, 
 | 
						|
                                 WarnCategoryMethodImpl);
 | 
						|
    
 | 
						|
    // FIXME. For now, we are not checking for extact match of methods 
 | 
						|
    // in category implementation and its primary class's super class. 
 | 
						|
    if (!WarnCategoryMethodImpl && I->getSuperClass())
 | 
						|
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                                 IMPDecl,
 | 
						|
                                 I->getSuperClass(), IncompleteImpl, false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
 | 
						|
/// category matches with those implemented in its primary class and
 | 
						|
/// warns each time an exact match is found. 
 | 
						|
void Sema::CheckCategoryVsClassMethodMatches(
 | 
						|
                                  ObjCCategoryImplDecl *CatIMPDecl) {
 | 
						|
  SelectorSet InsMap, ClsMap;
 | 
						|
  
 | 
						|
  for (ObjCImplementationDecl::instmeth_iterator
 | 
						|
       I = CatIMPDecl->instmeth_begin(), 
 | 
						|
       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
 | 
						|
    InsMap.insert((*I)->getSelector());
 | 
						|
  
 | 
						|
  for (ObjCImplementationDecl::classmeth_iterator
 | 
						|
       I = CatIMPDecl->classmeth_begin(),
 | 
						|
       E = CatIMPDecl->classmeth_end(); I != E; ++I)
 | 
						|
    ClsMap.insert((*I)->getSelector());
 | 
						|
  if (InsMap.empty() && ClsMap.empty())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // Get category's primary class.
 | 
						|
  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
 | 
						|
  if (!CatDecl)
 | 
						|
    return;
 | 
						|
  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
 | 
						|
  if (!IDecl)
 | 
						|
    return;
 | 
						|
  SelectorSet InsMapSeen, ClsMapSeen;
 | 
						|
  bool IncompleteImpl = false;
 | 
						|
  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                             CatIMPDecl, IDecl,
 | 
						|
                             IncompleteImpl, false, 
 | 
						|
                             true /*WarnCategoryMethodImpl*/);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
 | 
						|
                                     ObjCContainerDecl* CDecl,
 | 
						|
                                     bool IncompleteImpl) {
 | 
						|
  SelectorSet InsMap;
 | 
						|
  // Check and see if instance methods in class interface have been
 | 
						|
  // implemented in the implementation class.
 | 
						|
  for (ObjCImplementationDecl::instmeth_iterator
 | 
						|
         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
 | 
						|
    InsMap.insert((*I)->getSelector());
 | 
						|
 | 
						|
  // Check and see if properties declared in the interface have either 1)
 | 
						|
  // an implementation or 2) there is a @synthesize/@dynamic implementation
 | 
						|
  // of the property in the @implementation.
 | 
						|
  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
 | 
						|
    if  (!(LangOpts.ObjCDefaultSynthProperties &&
 | 
						|
           LangOpts.ObjCRuntime.isNonFragile()) ||
 | 
						|
         IDecl->isObjCRequiresPropertyDefs())
 | 
						|
      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
 | 
						|
      
 | 
						|
  SelectorSet ClsMap;
 | 
						|
  for (ObjCImplementationDecl::classmeth_iterator
 | 
						|
       I = IMPDecl->classmeth_begin(),
 | 
						|
       E = IMPDecl->classmeth_end(); I != E; ++I)
 | 
						|
    ClsMap.insert((*I)->getSelector());
 | 
						|
 | 
						|
  // Check for type conflict of methods declared in a class/protocol and
 | 
						|
  // its implementation; if any.
 | 
						|
  SelectorSet InsMapSeen, ClsMapSeen;
 | 
						|
  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | 
						|
                             IMPDecl, CDecl,
 | 
						|
                             IncompleteImpl, true);
 | 
						|
  
 | 
						|
  // check all methods implemented in category against those declared
 | 
						|
  // in its primary class.
 | 
						|
  if (ObjCCategoryImplDecl *CatDecl = 
 | 
						|
        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
 | 
						|
    CheckCategoryVsClassMethodMatches(CatDecl);
 | 
						|
 | 
						|
  // Check the protocol list for unimplemented methods in the @implementation
 | 
						|
  // class.
 | 
						|
  // Check and see if class methods in class interface have been
 | 
						|
  // implemented in the implementation class.
 | 
						|
 | 
						|
  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | 
						|
    for (ObjCInterfaceDecl::all_protocol_iterator
 | 
						|
          PI = I->all_referenced_protocol_begin(),
 | 
						|
          E = I->all_referenced_protocol_end(); PI != E; ++PI)
 | 
						|
      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
 | 
						|
                              InsMap, ClsMap, I);
 | 
						|
    // Check class extensions (unnamed categories)
 | 
						|
    for (ObjCInterfaceDecl::visible_extensions_iterator
 | 
						|
           Ext = I->visible_extensions_begin(),
 | 
						|
           ExtEnd = I->visible_extensions_end();
 | 
						|
         Ext != ExtEnd; ++Ext) {
 | 
						|
      ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
 | 
						|
    }
 | 
						|
  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
 | 
						|
    // For extended class, unimplemented methods in its protocols will
 | 
						|
    // be reported in the primary class.
 | 
						|
    if (!C->IsClassExtension()) {
 | 
						|
      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
 | 
						|
           E = C->protocol_end(); PI != E; ++PI)
 | 
						|
        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
 | 
						|
                                InsMap, ClsMap, CDecl);
 | 
						|
      // Report unimplemented properties in the category as well.
 | 
						|
      // When reporting on missing setter/getters, do not report when
 | 
						|
      // setter/getter is implemented in category's primary class 
 | 
						|
      // implementation.
 | 
						|
      if (ObjCInterfaceDecl *ID = C->getClassInterface())
 | 
						|
        if (ObjCImplDecl *IMP = ID->getImplementation()) {
 | 
						|
          for (ObjCImplementationDecl::instmeth_iterator
 | 
						|
               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
 | 
						|
            InsMap.insert((*I)->getSelector());
 | 
						|
        }
 | 
						|
      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);      
 | 
						|
    } 
 | 
						|
  } else
 | 
						|
    llvm_unreachable("invalid ObjCContainerDecl type.");
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnForwardClassDeclaration -
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
 | 
						|
                                   IdentifierInfo **IdentList,
 | 
						|
                                   SourceLocation *IdentLocs,
 | 
						|
                                   unsigned NumElts) {
 | 
						|
  SmallVector<Decl *, 8> DeclsInGroup;
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    // Check for another declaration kind with the same name.
 | 
						|
    NamedDecl *PrevDecl
 | 
						|
      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 
 | 
						|
                         LookupOrdinaryName, ForRedeclaration);
 | 
						|
    if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
      // Maybe we will complain about the shadowed template parameter.
 | 
						|
      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
 | 
						|
      // Just pretend that we didn't see the previous declaration.
 | 
						|
      PrevDecl = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | 
						|
      // GCC apparently allows the following idiom:
 | 
						|
      //
 | 
						|
      // typedef NSObject < XCElementTogglerP > XCElementToggler;
 | 
						|
      // @class XCElementToggler;
 | 
						|
      //
 | 
						|
      // Here we have chosen to ignore the forward class declaration
 | 
						|
      // with a warning. Since this is the implied behavior.
 | 
						|
      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
 | 
						|
      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
 | 
						|
        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
      } else {
 | 
						|
        // a forward class declaration matching a typedef name of a class refers
 | 
						|
        // to the underlying class. Just ignore the forward class with a warning
 | 
						|
        // as this will force the intended behavior which is to lookup the typedef
 | 
						|
        // name.
 | 
						|
        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
 | 
						|
          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
 | 
						|
          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Create a declaration to describe this forward declaration.
 | 
						|
    ObjCInterfaceDecl *PrevIDecl
 | 
						|
      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | 
						|
    ObjCInterfaceDecl *IDecl
 | 
						|
      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
 | 
						|
                                  IdentList[i], PrevIDecl, IdentLocs[i]);
 | 
						|
    IDecl->setAtEndRange(IdentLocs[i]);
 | 
						|
    
 | 
						|
    PushOnScopeChains(IDecl, TUScope);
 | 
						|
    CheckObjCDeclScope(IDecl);
 | 
						|
    DeclsInGroup.push_back(IDecl);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
 | 
						|
}
 | 
						|
 | 
						|
static bool tryMatchRecordTypes(ASTContext &Context,
 | 
						|
                                Sema::MethodMatchStrategy strategy,
 | 
						|
                                const Type *left, const Type *right);
 | 
						|
 | 
						|
static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
 | 
						|
                       QualType leftQT, QualType rightQT) {
 | 
						|
  const Type *left =
 | 
						|
    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
 | 
						|
  const Type *right =
 | 
						|
    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
 | 
						|
 | 
						|
  if (left == right) return true;
 | 
						|
 | 
						|
  // If we're doing a strict match, the types have to match exactly.
 | 
						|
  if (strategy == Sema::MMS_strict) return false;
 | 
						|
 | 
						|
  if (left->isIncompleteType() || right->isIncompleteType()) return false;
 | 
						|
 | 
						|
  // Otherwise, use this absurdly complicated algorithm to try to
 | 
						|
  // validate the basic, low-level compatibility of the two types.
 | 
						|
 | 
						|
  // As a minimum, require the sizes and alignments to match.
 | 
						|
  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Consider all the kinds of non-dependent canonical types:
 | 
						|
  // - functions and arrays aren't possible as return and parameter types
 | 
						|
  
 | 
						|
  // - vector types of equal size can be arbitrarily mixed
 | 
						|
  if (isa<VectorType>(left)) return isa<VectorType>(right);
 | 
						|
  if (isa<VectorType>(right)) return false;
 | 
						|
 | 
						|
  // - references should only match references of identical type
 | 
						|
  // - structs, unions, and Objective-C objects must match more-or-less
 | 
						|
  //   exactly
 | 
						|
  // - everything else should be a scalar
 | 
						|
  if (!left->isScalarType() || !right->isScalarType())
 | 
						|
    return tryMatchRecordTypes(Context, strategy, left, right);
 | 
						|
 | 
						|
  // Make scalars agree in kind, except count bools as chars, and group
 | 
						|
  // all non-member pointers together.
 | 
						|
  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
 | 
						|
  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
 | 
						|
  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
 | 
						|
  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
 | 
						|
  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
 | 
						|
    leftSK = Type::STK_ObjCObjectPointer;
 | 
						|
  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
 | 
						|
    rightSK = Type::STK_ObjCObjectPointer;
 | 
						|
 | 
						|
  // Note that data member pointers and function member pointers don't
 | 
						|
  // intermix because of the size differences.
 | 
						|
 | 
						|
  return (leftSK == rightSK);
 | 
						|
}
 | 
						|
 | 
						|
static bool tryMatchRecordTypes(ASTContext &Context,
 | 
						|
                                Sema::MethodMatchStrategy strategy,
 | 
						|
                                const Type *lt, const Type *rt) {
 | 
						|
  assert(lt && rt && lt != rt);
 | 
						|
 | 
						|
  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
 | 
						|
  RecordDecl *left = cast<RecordType>(lt)->getDecl();
 | 
						|
  RecordDecl *right = cast<RecordType>(rt)->getDecl();
 | 
						|
 | 
						|
  // Require union-hood to match.
 | 
						|
  if (left->isUnion() != right->isUnion()) return false;
 | 
						|
 | 
						|
  // Require an exact match if either is non-POD.
 | 
						|
  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
 | 
						|
      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Require size and alignment to match.
 | 
						|
  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
 | 
						|
 | 
						|
  // Require fields to match.
 | 
						|
  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
 | 
						|
  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
 | 
						|
  for (; li != le && ri != re; ++li, ++ri) {
 | 
						|
    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return (li == le && ri == re);
 | 
						|
}
 | 
						|
 | 
						|
/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
 | 
						|
/// returns true, or false, accordingly.
 | 
						|
/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
 | 
						|
bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
 | 
						|
                                      const ObjCMethodDecl *right,
 | 
						|
                                      MethodMatchStrategy strategy) {
 | 
						|
  if (!matchTypes(Context, strategy,
 | 
						|
                  left->getResultType(), right->getResultType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      (left->hasAttr<NSReturnsRetainedAttr>()
 | 
						|
         != right->hasAttr<NSReturnsRetainedAttr>() ||
 | 
						|
       left->hasAttr<NSConsumesSelfAttr>()
 | 
						|
         != right->hasAttr<NSConsumesSelfAttr>()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ObjCMethodDecl::param_const_iterator
 | 
						|
    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
 | 
						|
    re = right->param_end();
 | 
						|
 | 
						|
  for (; li != le && ri != re; ++li, ++ri) {
 | 
						|
    assert(ri != right->param_end() && "Param mismatch");
 | 
						|
    const ParmVarDecl *lparm = *li, *rparm = *ri;
 | 
						|
 | 
						|
    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
 | 
						|
  // If the list is empty, make it a singleton list.
 | 
						|
  if (List->Method == 0) {
 | 
						|
    List->Method = Method;
 | 
						|
    List->Next = 0;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We've seen a method with this name, see if we have already seen this type
 | 
						|
  // signature.
 | 
						|
  ObjCMethodList *Previous = List;
 | 
						|
  for (; List; Previous = List, List = List->Next) {
 | 
						|
    if (!MatchTwoMethodDeclarations(Method, List->Method))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    ObjCMethodDecl *PrevObjCMethod = List->Method;
 | 
						|
 | 
						|
    // Propagate the 'defined' bit.
 | 
						|
    if (Method->isDefined())
 | 
						|
      PrevObjCMethod->setDefined(true);
 | 
						|
    
 | 
						|
    // If a method is deprecated, push it in the global pool.
 | 
						|
    // This is used for better diagnostics.
 | 
						|
    if (Method->isDeprecated()) {
 | 
						|
      if (!PrevObjCMethod->isDeprecated())
 | 
						|
        List->Method = Method;
 | 
						|
    }
 | 
						|
    // If new method is unavailable, push it into global pool
 | 
						|
    // unless previous one is deprecated.
 | 
						|
    if (Method->isUnavailable()) {
 | 
						|
      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
 | 
						|
        List->Method = Method;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We have a new signature for an existing method - add it.
 | 
						|
  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
 | 
						|
  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
 | 
						|
  Previous->Next = new (Mem) ObjCMethodList(Method, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Read the contents of the method pool for a given selector from
 | 
						|
/// external storage.
 | 
						|
void Sema::ReadMethodPool(Selector Sel) {
 | 
						|
  assert(ExternalSource && "We need an external AST source");
 | 
						|
  ExternalSource->ReadMethodPool(Sel);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
 | 
						|
                                 bool instance) {
 | 
						|
  // Ignore methods of invalid containers.
 | 
						|
  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (ExternalSource)
 | 
						|
    ReadMethodPool(Method->getSelector());
 | 
						|
  
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
 | 
						|
                                           GlobalMethods())).first;
 | 
						|
  
 | 
						|
  Method->setDefined(impl);
 | 
						|
  
 | 
						|
  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
 | 
						|
  addMethodToGlobalList(&Entry, Method);
 | 
						|
}
 | 
						|
 | 
						|
/// Determines if this is an "acceptable" loose mismatch in the global
 | 
						|
/// method pool.  This exists mostly as a hack to get around certain
 | 
						|
/// global mismatches which we can't afford to make warnings / errors.
 | 
						|
/// Really, what we want is a way to take a method out of the global
 | 
						|
/// method pool.
 | 
						|
static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
 | 
						|
                                       ObjCMethodDecl *other) {
 | 
						|
  if (!chosen->isInstanceMethod())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Selector sel = chosen->getSelector();
 | 
						|
  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't complain about mismatches for -length if the method we
 | 
						|
  // chose has an integral result type.
 | 
						|
  return (chosen->getResultType()->isIntegerType());
 | 
						|
}
 | 
						|
 | 
						|
ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
 | 
						|
                                               bool receiverIdOrClass,
 | 
						|
                                               bool warn, bool instance) {
 | 
						|
  if (ExternalSource)
 | 
						|
    ReadMethodPool(Sel);
 | 
						|
    
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Gather the non-hidden methods.
 | 
						|
  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
 | 
						|
  llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
 | 
						|
  for (ObjCMethodList *M = &MethList; M; M = M->Next) {
 | 
						|
    if (M->Method && !M->Method->isHidden()) {
 | 
						|
      // If we're not supposed to warn about mismatches, we're done.
 | 
						|
      if (!warn)
 | 
						|
        return M->Method;
 | 
						|
 | 
						|
      Methods.push_back(M->Method);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there aren't any visible methods, we're done.
 | 
						|
  // FIXME: Recover if there are any known-but-hidden methods?
 | 
						|
  if (Methods.empty())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (Methods.size() == 1)
 | 
						|
    return Methods[0];
 | 
						|
 | 
						|
  // We found multiple methods, so we may have to complain.
 | 
						|
  bool issueDiagnostic = false, issueError = false;
 | 
						|
 | 
						|
  // We support a warning which complains about *any* difference in
 | 
						|
  // method signature.
 | 
						|
  bool strictSelectorMatch =
 | 
						|
    (receiverIdOrClass && warn &&
 | 
						|
     (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
 | 
						|
                               R.getBegin())
 | 
						|
        != DiagnosticsEngine::Ignored));
 | 
						|
  if (strictSelectorMatch) {
 | 
						|
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | 
						|
      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
 | 
						|
        issueDiagnostic = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't see any strict differences, we won't see any loose
 | 
						|
  // differences.  In ARC, however, we also need to check for loose
 | 
						|
  // mismatches, because most of them are errors.
 | 
						|
  if (!strictSelectorMatch ||
 | 
						|
      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
 | 
						|
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | 
						|
      // This checks if the methods differ in type mismatch.
 | 
						|
      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
 | 
						|
          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
 | 
						|
        issueDiagnostic = true;
 | 
						|
        if (getLangOpts().ObjCAutoRefCount)
 | 
						|
          issueError = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (issueDiagnostic) {
 | 
						|
    if (issueError)
 | 
						|
      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
 | 
						|
    else if (strictSelectorMatch)
 | 
						|
      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
 | 
						|
    else
 | 
						|
      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
 | 
						|
 | 
						|
    Diag(Methods[0]->getLocStart(),
 | 
						|
         issueError ? diag::note_possibility : diag::note_using)
 | 
						|
      << Methods[0]->getSourceRange();
 | 
						|
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | 
						|
      Diag(Methods[I]->getLocStart(), diag::note_also_found)
 | 
						|
        << Methods[I]->getSourceRange();
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return Methods[0];
 | 
						|
}
 | 
						|
 | 
						|
ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
 | 
						|
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | 
						|
  if (Pos == MethodPool.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  GlobalMethods &Methods = Pos->second;
 | 
						|
 | 
						|
  if (Methods.first.Method && Methods.first.Method->isDefined())
 | 
						|
    return Methods.first.Method;
 | 
						|
  if (Methods.second.Method && Methods.second.Method->isDefined())
 | 
						|
    return Methods.second.Method;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseDuplicateIvars - 
 | 
						|
/// Check for duplicate ivars in the entire class at the start of 
 | 
						|
/// \@implementation. This becomes necesssary because class extension can
 | 
						|
/// add ivars to a class in random order which will not be known until
 | 
						|
/// class's \@implementation is seen.
 | 
						|
void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 
 | 
						|
                                  ObjCInterfaceDecl *SID) {
 | 
						|
  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
 | 
						|
       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
 | 
						|
    ObjCIvarDecl* Ivar = *IVI;
 | 
						|
    if (Ivar->isInvalidDecl())
 | 
						|
      continue;
 | 
						|
    if (IdentifierInfo *II = Ivar->getIdentifier()) {
 | 
						|
      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
 | 
						|
      if (prevIvar) {
 | 
						|
        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
 | 
						|
        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
 | 
						|
        Ivar->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
 | 
						|
  switch (CurContext->getDeclKind()) {
 | 
						|
    case Decl::ObjCInterface:
 | 
						|
      return Sema::OCK_Interface;
 | 
						|
    case Decl::ObjCProtocol:
 | 
						|
      return Sema::OCK_Protocol;
 | 
						|
    case Decl::ObjCCategory:
 | 
						|
      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
 | 
						|
        return Sema::OCK_ClassExtension;
 | 
						|
      else
 | 
						|
        return Sema::OCK_Category;
 | 
						|
    case Decl::ObjCImplementation:
 | 
						|
      return Sema::OCK_Implementation;
 | 
						|
    case Decl::ObjCCategoryImpl:
 | 
						|
      return Sema::OCK_CategoryImplementation;
 | 
						|
 | 
						|
    default:
 | 
						|
      return Sema::OCK_None;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Note: For class/category implemenations, allMethods/allProperties is
 | 
						|
// always null.
 | 
						|
Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
 | 
						|
                       Decl **allMethods, unsigned allNum,
 | 
						|
                       Decl **allProperties, unsigned pNum,
 | 
						|
                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
 | 
						|
 | 
						|
  if (getObjCContainerKind() == Sema::OCK_None)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  assert(AtEnd.isValid() && "Invalid location for '@end'");
 | 
						|
 | 
						|
  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
 | 
						|
  Decl *ClassDecl = cast<Decl>(OCD);
 | 
						|
  
 | 
						|
  bool isInterfaceDeclKind =
 | 
						|
        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
 | 
						|
         || isa<ObjCProtocolDecl>(ClassDecl);
 | 
						|
  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
 | 
						|
 | 
						|
  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
 | 
						|
  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
 | 
						|
  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < allNum; i++ ) {
 | 
						|
    ObjCMethodDecl *Method =
 | 
						|
      cast_or_null<ObjCMethodDecl>(allMethods[i]);
 | 
						|
 | 
						|
    if (!Method) continue;  // Already issued a diagnostic.
 | 
						|
    if (Method->isInstanceMethod()) {
 | 
						|
      /// Check for instance method of the same name with incompatible types
 | 
						|
      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
 | 
						|
      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | 
						|
                              : false;
 | 
						|
      if ((isInterfaceDeclKind && PrevMethod && !match)
 | 
						|
          || (checkIdenticalMethods && match)) {
 | 
						|
          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
            << Method->getDeclName();
 | 
						|
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        Method->setInvalidDecl();
 | 
						|
      } else {
 | 
						|
        if (PrevMethod) {
 | 
						|
          Method->setAsRedeclaration(PrevMethod);
 | 
						|
          if (!Context.getSourceManager().isInSystemHeader(
 | 
						|
                 Method->getLocation()))
 | 
						|
            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
 | 
						|
              << Method->getDeclName();
 | 
						|
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        }
 | 
						|
        InsMap[Method->getSelector()] = Method;
 | 
						|
        /// The following allows us to typecheck messages to "id".
 | 
						|
        AddInstanceMethodToGlobalPool(Method);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      /// Check for class method of the same name with incompatible types
 | 
						|
      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
 | 
						|
      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | 
						|
                              : false;
 | 
						|
      if ((isInterfaceDeclKind && PrevMethod && !match)
 | 
						|
          || (checkIdenticalMethods && match)) {
 | 
						|
        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
          << Method->getDeclName();
 | 
						|
        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        Method->setInvalidDecl();
 | 
						|
      } else {
 | 
						|
        if (PrevMethod) {
 | 
						|
          Method->setAsRedeclaration(PrevMethod);
 | 
						|
          if (!Context.getSourceManager().isInSystemHeader(
 | 
						|
                 Method->getLocation()))
 | 
						|
            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
 | 
						|
              << Method->getDeclName();
 | 
						|
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
        }
 | 
						|
        ClsMap[Method->getSelector()] = Method;
 | 
						|
        AddFactoryMethodToGlobalPool(Method);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
 | 
						|
    // Nothing to do here.
 | 
						|
  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
 | 
						|
    // Categories are used to extend the class by declaring new methods.
 | 
						|
    // By the same token, they are also used to add new properties. No
 | 
						|
    // need to compare the added property to those in the class.
 | 
						|
 | 
						|
    if (C->IsClassExtension()) {
 | 
						|
      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
 | 
						|
      DiagnoseClassExtensionDupMethods(C, CCPrimary);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
 | 
						|
    if (CDecl->getIdentifier())
 | 
						|
      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
 | 
						|
      // user-defined setter/getter. It also synthesizes setter/getter methods
 | 
						|
      // and adds them to the DeclContext and global method pools.
 | 
						|
      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
 | 
						|
                                            E = CDecl->prop_end();
 | 
						|
           I != E; ++I)
 | 
						|
        ProcessPropertyDecl(*I, CDecl);
 | 
						|
    CDecl->setAtEndRange(AtEnd);
 | 
						|
  }
 | 
						|
  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
 | 
						|
    IC->setAtEndRange(AtEnd);
 | 
						|
    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
 | 
						|
      // Any property declared in a class extension might have user
 | 
						|
      // declared setter or getter in current class extension or one
 | 
						|
      // of the other class extensions. Mark them as synthesized as
 | 
						|
      // property will be synthesized when property with same name is
 | 
						|
      // seen in the @implementation.
 | 
						|
      for (ObjCInterfaceDecl::visible_extensions_iterator
 | 
						|
             Ext = IDecl->visible_extensions_begin(),
 | 
						|
             ExtEnd = IDecl->visible_extensions_end();
 | 
						|
           Ext != ExtEnd; ++Ext) {
 | 
						|
        for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
 | 
						|
             E = Ext->prop_end(); I != E; ++I) {
 | 
						|
          ObjCPropertyDecl *Property = *I;
 | 
						|
          // Skip over properties declared @dynamic
 | 
						|
          if (const ObjCPropertyImplDecl *PIDecl
 | 
						|
              = IC->FindPropertyImplDecl(Property->getIdentifier()))
 | 
						|
            if (PIDecl->getPropertyImplementation() 
 | 
						|
                  == ObjCPropertyImplDecl::Dynamic)
 | 
						|
              continue;
 | 
						|
 | 
						|
          for (ObjCInterfaceDecl::visible_extensions_iterator
 | 
						|
                 Ext = IDecl->visible_extensions_begin(),
 | 
						|
                 ExtEnd = IDecl->visible_extensions_end();
 | 
						|
               Ext != ExtEnd; ++Ext) {
 | 
						|
            if (ObjCMethodDecl *GetterMethod
 | 
						|
                  = Ext->getInstanceMethod(Property->getGetterName()))
 | 
						|
              GetterMethod->setPropertyAccessor(true);
 | 
						|
            if (!Property->isReadOnly())
 | 
						|
              if (ObjCMethodDecl *SetterMethod
 | 
						|
                    = Ext->getInstanceMethod(Property->getSetterName()))
 | 
						|
                SetterMethod->setPropertyAccessor(true);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ImplMethodsVsClassMethods(S, IC, IDecl);
 | 
						|
      AtomicPropertySetterGetterRules(IC, IDecl);
 | 
						|
      DiagnoseOwningPropertyGetterSynthesis(IC);
 | 
						|
  
 | 
						|
      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
 | 
						|
      if (IDecl->getSuperClass() == NULL) {
 | 
						|
        // This class has no superclass, so check that it has been marked with
 | 
						|
        // __attribute((objc_root_class)).
 | 
						|
        if (!HasRootClassAttr) {
 | 
						|
          SourceLocation DeclLoc(IDecl->getLocation());
 | 
						|
          SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
 | 
						|
          Diag(DeclLoc, diag::warn_objc_root_class_missing)
 | 
						|
            << IDecl->getIdentifier();
 | 
						|
          // See if NSObject is in the current scope, and if it is, suggest
 | 
						|
          // adding " : NSObject " to the class declaration.
 | 
						|
          NamedDecl *IF = LookupSingleName(TUScope,
 | 
						|
                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
 | 
						|
                                           DeclLoc, LookupOrdinaryName);
 | 
						|
          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
 | 
						|
          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
 | 
						|
            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
 | 
						|
              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
 | 
						|
          } else {
 | 
						|
            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (HasRootClassAttr) {
 | 
						|
        // Complain that only root classes may have this attribute.
 | 
						|
        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
 | 
						|
      }
 | 
						|
 | 
						|
      if (LangOpts.ObjCRuntime.isNonFragile()) {
 | 
						|
        while (IDecl->getSuperClass()) {
 | 
						|
          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
 | 
						|
          IDecl = IDecl->getSuperClass();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SetIvarInitializers(IC);
 | 
						|
  } else if (ObjCCategoryImplDecl* CatImplClass =
 | 
						|
                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
 | 
						|
    CatImplClass->setAtEndRange(AtEnd);
 | 
						|
 | 
						|
    // Find category interface decl and then check that all methods declared
 | 
						|
    // in this interface are implemented in the category @implementation.
 | 
						|
    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
 | 
						|
      if (ObjCCategoryDecl *Cat
 | 
						|
            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
 | 
						|
        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (isInterfaceDeclKind) {
 | 
						|
    // Reject invalid vardecls.
 | 
						|
    for (unsigned i = 0; i != tuvNum; i++) {
 | 
						|
      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
 | 
						|
      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
 | 
						|
        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
 | 
						|
          if (!VDecl->hasExternalStorage())
 | 
						|
            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ActOnObjCContainerFinishDefinition();
 | 
						|
 | 
						|
  for (unsigned i = 0; i != tuvNum; i++) {
 | 
						|
    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
 | 
						|
    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
 | 
						|
      (*I)->setTopLevelDeclInObjCContainer();
 | 
						|
    Consumer.HandleTopLevelDeclInObjCContainer(DG);
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnDocumentableDecl(ClassDecl);
 | 
						|
  return ClassDecl;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
 | 
						|
/// objective-c's type qualifier from the parser version of the same info.
 | 
						|
static Decl::ObjCDeclQualifier
 | 
						|
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
 | 
						|
  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
unsigned countAlignAttr(const AttrVec &A) {
 | 
						|
  unsigned count=0;
 | 
						|
  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
 | 
						|
    if ((*i)->getKind() == attr::Aligned)
 | 
						|
      ++count;
 | 
						|
  return count;
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
 | 
						|
                                        const AttrVec &A) {
 | 
						|
  // If method is only declared in implementation (private method),
 | 
						|
  // No need to issue any diagnostics on method definition with attributes.
 | 
						|
  if (!IMD)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // method declared in interface has no attribute. 
 | 
						|
  // But implementation has attributes. This is invalid.
 | 
						|
  // Except when implementation has 'Align' attribute which is
 | 
						|
  // immaterial to method declared in interface.
 | 
						|
  if (!IMD->hasAttrs())
 | 
						|
    return (A.size() > countAlignAttr(A));
 | 
						|
 | 
						|
  const AttrVec &D = IMD->getAttrs();
 | 
						|
 | 
						|
  unsigned countAlignOnImpl = countAlignAttr(A);
 | 
						|
  if (!countAlignOnImpl && (A.size() != D.size()))
 | 
						|
    return true;
 | 
						|
  else if (countAlignOnImpl) {
 | 
						|
    unsigned countAlignOnDecl = countAlignAttr(D);
 | 
						|
    if (countAlignOnDecl && (A.size() != D.size()))
 | 
						|
      return true;
 | 
						|
    else if (!countAlignOnDecl && 
 | 
						|
             ((A.size()-countAlignOnImpl) != D.size()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // attributes on method declaration and definition must match exactly.
 | 
						|
  // Note that we have at most a couple of attributes on methods, so this
 | 
						|
  // n*n search is good enough.
 | 
						|
  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
 | 
						|
    if ((*i)->getKind() == attr::Aligned)
 | 
						|
      continue;
 | 
						|
    bool match = false;
 | 
						|
    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
 | 
						|
      if ((*i)->getKind() == (*i1)->getKind()) {
 | 
						|
        match = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!match)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether the declared result type of the given Objective-C
 | 
						|
/// method declaration is compatible with the method's class.
 | 
						|
///
 | 
						|
static Sema::ResultTypeCompatibilityKind 
 | 
						|
CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
 | 
						|
                                    ObjCInterfaceDecl *CurrentClass) {
 | 
						|
  QualType ResultType = Method->getResultType();
 | 
						|
  
 | 
						|
  // If an Objective-C method inherits its related result type, then its 
 | 
						|
  // declared result type must be compatible with its own class type. The
 | 
						|
  // declared result type is compatible if:
 | 
						|
  if (const ObjCObjectPointerType *ResultObjectType
 | 
						|
                                = ResultType->getAs<ObjCObjectPointerType>()) {
 | 
						|
    //   - it is id or qualified id, or
 | 
						|
    if (ResultObjectType->isObjCIdType() ||
 | 
						|
        ResultObjectType->isObjCQualifiedIdType())
 | 
						|
      return Sema::RTC_Compatible;
 | 
						|
  
 | 
						|
    if (CurrentClass) {
 | 
						|
      if (ObjCInterfaceDecl *ResultClass 
 | 
						|
                                      = ResultObjectType->getInterfaceDecl()) {
 | 
						|
        //   - it is the same as the method's class type, or
 | 
						|
        if (declaresSameEntity(CurrentClass, ResultClass))
 | 
						|
          return Sema::RTC_Compatible;
 | 
						|
        
 | 
						|
        //   - it is a superclass of the method's class type
 | 
						|
        if (ResultClass->isSuperClassOf(CurrentClass))
 | 
						|
          return Sema::RTC_Compatible;
 | 
						|
      }      
 | 
						|
    } else {
 | 
						|
      // Any Objective-C pointer type might be acceptable for a protocol
 | 
						|
      // method; we just don't know.
 | 
						|
      return Sema::RTC_Unknown;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Sema::RTC_Incompatible;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// A helper class for searching for methods which a particular method
 | 
						|
/// overrides.
 | 
						|
class OverrideSearch {
 | 
						|
public:
 | 
						|
  Sema &S;
 | 
						|
  ObjCMethodDecl *Method;
 | 
						|
  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
 | 
						|
  bool Recursive;
 | 
						|
 | 
						|
public:
 | 
						|
  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
 | 
						|
    Selector selector = method->getSelector();
 | 
						|
 | 
						|
    // Bypass this search if we've never seen an instance/class method
 | 
						|
    // with this selector before.
 | 
						|
    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
 | 
						|
    if (it == S.MethodPool.end()) {
 | 
						|
      if (!S.getExternalSource()) return;
 | 
						|
      S.ReadMethodPool(selector);
 | 
						|
      
 | 
						|
      it = S.MethodPool.find(selector);
 | 
						|
      if (it == S.MethodPool.end())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    ObjCMethodList &list =
 | 
						|
      method->isInstanceMethod() ? it->second.first : it->second.second;
 | 
						|
    if (!list.Method) return;
 | 
						|
 | 
						|
    ObjCContainerDecl *container
 | 
						|
      = cast<ObjCContainerDecl>(method->getDeclContext());
 | 
						|
 | 
						|
    // Prevent the search from reaching this container again.  This is
 | 
						|
    // important with categories, which override methods from the
 | 
						|
    // interface and each other.
 | 
						|
    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
 | 
						|
      searchFromContainer(container);
 | 
						|
      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
 | 
						|
        searchFromContainer(Interface);
 | 
						|
    } else {
 | 
						|
      searchFromContainer(container);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
 | 
						|
  iterator begin() const { return Overridden.begin(); }
 | 
						|
  iterator end() const { return Overridden.end(); }
 | 
						|
 | 
						|
private:
 | 
						|
  void searchFromContainer(ObjCContainerDecl *container) {
 | 
						|
    if (container->isInvalidDecl()) return;
 | 
						|
 | 
						|
    switch (container->getDeclKind()) {
 | 
						|
#define OBJCCONTAINER(type, base) \
 | 
						|
    case Decl::type: \
 | 
						|
      searchFrom(cast<type##Decl>(container)); \
 | 
						|
      break;
 | 
						|
#define ABSTRACT_DECL(expansion)
 | 
						|
#define DECL(type, base) \
 | 
						|
    case Decl::type:
 | 
						|
#include "clang/AST/DeclNodes.inc"
 | 
						|
      llvm_unreachable("not an ObjC container!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(ObjCProtocolDecl *protocol) {
 | 
						|
    if (!protocol->hasDefinition())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    // A method in a protocol declaration overrides declarations from
 | 
						|
    // referenced ("parent") protocols.
 | 
						|
    search(protocol->getReferencedProtocols());
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(ObjCCategoryDecl *category) {
 | 
						|
    // A method in a category declaration overrides declarations from
 | 
						|
    // the main class and from protocols the category references.
 | 
						|
    // The main class is handled in the constructor.
 | 
						|
    search(category->getReferencedProtocols());
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(ObjCCategoryImplDecl *impl) {
 | 
						|
    // A method in a category definition that has a category
 | 
						|
    // declaration overrides declarations from the category
 | 
						|
    // declaration.
 | 
						|
    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
 | 
						|
      search(category);
 | 
						|
      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
 | 
						|
        search(Interface);
 | 
						|
 | 
						|
    // Otherwise it overrides declarations from the class.
 | 
						|
    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
 | 
						|
      search(Interface);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(ObjCInterfaceDecl *iface) {
 | 
						|
    // A method in a class declaration overrides declarations from
 | 
						|
    if (!iface->hasDefinition())
 | 
						|
      return;
 | 
						|
    
 | 
						|
    //   - categories,
 | 
						|
    for (ObjCInterfaceDecl::visible_categories_iterator
 | 
						|
           cat = iface->visible_categories_begin(),
 | 
						|
           catEnd = iface->visible_categories_end();
 | 
						|
         cat != catEnd; ++cat) {
 | 
						|
      search(*cat);
 | 
						|
    }
 | 
						|
 | 
						|
    //   - the super class, and
 | 
						|
    if (ObjCInterfaceDecl *super = iface->getSuperClass())
 | 
						|
      search(super);
 | 
						|
 | 
						|
    //   - any referenced protocols.
 | 
						|
    search(iface->getReferencedProtocols());
 | 
						|
  }
 | 
						|
 | 
						|
  void searchFrom(ObjCImplementationDecl *impl) {
 | 
						|
    // A method in a class implementation overrides declarations from
 | 
						|
    // the class interface.
 | 
						|
    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
 | 
						|
      search(Interface);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  void search(const ObjCProtocolList &protocols) {
 | 
						|
    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
 | 
						|
         i != e; ++i)
 | 
						|
      search(*i);
 | 
						|
  }
 | 
						|
 | 
						|
  void search(ObjCContainerDecl *container) {
 | 
						|
    // Check for a method in this container which matches this selector.
 | 
						|
    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
 | 
						|
                                                Method->isInstanceMethod());
 | 
						|
 | 
						|
    // If we find one, record it and bail out.
 | 
						|
    if (meth) {
 | 
						|
      Overridden.insert(meth);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, search for methods that a hypothetical method here
 | 
						|
    // would have overridden.
 | 
						|
 | 
						|
    // Note that we're now in a recursive case.
 | 
						|
    Recursive = true;
 | 
						|
 | 
						|
    searchFromContainer(container);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
 | 
						|
                                    ObjCInterfaceDecl *CurrentClass,
 | 
						|
                                    ResultTypeCompatibilityKind RTC) {
 | 
						|
  // Search for overridden methods and merge information down from them.
 | 
						|
  OverrideSearch overrides(*this, ObjCMethod);
 | 
						|
  // Keep track if the method overrides any method in the class's base classes,
 | 
						|
  // its protocols, or its categories' protocols; we will keep that info
 | 
						|
  // in the ObjCMethodDecl.
 | 
						|
  // For this info, a method in an implementation is not considered as
 | 
						|
  // overriding the same method in the interface or its categories.
 | 
						|
  bool hasOverriddenMethodsInBaseOrProtocol = false;
 | 
						|
  for (OverrideSearch::iterator
 | 
						|
         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
 | 
						|
    ObjCMethodDecl *overridden = *i;
 | 
						|
 | 
						|
    if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
 | 
						|
        CurrentClass != overridden->getClassInterface() ||
 | 
						|
        overridden->isOverriding())
 | 
						|
      hasOverriddenMethodsInBaseOrProtocol = true;
 | 
						|
 | 
						|
    // Propagate down the 'related result type' bit from overridden methods.
 | 
						|
    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
 | 
						|
      ObjCMethod->SetRelatedResultType();
 | 
						|
 | 
						|
    // Then merge the declarations.
 | 
						|
    mergeObjCMethodDecls(ObjCMethod, overridden);
 | 
						|
 | 
						|
    if (ObjCMethod->isImplicit() && overridden->isImplicit())
 | 
						|
      continue; // Conflicting properties are detected elsewhere.
 | 
						|
 | 
						|
    // Check for overriding methods
 | 
						|
    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 
 | 
						|
        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
 | 
						|
      CheckConflictingOverridingMethod(ObjCMethod, overridden,
 | 
						|
              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
 | 
						|
    
 | 
						|
    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
 | 
						|
        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
 | 
						|
        !overridden->isImplicit() /* not meant for properties */) {
 | 
						|
      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
 | 
						|
                                          E = ObjCMethod->param_end();
 | 
						|
      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
 | 
						|
                                     PrevE = overridden->param_end();
 | 
						|
      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
 | 
						|
        assert(PrevI != overridden->param_end() && "Param mismatch");
 | 
						|
        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
 | 
						|
        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
 | 
						|
        // If type of argument of method in this class does not match its
 | 
						|
        // respective argument type in the super class method, issue warning;
 | 
						|
        if (!Context.typesAreCompatible(T1, T2)) {
 | 
						|
          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
 | 
						|
            << T1 << T2;
 | 
						|
          Diag(overridden->getLocation(), diag::note_previous_declaration);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnMethodDeclaration(
 | 
						|
    Scope *S,
 | 
						|
    SourceLocation MethodLoc, SourceLocation EndLoc,
 | 
						|
    tok::TokenKind MethodType, 
 | 
						|
    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
 | 
						|
    ArrayRef<SourceLocation> SelectorLocs,
 | 
						|
    Selector Sel,
 | 
						|
    // optional arguments. The number of types/arguments is obtained
 | 
						|
    // from the Sel.getNumArgs().
 | 
						|
    ObjCArgInfo *ArgInfo,
 | 
						|
    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
 | 
						|
    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
 | 
						|
    bool isVariadic, bool MethodDefinition) {
 | 
						|
  // Make sure we can establish a context for the method.
 | 
						|
  if (!CurContext->isObjCContainer()) {
 | 
						|
    Diag(MethodLoc, diag::error_missing_method_context);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
 | 
						|
  Decl *ClassDecl = cast<Decl>(OCD); 
 | 
						|
  QualType resultDeclType;
 | 
						|
 | 
						|
  bool HasRelatedResultType = false;
 | 
						|
  TypeSourceInfo *ResultTInfo = 0;
 | 
						|
  if (ReturnType) {
 | 
						|
    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
 | 
						|
 | 
						|
    // Methods cannot return interface types. All ObjC objects are
 | 
						|
    // passed by reference.
 | 
						|
    if (resultDeclType->isObjCObjectType()) {
 | 
						|
      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
 | 
						|
        << 0 << resultDeclType;
 | 
						|
      return 0;
 | 
						|
    }    
 | 
						|
    
 | 
						|
    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
 | 
						|
  } else { // get the type for "id".
 | 
						|
    resultDeclType = Context.getObjCIdType();
 | 
						|
    Diag(MethodLoc, diag::warn_missing_method_return_type)
 | 
						|
      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCMethodDecl* ObjCMethod =
 | 
						|
    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
 | 
						|
                           resultDeclType,
 | 
						|
                           ResultTInfo,
 | 
						|
                           CurContext,
 | 
						|
                           MethodType == tok::minus, isVariadic,
 | 
						|
                           /*isPropertyAccessor=*/false,
 | 
						|
                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
 | 
						|
                           MethodDeclKind == tok::objc_optional 
 | 
						|
                             ? ObjCMethodDecl::Optional
 | 
						|
                             : ObjCMethodDecl::Required,
 | 
						|
                           HasRelatedResultType);
 | 
						|
 | 
						|
  SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
 | 
						|
    QualType ArgType;
 | 
						|
    TypeSourceInfo *DI;
 | 
						|
 | 
						|
    if (ArgInfo[i].Type == 0) {
 | 
						|
      ArgType = Context.getObjCIdType();
 | 
						|
      DI = 0;
 | 
						|
    } else {
 | 
						|
      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
 | 
						|
    }
 | 
						|
 | 
						|
    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 
 | 
						|
                   LookupOrdinaryName, ForRedeclaration);
 | 
						|
    LookupName(R, S);
 | 
						|
    if (R.isSingleResult()) {
 | 
						|
      NamedDecl *PrevDecl = R.getFoundDecl();
 | 
						|
      if (S->isDeclScope(PrevDecl)) {
 | 
						|
        Diag(ArgInfo[i].NameLoc, 
 | 
						|
             (MethodDefinition ? diag::warn_method_param_redefinition 
 | 
						|
                               : diag::warn_method_param_declaration)) 
 | 
						|
          << ArgInfo[i].Name;
 | 
						|
        Diag(PrevDecl->getLocation(), 
 | 
						|
             diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SourceLocation StartLoc = DI
 | 
						|
      ? DI->getTypeLoc().getBeginLoc()
 | 
						|
      : ArgInfo[i].NameLoc;
 | 
						|
 | 
						|
    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
 | 
						|
                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
 | 
						|
                                        ArgType, DI, SC_None, SC_None);
 | 
						|
 | 
						|
    Param->setObjCMethodScopeInfo(i);
 | 
						|
 | 
						|
    Param->setObjCDeclQualifier(
 | 
						|
      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
 | 
						|
 | 
						|
    // Apply the attributes to the parameter.
 | 
						|
    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
 | 
						|
 | 
						|
    if (Param->hasAttr<BlocksAttr>()) {
 | 
						|
      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
      Param->setInvalidDecl();
 | 
						|
    }
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
 | 
						|
    Params.push_back(Param);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
 | 
						|
    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
 | 
						|
    QualType ArgType = Param->getType();
 | 
						|
    if (ArgType.isNull())
 | 
						|
      ArgType = Context.getObjCIdType();
 | 
						|
    else
 | 
						|
      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
 | 
						|
      ArgType = Context.getAdjustedParameterType(ArgType);
 | 
						|
    if (ArgType->isObjCObjectType()) {
 | 
						|
      Diag(Param->getLocation(),
 | 
						|
           diag::err_object_cannot_be_passed_returned_by_value)
 | 
						|
      << 1 << ArgType;
 | 
						|
      Param->setInvalidDecl();
 | 
						|
    }
 | 
						|
    Param->setDeclContext(ObjCMethod);
 | 
						|
    
 | 
						|
    Params.push_back(Param);
 | 
						|
  }
 | 
						|
  
 | 
						|
  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
 | 
						|
  ObjCMethod->setObjCDeclQualifier(
 | 
						|
    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
 | 
						|
 | 
						|
  if (AttrList)
 | 
						|
    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
 | 
						|
 | 
						|
  // Add the method now.
 | 
						|
  const ObjCMethodDecl *PrevMethod = 0;
 | 
						|
  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
 | 
						|
    if (MethodType == tok::minus) {
 | 
						|
      PrevMethod = ImpDecl->getInstanceMethod(Sel);
 | 
						|
      ImpDecl->addInstanceMethod(ObjCMethod);
 | 
						|
    } else {
 | 
						|
      PrevMethod = ImpDecl->getClassMethod(Sel);
 | 
						|
      ImpDecl->addClassMethod(ObjCMethod);
 | 
						|
    }
 | 
						|
 | 
						|
    ObjCMethodDecl *IMD = 0;
 | 
						|
    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
 | 
						|
      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(), 
 | 
						|
                                ObjCMethod->isInstanceMethod());
 | 
						|
    if (ObjCMethod->hasAttrs() &&
 | 
						|
        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
 | 
						|
      SourceLocation MethodLoc = IMD->getLocation();
 | 
						|
      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
 | 
						|
        Diag(EndLoc, diag::warn_attribute_method_def);
 | 
						|
        Diag(MethodLoc, diag::note_method_declared_at)
 | 
						|
          << ObjCMethod->getDeclName();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevMethod) {
 | 
						|
    // You can never have two method definitions with the same name.
 | 
						|
    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
 | 
						|
      << ObjCMethod->getDeclName();
 | 
						|
    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this Objective-C method does not have a related result type, but we
 | 
						|
  // are allowed to infer related result types, try to do so based on the
 | 
						|
  // method family.
 | 
						|
  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
 | 
						|
  if (!CurrentClass) {
 | 
						|
    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
 | 
						|
      CurrentClass = Cat->getClassInterface();
 | 
						|
    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
 | 
						|
      CurrentClass = Impl->getClassInterface();
 | 
						|
    else if (ObjCCategoryImplDecl *CatImpl
 | 
						|
                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
 | 
						|
      CurrentClass = CatImpl->getClassInterface();
 | 
						|
  }
 | 
						|
 | 
						|
  ResultTypeCompatibilityKind RTC
 | 
						|
    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
 | 
						|
 | 
						|
  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
 | 
						|
 | 
						|
  bool ARCError = false;
 | 
						|
  if (getLangOpts().ObjCAutoRefCount)
 | 
						|
    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
 | 
						|
 | 
						|
  // Infer the related result type when possible.
 | 
						|
  if (!ARCError && RTC == Sema::RTC_Compatible &&
 | 
						|
      !ObjCMethod->hasRelatedResultType() &&
 | 
						|
      LangOpts.ObjCInferRelatedResultType) {
 | 
						|
    bool InferRelatedResultType = false;
 | 
						|
    switch (ObjCMethod->getMethodFamily()) {
 | 
						|
    case OMF_None:
 | 
						|
    case OMF_copy:
 | 
						|
    case OMF_dealloc:
 | 
						|
    case OMF_finalize:
 | 
						|
    case OMF_mutableCopy:
 | 
						|
    case OMF_release:
 | 
						|
    case OMF_retainCount:
 | 
						|
    case OMF_performSelector:
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case OMF_alloc:
 | 
						|
    case OMF_new:
 | 
						|
      InferRelatedResultType = ObjCMethod->isClassMethod();
 | 
						|
      break;
 | 
						|
        
 | 
						|
    case OMF_init:
 | 
						|
    case OMF_autorelease:
 | 
						|
    case OMF_retain:
 | 
						|
    case OMF_self:
 | 
						|
      InferRelatedResultType = ObjCMethod->isInstanceMethod();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (InferRelatedResultType)
 | 
						|
      ObjCMethod->SetRelatedResultType();
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnDocumentableDecl(ObjCMethod);
 | 
						|
 | 
						|
  return ObjCMethod;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckObjCDeclScope(Decl *D) {
 | 
						|
  // Following is also an error. But it is caused by a missing @end
 | 
						|
  // and diagnostic is issued elsewhere.
 | 
						|
  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we switched context to translation unit while we are still lexically in
 | 
						|
  // an objc container, it means the parser missed emitting an error.
 | 
						|
  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
 | 
						|
  D->setInvalidDecl();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
 | 
						|
/// instance variables of ClassName into Decls.
 | 
						|
void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
 | 
						|
                     IdentifierInfo *ClassName,
 | 
						|
                     SmallVectorImpl<Decl*> &Decls) {
 | 
						|
  // Check that ClassName is a valid class
 | 
						|
  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
 | 
						|
  if (!Class) {
 | 
						|
    Diag(DeclStart, diag::err_undef_interface) << ClassName;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (LangOpts.ObjCRuntime.isNonFragile()) {
 | 
						|
    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect the instance variables
 | 
						|
  SmallVector<const ObjCIvarDecl*, 32> Ivars;
 | 
						|
  Context.DeepCollectObjCIvars(Class, true, Ivars);
 | 
						|
  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
 | 
						|
  for (unsigned i = 0; i < Ivars.size(); i++) {
 | 
						|
    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
 | 
						|
    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
 | 
						|
    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
 | 
						|
                                           /*FIXME: StartL=*/ID->getLocation(),
 | 
						|
                                           ID->getLocation(),
 | 
						|
                                           ID->getIdentifier(), ID->getType(),
 | 
						|
                                           ID->getBitWidth());
 | 
						|
    Decls.push_back(FD);
 | 
						|
  }
 | 
						|
 | 
						|
  // Introduce all of these fields into the appropriate scope.
 | 
						|
  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
 | 
						|
       D != Decls.end(); ++D) {
 | 
						|
    FieldDecl *FD = cast<FieldDecl>(*D);
 | 
						|
    if (getLangOpts().CPlusPlus)
 | 
						|
      PushOnScopeChains(cast<FieldDecl>(FD), S);
 | 
						|
    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
 | 
						|
      Record->addDecl(FD);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a type-check a new Objective-C exception variable declaration.
 | 
						|
VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
 | 
						|
                                      SourceLocation StartLoc,
 | 
						|
                                      SourceLocation IdLoc,
 | 
						|
                                      IdentifierInfo *Id,
 | 
						|
                                      bool Invalid) {
 | 
						|
  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
 | 
						|
  // duration shall not be qualified by an address-space qualifier."
 | 
						|
  // Since all parameters have automatic store duration, they can not have
 | 
						|
  // an address space.
 | 
						|
  if (T.getAddressSpace() != 0) {
 | 
						|
    Diag(IdLoc, diag::err_arg_with_address_space);
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // An @catch parameter must be an unqualified object pointer type;
 | 
						|
  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
 | 
						|
  if (Invalid) {
 | 
						|
    // Don't do any further checking.
 | 
						|
  } else if (T->isDependentType()) {
 | 
						|
    // Okay: we don't know what this type will instantiate to.
 | 
						|
  } else if (!T->isObjCObjectPointerType()) {
 | 
						|
    Invalid = true;
 | 
						|
    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
 | 
						|
  } else if (T->isObjCQualifiedIdType()) {
 | 
						|
    Invalid = true;
 | 
						|
    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
 | 
						|
  }
 | 
						|
  
 | 
						|
  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
 | 
						|
                                 T, TInfo, SC_None, SC_None);
 | 
						|
  New->setExceptionVariable(true);
 | 
						|
  
 | 
						|
  // In ARC, infer 'retaining' for variables of retainable type.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  if (Invalid)
 | 
						|
    New->setInvalidDecl();
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
 | 
						|
  const DeclSpec &DS = D.getDeclSpec();
 | 
						|
  
 | 
						|
  // We allow the "register" storage class on exception variables because
 | 
						|
  // GCC did, but we drop it completely. Any other storage class is an error.
 | 
						|
  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | 
						|
    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
 | 
						|
      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
 | 
						|
  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
 | 
						|
    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
 | 
						|
      << DS.getStorageClassSpec();
 | 
						|
  }  
 | 
						|
  if (D.getDeclSpec().isThreadSpecified())
 | 
						|
    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
 | 
						|
  D.getMutableDeclSpec().ClearStorageClassSpecs();
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D);
 | 
						|
  
 | 
						|
  // Check that there are no default arguments inside the type of this
 | 
						|
  // exception object (C++ only).
 | 
						|
  if (getLangOpts().CPlusPlus)
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
  
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType ExceptionType = TInfo->getType();
 | 
						|
 | 
						|
  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
 | 
						|
                                        D.getSourceRange().getBegin(),
 | 
						|
                                        D.getIdentifierLoc(),
 | 
						|
                                        D.getIdentifier(),
 | 
						|
                                        D.isInvalidType());
 | 
						|
  
 | 
						|
  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | 
						|
  if (D.getCXXScopeSpec().isSet()) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
 | 
						|
      << D.getCXXScopeSpec().getRange();
 | 
						|
    New->setInvalidDecl();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Add the parameter declaration into this scope.
 | 
						|
  S->AddDecl(New);
 | 
						|
  if (D.getIdentifier())
 | 
						|
    IdResolver.AddDecl(New);
 | 
						|
  
 | 
						|
  ProcessDeclAttributes(S, New, D);
 | 
						|
  
 | 
						|
  if (New->hasAttr<BlocksAttr>())
 | 
						|
    Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
 | 
						|
/// initialization.
 | 
						|
void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
 | 
						|
                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
 | 
						|
  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 
 | 
						|
       Iv= Iv->getNextIvar()) {
 | 
						|
    QualType QT = Context.getBaseElementType(Iv->getType());
 | 
						|
    if (QT->isRecordType())
 | 
						|
      Ivars.push_back(Iv);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUseOfUnimplementedSelectors() {
 | 
						|
  // Load referenced selectors from the external source.
 | 
						|
  if (ExternalSource) {
 | 
						|
    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
 | 
						|
    ExternalSource->ReadReferencedSelectors(Sels);
 | 
						|
    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
 | 
						|
      ReferencedSelectors[Sels[I].first] = Sels[I].second;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Warning will be issued only when selector table is
 | 
						|
  // generated (which means there is at lease one implementation
 | 
						|
  // in the TU). This is to match gcc's behavior.
 | 
						|
  if (ReferencedSelectors.empty() || 
 | 
						|
      !Context.AnyObjCImplementation())
 | 
						|
    return;
 | 
						|
  for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 
 | 
						|
        ReferencedSelectors.begin(),
 | 
						|
       E = ReferencedSelectors.end(); S != E; ++S) {
 | 
						|
    Selector Sel = (*S).first;
 | 
						|
    if (!LookupImplementedMethodInGlobalPool(Sel))
 | 
						|
      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 |