forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			11584 lines
		
	
	
		
			461 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			11584 lines
		
	
	
		
			461 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file provides Sema routines for C++ overloading.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/Overload.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/TypeOrdering.h"
 | 
						|
#include "clang/Basic/Diagnostic.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Template.h"
 | 
						|
#include "clang/Sema/TemplateDeduction.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
namespace clang {
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
/// A convenience routine for creating a decayed reference to a
 | 
						|
/// function.
 | 
						|
static ExprResult
 | 
						|
CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
 | 
						|
                      SourceLocation Loc = SourceLocation(), 
 | 
						|
                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
 | 
						|
  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
 | 
						|
                                                 VK_LValue, Loc, LocInfo);
 | 
						|
  if (HadMultipleCandidates)
 | 
						|
    DRE->setHadMultipleCandidates(true);
 | 
						|
  ExprResult E = S.Owned(DRE);
 | 
						|
  E = S.DefaultFunctionArrayConversion(E.take());
 | 
						|
  if (E.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
 | 
						|
                                 bool InOverloadResolution,
 | 
						|
                                 StandardConversionSequence &SCS,
 | 
						|
                                 bool CStyle,
 | 
						|
                                 bool AllowObjCWritebackConversion);
 | 
						|
 | 
						|
static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
 | 
						|
                                                 QualType &ToType,
 | 
						|
                                                 bool InOverloadResolution,
 | 
						|
                                                 StandardConversionSequence &SCS,
 | 
						|
                                                 bool CStyle);
 | 
						|
static OverloadingResult
 | 
						|
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
 | 
						|
                        UserDefinedConversionSequence& User,
 | 
						|
                        OverloadCandidateSet& Conversions,
 | 
						|
                        bool AllowExplicit);
 | 
						|
 | 
						|
 | 
						|
static ImplicitConversionSequence::CompareKind
 | 
						|
CompareStandardConversionSequences(Sema &S,
 | 
						|
                                   const StandardConversionSequence& SCS1,
 | 
						|
                                   const StandardConversionSequence& SCS2);
 | 
						|
 | 
						|
static ImplicitConversionSequence::CompareKind
 | 
						|
CompareQualificationConversions(Sema &S,
 | 
						|
                                const StandardConversionSequence& SCS1,
 | 
						|
                                const StandardConversionSequence& SCS2);
 | 
						|
 | 
						|
static ImplicitConversionSequence::CompareKind
 | 
						|
CompareDerivedToBaseConversions(Sema &S,
 | 
						|
                                const StandardConversionSequence& SCS1,
 | 
						|
                                const StandardConversionSequence& SCS2);
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// GetConversionCategory - Retrieve the implicit conversion
 | 
						|
/// category corresponding to the given implicit conversion kind.
 | 
						|
ImplicitConversionCategory
 | 
						|
GetConversionCategory(ImplicitConversionKind Kind) {
 | 
						|
  static const ImplicitConversionCategory
 | 
						|
    Category[(int)ICK_Num_Conversion_Kinds] = {
 | 
						|
    ICC_Identity,
 | 
						|
    ICC_Lvalue_Transformation,
 | 
						|
    ICC_Lvalue_Transformation,
 | 
						|
    ICC_Lvalue_Transformation,
 | 
						|
    ICC_Identity,
 | 
						|
    ICC_Qualification_Adjustment,
 | 
						|
    ICC_Promotion,
 | 
						|
    ICC_Promotion,
 | 
						|
    ICC_Promotion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion,
 | 
						|
    ICC_Conversion
 | 
						|
  };
 | 
						|
  return Category[(int)Kind];
 | 
						|
}
 | 
						|
 | 
						|
/// GetConversionRank - Retrieve the implicit conversion rank
 | 
						|
/// corresponding to the given implicit conversion kind.
 | 
						|
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
 | 
						|
  static const ImplicitConversionRank
 | 
						|
    Rank[(int)ICK_Num_Conversion_Kinds] = {
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Exact_Match,
 | 
						|
    ICR_Promotion,
 | 
						|
    ICR_Promotion,
 | 
						|
    ICR_Promotion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Complex_Real_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Conversion,
 | 
						|
    ICR_Writeback_Conversion
 | 
						|
  };
 | 
						|
  return Rank[(int)Kind];
 | 
						|
}
 | 
						|
 | 
						|
/// GetImplicitConversionName - Return the name of this kind of
 | 
						|
/// implicit conversion.
 | 
						|
const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
 | 
						|
  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
 | 
						|
    "No conversion",
 | 
						|
    "Lvalue-to-rvalue",
 | 
						|
    "Array-to-pointer",
 | 
						|
    "Function-to-pointer",
 | 
						|
    "Noreturn adjustment",
 | 
						|
    "Qualification",
 | 
						|
    "Integral promotion",
 | 
						|
    "Floating point promotion",
 | 
						|
    "Complex promotion",
 | 
						|
    "Integral conversion",
 | 
						|
    "Floating conversion",
 | 
						|
    "Complex conversion",
 | 
						|
    "Floating-integral conversion",
 | 
						|
    "Pointer conversion",
 | 
						|
    "Pointer-to-member conversion",
 | 
						|
    "Boolean conversion",
 | 
						|
    "Compatible-types conversion",
 | 
						|
    "Derived-to-base conversion",
 | 
						|
    "Vector conversion",
 | 
						|
    "Vector splat",
 | 
						|
    "Complex-real conversion",
 | 
						|
    "Block Pointer conversion",
 | 
						|
    "Transparent Union Conversion"
 | 
						|
    "Writeback conversion"
 | 
						|
  };
 | 
						|
  return Name[Kind];
 | 
						|
}
 | 
						|
 | 
						|
/// StandardConversionSequence - Set the standard conversion
 | 
						|
/// sequence to the identity conversion.
 | 
						|
void StandardConversionSequence::setAsIdentityConversion() {
 | 
						|
  First = ICK_Identity;
 | 
						|
  Second = ICK_Identity;
 | 
						|
  Third = ICK_Identity;
 | 
						|
  DeprecatedStringLiteralToCharPtr = false;
 | 
						|
  QualificationIncludesObjCLifetime = false;
 | 
						|
  ReferenceBinding = false;
 | 
						|
  DirectBinding = false;
 | 
						|
  IsLvalueReference = true;
 | 
						|
  BindsToFunctionLvalue = false;
 | 
						|
  BindsToRvalue = false;
 | 
						|
  BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | 
						|
  ObjCLifetimeConversionBinding = false;
 | 
						|
  CopyConstructor = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getRank - Retrieve the rank of this standard conversion sequence
 | 
						|
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
 | 
						|
/// implicit conversions.
 | 
						|
ImplicitConversionRank StandardConversionSequence::getRank() const {
 | 
						|
  ImplicitConversionRank Rank = ICR_Exact_Match;
 | 
						|
  if  (GetConversionRank(First) > Rank)
 | 
						|
    Rank = GetConversionRank(First);
 | 
						|
  if  (GetConversionRank(Second) > Rank)
 | 
						|
    Rank = GetConversionRank(Second);
 | 
						|
  if  (GetConversionRank(Third) > Rank)
 | 
						|
    Rank = GetConversionRank(Third);
 | 
						|
  return Rank;
 | 
						|
}
 | 
						|
 | 
						|
/// isPointerConversionToBool - Determines whether this conversion is
 | 
						|
/// a conversion of a pointer or pointer-to-member to bool. This is
 | 
						|
/// used as part of the ranking of standard conversion sequences
 | 
						|
/// (C++ 13.3.3.2p4).
 | 
						|
bool StandardConversionSequence::isPointerConversionToBool() const {
 | 
						|
  // Note that FromType has not necessarily been transformed by the
 | 
						|
  // array-to-pointer or function-to-pointer implicit conversions, so
 | 
						|
  // check for their presence as well as checking whether FromType is
 | 
						|
  // a pointer.
 | 
						|
  if (getToType(1)->isBooleanType() &&
 | 
						|
      (getFromType()->isPointerType() ||
 | 
						|
       getFromType()->isObjCObjectPointerType() ||
 | 
						|
       getFromType()->isBlockPointerType() ||
 | 
						|
       getFromType()->isNullPtrType() ||
 | 
						|
       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isPointerConversionToVoidPointer - Determines whether this
 | 
						|
/// conversion is a conversion of a pointer to a void pointer. This is
 | 
						|
/// used as part of the ranking of standard conversion sequences (C++
 | 
						|
/// 13.3.3.2p4).
 | 
						|
bool
 | 
						|
StandardConversionSequence::
 | 
						|
isPointerConversionToVoidPointer(ASTContext& Context) const {
 | 
						|
  QualType FromType = getFromType();
 | 
						|
  QualType ToType = getToType(1);
 | 
						|
 | 
						|
  // Note that FromType has not necessarily been transformed by the
 | 
						|
  // array-to-pointer implicit conversion, so check for its presence
 | 
						|
  // and redo the conversion to get a pointer.
 | 
						|
  if (First == ICK_Array_To_Pointer)
 | 
						|
    FromType = Context.getArrayDecayedType(FromType);
 | 
						|
 | 
						|
  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
 | 
						|
    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
 | 
						|
      return ToPtrType->getPointeeType()->isVoidType();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Skip any implicit casts which could be either part of a narrowing conversion
 | 
						|
/// or after one in an implicit conversion.
 | 
						|
static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
 | 
						|
  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
 | 
						|
    switch (ICE->getCastKind()) {
 | 
						|
    case CK_NoOp:
 | 
						|
    case CK_IntegralCast:
 | 
						|
    case CK_IntegralToBoolean:
 | 
						|
    case CK_IntegralToFloating:
 | 
						|
    case CK_FloatingToIntegral:
 | 
						|
    case CK_FloatingToBoolean:
 | 
						|
    case CK_FloatingCast:
 | 
						|
      Converted = ICE->getSubExpr();
 | 
						|
      continue;
 | 
						|
 | 
						|
    default:
 | 
						|
      return Converted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Converted;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if this standard conversion sequence represents a narrowing
 | 
						|
/// conversion, according to C++11 [dcl.init.list]p7.
 | 
						|
///
 | 
						|
/// \param Ctx  The AST context.
 | 
						|
/// \param Converted  The result of applying this standard conversion sequence.
 | 
						|
/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
 | 
						|
///        value of the expression prior to the narrowing conversion.
 | 
						|
/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
 | 
						|
///        type of the expression prior to the narrowing conversion.
 | 
						|
NarrowingKind
 | 
						|
StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
 | 
						|
                                             const Expr *Converted,
 | 
						|
                                             APValue &ConstantValue,
 | 
						|
                                             QualType &ConstantType) const {
 | 
						|
  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
 | 
						|
 | 
						|
  // C++11 [dcl.init.list]p7:
 | 
						|
  //   A narrowing conversion is an implicit conversion ...
 | 
						|
  QualType FromType = getToType(0);
 | 
						|
  QualType ToType = getToType(1);
 | 
						|
  switch (Second) {
 | 
						|
  // -- from a floating-point type to an integer type, or
 | 
						|
  //
 | 
						|
  // -- from an integer type or unscoped enumeration type to a floating-point
 | 
						|
  //    type, except where the source is a constant expression and the actual
 | 
						|
  //    value after conversion will fit into the target type and will produce
 | 
						|
  //    the original value when converted back to the original type, or
 | 
						|
  case ICK_Floating_Integral:
 | 
						|
    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
 | 
						|
      return NK_Type_Narrowing;
 | 
						|
    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
 | 
						|
      llvm::APSInt IntConstantValue;
 | 
						|
      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
 | 
						|
      if (Initializer &&
 | 
						|
          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
 | 
						|
        // Convert the integer to the floating type.
 | 
						|
        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
 | 
						|
        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
 | 
						|
                                llvm::APFloat::rmNearestTiesToEven);
 | 
						|
        // And back.
 | 
						|
        llvm::APSInt ConvertedValue = IntConstantValue;
 | 
						|
        bool ignored;
 | 
						|
        Result.convertToInteger(ConvertedValue,
 | 
						|
                                llvm::APFloat::rmTowardZero, &ignored);
 | 
						|
        // If the resulting value is different, this was a narrowing conversion.
 | 
						|
        if (IntConstantValue != ConvertedValue) {
 | 
						|
          ConstantValue = APValue(IntConstantValue);
 | 
						|
          ConstantType = Initializer->getType();
 | 
						|
          return NK_Constant_Narrowing;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Variables are always narrowings.
 | 
						|
        return NK_Variable_Narrowing;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return NK_Not_Narrowing;
 | 
						|
 | 
						|
  // -- from long double to double or float, or from double to float, except
 | 
						|
  //    where the source is a constant expression and the actual value after
 | 
						|
  //    conversion is within the range of values that can be represented (even
 | 
						|
  //    if it cannot be represented exactly), or
 | 
						|
  case ICK_Floating_Conversion:
 | 
						|
    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
 | 
						|
        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
 | 
						|
      // FromType is larger than ToType.
 | 
						|
      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
 | 
						|
      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
 | 
						|
        // Constant!
 | 
						|
        assert(ConstantValue.isFloat());
 | 
						|
        llvm::APFloat FloatVal = ConstantValue.getFloat();
 | 
						|
        // Convert the source value into the target type.
 | 
						|
        bool ignored;
 | 
						|
        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
 | 
						|
          Ctx.getFloatTypeSemantics(ToType),
 | 
						|
          llvm::APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
        // If there was no overflow, the source value is within the range of
 | 
						|
        // values that can be represented.
 | 
						|
        if (ConvertStatus & llvm::APFloat::opOverflow) {
 | 
						|
          ConstantType = Initializer->getType();
 | 
						|
          return NK_Constant_Narrowing;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        return NK_Variable_Narrowing;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return NK_Not_Narrowing;
 | 
						|
 | 
						|
  // -- from an integer type or unscoped enumeration type to an integer type
 | 
						|
  //    that cannot represent all the values of the original type, except where
 | 
						|
  //    the source is a constant expression and the actual value after
 | 
						|
  //    conversion will fit into the target type and will produce the original
 | 
						|
  //    value when converted back to the original type.
 | 
						|
  case ICK_Boolean_Conversion:  // Bools are integers too.
 | 
						|
    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
 | 
						|
      // Boolean conversions can be from pointers and pointers to members
 | 
						|
      // [conv.bool], and those aren't considered narrowing conversions.
 | 
						|
      return NK_Not_Narrowing;
 | 
						|
    }  // Otherwise, fall through to the integral case.
 | 
						|
  case ICK_Integral_Conversion: {
 | 
						|
    assert(FromType->isIntegralOrUnscopedEnumerationType());
 | 
						|
    assert(ToType->isIntegralOrUnscopedEnumerationType());
 | 
						|
    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
 | 
						|
    const unsigned FromWidth = Ctx.getIntWidth(FromType);
 | 
						|
    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
 | 
						|
    const unsigned ToWidth = Ctx.getIntWidth(ToType);
 | 
						|
 | 
						|
    if (FromWidth > ToWidth ||
 | 
						|
        (FromWidth == ToWidth && FromSigned != ToSigned) ||
 | 
						|
        (FromSigned && !ToSigned)) {
 | 
						|
      // Not all values of FromType can be represented in ToType.
 | 
						|
      llvm::APSInt InitializerValue;
 | 
						|
      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
 | 
						|
      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
 | 
						|
        // Such conversions on variables are always narrowing.
 | 
						|
        return NK_Variable_Narrowing;
 | 
						|
      }
 | 
						|
      bool Narrowing = false;
 | 
						|
      if (FromWidth < ToWidth) {
 | 
						|
        // Negative -> unsigned is narrowing. Otherwise, more bits is never
 | 
						|
        // narrowing.
 | 
						|
        if (InitializerValue.isSigned() && InitializerValue.isNegative())
 | 
						|
          Narrowing = true;
 | 
						|
      } else {
 | 
						|
        // Add a bit to the InitializerValue so we don't have to worry about
 | 
						|
        // signed vs. unsigned comparisons.
 | 
						|
        InitializerValue = InitializerValue.extend(
 | 
						|
          InitializerValue.getBitWidth() + 1);
 | 
						|
        // Convert the initializer to and from the target width and signed-ness.
 | 
						|
        llvm::APSInt ConvertedValue = InitializerValue;
 | 
						|
        ConvertedValue = ConvertedValue.trunc(ToWidth);
 | 
						|
        ConvertedValue.setIsSigned(ToSigned);
 | 
						|
        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
 | 
						|
        ConvertedValue.setIsSigned(InitializerValue.isSigned());
 | 
						|
        // If the result is different, this was a narrowing conversion.
 | 
						|
        if (ConvertedValue != InitializerValue)
 | 
						|
          Narrowing = true;
 | 
						|
      }
 | 
						|
      if (Narrowing) {
 | 
						|
        ConstantType = Initializer->getType();
 | 
						|
        ConstantValue = APValue(InitializerValue);
 | 
						|
        return NK_Constant_Narrowing;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return NK_Not_Narrowing;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    // Other kinds of conversions are not narrowings.
 | 
						|
    return NK_Not_Narrowing;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DebugPrint - Print this standard conversion sequence to standard
 | 
						|
/// error. Useful for debugging overloading issues.
 | 
						|
void StandardConversionSequence::DebugPrint() const {
 | 
						|
  raw_ostream &OS = llvm::errs();
 | 
						|
  bool PrintedSomething = false;
 | 
						|
  if (First != ICK_Identity) {
 | 
						|
    OS << GetImplicitConversionName(First);
 | 
						|
    PrintedSomething = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Second != ICK_Identity) {
 | 
						|
    if (PrintedSomething) {
 | 
						|
      OS << " -> ";
 | 
						|
    }
 | 
						|
    OS << GetImplicitConversionName(Second);
 | 
						|
 | 
						|
    if (CopyConstructor) {
 | 
						|
      OS << " (by copy constructor)";
 | 
						|
    } else if (DirectBinding) {
 | 
						|
      OS << " (direct reference binding)";
 | 
						|
    } else if (ReferenceBinding) {
 | 
						|
      OS << " (reference binding)";
 | 
						|
    }
 | 
						|
    PrintedSomething = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Third != ICK_Identity) {
 | 
						|
    if (PrintedSomething) {
 | 
						|
      OS << " -> ";
 | 
						|
    }
 | 
						|
    OS << GetImplicitConversionName(Third);
 | 
						|
    PrintedSomething = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PrintedSomething) {
 | 
						|
    OS << "No conversions required";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DebugPrint - Print this user-defined conversion sequence to standard
 | 
						|
/// error. Useful for debugging overloading issues.
 | 
						|
void UserDefinedConversionSequence::DebugPrint() const {
 | 
						|
  raw_ostream &OS = llvm::errs();
 | 
						|
  if (Before.First || Before.Second || Before.Third) {
 | 
						|
    Before.DebugPrint();
 | 
						|
    OS << " -> ";
 | 
						|
  }
 | 
						|
  if (ConversionFunction)
 | 
						|
    OS << '\'' << *ConversionFunction << '\'';
 | 
						|
  else
 | 
						|
    OS << "aggregate initialization";
 | 
						|
  if (After.First || After.Second || After.Third) {
 | 
						|
    OS << " -> ";
 | 
						|
    After.DebugPrint();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DebugPrint - Print this implicit conversion sequence to standard
 | 
						|
/// error. Useful for debugging overloading issues.
 | 
						|
void ImplicitConversionSequence::DebugPrint() const {
 | 
						|
  raw_ostream &OS = llvm::errs();
 | 
						|
  switch (ConversionKind) {
 | 
						|
  case StandardConversion:
 | 
						|
    OS << "Standard conversion: ";
 | 
						|
    Standard.DebugPrint();
 | 
						|
    break;
 | 
						|
  case UserDefinedConversion:
 | 
						|
    OS << "User-defined conversion: ";
 | 
						|
    UserDefined.DebugPrint();
 | 
						|
    break;
 | 
						|
  case EllipsisConversion:
 | 
						|
    OS << "Ellipsis conversion";
 | 
						|
    break;
 | 
						|
  case AmbiguousConversion:
 | 
						|
    OS << "Ambiguous conversion";
 | 
						|
    break;
 | 
						|
  case BadConversion:
 | 
						|
    OS << "Bad conversion";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void AmbiguousConversionSequence::construct() {
 | 
						|
  new (&conversions()) ConversionSet();
 | 
						|
}
 | 
						|
 | 
						|
void AmbiguousConversionSequence::destruct() {
 | 
						|
  conversions().~ConversionSet();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
 | 
						|
  FromTypePtr = O.FromTypePtr;
 | 
						|
  ToTypePtr = O.ToTypePtr;
 | 
						|
  new (&conversions()) ConversionSet(O.conversions());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Structure used by OverloadCandidate::DeductionFailureInfo to store
 | 
						|
  // template parameter and template argument information.
 | 
						|
  struct DFIParamWithArguments {
 | 
						|
    TemplateParameter Param;
 | 
						|
    TemplateArgument FirstArg;
 | 
						|
    TemplateArgument SecondArg;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Convert from Sema's representation of template deduction information
 | 
						|
/// to the form used in overload-candidate information.
 | 
						|
OverloadCandidate::DeductionFailureInfo
 | 
						|
static MakeDeductionFailureInfo(ASTContext &Context,
 | 
						|
                                Sema::TemplateDeductionResult TDK,
 | 
						|
                                TemplateDeductionInfo &Info) {
 | 
						|
  OverloadCandidate::DeductionFailureInfo Result;
 | 
						|
  Result.Result = static_cast<unsigned>(TDK);
 | 
						|
  Result.HasDiagnostic = false;
 | 
						|
  Result.Data = 0;
 | 
						|
  switch (TDK) {
 | 
						|
  case Sema::TDK_Success:
 | 
						|
  case Sema::TDK_Invalid:
 | 
						|
  case Sema::TDK_InstantiationDepth:
 | 
						|
  case Sema::TDK_TooManyArguments:
 | 
						|
  case Sema::TDK_TooFewArguments:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::TDK_Incomplete:
 | 
						|
  case Sema::TDK_InvalidExplicitArguments:
 | 
						|
    Result.Data = Info.Param.getOpaqueValue();
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::TDK_Inconsistent:
 | 
						|
  case Sema::TDK_Underqualified: {
 | 
						|
    // FIXME: Should allocate from normal heap so that we can free this later.
 | 
						|
    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
 | 
						|
    Saved->Param = Info.Param;
 | 
						|
    Saved->FirstArg = Info.FirstArg;
 | 
						|
    Saved->SecondArg = Info.SecondArg;
 | 
						|
    Result.Data = Saved;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Sema::TDK_SubstitutionFailure:
 | 
						|
    Result.Data = Info.take();
 | 
						|
    if (Info.hasSFINAEDiagnostic()) {
 | 
						|
      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
 | 
						|
          SourceLocation(), PartialDiagnostic::NullDiagnostic());
 | 
						|
      Info.takeSFINAEDiagnostic(*Diag);
 | 
						|
      Result.HasDiagnostic = true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::TDK_NonDeducedMismatch:
 | 
						|
  case Sema::TDK_FailedOverloadResolution:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void OverloadCandidate::DeductionFailureInfo::Destroy() {
 | 
						|
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | 
						|
  case Sema::TDK_Success:
 | 
						|
  case Sema::TDK_Invalid:
 | 
						|
  case Sema::TDK_InstantiationDepth:
 | 
						|
  case Sema::TDK_Incomplete:
 | 
						|
  case Sema::TDK_TooManyArguments:
 | 
						|
  case Sema::TDK_TooFewArguments:
 | 
						|
  case Sema::TDK_InvalidExplicitArguments:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::TDK_Inconsistent:
 | 
						|
  case Sema::TDK_Underqualified:
 | 
						|
    // FIXME: Destroy the data?
 | 
						|
    Data = 0;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::TDK_SubstitutionFailure:
 | 
						|
    // FIXME: Destroy the template argument list?
 | 
						|
    Data = 0;
 | 
						|
    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
 | 
						|
      Diag->~PartialDiagnosticAt();
 | 
						|
      HasDiagnostic = false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  // Unhandled
 | 
						|
  case Sema::TDK_NonDeducedMismatch:
 | 
						|
  case Sema::TDK_FailedOverloadResolution:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
PartialDiagnosticAt *
 | 
						|
OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() {
 | 
						|
  if (HasDiagnostic)
 | 
						|
    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
TemplateParameter
 | 
						|
OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
 | 
						|
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | 
						|
  case Sema::TDK_Success:
 | 
						|
  case Sema::TDK_Invalid:
 | 
						|
  case Sema::TDK_InstantiationDepth:
 | 
						|
  case Sema::TDK_TooManyArguments:
 | 
						|
  case Sema::TDK_TooFewArguments:
 | 
						|
  case Sema::TDK_SubstitutionFailure:
 | 
						|
    return TemplateParameter();
 | 
						|
 | 
						|
  case Sema::TDK_Incomplete:
 | 
						|
  case Sema::TDK_InvalidExplicitArguments:
 | 
						|
    return TemplateParameter::getFromOpaqueValue(Data);
 | 
						|
 | 
						|
  case Sema::TDK_Inconsistent:
 | 
						|
  case Sema::TDK_Underqualified:
 | 
						|
    return static_cast<DFIParamWithArguments*>(Data)->Param;
 | 
						|
 | 
						|
  // Unhandled
 | 
						|
  case Sema::TDK_NonDeducedMismatch:
 | 
						|
  case Sema::TDK_FailedOverloadResolution:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return TemplateParameter();
 | 
						|
}
 | 
						|
 | 
						|
TemplateArgumentList *
 | 
						|
OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
 | 
						|
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | 
						|
    case Sema::TDK_Success:
 | 
						|
    case Sema::TDK_Invalid:
 | 
						|
    case Sema::TDK_InstantiationDepth:
 | 
						|
    case Sema::TDK_TooManyArguments:
 | 
						|
    case Sema::TDK_TooFewArguments:
 | 
						|
    case Sema::TDK_Incomplete:
 | 
						|
    case Sema::TDK_InvalidExplicitArguments:
 | 
						|
    case Sema::TDK_Inconsistent:
 | 
						|
    case Sema::TDK_Underqualified:
 | 
						|
      return 0;
 | 
						|
 | 
						|
    case Sema::TDK_SubstitutionFailure:
 | 
						|
      return static_cast<TemplateArgumentList*>(Data);
 | 
						|
 | 
						|
    // Unhandled
 | 
						|
    case Sema::TDK_NonDeducedMismatch:
 | 
						|
    case Sema::TDK_FailedOverloadResolution:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
 | 
						|
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | 
						|
  case Sema::TDK_Success:
 | 
						|
  case Sema::TDK_Invalid:
 | 
						|
  case Sema::TDK_InstantiationDepth:
 | 
						|
  case Sema::TDK_Incomplete:
 | 
						|
  case Sema::TDK_TooManyArguments:
 | 
						|
  case Sema::TDK_TooFewArguments:
 | 
						|
  case Sema::TDK_InvalidExplicitArguments:
 | 
						|
  case Sema::TDK_SubstitutionFailure:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Sema::TDK_Inconsistent:
 | 
						|
  case Sema::TDK_Underqualified:
 | 
						|
    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
 | 
						|
 | 
						|
  // Unhandled
 | 
						|
  case Sema::TDK_NonDeducedMismatch:
 | 
						|
  case Sema::TDK_FailedOverloadResolution:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
const TemplateArgument *
 | 
						|
OverloadCandidate::DeductionFailureInfo::getSecondArg() {
 | 
						|
  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
 | 
						|
  case Sema::TDK_Success:
 | 
						|
  case Sema::TDK_Invalid:
 | 
						|
  case Sema::TDK_InstantiationDepth:
 | 
						|
  case Sema::TDK_Incomplete:
 | 
						|
  case Sema::TDK_TooManyArguments:
 | 
						|
  case Sema::TDK_TooFewArguments:
 | 
						|
  case Sema::TDK_InvalidExplicitArguments:
 | 
						|
  case Sema::TDK_SubstitutionFailure:
 | 
						|
    return 0;
 | 
						|
 | 
						|
  case Sema::TDK_Inconsistent:
 | 
						|
  case Sema::TDK_Underqualified:
 | 
						|
    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
 | 
						|
 | 
						|
  // Unhandled
 | 
						|
  case Sema::TDK_NonDeducedMismatch:
 | 
						|
  case Sema::TDK_FailedOverloadResolution:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void OverloadCandidateSet::destroyCandidates() {
 | 
						|
  for (iterator i = begin(), e = end(); i != e; ++i) {
 | 
						|
    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
 | 
						|
      i->Conversions[ii].~ImplicitConversionSequence();
 | 
						|
    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
 | 
						|
      i->DeductionFailure.Destroy();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void OverloadCandidateSet::clear() {
 | 
						|
  destroyCandidates();
 | 
						|
  NumInlineSequences = 0;
 | 
						|
  Candidates.clear();
 | 
						|
  Functions.clear();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class UnbridgedCastsSet {
 | 
						|
    struct Entry {
 | 
						|
      Expr **Addr;
 | 
						|
      Expr *Saved;
 | 
						|
    };
 | 
						|
    SmallVector<Entry, 2> Entries;
 | 
						|
    
 | 
						|
  public:
 | 
						|
    void save(Sema &S, Expr *&E) {
 | 
						|
      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
 | 
						|
      Entry entry = { &E, E };
 | 
						|
      Entries.push_back(entry);
 | 
						|
      E = S.stripARCUnbridgedCast(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void restore() {
 | 
						|
      for (SmallVectorImpl<Entry>::iterator
 | 
						|
             i = Entries.begin(), e = Entries.end(); i != e; ++i) 
 | 
						|
        *i->Addr = i->Saved;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// checkPlaceholderForOverload - Do any interesting placeholder-like
 | 
						|
/// preprocessing on the given expression.
 | 
						|
///
 | 
						|
/// \param unbridgedCasts a collection to which to add unbridged casts;
 | 
						|
///   without this, they will be immediately diagnosed as errors
 | 
						|
///
 | 
						|
/// Return true on unrecoverable error.
 | 
						|
static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
 | 
						|
                                        UnbridgedCastsSet *unbridgedCasts = 0) {
 | 
						|
  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
 | 
						|
    // We can't handle overloaded expressions here because overload
 | 
						|
    // resolution might reasonably tweak them.
 | 
						|
    if (placeholder->getKind() == BuiltinType::Overload) return false;
 | 
						|
 | 
						|
    // If the context potentially accepts unbridged ARC casts, strip
 | 
						|
    // the unbridged cast and add it to the collection for later restoration.
 | 
						|
    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
 | 
						|
        unbridgedCasts) {
 | 
						|
      unbridgedCasts->save(S, E);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Go ahead and check everything else.
 | 
						|
    ExprResult result = S.CheckPlaceholderExpr(E);
 | 
						|
    if (result.isInvalid())
 | 
						|
      return true;
 | 
						|
 | 
						|
    E = result.take();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Nothing to do.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// checkArgPlaceholdersForOverload - Check a set of call operands for
 | 
						|
/// placeholders.
 | 
						|
static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
 | 
						|
                                            unsigned numArgs,
 | 
						|
                                            UnbridgedCastsSet &unbridged) {
 | 
						|
  for (unsigned i = 0; i != numArgs; ++i)
 | 
						|
    if (checkPlaceholderForOverload(S, args[i], &unbridged))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// IsOverload - Determine whether the given New declaration is an
 | 
						|
// overload of the declarations in Old. This routine returns false if
 | 
						|
// New and Old cannot be overloaded, e.g., if New has the same
 | 
						|
// signature as some function in Old (C++ 1.3.10) or if the Old
 | 
						|
// declarations aren't functions (or function templates) at all. When
 | 
						|
// it does return false, MatchedDecl will point to the decl that New
 | 
						|
// cannot be overloaded with.  This decl may be a UsingShadowDecl on
 | 
						|
// top of the underlying declaration.
 | 
						|
//
 | 
						|
// Example: Given the following input:
 | 
						|
//
 | 
						|
//   void f(int, float); // #1
 | 
						|
//   void f(int, int); // #2
 | 
						|
//   int f(int, int); // #3
 | 
						|
//
 | 
						|
// When we process #1, there is no previous declaration of "f",
 | 
						|
// so IsOverload will not be used.
 | 
						|
//
 | 
						|
// When we process #2, Old contains only the FunctionDecl for #1.  By
 | 
						|
// comparing the parameter types, we see that #1 and #2 are overloaded
 | 
						|
// (since they have different signatures), so this routine returns
 | 
						|
// false; MatchedDecl is unchanged.
 | 
						|
//
 | 
						|
// When we process #3, Old is an overload set containing #1 and #2. We
 | 
						|
// compare the signatures of #3 to #1 (they're overloaded, so we do
 | 
						|
// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
 | 
						|
// identical (return types of functions are not part of the
 | 
						|
// signature), IsOverload returns false and MatchedDecl will be set to
 | 
						|
// point to the FunctionDecl for #2.
 | 
						|
//
 | 
						|
// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
 | 
						|
// into a class by a using declaration.  The rules for whether to hide
 | 
						|
// shadow declarations ignore some properties which otherwise figure
 | 
						|
// into a function template's signature.
 | 
						|
Sema::OverloadKind
 | 
						|
Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
 | 
						|
                    NamedDecl *&Match, bool NewIsUsingDecl) {
 | 
						|
  for (LookupResult::iterator I = Old.begin(), E = Old.end();
 | 
						|
         I != E; ++I) {
 | 
						|
    NamedDecl *OldD = *I;
 | 
						|
 | 
						|
    bool OldIsUsingDecl = false;
 | 
						|
    if (isa<UsingShadowDecl>(OldD)) {
 | 
						|
      OldIsUsingDecl = true;
 | 
						|
 | 
						|
      // We can always introduce two using declarations into the same
 | 
						|
      // context, even if they have identical signatures.
 | 
						|
      if (NewIsUsingDecl) continue;
 | 
						|
 | 
						|
      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    // If either declaration was introduced by a using declaration,
 | 
						|
    // we'll need to use slightly different rules for matching.
 | 
						|
    // Essentially, these rules are the normal rules, except that
 | 
						|
    // function templates hide function templates with different
 | 
						|
    // return types or template parameter lists.
 | 
						|
    bool UseMemberUsingDeclRules =
 | 
						|
      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
 | 
						|
 | 
						|
    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
 | 
						|
      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
 | 
						|
        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
 | 
						|
          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        Match = *I;
 | 
						|
        return Ovl_Match;
 | 
						|
      }
 | 
						|
    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
 | 
						|
      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
 | 
						|
        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
 | 
						|
          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        Match = *I;
 | 
						|
        return Ovl_Match;
 | 
						|
      }
 | 
						|
    } else if (isa<UsingDecl>(OldD)) {
 | 
						|
      // We can overload with these, which can show up when doing
 | 
						|
      // redeclaration checks for UsingDecls.
 | 
						|
      assert(Old.getLookupKind() == LookupUsingDeclName);
 | 
						|
    } else if (isa<TagDecl>(OldD)) {
 | 
						|
      // We can always overload with tags by hiding them.
 | 
						|
    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
 | 
						|
      // Optimistically assume that an unresolved using decl will
 | 
						|
      // overload; if it doesn't, we'll have to diagnose during
 | 
						|
      // template instantiation.
 | 
						|
    } else {
 | 
						|
      // (C++ 13p1):
 | 
						|
      //   Only function declarations can be overloaded; object and type
 | 
						|
      //   declarations cannot be overloaded.
 | 
						|
      Match = *I;
 | 
						|
      return Ovl_NonFunction;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Ovl_Overload;
 | 
						|
}
 | 
						|
 | 
						|
static bool canBeOverloaded(const FunctionDecl &D) {
 | 
						|
  if (D.getAttr<OverloadableAttr>())
 | 
						|
    return true;
 | 
						|
  if (D.hasCLanguageLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Main cannot be overloaded (basic.start.main).
 | 
						|
  if (D.isMain())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
 | 
						|
                      bool UseUsingDeclRules) {
 | 
						|
  // If both of the functions are extern "C", then they are not
 | 
						|
  // overloads.
 | 
						|
  if (!canBeOverloaded(*Old) && !canBeOverloaded(*New))
 | 
						|
    return false;
 | 
						|
 | 
						|
  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
 | 
						|
  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
 | 
						|
 | 
						|
  // C++ [temp.fct]p2:
 | 
						|
  //   A function template can be overloaded with other function templates
 | 
						|
  //   and with normal (non-template) functions.
 | 
						|
  if ((OldTemplate == 0) != (NewTemplate == 0))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Is the function New an overload of the function Old?
 | 
						|
  QualType OldQType = Context.getCanonicalType(Old->getType());
 | 
						|
  QualType NewQType = Context.getCanonicalType(New->getType());
 | 
						|
 | 
						|
  // Compare the signatures (C++ 1.3.10) of the two functions to
 | 
						|
  // determine whether they are overloads. If we find any mismatch
 | 
						|
  // in the signature, they are overloads.
 | 
						|
 | 
						|
  // If either of these functions is a K&R-style function (no
 | 
						|
  // prototype), then we consider them to have matching signatures.
 | 
						|
  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
 | 
						|
      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
 | 
						|
  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
 | 
						|
 | 
						|
  // The signature of a function includes the types of its
 | 
						|
  // parameters (C++ 1.3.10), which includes the presence or absence
 | 
						|
  // of the ellipsis; see C++ DR 357).
 | 
						|
  if (OldQType != NewQType &&
 | 
						|
      (OldType->getNumArgs() != NewType->getNumArgs() ||
 | 
						|
       OldType->isVariadic() != NewType->isVariadic() ||
 | 
						|
       !FunctionArgTypesAreEqual(OldType, NewType)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++ [temp.over.link]p4:
 | 
						|
  //   The signature of a function template consists of its function
 | 
						|
  //   signature, its return type and its template parameter list. The names
 | 
						|
  //   of the template parameters are significant only for establishing the
 | 
						|
  //   relationship between the template parameters and the rest of the
 | 
						|
  //   signature.
 | 
						|
  //
 | 
						|
  // We check the return type and template parameter lists for function
 | 
						|
  // templates first; the remaining checks follow.
 | 
						|
  //
 | 
						|
  // However, we don't consider either of these when deciding whether
 | 
						|
  // a member introduced by a shadow declaration is hidden.
 | 
						|
  if (!UseUsingDeclRules && NewTemplate &&
 | 
						|
      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
 | 
						|
                                       OldTemplate->getTemplateParameters(),
 | 
						|
                                       false, TPL_TemplateMatch) ||
 | 
						|
       OldType->getResultType() != NewType->getResultType()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the function is a class member, its signature includes the
 | 
						|
  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
 | 
						|
  //
 | 
						|
  // As part of this, also check whether one of the member functions
 | 
						|
  // is static, in which case they are not overloads (C++
 | 
						|
  // 13.1p2). While not part of the definition of the signature,
 | 
						|
  // this check is important to determine whether these functions
 | 
						|
  // can be overloaded.
 | 
						|
  CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
 | 
						|
  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
 | 
						|
  if (OldMethod && NewMethod &&
 | 
						|
      !OldMethod->isStatic() && !NewMethod->isStatic()) {
 | 
						|
    if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
 | 
						|
      if (!UseUsingDeclRules &&
 | 
						|
          (OldMethod->getRefQualifier() == RQ_None ||
 | 
						|
           NewMethod->getRefQualifier() == RQ_None)) {
 | 
						|
        // C++0x [over.load]p2:
 | 
						|
        //   - Member function declarations with the same name and the same
 | 
						|
        //     parameter-type-list as well as member function template
 | 
						|
        //     declarations with the same name, the same parameter-type-list, and
 | 
						|
        //     the same template parameter lists cannot be overloaded if any of
 | 
						|
        //     them, but not all, have a ref-qualifier (8.3.5).
 | 
						|
        Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
 | 
						|
          << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
 | 
						|
        Diag(OldMethod->getLocation(), diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We may not have applied the implicit const for a constexpr member
 | 
						|
    // function yet (because we haven't yet resolved whether this is a static
 | 
						|
    // or non-static member function). Add it now, on the assumption that this
 | 
						|
    // is a redeclaration of OldMethod.
 | 
						|
    unsigned NewQuals = NewMethod->getTypeQualifiers();
 | 
						|
    if (NewMethod->isConstexpr() && !isa<CXXConstructorDecl>(NewMethod))
 | 
						|
      NewQuals |= Qualifiers::Const;
 | 
						|
    if (OldMethod->getTypeQualifiers() != NewQuals)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The signatures match; this is not an overload.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks availability of the function depending on the current
 | 
						|
/// function context. Inside an unavailable function, unavailability is ignored.
 | 
						|
///
 | 
						|
/// \returns true if \arg FD is unavailable and current context is inside
 | 
						|
/// an available function, false otherwise.
 | 
						|
bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
 | 
						|
  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Tries a user-defined conversion from From to ToType.
 | 
						|
///
 | 
						|
/// Produces an implicit conversion sequence for when a standard conversion
 | 
						|
/// is not an option. See TryImplicitConversion for more information.
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
 | 
						|
                         bool SuppressUserConversions,
 | 
						|
                         bool AllowExplicit,
 | 
						|
                         bool InOverloadResolution,
 | 
						|
                         bool CStyle,
 | 
						|
                         bool AllowObjCWritebackConversion) {
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
 | 
						|
  if (SuppressUserConversions) {
 | 
						|
    // We're not in the case above, so there is no conversion that
 | 
						|
    // we can perform.
 | 
						|
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Attempt user-defined conversion.
 | 
						|
  OverloadCandidateSet Conversions(From->getExprLoc());
 | 
						|
  OverloadingResult UserDefResult
 | 
						|
    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
 | 
						|
                              AllowExplicit);
 | 
						|
 | 
						|
  if (UserDefResult == OR_Success) {
 | 
						|
    ICS.setUserDefined();
 | 
						|
    // C++ [over.ics.user]p4:
 | 
						|
    //   A conversion of an expression of class type to the same class
 | 
						|
    //   type is given Exact Match rank, and a conversion of an
 | 
						|
    //   expression of class type to a base class of that type is
 | 
						|
    //   given Conversion rank, in spite of the fact that a copy
 | 
						|
    //   constructor (i.e., a user-defined conversion function) is
 | 
						|
    //   called for those cases.
 | 
						|
    if (CXXConstructorDecl *Constructor
 | 
						|
          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
 | 
						|
      QualType FromCanon
 | 
						|
        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
 | 
						|
      QualType ToCanon
 | 
						|
        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
 | 
						|
      if (Constructor->isCopyConstructor() &&
 | 
						|
          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
 | 
						|
        // Turn this into a "standard" conversion sequence, so that it
 | 
						|
        // gets ranked with standard conversion sequences.
 | 
						|
        ICS.setStandard();
 | 
						|
        ICS.Standard.setAsIdentityConversion();
 | 
						|
        ICS.Standard.setFromType(From->getType());
 | 
						|
        ICS.Standard.setAllToTypes(ToType);
 | 
						|
        ICS.Standard.CopyConstructor = Constructor;
 | 
						|
        if (ToCanon != FromCanon)
 | 
						|
          ICS.Standard.Second = ICK_Derived_To_Base;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [over.best.ics]p4:
 | 
						|
    //   However, when considering the argument of a user-defined
 | 
						|
    //   conversion function that is a candidate by 13.3.1.3 when
 | 
						|
    //   invoked for the copying of the temporary in the second step
 | 
						|
    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
 | 
						|
    //   13.3.1.6 in all cases, only standard conversion sequences and
 | 
						|
    //   ellipsis conversion sequences are allowed.
 | 
						|
    if (SuppressUserConversions && ICS.isUserDefined()) {
 | 
						|
      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
 | 
						|
    }
 | 
						|
  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
 | 
						|
    ICS.setAmbiguous();
 | 
						|
    ICS.Ambiguous.setFromType(From->getType());
 | 
						|
    ICS.Ambiguous.setToType(ToType);
 | 
						|
    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
 | 
						|
         Cand != Conversions.end(); ++Cand)
 | 
						|
      if (Cand->Viable)
 | 
						|
        ICS.Ambiguous.addConversion(Cand->Function);
 | 
						|
  } else {
 | 
						|
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
 | 
						|
  }
 | 
						|
 | 
						|
  return ICS;
 | 
						|
}
 | 
						|
 | 
						|
/// TryImplicitConversion - Attempt to perform an implicit conversion
 | 
						|
/// from the given expression (Expr) to the given type (ToType). This
 | 
						|
/// function returns an implicit conversion sequence that can be used
 | 
						|
/// to perform the initialization. Given
 | 
						|
///
 | 
						|
///   void f(float f);
 | 
						|
///   void g(int i) { f(i); }
 | 
						|
///
 | 
						|
/// this routine would produce an implicit conversion sequence to
 | 
						|
/// describe the initialization of f from i, which will be a standard
 | 
						|
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
 | 
						|
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
 | 
						|
//
 | 
						|
/// Note that this routine only determines how the conversion can be
 | 
						|
/// performed; it does not actually perform the conversion. As such,
 | 
						|
/// it will not produce any diagnostics if no conversion is available,
 | 
						|
/// but will instead return an implicit conversion sequence of kind
 | 
						|
/// "BadConversion".
 | 
						|
///
 | 
						|
/// If @p SuppressUserConversions, then user-defined conversions are
 | 
						|
/// not permitted.
 | 
						|
/// If @p AllowExplicit, then explicit user-defined conversions are
 | 
						|
/// permitted.
 | 
						|
///
 | 
						|
/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
 | 
						|
/// writeback conversion, which allows __autoreleasing id* parameters to
 | 
						|
/// be initialized with __strong id* or __weak id* arguments.
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
 | 
						|
                      bool SuppressUserConversions,
 | 
						|
                      bool AllowExplicit,
 | 
						|
                      bool InOverloadResolution,
 | 
						|
                      bool CStyle,
 | 
						|
                      bool AllowObjCWritebackConversion) {
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
 | 
						|
                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
 | 
						|
    ICS.setStandard();
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!S.getLangOpts().CPlusPlus) {
 | 
						|
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.ics.user]p4:
 | 
						|
  //   A conversion of an expression of class type to the same class
 | 
						|
  //   type is given Exact Match rank, and a conversion of an
 | 
						|
  //   expression of class type to a base class of that type is
 | 
						|
  //   given Conversion rank, in spite of the fact that a copy/move
 | 
						|
  //   constructor (i.e., a user-defined conversion function) is
 | 
						|
  //   called for those cases.
 | 
						|
  QualType FromType = From->getType();
 | 
						|
  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
 | 
						|
      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
 | 
						|
       S.IsDerivedFrom(FromType, ToType))) {
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard.setAsIdentityConversion();
 | 
						|
    ICS.Standard.setFromType(FromType);
 | 
						|
    ICS.Standard.setAllToTypes(ToType);
 | 
						|
 | 
						|
    // We don't actually check at this point whether there is a valid
 | 
						|
    // copy/move constructor, since overloading just assumes that it
 | 
						|
    // exists. When we actually perform initialization, we'll find the
 | 
						|
    // appropriate constructor to copy the returned object, if needed.
 | 
						|
    ICS.Standard.CopyConstructor = 0;
 | 
						|
 | 
						|
    // Determine whether this is considered a derived-to-base conversion.
 | 
						|
    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
 | 
						|
      ICS.Standard.Second = ICK_Derived_To_Base;
 | 
						|
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
 | 
						|
                                  AllowExplicit, InOverloadResolution, CStyle,
 | 
						|
                                  AllowObjCWritebackConversion);
 | 
						|
}
 | 
						|
 | 
						|
ImplicitConversionSequence
 | 
						|
Sema::TryImplicitConversion(Expr *From, QualType ToType,
 | 
						|
                            bool SuppressUserConversions,
 | 
						|
                            bool AllowExplicit,
 | 
						|
                            bool InOverloadResolution,
 | 
						|
                            bool CStyle,
 | 
						|
                            bool AllowObjCWritebackConversion) {
 | 
						|
  return clang::TryImplicitConversion(*this, From, ToType, 
 | 
						|
                                      SuppressUserConversions, AllowExplicit,
 | 
						|
                                      InOverloadResolution, CStyle, 
 | 
						|
                                      AllowObjCWritebackConversion);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformImplicitConversion - Perform an implicit conversion of the
 | 
						|
/// expression From to the type ToType. Returns the
 | 
						|
/// converted expression. Flavor is the kind of conversion we're
 | 
						|
/// performing, used in the error message. If @p AllowExplicit,
 | 
						|
/// explicit user-defined conversions are permitted.
 | 
						|
ExprResult
 | 
						|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | 
						|
                                AssignmentAction Action, bool AllowExplicit) {
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | 
						|
                                AssignmentAction Action, bool AllowExplicit,
 | 
						|
                                ImplicitConversionSequence& ICS) {
 | 
						|
  if (checkPlaceholderForOverload(*this, From))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Objective-C ARC: Determine whether we will allow the writeback conversion.
 | 
						|
  bool AllowObjCWritebackConversion
 | 
						|
    = getLangOpts().ObjCAutoRefCount && 
 | 
						|
      (Action == AA_Passing || Action == AA_Sending);
 | 
						|
 | 
						|
  ICS = clang::TryImplicitConversion(*this, From, ToType,
 | 
						|
                                     /*SuppressUserConversions=*/false,
 | 
						|
                                     AllowExplicit,
 | 
						|
                                     /*InOverloadResolution=*/false,
 | 
						|
                                     /*CStyle=*/false,
 | 
						|
                                     AllowObjCWritebackConversion);
 | 
						|
  return PerformImplicitConversion(From, ToType, ICS, Action);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the conversion from FromType to ToType is a valid
 | 
						|
/// conversion that strips "noreturn" off the nested function type.
 | 
						|
bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
 | 
						|
                                QualType &ResultTy) {
 | 
						|
  if (Context.hasSameUnqualifiedType(FromType, ToType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
 | 
						|
  // where F adds one of the following at most once:
 | 
						|
  //   - a pointer
 | 
						|
  //   - a member pointer
 | 
						|
  //   - a block pointer
 | 
						|
  CanQualType CanTo = Context.getCanonicalType(ToType);
 | 
						|
  CanQualType CanFrom = Context.getCanonicalType(FromType);
 | 
						|
  Type::TypeClass TyClass = CanTo->getTypeClass();
 | 
						|
  if (TyClass != CanFrom->getTypeClass()) return false;
 | 
						|
  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
 | 
						|
    if (TyClass == Type::Pointer) {
 | 
						|
      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
 | 
						|
      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
 | 
						|
    } else if (TyClass == Type::BlockPointer) {
 | 
						|
      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
 | 
						|
      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
 | 
						|
    } else if (TyClass == Type::MemberPointer) {
 | 
						|
      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
 | 
						|
      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    TyClass = CanTo->getTypeClass();
 | 
						|
    if (TyClass != CanFrom->getTypeClass()) return false;
 | 
						|
    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
 | 
						|
  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
 | 
						|
  if (!EInfo.getNoReturn()) return false;
 | 
						|
 | 
						|
  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
 | 
						|
  assert(QualType(FromFn, 0).isCanonical());
 | 
						|
  if (QualType(FromFn, 0) != CanTo) return false;
 | 
						|
 | 
						|
  ResultTy = ToType;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the conversion from FromType to ToType is a valid
 | 
						|
/// vector conversion.
 | 
						|
///
 | 
						|
/// \param ICK Will be set to the vector conversion kind, if this is a vector
 | 
						|
/// conversion.
 | 
						|
static bool IsVectorConversion(ASTContext &Context, QualType FromType,
 | 
						|
                               QualType ToType, ImplicitConversionKind &ICK) {
 | 
						|
  // We need at least one of these types to be a vector type to have a vector
 | 
						|
  // conversion.
 | 
						|
  if (!ToType->isVectorType() && !FromType->isVectorType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Identical types require no conversions.
 | 
						|
  if (Context.hasSameUnqualifiedType(FromType, ToType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // There are no conversions between extended vector types, only identity.
 | 
						|
  if (ToType->isExtVectorType()) {
 | 
						|
    // There are no conversions between extended vector types other than the
 | 
						|
    // identity conversion.
 | 
						|
    if (FromType->isExtVectorType())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Vector splat from any arithmetic type to a vector.
 | 
						|
    if (FromType->isArithmeticType()) {
 | 
						|
      ICK = ICK_Vector_Splat;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We can perform the conversion between vector types in the following cases:
 | 
						|
  // 1)vector types are equivalent AltiVec and GCC vector types
 | 
						|
  // 2)lax vector conversions are permitted and the vector types are of the
 | 
						|
  //   same size
 | 
						|
  if (ToType->isVectorType() && FromType->isVectorType()) {
 | 
						|
    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
 | 
						|
        (Context.getLangOpts().LaxVectorConversions &&
 | 
						|
         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
 | 
						|
      ICK = ICK_Vector_Conversion;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
 | 
						|
                                bool InOverloadResolution,
 | 
						|
                                StandardConversionSequence &SCS,
 | 
						|
                                bool CStyle);
 | 
						|
  
 | 
						|
/// IsStandardConversion - Determines whether there is a standard
 | 
						|
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
 | 
						|
/// expression From to the type ToType. Standard conversion sequences
 | 
						|
/// only consider non-class types; for conversions that involve class
 | 
						|
/// types, use TryImplicitConversion. If a conversion exists, SCS will
 | 
						|
/// contain the standard conversion sequence required to perform this
 | 
						|
/// conversion and this routine will return true. Otherwise, this
 | 
						|
/// routine will return false and the value of SCS is unspecified.
 | 
						|
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
 | 
						|
                                 bool InOverloadResolution,
 | 
						|
                                 StandardConversionSequence &SCS,
 | 
						|
                                 bool CStyle,
 | 
						|
                                 bool AllowObjCWritebackConversion) {
 | 
						|
  QualType FromType = From->getType();
 | 
						|
 | 
						|
  // Standard conversions (C++ [conv])
 | 
						|
  SCS.setAsIdentityConversion();
 | 
						|
  SCS.DeprecatedStringLiteralToCharPtr = false;
 | 
						|
  SCS.IncompatibleObjC = false;
 | 
						|
  SCS.setFromType(FromType);
 | 
						|
  SCS.CopyConstructor = 0;
 | 
						|
 | 
						|
  // There are no standard conversions for class types in C++, so
 | 
						|
  // abort early. When overloading in C, however, we do permit
 | 
						|
  if (FromType->isRecordType() || ToType->isRecordType()) {
 | 
						|
    if (S.getLangOpts().CPlusPlus)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // When we're overloading in C, we allow, as standard conversions,
 | 
						|
  }
 | 
						|
 | 
						|
  // The first conversion can be an lvalue-to-rvalue conversion,
 | 
						|
  // array-to-pointer conversion, or function-to-pointer conversion
 | 
						|
  // (C++ 4p1).
 | 
						|
 | 
						|
  if (FromType == S.Context.OverloadTy) {
 | 
						|
    DeclAccessPair AccessPair;
 | 
						|
    if (FunctionDecl *Fn
 | 
						|
          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
 | 
						|
                                                 AccessPair)) {
 | 
						|
      // We were able to resolve the address of the overloaded function,
 | 
						|
      // so we can convert to the type of that function.
 | 
						|
      FromType = Fn->getType();
 | 
						|
 | 
						|
      // we can sometimes resolve &foo<int> regardless of ToType, so check
 | 
						|
      // if the type matches (identity) or we are converting to bool
 | 
						|
      if (!S.Context.hasSameUnqualifiedType(
 | 
						|
                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
 | 
						|
        QualType resultTy;
 | 
						|
        // if the function type matches except for [[noreturn]], it's ok
 | 
						|
        if (!S.IsNoReturnConversion(FromType,
 | 
						|
              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
 | 
						|
          // otherwise, only a boolean conversion is standard   
 | 
						|
          if (!ToType->isBooleanType()) 
 | 
						|
            return false; 
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if the "from" expression is taking the address of an overloaded
 | 
						|
      // function and recompute the FromType accordingly. Take advantage of the
 | 
						|
      // fact that non-static member functions *must* have such an address-of
 | 
						|
      // expression. 
 | 
						|
      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
 | 
						|
      if (Method && !Method->isStatic()) {
 | 
						|
        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
 | 
						|
               "Non-unary operator on non-static member address");
 | 
						|
        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
 | 
						|
               == UO_AddrOf &&
 | 
						|
               "Non-address-of operator on non-static member address");
 | 
						|
        const Type *ClassType
 | 
						|
          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
 | 
						|
        FromType = S.Context.getMemberPointerType(FromType, ClassType);
 | 
						|
      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
 | 
						|
        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
 | 
						|
               UO_AddrOf &&
 | 
						|
               "Non-address-of operator for overloaded function expression");
 | 
						|
        FromType = S.Context.getPointerType(FromType);
 | 
						|
      }
 | 
						|
 | 
						|
      // Check that we've computed the proper type after overload resolution.
 | 
						|
      assert(S.Context.hasSameType(
 | 
						|
        FromType,
 | 
						|
        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Lvalue-to-rvalue conversion (C++11 4.1):
 | 
						|
  //   A glvalue (3.10) of a non-function, non-array type T can
 | 
						|
  //   be converted to a prvalue.
 | 
						|
  bool argIsLValue = From->isGLValue();
 | 
						|
  if (argIsLValue &&
 | 
						|
      !FromType->isFunctionType() && !FromType->isArrayType() &&
 | 
						|
      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
 | 
						|
    SCS.First = ICK_Lvalue_To_Rvalue;
 | 
						|
 | 
						|
    // C11 6.3.2.1p2:
 | 
						|
    //   ... if the lvalue has atomic type, the value has the non-atomic version 
 | 
						|
    //   of the type of the lvalue ...
 | 
						|
    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
 | 
						|
      FromType = Atomic->getValueType();
 | 
						|
 | 
						|
    // If T is a non-class type, the type of the rvalue is the
 | 
						|
    // cv-unqualified version of T. Otherwise, the type of the rvalue
 | 
						|
    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
 | 
						|
    // just strip the qualifiers because they don't matter.
 | 
						|
    FromType = FromType.getUnqualifiedType();
 | 
						|
  } else if (FromType->isArrayType()) {
 | 
						|
    // Array-to-pointer conversion (C++ 4.2)
 | 
						|
    SCS.First = ICK_Array_To_Pointer;
 | 
						|
 | 
						|
    // An lvalue or rvalue of type "array of N T" or "array of unknown
 | 
						|
    // bound of T" can be converted to an rvalue of type "pointer to
 | 
						|
    // T" (C++ 4.2p1).
 | 
						|
    FromType = S.Context.getArrayDecayedType(FromType);
 | 
						|
 | 
						|
    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
 | 
						|
      // This conversion is deprecated. (C++ D.4).
 | 
						|
      SCS.DeprecatedStringLiteralToCharPtr = true;
 | 
						|
 | 
						|
      // For the purpose of ranking in overload resolution
 | 
						|
      // (13.3.3.1.1), this conversion is considered an
 | 
						|
      // array-to-pointer conversion followed by a qualification
 | 
						|
      // conversion (4.4). (C++ 4.2p2)
 | 
						|
      SCS.Second = ICK_Identity;
 | 
						|
      SCS.Third = ICK_Qualification;
 | 
						|
      SCS.QualificationIncludesObjCLifetime = false;
 | 
						|
      SCS.setAllToTypes(FromType);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (FromType->isFunctionType() && argIsLValue) {
 | 
						|
    // Function-to-pointer conversion (C++ 4.3).
 | 
						|
    SCS.First = ICK_Function_To_Pointer;
 | 
						|
 | 
						|
    // An lvalue of function type T can be converted to an rvalue of
 | 
						|
    // type "pointer to T." The result is a pointer to the
 | 
						|
    // function. (C++ 4.3p1).
 | 
						|
    FromType = S.Context.getPointerType(FromType);
 | 
						|
  } else {
 | 
						|
    // We don't require any conversions for the first step.
 | 
						|
    SCS.First = ICK_Identity;
 | 
						|
  }
 | 
						|
  SCS.setToType(0, FromType);
 | 
						|
 | 
						|
  // The second conversion can be an integral promotion, floating
 | 
						|
  // point promotion, integral conversion, floating point conversion,
 | 
						|
  // floating-integral conversion, pointer conversion,
 | 
						|
  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
 | 
						|
  // For overloading in C, this can also be a "compatible-type"
 | 
						|
  // conversion.
 | 
						|
  bool IncompatibleObjC = false;
 | 
						|
  ImplicitConversionKind SecondICK = ICK_Identity;
 | 
						|
  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
 | 
						|
    // The unqualified versions of the types are the same: there's no
 | 
						|
    // conversion to do.
 | 
						|
    SCS.Second = ICK_Identity;
 | 
						|
  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
 | 
						|
    // Integral promotion (C++ 4.5).
 | 
						|
    SCS.Second = ICK_Integral_Promotion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
 | 
						|
    // Floating point promotion (C++ 4.6).
 | 
						|
    SCS.Second = ICK_Floating_Promotion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (S.IsComplexPromotion(FromType, ToType)) {
 | 
						|
    // Complex promotion (Clang extension)
 | 
						|
    SCS.Second = ICK_Complex_Promotion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (ToType->isBooleanType() &&
 | 
						|
             (FromType->isArithmeticType() ||
 | 
						|
              FromType->isAnyPointerType() ||
 | 
						|
              FromType->isBlockPointerType() ||
 | 
						|
              FromType->isMemberPointerType() ||
 | 
						|
              FromType->isNullPtrType())) {
 | 
						|
    // Boolean conversions (C++ 4.12).
 | 
						|
    SCS.Second = ICK_Boolean_Conversion;
 | 
						|
    FromType = S.Context.BoolTy;
 | 
						|
  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
 | 
						|
             ToType->isIntegralType(S.Context)) {
 | 
						|
    // Integral conversions (C++ 4.7).
 | 
						|
    SCS.Second = ICK_Integral_Conversion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
 | 
						|
    // Complex conversions (C99 6.3.1.6)
 | 
						|
    SCS.Second = ICK_Complex_Conversion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
 | 
						|
             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
 | 
						|
    // Complex-real conversions (C99 6.3.1.7)
 | 
						|
    SCS.Second = ICK_Complex_Real;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
 | 
						|
    // Floating point conversions (C++ 4.8).
 | 
						|
    SCS.Second = ICK_Floating_Conversion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if ((FromType->isRealFloatingType() &&
 | 
						|
              ToType->isIntegralType(S.Context)) ||
 | 
						|
             (FromType->isIntegralOrUnscopedEnumerationType() &&
 | 
						|
              ToType->isRealFloatingType())) {
 | 
						|
    // Floating-integral conversions (C++ 4.9).
 | 
						|
    SCS.Second = ICK_Floating_Integral;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
 | 
						|
    SCS.Second = ICK_Block_Pointer_Conversion;
 | 
						|
  } else if (AllowObjCWritebackConversion &&
 | 
						|
             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
 | 
						|
    SCS.Second = ICK_Writeback_Conversion;
 | 
						|
  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
 | 
						|
                                   FromType, IncompatibleObjC)) {
 | 
						|
    // Pointer conversions (C++ 4.10).
 | 
						|
    SCS.Second = ICK_Pointer_Conversion;
 | 
						|
    SCS.IncompatibleObjC = IncompatibleObjC;
 | 
						|
    FromType = FromType.getUnqualifiedType();
 | 
						|
  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
 | 
						|
                                         InOverloadResolution, FromType)) {
 | 
						|
    // Pointer to member conversions (4.11).
 | 
						|
    SCS.Second = ICK_Pointer_Member;
 | 
						|
  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
 | 
						|
    SCS.Second = SecondICK;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (!S.getLangOpts().CPlusPlus &&
 | 
						|
             S.Context.typesAreCompatible(ToType, FromType)) {
 | 
						|
    // Compatible conversions (Clang extension for C function overloading)
 | 
						|
    SCS.Second = ICK_Compatible_Conversion;
 | 
						|
    FromType = ToType.getUnqualifiedType();
 | 
						|
  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
 | 
						|
    // Treat a conversion that strips "noreturn" as an identity conversion.
 | 
						|
    SCS.Second = ICK_NoReturn_Adjustment;
 | 
						|
  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
 | 
						|
                                             InOverloadResolution,
 | 
						|
                                             SCS, CStyle)) {
 | 
						|
    SCS.Second = ICK_TransparentUnionConversion;
 | 
						|
    FromType = ToType;
 | 
						|
  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
 | 
						|
                                 CStyle)) {
 | 
						|
    // tryAtomicConversion has updated the standard conversion sequence
 | 
						|
    // appropriately.
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    // No second conversion required.
 | 
						|
    SCS.Second = ICK_Identity;
 | 
						|
  }
 | 
						|
  SCS.setToType(1, FromType);
 | 
						|
 | 
						|
  QualType CanonFrom;
 | 
						|
  QualType CanonTo;
 | 
						|
  // The third conversion can be a qualification conversion (C++ 4p1).
 | 
						|
  bool ObjCLifetimeConversion;
 | 
						|
  if (S.IsQualificationConversion(FromType, ToType, CStyle, 
 | 
						|
                                  ObjCLifetimeConversion)) {
 | 
						|
    SCS.Third = ICK_Qualification;
 | 
						|
    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
 | 
						|
    FromType = ToType;
 | 
						|
    CanonFrom = S.Context.getCanonicalType(FromType);
 | 
						|
    CanonTo = S.Context.getCanonicalType(ToType);
 | 
						|
  } else {
 | 
						|
    // No conversion required
 | 
						|
    SCS.Third = ICK_Identity;
 | 
						|
 | 
						|
    // C++ [over.best.ics]p6:
 | 
						|
    //   [...] Any difference in top-level cv-qualification is
 | 
						|
    //   subsumed by the initialization itself and does not constitute
 | 
						|
    //   a conversion. [...]
 | 
						|
    CanonFrom = S.Context.getCanonicalType(FromType);
 | 
						|
    CanonTo = S.Context.getCanonicalType(ToType);
 | 
						|
    if (CanonFrom.getLocalUnqualifiedType()
 | 
						|
                                       == CanonTo.getLocalUnqualifiedType() &&
 | 
						|
        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
 | 
						|
         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
 | 
						|
         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
 | 
						|
      FromType = ToType;
 | 
						|
      CanonFrom = CanonTo;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SCS.setToType(2, FromType);
 | 
						|
 | 
						|
  // If we have not converted the argument type to the parameter type,
 | 
						|
  // this is a bad conversion sequence.
 | 
						|
  if (CanonFrom != CanonTo)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
  
 | 
						|
static bool
 | 
						|
IsTransparentUnionStandardConversion(Sema &S, Expr* From, 
 | 
						|
                                     QualType &ToType,
 | 
						|
                                     bool InOverloadResolution,
 | 
						|
                                     StandardConversionSequence &SCS,
 | 
						|
                                     bool CStyle) {
 | 
						|
    
 | 
						|
  const RecordType *UT = ToType->getAsUnionType();
 | 
						|
  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | 
						|
    return false;
 | 
						|
  // The field to initialize within the transparent union.
 | 
						|
  RecordDecl *UD = UT->getDecl();
 | 
						|
  // It's compatible if the expression matches any of the fields.
 | 
						|
  for (RecordDecl::field_iterator it = UD->field_begin(),
 | 
						|
       itend = UD->field_end();
 | 
						|
       it != itend; ++it) {
 | 
						|
    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
 | 
						|
                             CStyle, /*ObjCWritebackConversion=*/false)) {
 | 
						|
      ToType = it->getType();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsIntegralPromotion - Determines whether the conversion from the
 | 
						|
/// expression From (whose potentially-adjusted type is FromType) to
 | 
						|
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
 | 
						|
/// sets PromotedType to the promoted type.
 | 
						|
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
 | 
						|
  const BuiltinType *To = ToType->getAs<BuiltinType>();
 | 
						|
  // All integers are built-in.
 | 
						|
  if (!To) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // An rvalue of type char, signed char, unsigned char, short int, or
 | 
						|
  // unsigned short int can be converted to an rvalue of type int if
 | 
						|
  // int can represent all the values of the source type; otherwise,
 | 
						|
  // the source rvalue can be converted to an rvalue of type unsigned
 | 
						|
  // int (C++ 4.5p1).
 | 
						|
  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
 | 
						|
      !FromType->isEnumeralType()) {
 | 
						|
    if (// We can promote any signed, promotable integer type to an int
 | 
						|
        (FromType->isSignedIntegerType() ||
 | 
						|
         // We can promote any unsigned integer type whose size is
 | 
						|
         // less than int to an int.
 | 
						|
         (!FromType->isSignedIntegerType() &&
 | 
						|
          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
 | 
						|
      return To->getKind() == BuiltinType::Int;
 | 
						|
    }
 | 
						|
 | 
						|
    return To->getKind() == BuiltinType::UInt;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [conv.prom]p3:
 | 
						|
  //   A prvalue of an unscoped enumeration type whose underlying type is not
 | 
						|
  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
 | 
						|
  //   following types that can represent all the values of the enumeration
 | 
						|
  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
 | 
						|
  //   unsigned int, long int, unsigned long int, long long int, or unsigned
 | 
						|
  //   long long int. If none of the types in that list can represent all the
 | 
						|
  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
 | 
						|
  //   type can be converted to an rvalue a prvalue of the extended integer type
 | 
						|
  //   with lowest integer conversion rank (4.13) greater than the rank of long
 | 
						|
  //   long in which all the values of the enumeration can be represented. If
 | 
						|
  //   there are two such extended types, the signed one is chosen.
 | 
						|
  // C++11 [conv.prom]p4:
 | 
						|
  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
 | 
						|
  //   can be converted to a prvalue of its underlying type. Moreover, if
 | 
						|
  //   integral promotion can be applied to its underlying type, a prvalue of an
 | 
						|
  //   unscoped enumeration type whose underlying type is fixed can also be
 | 
						|
  //   converted to a prvalue of the promoted underlying type.
 | 
						|
  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
 | 
						|
    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
 | 
						|
    // provided for a scoped enumeration.
 | 
						|
    if (FromEnumType->getDecl()->isScoped())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We can perform an integral promotion to the underlying type of the enum,
 | 
						|
    // even if that's not the promoted type.
 | 
						|
    if (FromEnumType->getDecl()->isFixed()) {
 | 
						|
      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
 | 
						|
      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
 | 
						|
             IsIntegralPromotion(From, Underlying, ToType);
 | 
						|
    }
 | 
						|
 | 
						|
    // We have already pre-calculated the promotion type, so this is trivial.
 | 
						|
    if (ToType->isIntegerType() &&
 | 
						|
        !RequireCompleteType(From->getLocStart(), FromType, 0))
 | 
						|
      return Context.hasSameUnqualifiedType(ToType,
 | 
						|
                                FromEnumType->getDecl()->getPromotionType());
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [conv.prom]p2:
 | 
						|
  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
 | 
						|
  //   to an rvalue a prvalue of the first of the following types that can
 | 
						|
  //   represent all the values of its underlying type: int, unsigned int,
 | 
						|
  //   long int, unsigned long int, long long int, or unsigned long long int.
 | 
						|
  //   If none of the types in that list can represent all the values of its
 | 
						|
  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
 | 
						|
  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
 | 
						|
  //   type.
 | 
						|
  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
 | 
						|
      ToType->isIntegerType()) {
 | 
						|
    // Determine whether the type we're converting from is signed or
 | 
						|
    // unsigned.
 | 
						|
    bool FromIsSigned = FromType->isSignedIntegerType();
 | 
						|
    uint64_t FromSize = Context.getTypeSize(FromType);
 | 
						|
 | 
						|
    // The types we'll try to promote to, in the appropriate
 | 
						|
    // order. Try each of these types.
 | 
						|
    QualType PromoteTypes[6] = {
 | 
						|
      Context.IntTy, Context.UnsignedIntTy,
 | 
						|
      Context.LongTy, Context.UnsignedLongTy ,
 | 
						|
      Context.LongLongTy, Context.UnsignedLongLongTy
 | 
						|
    };
 | 
						|
    for (int Idx = 0; Idx < 6; ++Idx) {
 | 
						|
      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
 | 
						|
      if (FromSize < ToSize ||
 | 
						|
          (FromSize == ToSize &&
 | 
						|
           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
 | 
						|
        // We found the type that we can promote to. If this is the
 | 
						|
        // type we wanted, we have a promotion. Otherwise, no
 | 
						|
        // promotion.
 | 
						|
        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // An rvalue for an integral bit-field (9.6) can be converted to an
 | 
						|
  // rvalue of type int if int can represent all the values of the
 | 
						|
  // bit-field; otherwise, it can be converted to unsigned int if
 | 
						|
  // unsigned int can represent all the values of the bit-field. If
 | 
						|
  // the bit-field is larger yet, no integral promotion applies to
 | 
						|
  // it. If the bit-field has an enumerated type, it is treated as any
 | 
						|
  // other value of that type for promotion purposes (C++ 4.5p3).
 | 
						|
  // FIXME: We should delay checking of bit-fields until we actually perform the
 | 
						|
  // conversion.
 | 
						|
  using llvm::APSInt;
 | 
						|
  if (From)
 | 
						|
    if (FieldDecl *MemberDecl = From->getBitField()) {
 | 
						|
      APSInt BitWidth;
 | 
						|
      if (FromType->isIntegralType(Context) &&
 | 
						|
          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
 | 
						|
        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
 | 
						|
        ToSize = Context.getTypeSize(ToType);
 | 
						|
 | 
						|
        // Are we promoting to an int from a bitfield that fits in an int?
 | 
						|
        if (BitWidth < ToSize ||
 | 
						|
            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
 | 
						|
          return To->getKind() == BuiltinType::Int;
 | 
						|
        }
 | 
						|
 | 
						|
        // Are we promoting to an unsigned int from an unsigned bitfield
 | 
						|
        // that fits into an unsigned int?
 | 
						|
        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
 | 
						|
          return To->getKind() == BuiltinType::UInt;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // An rvalue of type bool can be converted to an rvalue of type int,
 | 
						|
  // with false becoming zero and true becoming one (C++ 4.5p4).
 | 
						|
  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsFloatingPointPromotion - Determines whether the conversion from
 | 
						|
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
 | 
						|
/// returns true and sets PromotedType to the promoted type.
 | 
						|
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
 | 
						|
  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
 | 
						|
    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
 | 
						|
      /// An rvalue of type float can be converted to an rvalue of type
 | 
						|
      /// double. (C++ 4.6p1).
 | 
						|
      if (FromBuiltin->getKind() == BuiltinType::Float &&
 | 
						|
          ToBuiltin->getKind() == BuiltinType::Double)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // C99 6.3.1.5p1:
 | 
						|
      //   When a float is promoted to double or long double, or a
 | 
						|
      //   double is promoted to long double [...].
 | 
						|
      if (!getLangOpts().CPlusPlus &&
 | 
						|
          (FromBuiltin->getKind() == BuiltinType::Float ||
 | 
						|
           FromBuiltin->getKind() == BuiltinType::Double) &&
 | 
						|
          (ToBuiltin->getKind() == BuiltinType::LongDouble))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Half can be promoted to float.
 | 
						|
      if (!getLangOpts().NativeHalfType &&
 | 
						|
           FromBuiltin->getKind() == BuiltinType::Half &&
 | 
						|
          ToBuiltin->getKind() == BuiltinType::Float)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine if a conversion is a complex promotion.
 | 
						|
///
 | 
						|
/// A complex promotion is defined as a complex -> complex conversion
 | 
						|
/// where the conversion between the underlying real types is a
 | 
						|
/// floating-point or integral promotion.
 | 
						|
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
 | 
						|
  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
 | 
						|
  if (!FromComplex)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
 | 
						|
  if (!ToComplex)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return IsFloatingPointPromotion(FromComplex->getElementType(),
 | 
						|
                                  ToComplex->getElementType()) ||
 | 
						|
    IsIntegralPromotion(0, FromComplex->getElementType(),
 | 
						|
                        ToComplex->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
 | 
						|
/// the pointer type FromPtr to a pointer to type ToPointee, with the
 | 
						|
/// same type qualifiers as FromPtr has on its pointee type. ToType,
 | 
						|
/// if non-empty, will be a pointer to ToType that may or may not have
 | 
						|
/// the right set of qualifiers on its pointee.
 | 
						|
///
 | 
						|
static QualType
 | 
						|
BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
 | 
						|
                                   QualType ToPointee, QualType ToType,
 | 
						|
                                   ASTContext &Context,
 | 
						|
                                   bool StripObjCLifetime = false) {
 | 
						|
  assert((FromPtr->getTypeClass() == Type::Pointer ||
 | 
						|
          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
 | 
						|
         "Invalid similarly-qualified pointer type");
 | 
						|
 | 
						|
  /// Conversions to 'id' subsume cv-qualifier conversions.
 | 
						|
  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 
 | 
						|
    return ToType.getUnqualifiedType();
 | 
						|
 | 
						|
  QualType CanonFromPointee
 | 
						|
    = Context.getCanonicalType(FromPtr->getPointeeType());
 | 
						|
  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
 | 
						|
  Qualifiers Quals = CanonFromPointee.getQualifiers();
 | 
						|
 | 
						|
  if (StripObjCLifetime)
 | 
						|
    Quals.removeObjCLifetime();
 | 
						|
  
 | 
						|
  // Exact qualifier match -> return the pointer type we're converting to.
 | 
						|
  if (CanonToPointee.getLocalQualifiers() == Quals) {
 | 
						|
    // ToType is exactly what we need. Return it.
 | 
						|
    if (!ToType.isNull())
 | 
						|
      return ToType.getUnqualifiedType();
 | 
						|
 | 
						|
    // Build a pointer to ToPointee. It has the right qualifiers
 | 
						|
    // already.
 | 
						|
    if (isa<ObjCObjectPointerType>(ToType))
 | 
						|
      return Context.getObjCObjectPointerType(ToPointee);
 | 
						|
    return Context.getPointerType(ToPointee);
 | 
						|
  }
 | 
						|
 | 
						|
  // Just build a canonical type that has the right qualifiers.
 | 
						|
  QualType QualifiedCanonToPointee
 | 
						|
    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
 | 
						|
 | 
						|
  if (isa<ObjCObjectPointerType>(ToType))
 | 
						|
    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
 | 
						|
  return Context.getPointerType(QualifiedCanonToPointee);
 | 
						|
}
 | 
						|
 | 
						|
static bool isNullPointerConstantForConversion(Expr *Expr,
 | 
						|
                                               bool InOverloadResolution,
 | 
						|
                                               ASTContext &Context) {
 | 
						|
  // Handle value-dependent integral null pointer constants correctly.
 | 
						|
  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
 | 
						|
  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
 | 
						|
      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
 | 
						|
    return !InOverloadResolution;
 | 
						|
 | 
						|
  return Expr->isNullPointerConstant(Context,
 | 
						|
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
 | 
						|
                                        : Expr::NPC_ValueDependentIsNull);
 | 
						|
}
 | 
						|
 | 
						|
/// IsPointerConversion - Determines whether the conversion of the
 | 
						|
/// expression From, which has the (possibly adjusted) type FromType,
 | 
						|
/// can be converted to the type ToType via a pointer conversion (C++
 | 
						|
/// 4.10). If so, returns true and places the converted type (that
 | 
						|
/// might differ from ToType in its cv-qualifiers at some level) into
 | 
						|
/// ConvertedType.
 | 
						|
///
 | 
						|
/// This routine also supports conversions to and from block pointers
 | 
						|
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
 | 
						|
/// pointers to interfaces. FIXME: Once we've determined the
 | 
						|
/// appropriate overloading rules for Objective-C, we may want to
 | 
						|
/// split the Objective-C checks into a different routine; however,
 | 
						|
/// GCC seems to consider all of these conversions to be pointer
 | 
						|
/// conversions, so for now they live here. IncompatibleObjC will be
 | 
						|
/// set if the conversion is an allowed Objective-C conversion that
 | 
						|
/// should result in a warning.
 | 
						|
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
 | 
						|
                               bool InOverloadResolution,
 | 
						|
                               QualType& ConvertedType,
 | 
						|
                               bool &IncompatibleObjC) {
 | 
						|
  IncompatibleObjC = false;
 | 
						|
  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
 | 
						|
                              IncompatibleObjC))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Conversion from a null pointer constant to any Objective-C pointer type.
 | 
						|
  if (ToType->isObjCObjectPointerType() &&
 | 
						|
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Blocks: Block pointers can be converted to void*.
 | 
						|
  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
 | 
						|
      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Blocks: A null pointer constant can be converted to a block
 | 
						|
  // pointer type.
 | 
						|
  if (ToType->isBlockPointerType() &&
 | 
						|
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the left-hand-side is nullptr_t, the right side can be a null
 | 
						|
  // pointer constant.
 | 
						|
  if (ToType->isNullPtrType() &&
 | 
						|
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
 | 
						|
  if (!ToTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
 | 
						|
  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Beyond this point, both types need to be pointers
 | 
						|
  // , including objective-c pointers.
 | 
						|
  QualType ToPointeeType = ToTypePtr->getPointeeType();
 | 
						|
  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
 | 
						|
      !getLangOpts().ObjCAutoRefCount) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(
 | 
						|
                                      FromType->getAs<ObjCObjectPointerType>(),
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
 | 
						|
  if (!FromTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType FromPointeeType = FromTypePtr->getPointeeType();
 | 
						|
 | 
						|
  // If the unqualified pointee types are the same, this can't be a
 | 
						|
  // pointer conversion, so don't do all of the work below.
 | 
						|
  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // An rvalue of type "pointer to cv T," where T is an object type,
 | 
						|
  // can be converted to an rvalue of type "pointer to cv void" (C++
 | 
						|
  // 4.10p2).
 | 
						|
  if (FromPointeeType->isIncompleteOrObjectType() &&
 | 
						|
      ToPointeeType->isVoidType()) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context,
 | 
						|
                                                   /*StripObjCLifetime=*/true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // MSVC allows implicit function to void* type conversion.
 | 
						|
  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
 | 
						|
      ToPointeeType->isVoidType()) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // When we're overloading in C, we allow a special kind of pointer
 | 
						|
  // conversion for compatible-but-not-identical pointee types.
 | 
						|
  if (!getLangOpts().CPlusPlus &&
 | 
						|
      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [conv.ptr]p3:
 | 
						|
  //
 | 
						|
  //   An rvalue of type "pointer to cv D," where D is a class type,
 | 
						|
  //   can be converted to an rvalue of type "pointer to cv B," where
 | 
						|
  //   B is a base class (clause 10) of D. If B is an inaccessible
 | 
						|
  //   (clause 11) or ambiguous (10.2) base class of D, a program that
 | 
						|
  //   necessitates this conversion is ill-formed. The result of the
 | 
						|
  //   conversion is a pointer to the base class sub-object of the
 | 
						|
  //   derived class object. The null pointer value is converted to
 | 
						|
  //   the null pointer value of the destination type.
 | 
						|
  //
 | 
						|
  // Note that we do not check for ambiguity or inaccessibility
 | 
						|
  // here. That is handled by CheckPointerConversion.
 | 
						|
  if (getLangOpts().CPlusPlus &&
 | 
						|
      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
 | 
						|
      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
 | 
						|
      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
 | 
						|
      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
 | 
						|
      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
 | 
						|
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
 | 
						|
                                                       ToPointeeType,
 | 
						|
                                                       ToType, Context);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 
 | 
						|
/// \brief Adopt the given qualifiers for the given type.
 | 
						|
static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
 | 
						|
  Qualifiers TQs = T.getQualifiers();
 | 
						|
  
 | 
						|
  // Check whether qualifiers already match.
 | 
						|
  if (TQs == Qs)
 | 
						|
    return T;
 | 
						|
  
 | 
						|
  if (Qs.compatiblyIncludes(TQs))
 | 
						|
    return Context.getQualifiedType(T, Qs);
 | 
						|
  
 | 
						|
  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
 | 
						|
}
 | 
						|
 | 
						|
/// isObjCPointerConversion - Determines whether this is an
 | 
						|
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
 | 
						|
/// with the same arguments and return values.
 | 
						|
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
 | 
						|
                                   QualType& ConvertedType,
 | 
						|
                                   bool &IncompatibleObjC) {
 | 
						|
  if (!getLangOpts().ObjC1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The set of qualifiers on the type we're converting from.
 | 
						|
  Qualifiers FromQualifiers = FromType.getQualifiers();
 | 
						|
  
 | 
						|
  // First, we handle all conversions on ObjC object pointer types.
 | 
						|
  const ObjCObjectPointerType* ToObjCPtr =
 | 
						|
    ToType->getAs<ObjCObjectPointerType>();
 | 
						|
  const ObjCObjectPointerType *FromObjCPtr =
 | 
						|
    FromType->getAs<ObjCObjectPointerType>();
 | 
						|
 | 
						|
  if (ToObjCPtr && FromObjCPtr) {
 | 
						|
    // If the pointee types are the same (ignoring qualifications),
 | 
						|
    // then this is not a pointer conversion.
 | 
						|
    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
 | 
						|
                                       FromObjCPtr->getPointeeType()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check for compatible 
 | 
						|
    // Objective C++: We're able to convert between "id" or "Class" and a
 | 
						|
    // pointer to any interface (in both directions).
 | 
						|
    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
 | 
						|
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Conversions with Objective-C's id<...>.
 | 
						|
    if ((FromObjCPtr->isObjCQualifiedIdType() ||
 | 
						|
         ToObjCPtr->isObjCQualifiedIdType()) &&
 | 
						|
        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
 | 
						|
                                                  /*compare=*/false)) {
 | 
						|
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Objective C++: We're able to convert from a pointer to an
 | 
						|
    // interface to a pointer to a different interface.
 | 
						|
    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
 | 
						|
      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
 | 
						|
      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
 | 
						|
      if (getLangOpts().CPlusPlus && LHS && RHS &&
 | 
						|
          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
 | 
						|
                                                FromObjCPtr->getPointeeType()))
 | 
						|
        return false;
 | 
						|
      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
 | 
						|
                                                   ToObjCPtr->getPointeeType(),
 | 
						|
                                                         ToType, Context);
 | 
						|
      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
 | 
						|
      // Okay: this is some kind of implicit downcast of Objective-C
 | 
						|
      // interfaces, which is permitted. However, we're going to
 | 
						|
      // complain about it.
 | 
						|
      IncompatibleObjC = true;
 | 
						|
      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
 | 
						|
                                                   ToObjCPtr->getPointeeType(),
 | 
						|
                                                         ToType, Context);
 | 
						|
      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Beyond this point, both types need to be C pointers or block pointers.
 | 
						|
  QualType ToPointeeType;
 | 
						|
  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
 | 
						|
    ToPointeeType = ToCPtr->getPointeeType();
 | 
						|
  else if (const BlockPointerType *ToBlockPtr =
 | 
						|
            ToType->getAs<BlockPointerType>()) {
 | 
						|
    // Objective C++: We're able to convert from a pointer to any object
 | 
						|
    // to a block pointer type.
 | 
						|
    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
 | 
						|
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    ToPointeeType = ToBlockPtr->getPointeeType();
 | 
						|
  }
 | 
						|
  else if (FromType->getAs<BlockPointerType>() &&
 | 
						|
           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
 | 
						|
    // Objective C++: We're able to convert from a block pointer type to a
 | 
						|
    // pointer to any object.
 | 
						|
    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType FromPointeeType;
 | 
						|
  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
 | 
						|
    FromPointeeType = FromCPtr->getPointeeType();
 | 
						|
  else if (const BlockPointerType *FromBlockPtr =
 | 
						|
           FromType->getAs<BlockPointerType>())
 | 
						|
    FromPointeeType = FromBlockPtr->getPointeeType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have pointers to pointers, recursively check whether this
 | 
						|
  // is an Objective-C conversion.
 | 
						|
  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
 | 
						|
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
 | 
						|
                              IncompatibleObjC)) {
 | 
						|
    // We always complain about this conversion.
 | 
						|
    IncompatibleObjC = true;
 | 
						|
    ConvertedType = Context.getPointerType(ConvertedType);
 | 
						|
    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // Allow conversion of pointee being objective-c pointer to another one;
 | 
						|
  // as in I* to id.
 | 
						|
  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
 | 
						|
      ToPointeeType->getAs<ObjCObjectPointerType>() &&
 | 
						|
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
 | 
						|
                              IncompatibleObjC)) {
 | 
						|
        
 | 
						|
    ConvertedType = Context.getPointerType(ConvertedType);
 | 
						|
    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have pointers to functions or blocks, check whether the only
 | 
						|
  // differences in the argument and result types are in Objective-C
 | 
						|
  // pointer conversions. If so, we permit the conversion (but
 | 
						|
  // complain about it).
 | 
						|
  const FunctionProtoType *FromFunctionType
 | 
						|
    = FromPointeeType->getAs<FunctionProtoType>();
 | 
						|
  const FunctionProtoType *ToFunctionType
 | 
						|
    = ToPointeeType->getAs<FunctionProtoType>();
 | 
						|
  if (FromFunctionType && ToFunctionType) {
 | 
						|
    // If the function types are exactly the same, this isn't an
 | 
						|
    // Objective-C pointer conversion.
 | 
						|
    if (Context.getCanonicalType(FromPointeeType)
 | 
						|
          == Context.getCanonicalType(ToPointeeType))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Perform the quick checks that will tell us whether these
 | 
						|
    // function types are obviously different.
 | 
						|
    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
 | 
						|
        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
 | 
						|
        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool HasObjCConversion = false;
 | 
						|
    if (Context.getCanonicalType(FromFunctionType->getResultType())
 | 
						|
          == Context.getCanonicalType(ToFunctionType->getResultType())) {
 | 
						|
      // Okay, the types match exactly. Nothing to do.
 | 
						|
    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
 | 
						|
                                       ToFunctionType->getResultType(),
 | 
						|
                                       ConvertedType, IncompatibleObjC)) {
 | 
						|
      // Okay, we have an Objective-C pointer conversion.
 | 
						|
      HasObjCConversion = true;
 | 
						|
    } else {
 | 
						|
      // Function types are too different. Abort.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check argument types.
 | 
						|
    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
 | 
						|
         ArgIdx != NumArgs; ++ArgIdx) {
 | 
						|
      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
 | 
						|
      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
 | 
						|
      if (Context.getCanonicalType(FromArgType)
 | 
						|
            == Context.getCanonicalType(ToArgType)) {
 | 
						|
        // Okay, the types match exactly. Nothing to do.
 | 
						|
      } else if (isObjCPointerConversion(FromArgType, ToArgType,
 | 
						|
                                         ConvertedType, IncompatibleObjC)) {
 | 
						|
        // Okay, we have an Objective-C pointer conversion.
 | 
						|
        HasObjCConversion = true;
 | 
						|
      } else {
 | 
						|
        // Argument types are too different. Abort.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (HasObjCConversion) {
 | 
						|
      // We had an Objective-C conversion. Allow this pointer
 | 
						|
      // conversion, but complain about it.
 | 
						|
      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
 | 
						|
      IncompatibleObjC = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether this is an Objective-C writeback conversion,
 | 
						|
/// used for parameter passing when performing automatic reference counting.
 | 
						|
///
 | 
						|
/// \param FromType The type we're converting form.
 | 
						|
///
 | 
						|
/// \param ToType The type we're converting to.
 | 
						|
///
 | 
						|
/// \param ConvertedType The type that will be produced after applying
 | 
						|
/// this conversion.
 | 
						|
bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
 | 
						|
                                     QualType &ConvertedType) {
 | 
						|
  if (!getLangOpts().ObjCAutoRefCount || 
 | 
						|
      Context.hasSameUnqualifiedType(FromType, ToType))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
 | 
						|
  QualType ToPointee;
 | 
						|
  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
 | 
						|
    ToPointee = ToPointer->getPointeeType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  Qualifiers ToQuals = ToPointee.getQualifiers();
 | 
						|
  if (!ToPointee->isObjCLifetimeType() || 
 | 
						|
      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
 | 
						|
      !ToQuals.withoutObjCLifetime().empty())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Argument must be a pointer to __strong to __weak.
 | 
						|
  QualType FromPointee;
 | 
						|
  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
 | 
						|
    FromPointee = FromPointer->getPointeeType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  Qualifiers FromQuals = FromPointee.getQualifiers();
 | 
						|
  if (!FromPointee->isObjCLifetimeType() ||
 | 
						|
      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
 | 
						|
       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Make sure that we have compatible qualifiers.
 | 
						|
  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
 | 
						|
  if (!ToQuals.compatiblyIncludes(FromQuals))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Remove qualifiers from the pointee type we're converting from; they
 | 
						|
  // aren't used in the compatibility check belong, and we'll be adding back
 | 
						|
  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
 | 
						|
  FromPointee = FromPointee.getUnqualifiedType();
 | 
						|
  
 | 
						|
  // The unqualified form of the pointee types must be compatible.
 | 
						|
  ToPointee = ToPointee.getUnqualifiedType();
 | 
						|
  bool IncompatibleObjC;
 | 
						|
  if (Context.typesAreCompatible(FromPointee, ToPointee))
 | 
						|
    FromPointee = ToPointee;
 | 
						|
  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
 | 
						|
                                    IncompatibleObjC))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  /// \brief Construct the type we're converting to, which is a pointer to
 | 
						|
  /// __autoreleasing pointee.
 | 
						|
  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
 | 
						|
  ConvertedType = Context.getPointerType(FromPointee);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
 | 
						|
                                    QualType& ConvertedType) {
 | 
						|
  QualType ToPointeeType;
 | 
						|
  if (const BlockPointerType *ToBlockPtr =
 | 
						|
        ToType->getAs<BlockPointerType>())
 | 
						|
    ToPointeeType = ToBlockPtr->getPointeeType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  QualType FromPointeeType;
 | 
						|
  if (const BlockPointerType *FromBlockPtr =
 | 
						|
      FromType->getAs<BlockPointerType>())
 | 
						|
    FromPointeeType = FromBlockPtr->getPointeeType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
  // We have pointer to blocks, check whether the only
 | 
						|
  // differences in the argument and result types are in Objective-C
 | 
						|
  // pointer conversions. If so, we permit the conversion.
 | 
						|
  
 | 
						|
  const FunctionProtoType *FromFunctionType
 | 
						|
    = FromPointeeType->getAs<FunctionProtoType>();
 | 
						|
  const FunctionProtoType *ToFunctionType
 | 
						|
    = ToPointeeType->getAs<FunctionProtoType>();
 | 
						|
  
 | 
						|
  if (!FromFunctionType || !ToFunctionType)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Context.hasSameType(FromPointeeType, ToPointeeType))
 | 
						|
    return true;
 | 
						|
    
 | 
						|
  // Perform the quick checks that will tell us whether these
 | 
						|
  // function types are obviously different.
 | 
						|
  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
 | 
						|
      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
 | 
						|
  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
 | 
						|
  if (FromEInfo != ToEInfo)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IncompatibleObjC = false;
 | 
						|
  if (Context.hasSameType(FromFunctionType->getResultType(), 
 | 
						|
                          ToFunctionType->getResultType())) {
 | 
						|
    // Okay, the types match exactly. Nothing to do.
 | 
						|
  } else {
 | 
						|
    QualType RHS = FromFunctionType->getResultType();
 | 
						|
    QualType LHS = ToFunctionType->getResultType();
 | 
						|
    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
 | 
						|
        !RHS.hasQualifiers() && LHS.hasQualifiers())
 | 
						|
       LHS = LHS.getUnqualifiedType();
 | 
						|
 | 
						|
     if (Context.hasSameType(RHS,LHS)) {
 | 
						|
       // OK exact match.
 | 
						|
     } else if (isObjCPointerConversion(RHS, LHS,
 | 
						|
                                        ConvertedType, IncompatibleObjC)) {
 | 
						|
     if (IncompatibleObjC)
 | 
						|
       return false;
 | 
						|
     // Okay, we have an Objective-C pointer conversion.
 | 
						|
     }
 | 
						|
     else
 | 
						|
       return false;
 | 
						|
   }
 | 
						|
    
 | 
						|
   // Check argument types.
 | 
						|
   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
 | 
						|
        ArgIdx != NumArgs; ++ArgIdx) {
 | 
						|
     IncompatibleObjC = false;
 | 
						|
     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
 | 
						|
     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
 | 
						|
     if (Context.hasSameType(FromArgType, ToArgType)) {
 | 
						|
       // Okay, the types match exactly. Nothing to do.
 | 
						|
     } else if (isObjCPointerConversion(ToArgType, FromArgType,
 | 
						|
                                        ConvertedType, IncompatibleObjC)) {
 | 
						|
       if (IncompatibleObjC)
 | 
						|
         return false;
 | 
						|
       // Okay, we have an Objective-C pointer conversion.
 | 
						|
     } else
 | 
						|
       // Argument types are too different. Abort.
 | 
						|
       return false;
 | 
						|
   }
 | 
						|
   if (LangOpts.ObjCAutoRefCount && 
 | 
						|
       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, 
 | 
						|
                                                    ToFunctionType))
 | 
						|
     return false;
 | 
						|
   
 | 
						|
   ConvertedType = ToType;
 | 
						|
   return true;
 | 
						|
}
 | 
						|
 | 
						|
enum {
 | 
						|
  ft_default,
 | 
						|
  ft_different_class,
 | 
						|
  ft_parameter_arity,
 | 
						|
  ft_parameter_mismatch,
 | 
						|
  ft_return_type,
 | 
						|
  ft_qualifer_mismatch
 | 
						|
};
 | 
						|
 | 
						|
/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
 | 
						|
/// function types.  Catches different number of parameter, mismatch in
 | 
						|
/// parameter types, and different return types.
 | 
						|
void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
 | 
						|
                                      QualType FromType, QualType ToType) {
 | 
						|
  // If either type is not valid, include no extra info.
 | 
						|
  if (FromType.isNull() || ToType.isNull()) {
 | 
						|
    PDiag << ft_default;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the function type from the pointers.
 | 
						|
  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
 | 
						|
    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
 | 
						|
                            *ToMember = ToType->getAs<MemberPointerType>();
 | 
						|
    if (FromMember->getClass() != ToMember->getClass()) {
 | 
						|
      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
 | 
						|
            << QualType(FromMember->getClass(), 0);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    FromType = FromMember->getPointeeType();
 | 
						|
    ToType = ToMember->getPointeeType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (FromType->isPointerType())
 | 
						|
    FromType = FromType->getPointeeType();
 | 
						|
  if (ToType->isPointerType())
 | 
						|
    ToType = ToType->getPointeeType();
 | 
						|
 | 
						|
  // Remove references.
 | 
						|
  FromType = FromType.getNonReferenceType();
 | 
						|
  ToType = ToType.getNonReferenceType();
 | 
						|
 | 
						|
  // Don't print extra info for non-specialized template functions.
 | 
						|
  if (FromType->isInstantiationDependentType() &&
 | 
						|
      !FromType->getAs<TemplateSpecializationType>()) {
 | 
						|
    PDiag << ft_default;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // No extra info for same types.
 | 
						|
  if (Context.hasSameType(FromType, ToType)) {
 | 
						|
    PDiag << ft_default;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
 | 
						|
                          *ToFunction = ToType->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
  // Both types need to be function types.
 | 
						|
  if (!FromFunction || !ToFunction) {
 | 
						|
    PDiag << ft_default;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
 | 
						|
    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
 | 
						|
          << FromFunction->getNumArgs();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle different parameter types.
 | 
						|
  unsigned ArgPos;
 | 
						|
  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
 | 
						|
    PDiag << ft_parameter_mismatch << ArgPos + 1
 | 
						|
          << ToFunction->getArgType(ArgPos)
 | 
						|
          << FromFunction->getArgType(ArgPos);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle different return type.
 | 
						|
  if (!Context.hasSameType(FromFunction->getResultType(),
 | 
						|
                           ToFunction->getResultType())) {
 | 
						|
    PDiag << ft_return_type << ToFunction->getResultType()
 | 
						|
          << FromFunction->getResultType();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned FromQuals = FromFunction->getTypeQuals(),
 | 
						|
           ToQuals = ToFunction->getTypeQuals();
 | 
						|
  if (FromQuals != ToQuals) {
 | 
						|
    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unable to find a difference, so add no extra info.
 | 
						|
  PDiag << ft_default;
 | 
						|
}
 | 
						|
 | 
						|
/// FunctionArgTypesAreEqual - This routine checks two function proto types
 | 
						|
/// for equality of their argument types. Caller has already checked that
 | 
						|
/// they have same number of arguments. This routine assumes that Objective-C
 | 
						|
/// pointer types which only differ in their protocol qualifiers are equal.
 | 
						|
/// If the parameters are different, ArgPos will have the parameter index
 | 
						|
/// of the first different parameter.
 | 
						|
bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
 | 
						|
                                    const FunctionProtoType *NewType,
 | 
						|
                                    unsigned *ArgPos) {
 | 
						|
  if (!getLangOpts().ObjC1) {
 | 
						|
    for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
 | 
						|
         N = NewType->arg_type_begin(),
 | 
						|
         E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
 | 
						|
      if (!Context.hasSameType(*O, *N)) {
 | 
						|
        if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
 | 
						|
       N = NewType->arg_type_begin(),
 | 
						|
       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
 | 
						|
    QualType ToType = (*O);
 | 
						|
    QualType FromType = (*N);
 | 
						|
    if (!Context.hasSameType(ToType, FromType)) {
 | 
						|
      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
 | 
						|
        if (const PointerType *PTFr = FromType->getAs<PointerType>())
 | 
						|
          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
 | 
						|
               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
 | 
						|
              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
 | 
						|
               PTFr->getPointeeType()->isObjCQualifiedClassType()))
 | 
						|
            continue;
 | 
						|
      }
 | 
						|
      else if (const ObjCObjectPointerType *PTTo =
 | 
						|
                 ToType->getAs<ObjCObjectPointerType>()) {
 | 
						|
        if (const ObjCObjectPointerType *PTFr =
 | 
						|
              FromType->getAs<ObjCObjectPointerType>())
 | 
						|
          if (Context.hasSameUnqualifiedType(
 | 
						|
                PTTo->getObjectType()->getBaseType(),
 | 
						|
                PTFr->getObjectType()->getBaseType()))
 | 
						|
            continue;
 | 
						|
      }
 | 
						|
      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckPointerConversion - Check the pointer conversion from the
 | 
						|
/// expression From to the type ToType. This routine checks for
 | 
						|
/// ambiguous or inaccessible derived-to-base pointer
 | 
						|
/// conversions for which IsPointerConversion has already returned
 | 
						|
/// true. It returns true and produces a diagnostic if there was an
 | 
						|
/// error, or returns false otherwise.
 | 
						|
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
 | 
						|
                                  CastKind &Kind,
 | 
						|
                                  CXXCastPath& BasePath,
 | 
						|
                                  bool IgnoreBaseAccess) {
 | 
						|
  QualType FromType = From->getType();
 | 
						|
  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
 | 
						|
 | 
						|
  Kind = CK_BitCast;
 | 
						|
 | 
						|
  if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
 | 
						|
      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
 | 
						|
      Expr::NPCK_ZeroExpression) {
 | 
						|
    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
 | 
						|
      DiagRuntimeBehavior(From->getExprLoc(), From,
 | 
						|
                          PDiag(diag::warn_impcast_bool_to_null_pointer)
 | 
						|
                            << ToType << From->getSourceRange());
 | 
						|
    else if (!isUnevaluatedContext())
 | 
						|
      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
 | 
						|
        << ToType << From->getSourceRange();
 | 
						|
  }
 | 
						|
  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
 | 
						|
    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
 | 
						|
      QualType FromPointeeType = FromPtrType->getPointeeType(),
 | 
						|
               ToPointeeType   = ToPtrType->getPointeeType();
 | 
						|
 | 
						|
      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
 | 
						|
          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
 | 
						|
        // We must have a derived-to-base conversion. Check an
 | 
						|
        // ambiguous or inaccessible conversion.
 | 
						|
        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
 | 
						|
                                         From->getExprLoc(),
 | 
						|
                                         From->getSourceRange(), &BasePath,
 | 
						|
                                         IgnoreBaseAccess))
 | 
						|
          return true;
 | 
						|
 | 
						|
        // The conversion was successful.
 | 
						|
        Kind = CK_DerivedToBase;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const ObjCObjectPointerType *ToPtrType =
 | 
						|
               ToType->getAs<ObjCObjectPointerType>()) {
 | 
						|
    if (const ObjCObjectPointerType *FromPtrType =
 | 
						|
          FromType->getAs<ObjCObjectPointerType>()) {
 | 
						|
      // Objective-C++ conversions are always okay.
 | 
						|
      // FIXME: We should have a different class of conversions for the
 | 
						|
      // Objective-C++ implicit conversions.
 | 
						|
      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
 | 
						|
        return false;
 | 
						|
    } else if (FromType->isBlockPointerType()) {
 | 
						|
      Kind = CK_BlockPointerToObjCPointerCast;
 | 
						|
    } else {
 | 
						|
      Kind = CK_CPointerToObjCPointerCast;
 | 
						|
    }
 | 
						|
  } else if (ToType->isBlockPointerType()) {
 | 
						|
    if (!FromType->isBlockPointerType())
 | 
						|
      Kind = CK_AnyPointerToBlockPointerCast;
 | 
						|
  }
 | 
						|
 | 
						|
  // We shouldn't fall into this case unless it's valid for other
 | 
						|
  // reasons.
 | 
						|
  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
 | 
						|
    Kind = CK_NullToPointer;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsMemberPointerConversion - Determines whether the conversion of the
 | 
						|
/// expression From, which has the (possibly adjusted) type FromType, can be
 | 
						|
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
 | 
						|
/// If so, returns true and places the converted type (that might differ from
 | 
						|
/// ToType in its cv-qualifiers at some level) into ConvertedType.
 | 
						|
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
 | 
						|
                                     QualType ToType,
 | 
						|
                                     bool InOverloadResolution,
 | 
						|
                                     QualType &ConvertedType) {
 | 
						|
  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
 | 
						|
  if (!ToTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
 | 
						|
  if (From->isNullPointerConstant(Context,
 | 
						|
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
 | 
						|
                                        : Expr::NPC_ValueDependentIsNull)) {
 | 
						|
    ConvertedType = ToType;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, both types have to be member pointers.
 | 
						|
  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
 | 
						|
  if (!FromTypePtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A pointer to member of B can be converted to a pointer to member of D,
 | 
						|
  // where D is derived from B (C++ 4.11p2).
 | 
						|
  QualType FromClass(FromTypePtr->getClass(), 0);
 | 
						|
  QualType ToClass(ToTypePtr->getClass(), 0);
 | 
						|
 | 
						|
  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
 | 
						|
      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
 | 
						|
      IsDerivedFrom(ToClass, FromClass)) {
 | 
						|
    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
 | 
						|
                                                 ToClass.getTypePtr());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckMemberPointerConversion - Check the member pointer conversion from the
 | 
						|
/// expression From to the type ToType. This routine checks for ambiguous or
 | 
						|
/// virtual or inaccessible base-to-derived member pointer conversions
 | 
						|
/// for which IsMemberPointerConversion has already returned true. It returns
 | 
						|
/// true and produces a diagnostic if there was an error, or returns false
 | 
						|
/// otherwise.
 | 
						|
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
 | 
						|
                                        CastKind &Kind,
 | 
						|
                                        CXXCastPath &BasePath,
 | 
						|
                                        bool IgnoreBaseAccess) {
 | 
						|
  QualType FromType = From->getType();
 | 
						|
  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
 | 
						|
  if (!FromPtrType) {
 | 
						|
    // This must be a null pointer to member pointer conversion
 | 
						|
    assert(From->isNullPointerConstant(Context,
 | 
						|
                                       Expr::NPC_ValueDependentIsNull) &&
 | 
						|
           "Expr must be null pointer constant!");
 | 
						|
    Kind = CK_NullToMemberPointer;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
 | 
						|
  assert(ToPtrType && "No member pointer cast has a target type "
 | 
						|
                      "that is not a member pointer.");
 | 
						|
 | 
						|
  QualType FromClass = QualType(FromPtrType->getClass(), 0);
 | 
						|
  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
 | 
						|
 | 
						|
  // FIXME: What about dependent types?
 | 
						|
  assert(FromClass->isRecordType() && "Pointer into non-class.");
 | 
						|
  assert(ToClass->isRecordType() && "Pointer into non-class.");
 | 
						|
 | 
						|
  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | 
						|
                     /*DetectVirtual=*/true);
 | 
						|
  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
 | 
						|
  assert(DerivationOkay &&
 | 
						|
         "Should not have been called if derivation isn't OK.");
 | 
						|
  (void)DerivationOkay;
 | 
						|
 | 
						|
  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
 | 
						|
                                  getUnqualifiedType())) {
 | 
						|
    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
 | 
						|
    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
 | 
						|
      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
 | 
						|
    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
 | 
						|
      << FromClass << ToClass << QualType(VBase, 0)
 | 
						|
      << From->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IgnoreBaseAccess)
 | 
						|
    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
 | 
						|
                         Paths.front(),
 | 
						|
                         diag::err_downcast_from_inaccessible_base);
 | 
						|
 | 
						|
  // Must be a base to derived member conversion.
 | 
						|
  BuildBasePathArray(Paths, BasePath);
 | 
						|
  Kind = CK_BaseToDerivedMemberPointer;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsQualificationConversion - Determines whether the conversion from
 | 
						|
/// an rvalue of type FromType to ToType is a qualification conversion
 | 
						|
/// (C++ 4.4).
 | 
						|
///
 | 
						|
/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
 | 
						|
/// when the qualification conversion involves a change in the Objective-C
 | 
						|
/// object lifetime.
 | 
						|
bool
 | 
						|
Sema::IsQualificationConversion(QualType FromType, QualType ToType,
 | 
						|
                                bool CStyle, bool &ObjCLifetimeConversion) {
 | 
						|
  FromType = Context.getCanonicalType(FromType);
 | 
						|
  ToType = Context.getCanonicalType(ToType);
 | 
						|
  ObjCLifetimeConversion = false;
 | 
						|
  
 | 
						|
  // If FromType and ToType are the same type, this is not a
 | 
						|
  // qualification conversion.
 | 
						|
  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // (C++ 4.4p4):
 | 
						|
  //   A conversion can add cv-qualifiers at levels other than the first
 | 
						|
  //   in multi-level pointers, subject to the following rules: [...]
 | 
						|
  bool PreviousToQualsIncludeConst = true;
 | 
						|
  bool UnwrappedAnyPointer = false;
 | 
						|
  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
 | 
						|
    // Within each iteration of the loop, we check the qualifiers to
 | 
						|
    // determine if this still looks like a qualification
 | 
						|
    // conversion. Then, if all is well, we unwrap one more level of
 | 
						|
    // pointers or pointers-to-members and do it all again
 | 
						|
    // until there are no more pointers or pointers-to-members left to
 | 
						|
    // unwrap.
 | 
						|
    UnwrappedAnyPointer = true;
 | 
						|
 | 
						|
    Qualifiers FromQuals = FromType.getQualifiers();
 | 
						|
    Qualifiers ToQuals = ToType.getQualifiers();
 | 
						|
    
 | 
						|
    // Objective-C ARC:
 | 
						|
    //   Check Objective-C lifetime conversions.
 | 
						|
    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
 | 
						|
        UnwrappedAnyPointer) {
 | 
						|
      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
 | 
						|
        ObjCLifetimeConversion = true;
 | 
						|
        FromQuals.removeObjCLifetime();
 | 
						|
        ToQuals.removeObjCLifetime();
 | 
						|
      } else {
 | 
						|
        // Qualification conversions cannot cast between different
 | 
						|
        // Objective-C lifetime qualifiers.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Allow addition/removal of GC attributes but not changing GC attributes.
 | 
						|
    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
 | 
						|
        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
 | 
						|
      FromQuals.removeObjCGCAttr();
 | 
						|
      ToQuals.removeObjCGCAttr();
 | 
						|
    }
 | 
						|
    
 | 
						|
    //   -- for every j > 0, if const is in cv 1,j then const is in cv
 | 
						|
    //      2,j, and similarly for volatile.
 | 
						|
    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
 | 
						|
      return false;
 | 
						|
 | 
						|
    //   -- if the cv 1,j and cv 2,j are different, then const is in
 | 
						|
    //      every cv for 0 < k < j.
 | 
						|
    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
 | 
						|
        && !PreviousToQualsIncludeConst)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Keep track of whether all prior cv-qualifiers in the "to" type
 | 
						|
    // include const.
 | 
						|
    PreviousToQualsIncludeConst
 | 
						|
      = PreviousToQualsIncludeConst && ToQuals.hasConst();
 | 
						|
  }
 | 
						|
 | 
						|
  // We are left with FromType and ToType being the pointee types
 | 
						|
  // after unwrapping the original FromType and ToType the same number
 | 
						|
  // of types. If we unwrapped any pointers, and if FromType and
 | 
						|
  // ToType have the same unqualified type (since we checked
 | 
						|
  // qualifiers above), then this is a qualification conversion.
 | 
						|
  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief - Determine whether this is a conversion from a scalar type to an
 | 
						|
/// atomic type.
 | 
						|
///
 | 
						|
/// If successful, updates \c SCS's second and third steps in the conversion
 | 
						|
/// sequence to finish the conversion.
 | 
						|
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
 | 
						|
                                bool InOverloadResolution,
 | 
						|
                                StandardConversionSequence &SCS,
 | 
						|
                                bool CStyle) {
 | 
						|
  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
 | 
						|
  if (!ToAtomic)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  StandardConversionSequence InnerSCS;
 | 
						|
  if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 
 | 
						|
                            InOverloadResolution, InnerSCS,
 | 
						|
                            CStyle, /*AllowObjCWritebackConversion=*/false))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  SCS.Second = InnerSCS.Second;
 | 
						|
  SCS.setToType(1, InnerSCS.getToType(1));
 | 
						|
  SCS.Third = InnerSCS.Third;
 | 
						|
  SCS.QualificationIncludesObjCLifetime
 | 
						|
    = InnerSCS.QualificationIncludesObjCLifetime;
 | 
						|
  SCS.setToType(2, InnerSCS.getToType(2));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
 | 
						|
                                              CXXConstructorDecl *Constructor,
 | 
						|
                                              QualType Type) {
 | 
						|
  const FunctionProtoType *CtorType =
 | 
						|
      Constructor->getType()->getAs<FunctionProtoType>();
 | 
						|
  if (CtorType->getNumArgs() > 0) {
 | 
						|
    QualType FirstArg = CtorType->getArgType(0);
 | 
						|
    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static OverloadingResult
 | 
						|
IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
 | 
						|
                                       CXXRecordDecl *To,
 | 
						|
                                       UserDefinedConversionSequence &User,
 | 
						|
                                       OverloadCandidateSet &CandidateSet,
 | 
						|
                                       bool AllowExplicit) {
 | 
						|
  DeclContext::lookup_result R = S.LookupConstructors(To);
 | 
						|
  for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
 | 
						|
       Con != ConEnd; ++Con) {
 | 
						|
    NamedDecl *D = *Con;
 | 
						|
    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | 
						|
 | 
						|
    // Find the constructor (which may be a template).
 | 
						|
    CXXConstructorDecl *Constructor = 0;
 | 
						|
    FunctionTemplateDecl *ConstructorTmpl
 | 
						|
      = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
    if (ConstructorTmpl)
 | 
						|
      Constructor
 | 
						|
        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
 | 
						|
    else
 | 
						|
      Constructor = cast<CXXConstructorDecl>(D);
 | 
						|
 | 
						|
    bool Usable = !Constructor->isInvalidDecl() &&
 | 
						|
                  S.isInitListConstructor(Constructor) &&
 | 
						|
                  (AllowExplicit || !Constructor->isExplicit());
 | 
						|
    if (Usable) {
 | 
						|
      // If the first argument is (a reference to) the target type,
 | 
						|
      // suppress conversions.
 | 
						|
      bool SuppressUserConversions =
 | 
						|
          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
 | 
						|
      if (ConstructorTmpl)
 | 
						|
        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | 
						|
                                       /*ExplicitArgs*/ 0,
 | 
						|
                                       From, CandidateSet,
 | 
						|
                                       SuppressUserConversions);
 | 
						|
      else
 | 
						|
        S.AddOverloadCandidate(Constructor, FoundDecl,
 | 
						|
                               From, CandidateSet,
 | 
						|
                               SuppressUserConversions);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
 | 
						|
  case OR_Success: {
 | 
						|
    // Record the standard conversion we used and the conversion function.
 | 
						|
    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
 | 
						|
    QualType ThisType = Constructor->getThisType(S.Context);
 | 
						|
    // Initializer lists don't have conversions as such.
 | 
						|
    User.Before.setAsIdentityConversion();
 | 
						|
    User.HadMultipleCandidates = HadMultipleCandidates;
 | 
						|
    User.ConversionFunction = Constructor;
 | 
						|
    User.FoundConversionFunction = Best->FoundDecl;
 | 
						|
    User.After.setAsIdentityConversion();
 | 
						|
    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
 | 
						|
    User.After.setAllToTypes(ToType);
 | 
						|
    return OR_Success;
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
  case OR_Deleted:
 | 
						|
    return OR_Deleted;
 | 
						|
  case OR_Ambiguous:
 | 
						|
    return OR_Ambiguous;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid OverloadResult!");
 | 
						|
}
 | 
						|
 | 
						|
/// Determines whether there is a user-defined conversion sequence
 | 
						|
/// (C++ [over.ics.user]) that converts expression From to the type
 | 
						|
/// ToType. If such a conversion exists, User will contain the
 | 
						|
/// user-defined conversion sequence that performs such a conversion
 | 
						|
/// and this routine will return true. Otherwise, this routine returns
 | 
						|
/// false and User is unspecified.
 | 
						|
///
 | 
						|
/// \param AllowExplicit  true if the conversion should consider C++0x
 | 
						|
/// "explicit" conversion functions as well as non-explicit conversion
 | 
						|
/// functions (C++0x [class.conv.fct]p2).
 | 
						|
static OverloadingResult
 | 
						|
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
 | 
						|
                        UserDefinedConversionSequence &User,
 | 
						|
                        OverloadCandidateSet &CandidateSet,
 | 
						|
                        bool AllowExplicit) {
 | 
						|
  // Whether we will only visit constructors.
 | 
						|
  bool ConstructorsOnly = false;
 | 
						|
 | 
						|
  // If the type we are conversion to is a class type, enumerate its
 | 
						|
  // constructors.
 | 
						|
  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
 | 
						|
    // C++ [over.match.ctor]p1:
 | 
						|
    //   When objects of class type are direct-initialized (8.5), or
 | 
						|
    //   copy-initialized from an expression of the same or a
 | 
						|
    //   derived class type (8.5), overload resolution selects the
 | 
						|
    //   constructor. [...] For copy-initialization, the candidate
 | 
						|
    //   functions are all the converting constructors (12.3.1) of
 | 
						|
    //   that class. The argument list is the expression-list within
 | 
						|
    //   the parentheses of the initializer.
 | 
						|
    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
 | 
						|
        (From->getType()->getAs<RecordType>() &&
 | 
						|
         S.IsDerivedFrom(From->getType(), ToType)))
 | 
						|
      ConstructorsOnly = true;
 | 
						|
 | 
						|
    S.RequireCompleteType(From->getExprLoc(), ToType, 0);
 | 
						|
    // RequireCompleteType may have returned true due to some invalid decl
 | 
						|
    // during template instantiation, but ToType may be complete enough now
 | 
						|
    // to try to recover.
 | 
						|
    if (ToType->isIncompleteType()) {
 | 
						|
      // We're not going to find any constructors.
 | 
						|
    } else if (CXXRecordDecl *ToRecordDecl
 | 
						|
                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
 | 
						|
 | 
						|
      Expr **Args = &From;
 | 
						|
      unsigned NumArgs = 1;
 | 
						|
      bool ListInitializing = false;
 | 
						|
      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
 | 
						|
        // But first, see if there is an init-list-contructor that will work.
 | 
						|
        OverloadingResult Result = IsInitializerListConstructorConversion(
 | 
						|
            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
 | 
						|
        if (Result != OR_No_Viable_Function)
 | 
						|
          return Result;
 | 
						|
        // Never mind.
 | 
						|
        CandidateSet.clear();
 | 
						|
 | 
						|
        // If we're list-initializing, we pass the individual elements as
 | 
						|
        // arguments, not the entire list.
 | 
						|
        Args = InitList->getInits();
 | 
						|
        NumArgs = InitList->getNumInits();
 | 
						|
        ListInitializing = true;
 | 
						|
      }
 | 
						|
 | 
						|
      DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
 | 
						|
      for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
 | 
						|
           Con != ConEnd; ++Con) {
 | 
						|
        NamedDecl *D = *Con;
 | 
						|
        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
 | 
						|
 | 
						|
        // Find the constructor (which may be a template).
 | 
						|
        CXXConstructorDecl *Constructor = 0;
 | 
						|
        FunctionTemplateDecl *ConstructorTmpl
 | 
						|
          = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
        if (ConstructorTmpl)
 | 
						|
          Constructor
 | 
						|
            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Constructor = cast<CXXConstructorDecl>(D);
 | 
						|
 | 
						|
        bool Usable = !Constructor->isInvalidDecl();
 | 
						|
        if (ListInitializing)
 | 
						|
          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
 | 
						|
        else
 | 
						|
          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
 | 
						|
        if (Usable) {
 | 
						|
          bool SuppressUserConversions = !ConstructorsOnly;
 | 
						|
          if (SuppressUserConversions && ListInitializing) {
 | 
						|
            SuppressUserConversions = false;
 | 
						|
            if (NumArgs == 1) {
 | 
						|
              // If the first argument is (a reference to) the target type,
 | 
						|
              // suppress conversions.
 | 
						|
              SuppressUserConversions = isFirstArgumentCompatibleWithType(
 | 
						|
                                                S.Context, Constructor, ToType);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (ConstructorTmpl)
 | 
						|
            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
 | 
						|
                                           /*ExplicitArgs*/ 0,
 | 
						|
                                           llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                           CandidateSet, SuppressUserConversions);
 | 
						|
          else
 | 
						|
            // Allow one user-defined conversion when user specifies a
 | 
						|
            // From->ToType conversion via an static cast (c-style, etc).
 | 
						|
            S.AddOverloadCandidate(Constructor, FoundDecl,
 | 
						|
                                   llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                   CandidateSet, SuppressUserConversions);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Enumerate conversion functions, if we're allowed to.
 | 
						|
  if (ConstructorsOnly || isa<InitListExpr>(From)) {
 | 
						|
  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
 | 
						|
    // No conversion functions from incomplete types.
 | 
						|
  } else if (const RecordType *FromRecordType
 | 
						|
                                   = From->getType()->getAs<RecordType>()) {
 | 
						|
    if (CXXRecordDecl *FromRecordDecl
 | 
						|
         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
 | 
						|
      // Add all of the conversion functions as candidates.
 | 
						|
      std::pair<CXXRecordDecl::conversion_iterator,
 | 
						|
                CXXRecordDecl::conversion_iterator>
 | 
						|
        Conversions = FromRecordDecl->getVisibleConversionFunctions();
 | 
						|
      for (CXXRecordDecl::conversion_iterator
 | 
						|
             I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | 
						|
        DeclAccessPair FoundDecl = I.getPair();
 | 
						|
        NamedDecl *D = FoundDecl.getDecl();
 | 
						|
        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
        if (isa<UsingShadowDecl>(D))
 | 
						|
          D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
        CXXConversionDecl *Conv;
 | 
						|
        FunctionTemplateDecl *ConvTemplate;
 | 
						|
        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
 | 
						|
          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
        else
 | 
						|
          Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
        if (AllowExplicit || !Conv->isExplicit()) {
 | 
						|
          if (ConvTemplate)
 | 
						|
            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
 | 
						|
                                             ActingContext, From, ToType,
 | 
						|
                                             CandidateSet);
 | 
						|
          else
 | 
						|
            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
 | 
						|
                                     From, ToType, CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
 | 
						|
  case OR_Success:
 | 
						|
    // Record the standard conversion we used and the conversion function.
 | 
						|
    if (CXXConstructorDecl *Constructor
 | 
						|
          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
 | 
						|
      // C++ [over.ics.user]p1:
 | 
						|
      //   If the user-defined conversion is specified by a
 | 
						|
      //   constructor (12.3.1), the initial standard conversion
 | 
						|
      //   sequence converts the source type to the type required by
 | 
						|
      //   the argument of the constructor.
 | 
						|
      //
 | 
						|
      QualType ThisType = Constructor->getThisType(S.Context);
 | 
						|
      if (isa<InitListExpr>(From)) {
 | 
						|
        // Initializer lists don't have conversions as such.
 | 
						|
        User.Before.setAsIdentityConversion();
 | 
						|
      } else {
 | 
						|
        if (Best->Conversions[0].isEllipsis())
 | 
						|
          User.EllipsisConversion = true;
 | 
						|
        else {
 | 
						|
          User.Before = Best->Conversions[0].Standard;
 | 
						|
          User.EllipsisConversion = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      User.HadMultipleCandidates = HadMultipleCandidates;
 | 
						|
      User.ConversionFunction = Constructor;
 | 
						|
      User.FoundConversionFunction = Best->FoundDecl;
 | 
						|
      User.After.setAsIdentityConversion();
 | 
						|
      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
 | 
						|
      User.After.setAllToTypes(ToType);
 | 
						|
      return OR_Success;
 | 
						|
    }
 | 
						|
    if (CXXConversionDecl *Conversion
 | 
						|
                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
 | 
						|
      // C++ [over.ics.user]p1:
 | 
						|
      //
 | 
						|
      //   [...] If the user-defined conversion is specified by a
 | 
						|
      //   conversion function (12.3.2), the initial standard
 | 
						|
      //   conversion sequence converts the source type to the
 | 
						|
      //   implicit object parameter of the conversion function.
 | 
						|
      User.Before = Best->Conversions[0].Standard;
 | 
						|
      User.HadMultipleCandidates = HadMultipleCandidates;
 | 
						|
      User.ConversionFunction = Conversion;
 | 
						|
      User.FoundConversionFunction = Best->FoundDecl;
 | 
						|
      User.EllipsisConversion = false;
 | 
						|
 | 
						|
      // C++ [over.ics.user]p2:
 | 
						|
      //   The second standard conversion sequence converts the
 | 
						|
      //   result of the user-defined conversion to the target type
 | 
						|
      //   for the sequence. Since an implicit conversion sequence
 | 
						|
      //   is an initialization, the special rules for
 | 
						|
      //   initialization by user-defined conversion apply when
 | 
						|
      //   selecting the best user-defined conversion for a
 | 
						|
      //   user-defined conversion sequence (see 13.3.3 and
 | 
						|
      //   13.3.3.1).
 | 
						|
      User.After = Best->FinalConversion;
 | 
						|
      return OR_Success;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Not a constructor or conversion function?");
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
  case OR_Deleted:
 | 
						|
    // No conversion here! We're done.
 | 
						|
    return OR_Deleted;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    return OR_Ambiguous;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid OverloadResult!");
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
  OverloadCandidateSet CandidateSet(From->getExprLoc());
 | 
						|
  OverloadingResult OvResult =
 | 
						|
    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
 | 
						|
                            CandidateSet, false);
 | 
						|
  if (OvResult == OR_Ambiguous)
 | 
						|
    Diag(From->getLocStart(),
 | 
						|
         diag::err_typecheck_ambiguous_condition)
 | 
						|
          << From->getType() << ToType << From->getSourceRange();
 | 
						|
  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
 | 
						|
    Diag(From->getLocStart(),
 | 
						|
         diag::err_typecheck_nonviable_condition)
 | 
						|
    << From->getType() << ToType << From->getSourceRange();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compare the user-defined conversion functions or constructors
 | 
						|
/// of two user-defined conversion sequences to determine whether any ordering
 | 
						|
/// is possible.
 | 
						|
static ImplicitConversionSequence::CompareKind
 | 
						|
compareConversionFunctions(Sema &S,
 | 
						|
                           FunctionDecl *Function1,
 | 
						|
                           FunctionDecl *Function2) {
 | 
						|
  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
  
 | 
						|
  // Objective-C++:
 | 
						|
  //   If both conversion functions are implicitly-declared conversions from
 | 
						|
  //   a lambda closure type to a function pointer and a block pointer, 
 | 
						|
  //   respectively, always prefer the conversion to a function pointer,
 | 
						|
  //   because the function pointer is more lightweight and is more likely
 | 
						|
  //   to keep code working.
 | 
						|
  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
 | 
						|
  if (!Conv1)
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
    
 | 
						|
  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
 | 
						|
  if (!Conv2)
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
  
 | 
						|
  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
 | 
						|
    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
 | 
						|
    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
 | 
						|
    if (Block1 != Block2)
 | 
						|
      return Block1? ImplicitConversionSequence::Worse 
 | 
						|
                   : ImplicitConversionSequence::Better;
 | 
						|
  }
 | 
						|
 | 
						|
  return ImplicitConversionSequence::Indistinguishable;
 | 
						|
}
 | 
						|
  
 | 
						|
/// CompareImplicitConversionSequences - Compare two implicit
 | 
						|
/// conversion sequences to determine whether one is better than the
 | 
						|
/// other or if they are indistinguishable (C++ 13.3.3.2).
 | 
						|
static ImplicitConversionSequence::CompareKind
 | 
						|
CompareImplicitConversionSequences(Sema &S,
 | 
						|
                                   const ImplicitConversionSequence& ICS1,
 | 
						|
                                   const ImplicitConversionSequence& ICS2)
 | 
						|
{
 | 
						|
  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
 | 
						|
  // conversion sequences (as defined in 13.3.3.1)
 | 
						|
  //   -- a standard conversion sequence (13.3.3.1.1) is a better
 | 
						|
  //      conversion sequence than a user-defined conversion sequence or
 | 
						|
  //      an ellipsis conversion sequence, and
 | 
						|
  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
 | 
						|
  //      conversion sequence than an ellipsis conversion sequence
 | 
						|
  //      (13.3.3.1.3).
 | 
						|
  //
 | 
						|
  // C++0x [over.best.ics]p10:
 | 
						|
  //   For the purpose of ranking implicit conversion sequences as
 | 
						|
  //   described in 13.3.3.2, the ambiguous conversion sequence is
 | 
						|
  //   treated as a user-defined sequence that is indistinguishable
 | 
						|
  //   from any other user-defined conversion sequence.
 | 
						|
  if (ICS1.getKindRank() < ICS2.getKindRank())
 | 
						|
    return ImplicitConversionSequence::Better;
 | 
						|
  if (ICS2.getKindRank() < ICS1.getKindRank())
 | 
						|
    return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  // The following checks require both conversion sequences to be of
 | 
						|
  // the same kind.
 | 
						|
  if (ICS1.getKind() != ICS2.getKind())
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  ImplicitConversionSequence::CompareKind Result =
 | 
						|
      ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  // Two implicit conversion sequences of the same form are
 | 
						|
  // indistinguishable conversion sequences unless one of the
 | 
						|
  // following rules apply: (C++ 13.3.3.2p3):
 | 
						|
  if (ICS1.isStandard())
 | 
						|
    Result = CompareStandardConversionSequences(S,
 | 
						|
                                                ICS1.Standard, ICS2.Standard);
 | 
						|
  else if (ICS1.isUserDefined()) {
 | 
						|
    // User-defined conversion sequence U1 is a better conversion
 | 
						|
    // sequence than another user-defined conversion sequence U2 if
 | 
						|
    // they contain the same user-defined conversion function or
 | 
						|
    // constructor and if the second standard conversion sequence of
 | 
						|
    // U1 is better than the second standard conversion sequence of
 | 
						|
    // U2 (C++ 13.3.3.2p3).
 | 
						|
    if (ICS1.UserDefined.ConversionFunction ==
 | 
						|
          ICS2.UserDefined.ConversionFunction)
 | 
						|
      Result = CompareStandardConversionSequences(S,
 | 
						|
                                                  ICS1.UserDefined.After,
 | 
						|
                                                  ICS2.UserDefined.After);
 | 
						|
    else
 | 
						|
      Result = compareConversionFunctions(S, 
 | 
						|
                                          ICS1.UserDefined.ConversionFunction,
 | 
						|
                                          ICS2.UserDefined.ConversionFunction);
 | 
						|
  }
 | 
						|
 | 
						|
  // List-initialization sequence L1 is a better conversion sequence than
 | 
						|
  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
 | 
						|
  // for some X and L2 does not.
 | 
						|
  if (Result == ImplicitConversionSequence::Indistinguishable &&
 | 
						|
      !ICS1.isBad() &&
 | 
						|
      ICS1.isListInitializationSequence() &&
 | 
						|
      ICS2.isListInitializationSequence()) {
 | 
						|
    if (ICS1.isStdInitializerListElement() &&
 | 
						|
        !ICS2.isStdInitializerListElement())
 | 
						|
      return ImplicitConversionSequence::Better;
 | 
						|
    if (!ICS1.isStdInitializerListElement() &&
 | 
						|
        ICS2.isStdInitializerListElement())
 | 
						|
      return ImplicitConversionSequence::Worse;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
 | 
						|
  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
 | 
						|
    Qualifiers Quals;
 | 
						|
    T1 = Context.getUnqualifiedArrayType(T1, Quals);
 | 
						|
    T2 = Context.getUnqualifiedArrayType(T2, Quals);
 | 
						|
  }
 | 
						|
 | 
						|
  return Context.hasSameUnqualifiedType(T1, T2);
 | 
						|
}
 | 
						|
 | 
						|
// Per 13.3.3.2p3, compare the given standard conversion sequences to
 | 
						|
// determine if one is a proper subset of the other.
 | 
						|
static ImplicitConversionSequence::CompareKind
 | 
						|
compareStandardConversionSubsets(ASTContext &Context,
 | 
						|
                                 const StandardConversionSequence& SCS1,
 | 
						|
                                 const StandardConversionSequence& SCS2) {
 | 
						|
  ImplicitConversionSequence::CompareKind Result
 | 
						|
    = ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  // the identity conversion sequence is considered to be a subsequence of
 | 
						|
  // any non-identity conversion sequence
 | 
						|
  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
 | 
						|
    return ImplicitConversionSequence::Better;
 | 
						|
  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
 | 
						|
    return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  if (SCS1.Second != SCS2.Second) {
 | 
						|
    if (SCS1.Second == ICK_Identity)
 | 
						|
      Result = ImplicitConversionSequence::Better;
 | 
						|
    else if (SCS2.Second == ICK_Identity)
 | 
						|
      Result = ImplicitConversionSequence::Worse;
 | 
						|
    else
 | 
						|
      return ImplicitConversionSequence::Indistinguishable;
 | 
						|
  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  if (SCS1.Third == SCS2.Third) {
 | 
						|
    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
 | 
						|
                             : ImplicitConversionSequence::Indistinguishable;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SCS1.Third == ICK_Identity)
 | 
						|
    return Result == ImplicitConversionSequence::Worse
 | 
						|
             ? ImplicitConversionSequence::Indistinguishable
 | 
						|
             : ImplicitConversionSequence::Better;
 | 
						|
 | 
						|
  if (SCS2.Third == ICK_Identity)
 | 
						|
    return Result == ImplicitConversionSequence::Better
 | 
						|
             ? ImplicitConversionSequence::Indistinguishable
 | 
						|
             : ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  return ImplicitConversionSequence::Indistinguishable;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether one of the given reference bindings is better
 | 
						|
/// than the other based on what kind of bindings they are.
 | 
						|
static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
 | 
						|
                                       const StandardConversionSequence &SCS2) {
 | 
						|
  // C++0x [over.ics.rank]p3b4:
 | 
						|
  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
 | 
						|
  //      implicit object parameter of a non-static member function declared
 | 
						|
  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
 | 
						|
  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
 | 
						|
  //      lvalue reference to a function lvalue and S2 binds an rvalue
 | 
						|
  //      reference*.
 | 
						|
  //
 | 
						|
  // FIXME: Rvalue references. We're going rogue with the above edits,
 | 
						|
  // because the semantics in the current C++0x working paper (N3225 at the
 | 
						|
  // time of this writing) break the standard definition of std::forward
 | 
						|
  // and std::reference_wrapper when dealing with references to functions.
 | 
						|
  // Proposed wording changes submitted to CWG for consideration.
 | 
						|
  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
 | 
						|
      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
 | 
						|
          SCS2.IsLvalueReference) ||
 | 
						|
         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
 | 
						|
          !SCS2.IsLvalueReference);
 | 
						|
}
 | 
						|
 | 
						|
/// CompareStandardConversionSequences - Compare two standard
 | 
						|
/// conversion sequences to determine whether one is better than the
 | 
						|
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
 | 
						|
static ImplicitConversionSequence::CompareKind
 | 
						|
CompareStandardConversionSequences(Sema &S,
 | 
						|
                                   const StandardConversionSequence& SCS1,
 | 
						|
                                   const StandardConversionSequence& SCS2)
 | 
						|
{
 | 
						|
  // Standard conversion sequence S1 is a better conversion sequence
 | 
						|
  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
 | 
						|
 | 
						|
  //  -- S1 is a proper subsequence of S2 (comparing the conversion
 | 
						|
  //     sequences in the canonical form defined by 13.3.3.1.1,
 | 
						|
  //     excluding any Lvalue Transformation; the identity conversion
 | 
						|
  //     sequence is considered to be a subsequence of any
 | 
						|
  //     non-identity conversion sequence) or, if not that,
 | 
						|
  if (ImplicitConversionSequence::CompareKind CK
 | 
						|
        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
 | 
						|
    return CK;
 | 
						|
 | 
						|
  //  -- the rank of S1 is better than the rank of S2 (by the rules
 | 
						|
  //     defined below), or, if not that,
 | 
						|
  ImplicitConversionRank Rank1 = SCS1.getRank();
 | 
						|
  ImplicitConversionRank Rank2 = SCS2.getRank();
 | 
						|
  if (Rank1 < Rank2)
 | 
						|
    return ImplicitConversionSequence::Better;
 | 
						|
  else if (Rank2 < Rank1)
 | 
						|
    return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
 | 
						|
  // are indistinguishable unless one of the following rules
 | 
						|
  // applies:
 | 
						|
 | 
						|
  //   A conversion that is not a conversion of a pointer, or
 | 
						|
  //   pointer to member, to bool is better than another conversion
 | 
						|
  //   that is such a conversion.
 | 
						|
  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
 | 
						|
    return SCS2.isPointerConversionToBool()
 | 
						|
             ? ImplicitConversionSequence::Better
 | 
						|
             : ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
  // C++ [over.ics.rank]p4b2:
 | 
						|
  //
 | 
						|
  //   If class B is derived directly or indirectly from class A,
 | 
						|
  //   conversion of B* to A* is better than conversion of B* to
 | 
						|
  //   void*, and conversion of A* to void* is better than conversion
 | 
						|
  //   of B* to void*.
 | 
						|
  bool SCS1ConvertsToVoid
 | 
						|
    = SCS1.isPointerConversionToVoidPointer(S.Context);
 | 
						|
  bool SCS2ConvertsToVoid
 | 
						|
    = SCS2.isPointerConversionToVoidPointer(S.Context);
 | 
						|
  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
 | 
						|
    // Exactly one of the conversion sequences is a conversion to
 | 
						|
    // a void pointer; it's the worse conversion.
 | 
						|
    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
 | 
						|
                              : ImplicitConversionSequence::Worse;
 | 
						|
  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
 | 
						|
    // Neither conversion sequence converts to a void pointer; compare
 | 
						|
    // their derived-to-base conversions.
 | 
						|
    if (ImplicitConversionSequence::CompareKind DerivedCK
 | 
						|
          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
 | 
						|
      return DerivedCK;
 | 
						|
  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
 | 
						|
             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
 | 
						|
    // Both conversion sequences are conversions to void
 | 
						|
    // pointers. Compare the source types to determine if there's an
 | 
						|
    // inheritance relationship in their sources.
 | 
						|
    QualType FromType1 = SCS1.getFromType();
 | 
						|
    QualType FromType2 = SCS2.getFromType();
 | 
						|
 | 
						|
    // Adjust the types we're converting from via the array-to-pointer
 | 
						|
    // conversion, if we need to.
 | 
						|
    if (SCS1.First == ICK_Array_To_Pointer)
 | 
						|
      FromType1 = S.Context.getArrayDecayedType(FromType1);
 | 
						|
    if (SCS2.First == ICK_Array_To_Pointer)
 | 
						|
      FromType2 = S.Context.getArrayDecayedType(FromType2);
 | 
						|
 | 
						|
    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
 | 
						|
 | 
						|
    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
 | 
						|
      return ImplicitConversionSequence::Better;
 | 
						|
    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
 | 
						|
      return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
    // Objective-C++: If one interface is more specific than the
 | 
						|
    // other, it is the better one.
 | 
						|
    const ObjCObjectPointerType* FromObjCPtr1
 | 
						|
      = FromType1->getAs<ObjCObjectPointerType>();
 | 
						|
    const ObjCObjectPointerType* FromObjCPtr2
 | 
						|
      = FromType2->getAs<ObjCObjectPointerType>();
 | 
						|
    if (FromObjCPtr1 && FromObjCPtr2) {
 | 
						|
      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 
 | 
						|
                                                          FromObjCPtr2);
 | 
						|
      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 
 | 
						|
                                                           FromObjCPtr1);
 | 
						|
      if (AssignLeft != AssignRight) {
 | 
						|
        return AssignLeft? ImplicitConversionSequence::Better
 | 
						|
                         : ImplicitConversionSequence::Worse;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare based on qualification conversions (C++ 13.3.3.2p3,
 | 
						|
  // bullet 3).
 | 
						|
  if (ImplicitConversionSequence::CompareKind QualCK
 | 
						|
        = CompareQualificationConversions(S, SCS1, SCS2))
 | 
						|
    return QualCK;
 | 
						|
 | 
						|
  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
 | 
						|
    // Check for a better reference binding based on the kind of bindings.
 | 
						|
    if (isBetterReferenceBindingKind(SCS1, SCS2))
 | 
						|
      return ImplicitConversionSequence::Better;
 | 
						|
    else if (isBetterReferenceBindingKind(SCS2, SCS1))
 | 
						|
      return ImplicitConversionSequence::Worse;
 | 
						|
 | 
						|
    // C++ [over.ics.rank]p3b4:
 | 
						|
    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
 | 
						|
    //      which the references refer are the same type except for
 | 
						|
    //      top-level cv-qualifiers, and the type to which the reference
 | 
						|
    //      initialized by S2 refers is more cv-qualified than the type
 | 
						|
    //      to which the reference initialized by S1 refers.
 | 
						|
    QualType T1 = SCS1.getToType(2);
 | 
						|
    QualType T2 = SCS2.getToType(2);
 | 
						|
    T1 = S.Context.getCanonicalType(T1);
 | 
						|
    T2 = S.Context.getCanonicalType(T2);
 | 
						|
    Qualifiers T1Quals, T2Quals;
 | 
						|
    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
 | 
						|
    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
 | 
						|
    if (UnqualT1 == UnqualT2) {
 | 
						|
      // Objective-C++ ARC: If the references refer to objects with different
 | 
						|
      // lifetimes, prefer bindings that don't change lifetime.
 | 
						|
      if (SCS1.ObjCLifetimeConversionBinding != 
 | 
						|
                                          SCS2.ObjCLifetimeConversionBinding) {
 | 
						|
        return SCS1.ObjCLifetimeConversionBinding
 | 
						|
                                           ? ImplicitConversionSequence::Worse
 | 
						|
                                           : ImplicitConversionSequence::Better;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If the type is an array type, promote the element qualifiers to the
 | 
						|
      // type for comparison.
 | 
						|
      if (isa<ArrayType>(T1) && T1Quals)
 | 
						|
        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
 | 
						|
      if (isa<ArrayType>(T2) && T2Quals)
 | 
						|
        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
 | 
						|
      if (T2.isMoreQualifiedThan(T1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (T1.isMoreQualifiedThan(T2))
 | 
						|
        return ImplicitConversionSequence::Worse;      
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In Microsoft mode, prefer an integral conversion to a
 | 
						|
  // floating-to-integral conversion if the integral conversion
 | 
						|
  // is between types of the same size.
 | 
						|
  // For example:
 | 
						|
  // void f(float);
 | 
						|
  // void f(int);
 | 
						|
  // int main {
 | 
						|
  //    long a;
 | 
						|
  //    f(a);
 | 
						|
  // }
 | 
						|
  // Here, MSVC will call f(int) instead of generating a compile error
 | 
						|
  // as clang will do in standard mode.
 | 
						|
  if (S.getLangOpts().MicrosoftMode &&
 | 
						|
      SCS1.Second == ICK_Integral_Conversion &&
 | 
						|
      SCS2.Second == ICK_Floating_Integral && 
 | 
						|
      S.Context.getTypeSize(SCS1.getFromType()) ==
 | 
						|
      S.Context.getTypeSize(SCS1.getToType(2)))
 | 
						|
    return ImplicitConversionSequence::Better;
 | 
						|
 | 
						|
  return ImplicitConversionSequence::Indistinguishable;
 | 
						|
}
 | 
						|
 | 
						|
/// CompareQualificationConversions - Compares two standard conversion
 | 
						|
/// sequences to determine whether they can be ranked based on their
 | 
						|
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
 | 
						|
ImplicitConversionSequence::CompareKind
 | 
						|
CompareQualificationConversions(Sema &S,
 | 
						|
                                const StandardConversionSequence& SCS1,
 | 
						|
                                const StandardConversionSequence& SCS2) {
 | 
						|
  // C++ 13.3.3.2p3:
 | 
						|
  //  -- S1 and S2 differ only in their qualification conversion and
 | 
						|
  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
 | 
						|
  //     cv-qualification signature of type T1 is a proper subset of
 | 
						|
  //     the cv-qualification signature of type T2, and S1 is not the
 | 
						|
  //     deprecated string literal array-to-pointer conversion (4.2).
 | 
						|
  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
 | 
						|
      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  // FIXME: the example in the standard doesn't use a qualification
 | 
						|
  // conversion (!)
 | 
						|
  QualType T1 = SCS1.getToType(2);
 | 
						|
  QualType T2 = SCS2.getToType(2);
 | 
						|
  T1 = S.Context.getCanonicalType(T1);
 | 
						|
  T2 = S.Context.getCanonicalType(T2);
 | 
						|
  Qualifiers T1Quals, T2Quals;
 | 
						|
  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
 | 
						|
  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
 | 
						|
 | 
						|
  // If the types are the same, we won't learn anything by unwrapped
 | 
						|
  // them.
 | 
						|
  if (UnqualT1 == UnqualT2)
 | 
						|
    return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
  // If the type is an array type, promote the element qualifiers to the type
 | 
						|
  // for comparison.
 | 
						|
  if (isa<ArrayType>(T1) && T1Quals)
 | 
						|
    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
 | 
						|
  if (isa<ArrayType>(T2) && T2Quals)
 | 
						|
    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
 | 
						|
 | 
						|
  ImplicitConversionSequence::CompareKind Result
 | 
						|
    = ImplicitConversionSequence::Indistinguishable;
 | 
						|
  
 | 
						|
  // Objective-C++ ARC:
 | 
						|
  //   Prefer qualification conversions not involving a change in lifetime
 | 
						|
  //   to qualification conversions that do not change lifetime.
 | 
						|
  if (SCS1.QualificationIncludesObjCLifetime != 
 | 
						|
                                      SCS2.QualificationIncludesObjCLifetime) {
 | 
						|
    Result = SCS1.QualificationIncludesObjCLifetime
 | 
						|
               ? ImplicitConversionSequence::Worse
 | 
						|
               : ImplicitConversionSequence::Better;
 | 
						|
  }
 | 
						|
  
 | 
						|
  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
 | 
						|
    // Within each iteration of the loop, we check the qualifiers to
 | 
						|
    // determine if this still looks like a qualification
 | 
						|
    // conversion. Then, if all is well, we unwrap one more level of
 | 
						|
    // pointers or pointers-to-members and do it all again
 | 
						|
    // until there are no more pointers or pointers-to-members left
 | 
						|
    // to unwrap. This essentially mimics what
 | 
						|
    // IsQualificationConversion does, but here we're checking for a
 | 
						|
    // strict subset of qualifiers.
 | 
						|
    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
 | 
						|
      // The qualifiers are the same, so this doesn't tell us anything
 | 
						|
      // about how the sequences rank.
 | 
						|
      ;
 | 
						|
    else if (T2.isMoreQualifiedThan(T1)) {
 | 
						|
      // T1 has fewer qualifiers, so it could be the better sequence.
 | 
						|
      if (Result == ImplicitConversionSequence::Worse)
 | 
						|
        // Neither has qualifiers that are a subset of the other's
 | 
						|
        // qualifiers.
 | 
						|
        return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
      Result = ImplicitConversionSequence::Better;
 | 
						|
    } else if (T1.isMoreQualifiedThan(T2)) {
 | 
						|
      // T2 has fewer qualifiers, so it could be the better sequence.
 | 
						|
      if (Result == ImplicitConversionSequence::Better)
 | 
						|
        // Neither has qualifiers that are a subset of the other's
 | 
						|
        // qualifiers.
 | 
						|
        return ImplicitConversionSequence::Indistinguishable;
 | 
						|
 | 
						|
      Result = ImplicitConversionSequence::Worse;
 | 
						|
    } else {
 | 
						|
      // Qualifiers are disjoint.
 | 
						|
      return ImplicitConversionSequence::Indistinguishable;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the types after this point are equivalent, we're done.
 | 
						|
    if (S.Context.hasSameUnqualifiedType(T1, T2))
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the winning standard conversion sequence isn't using
 | 
						|
  // the deprecated string literal array to pointer conversion.
 | 
						|
  switch (Result) {
 | 
						|
  case ImplicitConversionSequence::Better:
 | 
						|
    if (SCS1.DeprecatedStringLiteralToCharPtr)
 | 
						|
      Result = ImplicitConversionSequence::Indistinguishable;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::Indistinguishable:
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::Worse:
 | 
						|
    if (SCS2.DeprecatedStringLiteralToCharPtr)
 | 
						|
      Result = ImplicitConversionSequence::Indistinguishable;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// CompareDerivedToBaseConversions - Compares two standard conversion
 | 
						|
/// sequences to determine whether they can be ranked based on their
 | 
						|
/// various kinds of derived-to-base conversions (C++
 | 
						|
/// [over.ics.rank]p4b3).  As part of these checks, we also look at
 | 
						|
/// conversions between Objective-C interface types.
 | 
						|
ImplicitConversionSequence::CompareKind
 | 
						|
CompareDerivedToBaseConversions(Sema &S,
 | 
						|
                                const StandardConversionSequence& SCS1,
 | 
						|
                                const StandardConversionSequence& SCS2) {
 | 
						|
  QualType FromType1 = SCS1.getFromType();
 | 
						|
  QualType ToType1 = SCS1.getToType(1);
 | 
						|
  QualType FromType2 = SCS2.getFromType();
 | 
						|
  QualType ToType2 = SCS2.getToType(1);
 | 
						|
 | 
						|
  // Adjust the types we're converting from via the array-to-pointer
 | 
						|
  // conversion, if we need to.
 | 
						|
  if (SCS1.First == ICK_Array_To_Pointer)
 | 
						|
    FromType1 = S.Context.getArrayDecayedType(FromType1);
 | 
						|
  if (SCS2.First == ICK_Array_To_Pointer)
 | 
						|
    FromType2 = S.Context.getArrayDecayedType(FromType2);
 | 
						|
 | 
						|
  // Canonicalize all of the types.
 | 
						|
  FromType1 = S.Context.getCanonicalType(FromType1);
 | 
						|
  ToType1 = S.Context.getCanonicalType(ToType1);
 | 
						|
  FromType2 = S.Context.getCanonicalType(FromType2);
 | 
						|
  ToType2 = S.Context.getCanonicalType(ToType2);
 | 
						|
 | 
						|
  // C++ [over.ics.rank]p4b3:
 | 
						|
  //
 | 
						|
  //   If class B is derived directly or indirectly from class A and
 | 
						|
  //   class C is derived directly or indirectly from B,
 | 
						|
  //
 | 
						|
  // Compare based on pointer conversions.
 | 
						|
  if (SCS1.Second == ICK_Pointer_Conversion &&
 | 
						|
      SCS2.Second == ICK_Pointer_Conversion &&
 | 
						|
      /*FIXME: Remove if Objective-C id conversions get their own rank*/
 | 
						|
      FromType1->isPointerType() && FromType2->isPointerType() &&
 | 
						|
      ToType1->isPointerType() && ToType2->isPointerType()) {
 | 
						|
    QualType FromPointee1
 | 
						|
      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType ToPointee1
 | 
						|
      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType FromPointee2
 | 
						|
      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
    QualType ToPointee2
 | 
						|
      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
 | 
						|
 | 
						|
    //   -- conversion of C* to B* is better than conversion of C* to A*,
 | 
						|
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
 | 
						|
      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
 | 
						|
    //   -- conversion of B* to A* is better than conversion of C* to A*,
 | 
						|
    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
 | 
						|
      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  } else if (SCS1.Second == ICK_Pointer_Conversion &&
 | 
						|
             SCS2.Second == ICK_Pointer_Conversion) {
 | 
						|
    const ObjCObjectPointerType *FromPtr1
 | 
						|
      = FromType1->getAs<ObjCObjectPointerType>();
 | 
						|
    const ObjCObjectPointerType *FromPtr2
 | 
						|
      = FromType2->getAs<ObjCObjectPointerType>();
 | 
						|
    const ObjCObjectPointerType *ToPtr1
 | 
						|
      = ToType1->getAs<ObjCObjectPointerType>();
 | 
						|
    const ObjCObjectPointerType *ToPtr2
 | 
						|
      = ToType2->getAs<ObjCObjectPointerType>();
 | 
						|
    
 | 
						|
    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
 | 
						|
      // Apply the same conversion ranking rules for Objective-C pointer types
 | 
						|
      // that we do for C++ pointers to class types. However, we employ the
 | 
						|
      // Objective-C pseudo-subtyping relationship used for assignment of
 | 
						|
      // Objective-C pointer types.
 | 
						|
      bool FromAssignLeft
 | 
						|
        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
 | 
						|
      bool FromAssignRight
 | 
						|
        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
 | 
						|
      bool ToAssignLeft
 | 
						|
        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
 | 
						|
      bool ToAssignRight
 | 
						|
        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
 | 
						|
      
 | 
						|
      // A conversion to an a non-id object pointer type or qualified 'id' 
 | 
						|
      // type is better than a conversion to 'id'.
 | 
						|
      if (ToPtr1->isObjCIdType() &&
 | 
						|
          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
      if (ToPtr2->isObjCIdType() &&
 | 
						|
          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      
 | 
						|
      // A conversion to a non-id object pointer type is better than a 
 | 
						|
      // conversion to a qualified 'id' type 
 | 
						|
      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
  
 | 
						|
      // A conversion to an a non-Class object pointer type or qualified 'Class' 
 | 
						|
      // type is better than a conversion to 'Class'.
 | 
						|
      if (ToPtr1->isObjCClassType() &&
 | 
						|
          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
      if (ToPtr2->isObjCClassType() &&
 | 
						|
          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      
 | 
						|
      // A conversion to a non-Class object pointer type is better than a 
 | 
						|
      // conversion to a qualified 'Class' type.
 | 
						|
      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
 | 
						|
      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
 | 
						|
      if (S.Context.hasSameType(FromType1, FromType2) && 
 | 
						|
          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
 | 
						|
          (ToAssignLeft != ToAssignRight))
 | 
						|
        return ToAssignLeft? ImplicitConversionSequence::Worse
 | 
						|
                           : ImplicitConversionSequence::Better;
 | 
						|
 | 
						|
      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
 | 
						|
      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
 | 
						|
          (FromAssignLeft != FromAssignRight))
 | 
						|
        return FromAssignLeft? ImplicitConversionSequence::Better
 | 
						|
        : ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Ranking of member-pointer types.
 | 
						|
  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
 | 
						|
      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
 | 
						|
      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
 | 
						|
    const MemberPointerType * FromMemPointer1 =
 | 
						|
                                        FromType1->getAs<MemberPointerType>();
 | 
						|
    const MemberPointerType * ToMemPointer1 =
 | 
						|
                                          ToType1->getAs<MemberPointerType>();
 | 
						|
    const MemberPointerType * FromMemPointer2 =
 | 
						|
                                          FromType2->getAs<MemberPointerType>();
 | 
						|
    const MemberPointerType * ToMemPointer2 =
 | 
						|
                                          ToType2->getAs<MemberPointerType>();
 | 
						|
    const Type *FromPointeeType1 = FromMemPointer1->getClass();
 | 
						|
    const Type *ToPointeeType1 = ToMemPointer1->getClass();
 | 
						|
    const Type *FromPointeeType2 = FromMemPointer2->getClass();
 | 
						|
    const Type *ToPointeeType2 = ToMemPointer2->getClass();
 | 
						|
    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
 | 
						|
    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
 | 
						|
    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
 | 
						|
    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
 | 
						|
    // conversion of A::* to B::* is better than conversion of A::* to C::*,
 | 
						|
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
 | 
						|
      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
    }
 | 
						|
    // conversion of B::* to C::* is better than conversion of A::* to C::*
 | 
						|
    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
 | 
						|
      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SCS1.Second == ICK_Derived_To_Base) {
 | 
						|
    //   -- conversion of C to B is better than conversion of C to A,
 | 
						|
    //   -- binding of an expression of type C to a reference of type
 | 
						|
    //      B& is better than binding an expression of type C to a
 | 
						|
    //      reference of type A&,
 | 
						|
    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
 | 
						|
        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
 | 
						|
      if (S.IsDerivedFrom(ToType1, ToType2))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (S.IsDerivedFrom(ToType2, ToType1))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
 | 
						|
    //   -- conversion of B to A is better than conversion of C to A.
 | 
						|
    //   -- binding of an expression of type B to a reference of type
 | 
						|
    //      A& is better than binding an expression of type C to a
 | 
						|
    //      reference of type A&,
 | 
						|
    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
 | 
						|
        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
 | 
						|
      if (S.IsDerivedFrom(FromType2, FromType1))
 | 
						|
        return ImplicitConversionSequence::Better;
 | 
						|
      else if (S.IsDerivedFrom(FromType1, FromType2))
 | 
						|
        return ImplicitConversionSequence::Worse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ImplicitConversionSequence::Indistinguishable;
 | 
						|
}
 | 
						|
 | 
						|
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
 | 
						|
/// determine whether they are reference-related,
 | 
						|
/// reference-compatible, reference-compatible with added
 | 
						|
/// qualification, or incompatible, for use in C++ initialization by
 | 
						|
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
 | 
						|
/// type, and the first type (T1) is the pointee type of the reference
 | 
						|
/// type being initialized.
 | 
						|
Sema::ReferenceCompareResult
 | 
						|
Sema::CompareReferenceRelationship(SourceLocation Loc,
 | 
						|
                                   QualType OrigT1, QualType OrigT2,
 | 
						|
                                   bool &DerivedToBase,
 | 
						|
                                   bool &ObjCConversion,
 | 
						|
                                   bool &ObjCLifetimeConversion) {
 | 
						|
  assert(!OrigT1->isReferenceType() &&
 | 
						|
    "T1 must be the pointee type of the reference type");
 | 
						|
  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
 | 
						|
 | 
						|
  QualType T1 = Context.getCanonicalType(OrigT1);
 | 
						|
  QualType T2 = Context.getCanonicalType(OrigT2);
 | 
						|
  Qualifiers T1Quals, T2Quals;
 | 
						|
  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
 | 
						|
  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
 | 
						|
 | 
						|
  // C++ [dcl.init.ref]p4:
 | 
						|
  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
 | 
						|
  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
 | 
						|
  //   T1 is a base class of T2.
 | 
						|
  DerivedToBase = false;
 | 
						|
  ObjCConversion = false;
 | 
						|
  ObjCLifetimeConversion = false;
 | 
						|
  if (UnqualT1 == UnqualT2) {
 | 
						|
    // Nothing to do.
 | 
						|
  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
 | 
						|
           IsDerivedFrom(UnqualT2, UnqualT1))
 | 
						|
    DerivedToBase = true;
 | 
						|
  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
 | 
						|
           UnqualT2->isObjCObjectOrInterfaceType() &&
 | 
						|
           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
 | 
						|
    ObjCConversion = true;
 | 
						|
  else
 | 
						|
    return Ref_Incompatible;
 | 
						|
 | 
						|
  // At this point, we know that T1 and T2 are reference-related (at
 | 
						|
  // least).
 | 
						|
 | 
						|
  // If the type is an array type, promote the element qualifiers to the type
 | 
						|
  // for comparison.
 | 
						|
  if (isa<ArrayType>(T1) && T1Quals)
 | 
						|
    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
 | 
						|
  if (isa<ArrayType>(T2) && T2Quals)
 | 
						|
    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
 | 
						|
 | 
						|
  // C++ [dcl.init.ref]p4:
 | 
						|
  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
 | 
						|
  //   reference-related to T2 and cv1 is the same cv-qualification
 | 
						|
  //   as, or greater cv-qualification than, cv2. For purposes of
 | 
						|
  //   overload resolution, cases for which cv1 is greater
 | 
						|
  //   cv-qualification than cv2 are identified as
 | 
						|
  //   reference-compatible with added qualification (see 13.3.3.2).
 | 
						|
  //
 | 
						|
  // Note that we also require equivalence of Objective-C GC and address-space
 | 
						|
  // qualifiers when performing these computations, so that e.g., an int in
 | 
						|
  // address space 1 is not reference-compatible with an int in address
 | 
						|
  // space 2.
 | 
						|
  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
 | 
						|
      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
 | 
						|
    T1Quals.removeObjCLifetime();
 | 
						|
    T2Quals.removeObjCLifetime();    
 | 
						|
    ObjCLifetimeConversion = true;
 | 
						|
  }
 | 
						|
    
 | 
						|
  if (T1Quals == T2Quals)
 | 
						|
    return Ref_Compatible;
 | 
						|
  else if (T1Quals.compatiblyIncludes(T2Quals))
 | 
						|
    return Ref_Compatible_With_Added_Qualification;
 | 
						|
  else
 | 
						|
    return Ref_Related;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for a user-defined conversion to an value reference-compatible
 | 
						|
///        with DeclType. Return true if something definite is found.
 | 
						|
static bool
 | 
						|
FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
 | 
						|
                         QualType DeclType, SourceLocation DeclLoc,
 | 
						|
                         Expr *Init, QualType T2, bool AllowRvalues,
 | 
						|
                         bool AllowExplicit) {
 | 
						|
  assert(T2->isRecordType() && "Can only find conversions of record types.");
 | 
						|
  CXXRecordDecl *T2RecordDecl
 | 
						|
    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
  OverloadCandidateSet CandidateSet(DeclLoc);
 | 
						|
  std::pair<CXXRecordDecl::conversion_iterator,
 | 
						|
            CXXRecordDecl::conversion_iterator>
 | 
						|
    Conversions = T2RecordDecl->getVisibleConversionFunctions();
 | 
						|
  for (CXXRecordDecl::conversion_iterator
 | 
						|
         I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | 
						|
    NamedDecl *D = *I;
 | 
						|
    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
    if (isa<UsingShadowDecl>(D))
 | 
						|
      D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
    FunctionTemplateDecl *ConvTemplate
 | 
						|
      = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
    CXXConversionDecl *Conv;
 | 
						|
    if (ConvTemplate)
 | 
						|
      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
 | 
						|
    else
 | 
						|
      Conv = cast<CXXConversionDecl>(D);
 | 
						|
 | 
						|
    // If this is an explicit conversion, and we're not allowed to consider
 | 
						|
    // explicit conversions, skip it.
 | 
						|
    if (!AllowExplicit && Conv->isExplicit())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (AllowRvalues) {
 | 
						|
      bool DerivedToBase = false;
 | 
						|
      bool ObjCConversion = false;
 | 
						|
      bool ObjCLifetimeConversion = false;
 | 
						|
      
 | 
						|
      // If we are initializing an rvalue reference, don't permit conversion
 | 
						|
      // functions that return lvalues.
 | 
						|
      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
 | 
						|
        const ReferenceType *RefType
 | 
						|
          = Conv->getConversionType()->getAs<LValueReferenceType>();
 | 
						|
        if (RefType && !RefType->getPointeeType()->isFunctionType())
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (!ConvTemplate &&
 | 
						|
          S.CompareReferenceRelationship(
 | 
						|
            DeclLoc,
 | 
						|
            Conv->getConversionType().getNonReferenceType()
 | 
						|
              .getUnqualifiedType(),
 | 
						|
            DeclType.getNonReferenceType().getUnqualifiedType(),
 | 
						|
            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
 | 
						|
          Sema::Ref_Incompatible)
 | 
						|
        continue;
 | 
						|
    } else {
 | 
						|
      // If the conversion function doesn't return a reference type,
 | 
						|
      // it can't be considered for this conversion. An rvalue reference
 | 
						|
      // is only acceptable if its referencee is a function type.
 | 
						|
 | 
						|
      const ReferenceType *RefType =
 | 
						|
        Conv->getConversionType()->getAs<ReferenceType>();
 | 
						|
      if (!RefType ||
 | 
						|
          (!RefType->isLValueReferenceType() &&
 | 
						|
           !RefType->getPointeeType()->isFunctionType()))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConvTemplate)
 | 
						|
      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
 | 
						|
                                       Init, DeclType, CandidateSet);
 | 
						|
    else
 | 
						|
      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
 | 
						|
                               DeclType, CandidateSet);
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
 | 
						|
  case OR_Success:
 | 
						|
    // C++ [over.ics.ref]p1:
 | 
						|
    //
 | 
						|
    //   [...] If the parameter binds directly to the result of
 | 
						|
    //   applying a conversion function to the argument
 | 
						|
    //   expression, the implicit conversion sequence is a
 | 
						|
    //   user-defined conversion sequence (13.3.3.1.2), with the
 | 
						|
    //   second standard conversion sequence either an identity
 | 
						|
    //   conversion or, if the conversion function returns an
 | 
						|
    //   entity of a type that is a derived class of the parameter
 | 
						|
    //   type, a derived-to-base Conversion.
 | 
						|
    if (!Best->FinalConversion.DirectBinding)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ICS.setUserDefined();
 | 
						|
    ICS.UserDefined.Before = Best->Conversions[0].Standard;
 | 
						|
    ICS.UserDefined.After = Best->FinalConversion;
 | 
						|
    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
 | 
						|
    ICS.UserDefined.ConversionFunction = Best->Function;
 | 
						|
    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
 | 
						|
    ICS.UserDefined.EllipsisConversion = false;
 | 
						|
    assert(ICS.UserDefined.After.ReferenceBinding &&
 | 
						|
           ICS.UserDefined.After.DirectBinding &&
 | 
						|
           "Expected a direct reference binding!");
 | 
						|
    return true;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    ICS.setAmbiguous();
 | 
						|
    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
 | 
						|
         Cand != CandidateSet.end(); ++Cand)
 | 
						|
      if (Cand->Viable)
 | 
						|
        ICS.Ambiguous.addConversion(Cand->Function);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
  case OR_Deleted:
 | 
						|
    // There was no suitable conversion, or we found a deleted
 | 
						|
    // conversion; continue with other checks.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid OverloadResult!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute an implicit conversion sequence for reference
 | 
						|
/// initialization.
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
 | 
						|
                 SourceLocation DeclLoc,
 | 
						|
                 bool SuppressUserConversions,
 | 
						|
                 bool AllowExplicit) {
 | 
						|
  assert(DeclType->isReferenceType() && "Reference init needs a reference");
 | 
						|
 | 
						|
  // Most paths end in a failed conversion.
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
 | 
						|
 | 
						|
  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
 | 
						|
  QualType T2 = Init->getType();
 | 
						|
 | 
						|
  // If the initializer is the address of an overloaded function, try
 | 
						|
  // to resolve the overloaded function. If all goes well, T2 is the
 | 
						|
  // type of the resulting function.
 | 
						|
  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
 | 
						|
    DeclAccessPair Found;
 | 
						|
    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
 | 
						|
                                                                false, Found))
 | 
						|
      T2 = Fn->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute some basic properties of the types and the initializer.
 | 
						|
  bool isRValRef = DeclType->isRValueReferenceType();
 | 
						|
  bool DerivedToBase = false;
 | 
						|
  bool ObjCConversion = false;
 | 
						|
  bool ObjCLifetimeConversion = false;
 | 
						|
  Expr::Classification InitCategory = Init->Classify(S.Context);
 | 
						|
  Sema::ReferenceCompareResult RefRelationship
 | 
						|
    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
 | 
						|
                                     ObjCConversion, ObjCLifetimeConversion);
 | 
						|
 | 
						|
 | 
						|
  // C++0x [dcl.init.ref]p5:
 | 
						|
  //   A reference to type "cv1 T1" is initialized by an expression
 | 
						|
  //   of type "cv2 T2" as follows:
 | 
						|
 | 
						|
  //     -- If reference is an lvalue reference and the initializer expression
 | 
						|
  if (!isRValRef) {
 | 
						|
    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
 | 
						|
    //        reference-compatible with "cv2 T2," or
 | 
						|
    //
 | 
						|
    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
 | 
						|
    if (InitCategory.isLValue() &&
 | 
						|
        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
 | 
						|
      // C++ [over.ics.ref]p1:
 | 
						|
      //   When a parameter of reference type binds directly (8.5.3)
 | 
						|
      //   to an argument expression, the implicit conversion sequence
 | 
						|
      //   is the identity conversion, unless the argument expression
 | 
						|
      //   has a type that is a derived class of the parameter type,
 | 
						|
      //   in which case the implicit conversion sequence is a
 | 
						|
      //   derived-to-base Conversion (13.3.3.1).
 | 
						|
      ICS.setStandard();
 | 
						|
      ICS.Standard.First = ICK_Identity;
 | 
						|
      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
 | 
						|
                         : ObjCConversion? ICK_Compatible_Conversion
 | 
						|
                         : ICK_Identity;
 | 
						|
      ICS.Standard.Third = ICK_Identity;
 | 
						|
      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
 | 
						|
      ICS.Standard.setToType(0, T2);
 | 
						|
      ICS.Standard.setToType(1, T1);
 | 
						|
      ICS.Standard.setToType(2, T1);
 | 
						|
      ICS.Standard.ReferenceBinding = true;
 | 
						|
      ICS.Standard.DirectBinding = true;
 | 
						|
      ICS.Standard.IsLvalueReference = !isRValRef;
 | 
						|
      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
 | 
						|
      ICS.Standard.BindsToRvalue = false;
 | 
						|
      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | 
						|
      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
 | 
						|
      ICS.Standard.CopyConstructor = 0;
 | 
						|
 | 
						|
      // Nothing more to do: the inaccessibility/ambiguity check for
 | 
						|
      // derived-to-base conversions is suppressed when we're
 | 
						|
      // computing the implicit conversion sequence (C++
 | 
						|
      // [over.best.ics]p2).
 | 
						|
      return ICS;
 | 
						|
    }
 | 
						|
 | 
						|
    //       -- has a class type (i.e., T2 is a class type), where T1 is
 | 
						|
    //          not reference-related to T2, and can be implicitly
 | 
						|
    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
 | 
						|
    //          is reference-compatible with "cv3 T3" 92) (this
 | 
						|
    //          conversion is selected by enumerating the applicable
 | 
						|
    //          conversion functions (13.3.1.6) and choosing the best
 | 
						|
    //          one through overload resolution (13.3)),
 | 
						|
    if (!SuppressUserConversions && T2->isRecordType() &&
 | 
						|
        !S.RequireCompleteType(DeclLoc, T2, 0) &&
 | 
						|
        RefRelationship == Sema::Ref_Incompatible) {
 | 
						|
      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
 | 
						|
                                   Init, T2, /*AllowRvalues=*/false,
 | 
						|
                                   AllowExplicit))
 | 
						|
        return ICS;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //     -- Otherwise, the reference shall be an lvalue reference to a
 | 
						|
  //        non-volatile const type (i.e., cv1 shall be const), or the reference
 | 
						|
  //        shall be an rvalue reference.
 | 
						|
  //
 | 
						|
  // We actually handle one oddity of C++ [over.ics.ref] at this
 | 
						|
  // point, which is that, due to p2 (which short-circuits reference
 | 
						|
  // binding by only attempting a simple conversion for non-direct
 | 
						|
  // bindings) and p3's strange wording, we allow a const volatile
 | 
						|
  // reference to bind to an rvalue. Hence the check for the presence
 | 
						|
  // of "const" rather than checking for "const" being the only
 | 
						|
  // qualifier.
 | 
						|
  // This is also the point where rvalue references and lvalue inits no longer
 | 
						|
  // go together.
 | 
						|
  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
 | 
						|
    return ICS;
 | 
						|
 | 
						|
  //       -- If the initializer expression
 | 
						|
  //
 | 
						|
  //            -- is an xvalue, class prvalue, array prvalue or function
 | 
						|
  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
 | 
						|
  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
 | 
						|
      (InitCategory.isXValue() ||
 | 
						|
      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
 | 
						|
      (InitCategory.isLValue() && T2->isFunctionType()))) {
 | 
						|
    ICS.setStandard();
 | 
						|
    ICS.Standard.First = ICK_Identity;
 | 
						|
    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
 | 
						|
                      : ObjCConversion? ICK_Compatible_Conversion
 | 
						|
                      : ICK_Identity;
 | 
						|
    ICS.Standard.Third = ICK_Identity;
 | 
						|
    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
 | 
						|
    ICS.Standard.setToType(0, T2);
 | 
						|
    ICS.Standard.setToType(1, T1);
 | 
						|
    ICS.Standard.setToType(2, T1);
 | 
						|
    ICS.Standard.ReferenceBinding = true;
 | 
						|
    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
 | 
						|
    // binding unless we're binding to a class prvalue.
 | 
						|
    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
 | 
						|
    // allow the use of rvalue references in C++98/03 for the benefit of
 | 
						|
    // standard library implementors; therefore, we need the xvalue check here.
 | 
						|
    ICS.Standard.DirectBinding =
 | 
						|
      S.getLangOpts().CPlusPlus11 ||
 | 
						|
      (InitCategory.isPRValue() && !T2->isRecordType());
 | 
						|
    ICS.Standard.IsLvalueReference = !isRValRef;
 | 
						|
    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
 | 
						|
    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
 | 
						|
    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | 
						|
    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
 | 
						|
    ICS.Standard.CopyConstructor = 0;
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  //            -- has a class type (i.e., T2 is a class type), where T1 is not
 | 
						|
  //               reference-related to T2, and can be implicitly converted to
 | 
						|
  //               an xvalue, class prvalue, or function lvalue of type
 | 
						|
  //               "cv3 T3", where "cv1 T1" is reference-compatible with
 | 
						|
  //               "cv3 T3",
 | 
						|
  //
 | 
						|
  //          then the reference is bound to the value of the initializer
 | 
						|
  //          expression in the first case and to the result of the conversion
 | 
						|
  //          in the second case (or, in either case, to an appropriate base
 | 
						|
  //          class subobject).
 | 
						|
  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
 | 
						|
      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
 | 
						|
      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
 | 
						|
                               Init, T2, /*AllowRvalues=*/true,
 | 
						|
                               AllowExplicit)) {
 | 
						|
    // In the second case, if the reference is an rvalue reference
 | 
						|
    // and the second standard conversion sequence of the
 | 
						|
    // user-defined conversion sequence includes an lvalue-to-rvalue
 | 
						|
    // conversion, the program is ill-formed.
 | 
						|
    if (ICS.isUserDefined() && isRValRef &&
 | 
						|
        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
 | 
						|
      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
 | 
						|
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  //       -- Otherwise, a temporary of type "cv1 T1" is created and
 | 
						|
  //          initialized from the initializer expression using the
 | 
						|
  //          rules for a non-reference copy initialization (8.5). The
 | 
						|
  //          reference is then bound to the temporary. If T1 is
 | 
						|
  //          reference-related to T2, cv1 must be the same
 | 
						|
  //          cv-qualification as, or greater cv-qualification than,
 | 
						|
  //          cv2; otherwise, the program is ill-formed.
 | 
						|
  if (RefRelationship == Sema::Ref_Related) {
 | 
						|
    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
 | 
						|
    // we would be reference-compatible or reference-compatible with
 | 
						|
    // added qualification. But that wasn't the case, so the reference
 | 
						|
    // initialization fails.
 | 
						|
    //
 | 
						|
    // Note that we only want to check address spaces and cvr-qualifiers here.
 | 
						|
    // ObjC GC and lifetime qualifiers aren't important.
 | 
						|
    Qualifiers T1Quals = T1.getQualifiers();
 | 
						|
    Qualifiers T2Quals = T2.getQualifiers();
 | 
						|
    T1Quals.removeObjCGCAttr();
 | 
						|
    T1Quals.removeObjCLifetime();
 | 
						|
    T2Quals.removeObjCGCAttr();
 | 
						|
    T2Quals.removeObjCLifetime();
 | 
						|
    if (!T1Quals.compatiblyIncludes(T2Quals))
 | 
						|
      return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  // If at least one of the types is a class type, the types are not
 | 
						|
  // related, and we aren't allowed any user conversions, the
 | 
						|
  // reference binding fails. This case is important for breaking
 | 
						|
  // recursion, since TryImplicitConversion below will attempt to
 | 
						|
  // create a temporary through the use of a copy constructor.
 | 
						|
  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
 | 
						|
      (T1->isRecordType() || T2->isRecordType()))
 | 
						|
    return ICS;
 | 
						|
 | 
						|
  // If T1 is reference-related to T2 and the reference is an rvalue
 | 
						|
  // reference, the initializer expression shall not be an lvalue.
 | 
						|
  if (RefRelationship >= Sema::Ref_Related &&
 | 
						|
      isRValRef && Init->Classify(S.Context).isLValue())
 | 
						|
    return ICS;
 | 
						|
 | 
						|
  // C++ [over.ics.ref]p2:
 | 
						|
  //   When a parameter of reference type is not bound directly to
 | 
						|
  //   an argument expression, the conversion sequence is the one
 | 
						|
  //   required to convert the argument expression to the
 | 
						|
  //   underlying type of the reference according to
 | 
						|
  //   13.3.3.1. Conceptually, this conversion sequence corresponds
 | 
						|
  //   to copy-initializing a temporary of the underlying type with
 | 
						|
  //   the argument expression. Any difference in top-level
 | 
						|
  //   cv-qualification is subsumed by the initialization itself
 | 
						|
  //   and does not constitute a conversion.
 | 
						|
  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
 | 
						|
                              /*AllowExplicit=*/false,
 | 
						|
                              /*InOverloadResolution=*/false,
 | 
						|
                              /*CStyle=*/false,
 | 
						|
                              /*AllowObjCWritebackConversion=*/false);
 | 
						|
 | 
						|
  // Of course, that's still a reference binding.
 | 
						|
  if (ICS.isStandard()) {
 | 
						|
    ICS.Standard.ReferenceBinding = true;
 | 
						|
    ICS.Standard.IsLvalueReference = !isRValRef;
 | 
						|
    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
 | 
						|
    ICS.Standard.BindsToRvalue = true;
 | 
						|
    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | 
						|
    ICS.Standard.ObjCLifetimeConversionBinding = false;
 | 
						|
  } else if (ICS.isUserDefined()) {
 | 
						|
    // Don't allow rvalue references to bind to lvalues.
 | 
						|
    if (DeclType->isRValueReferenceType()) {
 | 
						|
      if (const ReferenceType *RefType
 | 
						|
            = ICS.UserDefined.ConversionFunction->getResultType()
 | 
						|
                ->getAs<LValueReferenceType>()) {
 | 
						|
        if (!RefType->getPointeeType()->isFunctionType()) {
 | 
						|
          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, 
 | 
						|
                     DeclType);
 | 
						|
          return ICS;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    ICS.UserDefined.After.ReferenceBinding = true;
 | 
						|
    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
 | 
						|
    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
 | 
						|
    ICS.UserDefined.After.BindsToRvalue = true;
 | 
						|
    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | 
						|
    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
 | 
						|
  }
 | 
						|
 | 
						|
  return ICS;
 | 
						|
}
 | 
						|
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
 | 
						|
                      bool SuppressUserConversions,
 | 
						|
                      bool InOverloadResolution,
 | 
						|
                      bool AllowObjCWritebackConversion,
 | 
						|
                      bool AllowExplicit = false);
 | 
						|
 | 
						|
/// TryListConversion - Try to copy-initialize a value of type ToType from the
 | 
						|
/// initializer list From.
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
 | 
						|
                  bool SuppressUserConversions,
 | 
						|
                  bool InOverloadResolution,
 | 
						|
                  bool AllowObjCWritebackConversion) {
 | 
						|
  // C++11 [over.ics.list]p1:
 | 
						|
  //   When an argument is an initializer list, it is not an expression and
 | 
						|
  //   special rules apply for converting it to a parameter type.
 | 
						|
 | 
						|
  ImplicitConversionSequence Result;
 | 
						|
  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
 | 
						|
  Result.setListInitializationSequence();
 | 
						|
 | 
						|
  // We need a complete type for what follows. Incomplete types can never be
 | 
						|
  // initialized from init lists.
 | 
						|
  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // C++11 [over.ics.list]p2:
 | 
						|
  //   If the parameter type is std::initializer_list<X> or "array of X" and
 | 
						|
  //   all the elements can be implicitly converted to X, the implicit
 | 
						|
  //   conversion sequence is the worst conversion necessary to convert an
 | 
						|
  //   element of the list to X.
 | 
						|
  bool toStdInitializerList = false;
 | 
						|
  QualType X;
 | 
						|
  if (ToType->isArrayType())
 | 
						|
    X = S.Context.getAsArrayType(ToType)->getElementType();
 | 
						|
  else
 | 
						|
    toStdInitializerList = S.isStdInitializerList(ToType, &X);
 | 
						|
  if (!X.isNull()) {
 | 
						|
    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
 | 
						|
      Expr *Init = From->getInit(i);
 | 
						|
      ImplicitConversionSequence ICS =
 | 
						|
          TryCopyInitialization(S, Init, X, SuppressUserConversions,
 | 
						|
                                InOverloadResolution,
 | 
						|
                                AllowObjCWritebackConversion);
 | 
						|
      // If a single element isn't convertible, fail.
 | 
						|
      if (ICS.isBad()) {
 | 
						|
        Result = ICS;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Otherwise, look for the worst conversion.
 | 
						|
      if (Result.isBad() ||
 | 
						|
          CompareImplicitConversionSequences(S, ICS, Result) ==
 | 
						|
              ImplicitConversionSequence::Worse)
 | 
						|
        Result = ICS;
 | 
						|
    }
 | 
						|
 | 
						|
    // For an empty list, we won't have computed any conversion sequence.
 | 
						|
    // Introduce the identity conversion sequence.
 | 
						|
    if (From->getNumInits() == 0) {
 | 
						|
      Result.setStandard();
 | 
						|
      Result.Standard.setAsIdentityConversion();
 | 
						|
      Result.Standard.setFromType(ToType);
 | 
						|
      Result.Standard.setAllToTypes(ToType);
 | 
						|
    }
 | 
						|
 | 
						|
    Result.setListInitializationSequence();
 | 
						|
    Result.setStdInitializerListElement(toStdInitializerList);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [over.ics.list]p3:
 | 
						|
  //   Otherwise, if the parameter is a non-aggregate class X and overload
 | 
						|
  //   resolution chooses a single best constructor [...] the implicit
 | 
						|
  //   conversion sequence is a user-defined conversion sequence. If multiple
 | 
						|
  //   constructors are viable but none is better than the others, the
 | 
						|
  //   implicit conversion sequence is a user-defined conversion sequence.
 | 
						|
  if (ToType->isRecordType() && !ToType->isAggregateType()) {
 | 
						|
    // This function can deal with initializer lists.
 | 
						|
    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
 | 
						|
                                      /*AllowExplicit=*/false,
 | 
						|
                                      InOverloadResolution, /*CStyle=*/false,
 | 
						|
                                      AllowObjCWritebackConversion);
 | 
						|
    Result.setListInitializationSequence();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [over.ics.list]p4:
 | 
						|
  //   Otherwise, if the parameter has an aggregate type which can be
 | 
						|
  //   initialized from the initializer list [...] the implicit conversion
 | 
						|
  //   sequence is a user-defined conversion sequence.
 | 
						|
  if (ToType->isAggregateType()) {
 | 
						|
    // Type is an aggregate, argument is an init list. At this point it comes
 | 
						|
    // down to checking whether the initialization works.
 | 
						|
    // FIXME: Find out whether this parameter is consumed or not.
 | 
						|
    InitializedEntity Entity =
 | 
						|
        InitializedEntity::InitializeParameter(S.Context, ToType,
 | 
						|
                                               /*Consumed=*/false);
 | 
						|
    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
 | 
						|
      Result.setUserDefined();
 | 
						|
      Result.UserDefined.Before.setAsIdentityConversion();
 | 
						|
      // Initializer lists don't have a type.
 | 
						|
      Result.UserDefined.Before.setFromType(QualType());
 | 
						|
      Result.UserDefined.Before.setAllToTypes(QualType());
 | 
						|
 | 
						|
      Result.UserDefined.After.setAsIdentityConversion();
 | 
						|
      Result.UserDefined.After.setFromType(ToType);
 | 
						|
      Result.UserDefined.After.setAllToTypes(ToType);
 | 
						|
      Result.UserDefined.ConversionFunction = 0;
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [over.ics.list]p5:
 | 
						|
  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
 | 
						|
  if (ToType->isReferenceType()) {
 | 
						|
    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
 | 
						|
    // mention initializer lists in any way. So we go by what list-
 | 
						|
    // initialization would do and try to extrapolate from that.
 | 
						|
 | 
						|
    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
 | 
						|
 | 
						|
    // If the initializer list has a single element that is reference-related
 | 
						|
    // to the parameter type, we initialize the reference from that.
 | 
						|
    if (From->getNumInits() == 1) {
 | 
						|
      Expr *Init = From->getInit(0);
 | 
						|
 | 
						|
      QualType T2 = Init->getType();
 | 
						|
 | 
						|
      // If the initializer is the address of an overloaded function, try
 | 
						|
      // to resolve the overloaded function. If all goes well, T2 is the
 | 
						|
      // type of the resulting function.
 | 
						|
      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
 | 
						|
        DeclAccessPair Found;
 | 
						|
        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
 | 
						|
                                   Init, ToType, false, Found))
 | 
						|
          T2 = Fn->getType();
 | 
						|
      }
 | 
						|
 | 
						|
      // Compute some basic properties of the types and the initializer.
 | 
						|
      bool dummy1 = false;
 | 
						|
      bool dummy2 = false;
 | 
						|
      bool dummy3 = false;
 | 
						|
      Sema::ReferenceCompareResult RefRelationship
 | 
						|
        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
 | 
						|
                                         dummy2, dummy3);
 | 
						|
 | 
						|
      if (RefRelationship >= Sema::Ref_Related)
 | 
						|
        return TryReferenceInit(S, Init, ToType,
 | 
						|
                                /*FIXME:*/From->getLocStart(),
 | 
						|
                                SuppressUserConversions,
 | 
						|
                                /*AllowExplicit=*/false);
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we bind the reference to a temporary created from the
 | 
						|
    // initializer list.
 | 
						|
    Result = TryListConversion(S, From, T1, SuppressUserConversions,
 | 
						|
                               InOverloadResolution,
 | 
						|
                               AllowObjCWritebackConversion);
 | 
						|
    if (Result.isFailure())
 | 
						|
      return Result;
 | 
						|
    assert(!Result.isEllipsis() &&
 | 
						|
           "Sub-initialization cannot result in ellipsis conversion.");
 | 
						|
 | 
						|
    // Can we even bind to a temporary?
 | 
						|
    if (ToType->isRValueReferenceType() ||
 | 
						|
        (T1.isConstQualified() && !T1.isVolatileQualified())) {
 | 
						|
      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
 | 
						|
                                            Result.UserDefined.After;
 | 
						|
      SCS.ReferenceBinding = true;
 | 
						|
      SCS.IsLvalueReference = ToType->isLValueReferenceType();
 | 
						|
      SCS.BindsToRvalue = true;
 | 
						|
      SCS.BindsToFunctionLvalue = false;
 | 
						|
      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
 | 
						|
      SCS.ObjCLifetimeConversionBinding = false;
 | 
						|
    } else
 | 
						|
      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
 | 
						|
                    From, ToType);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [over.ics.list]p6:
 | 
						|
  //   Otherwise, if the parameter type is not a class:
 | 
						|
  if (!ToType->isRecordType()) {
 | 
						|
    //    - if the initializer list has one element, the implicit conversion
 | 
						|
    //      sequence is the one required to convert the element to the
 | 
						|
    //      parameter type.
 | 
						|
    unsigned NumInits = From->getNumInits();
 | 
						|
    if (NumInits == 1)
 | 
						|
      Result = TryCopyInitialization(S, From->getInit(0), ToType,
 | 
						|
                                     SuppressUserConversions,
 | 
						|
                                     InOverloadResolution,
 | 
						|
                                     AllowObjCWritebackConversion);
 | 
						|
    //    - if the initializer list has no elements, the implicit conversion
 | 
						|
    //      sequence is the identity conversion.
 | 
						|
    else if (NumInits == 0) {
 | 
						|
      Result.setStandard();
 | 
						|
      Result.Standard.setAsIdentityConversion();
 | 
						|
      Result.Standard.setFromType(ToType);
 | 
						|
      Result.Standard.setAllToTypes(ToType);
 | 
						|
    }
 | 
						|
    Result.setListInitializationSequence();
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [over.ics.list]p7:
 | 
						|
  //   In all cases other than those enumerated above, no conversion is possible
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// TryCopyInitialization - Try to copy-initialize a value of type
 | 
						|
/// ToType from the expression From. Return the implicit conversion
 | 
						|
/// sequence required to pass this argument, which may be a bad
 | 
						|
/// conversion sequence (meaning that the argument cannot be passed to
 | 
						|
/// a parameter of this type). If @p SuppressUserConversions, then we
 | 
						|
/// do not permit any user-defined conversion sequences.
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
 | 
						|
                      bool SuppressUserConversions,
 | 
						|
                      bool InOverloadResolution,
 | 
						|
                      bool AllowObjCWritebackConversion,
 | 
						|
                      bool AllowExplicit) {
 | 
						|
  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
 | 
						|
    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
 | 
						|
                             InOverloadResolution,AllowObjCWritebackConversion);
 | 
						|
 | 
						|
  if (ToType->isReferenceType())
 | 
						|
    return TryReferenceInit(S, From, ToType,
 | 
						|
                            /*FIXME:*/From->getLocStart(),
 | 
						|
                            SuppressUserConversions,
 | 
						|
                            AllowExplicit);
 | 
						|
 | 
						|
  return TryImplicitConversion(S, From, ToType,
 | 
						|
                               SuppressUserConversions,
 | 
						|
                               /*AllowExplicit=*/false,
 | 
						|
                               InOverloadResolution,
 | 
						|
                               /*CStyle=*/false,
 | 
						|
                               AllowObjCWritebackConversion);
 | 
						|
}
 | 
						|
 | 
						|
static bool TryCopyInitialization(const CanQualType FromQTy,
 | 
						|
                                  const CanQualType ToQTy,
 | 
						|
                                  Sema &S,
 | 
						|
                                  SourceLocation Loc,
 | 
						|
                                  ExprValueKind FromVK) {
 | 
						|
  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
 | 
						|
  ImplicitConversionSequence ICS =
 | 
						|
    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
 | 
						|
 | 
						|
  return !ICS.isBad();
 | 
						|
}
 | 
						|
 | 
						|
/// TryObjectArgumentInitialization - Try to initialize the object
 | 
						|
/// parameter of the given member function (@c Method) from the
 | 
						|
/// expression @p From.
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryObjectArgumentInitialization(Sema &S, QualType FromType,
 | 
						|
                                Expr::Classification FromClassification,
 | 
						|
                                CXXMethodDecl *Method,
 | 
						|
                                CXXRecordDecl *ActingContext) {
 | 
						|
  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
 | 
						|
  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
 | 
						|
  //                 const volatile object.
 | 
						|
  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
 | 
						|
    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
 | 
						|
  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
 | 
						|
 | 
						|
  // Set up the conversion sequence as a "bad" conversion, to allow us
 | 
						|
  // to exit early.
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
 | 
						|
  // We need to have an object of class type.
 | 
						|
  if (const PointerType *PT = FromType->getAs<PointerType>()) {
 | 
						|
    FromType = PT->getPointeeType();
 | 
						|
 | 
						|
    // When we had a pointer, it's implicitly dereferenced, so we
 | 
						|
    // better have an lvalue.
 | 
						|
    assert(FromClassification.isLValue());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(FromType->isRecordType());
 | 
						|
 | 
						|
  // C++0x [over.match.funcs]p4:
 | 
						|
  //   For non-static member functions, the type of the implicit object
 | 
						|
  //   parameter is
 | 
						|
  //
 | 
						|
  //     - "lvalue reference to cv X" for functions declared without a
 | 
						|
  //        ref-qualifier or with the & ref-qualifier
 | 
						|
  //     - "rvalue reference to cv X" for functions declared with the &&
 | 
						|
  //        ref-qualifier
 | 
						|
  //
 | 
						|
  // where X is the class of which the function is a member and cv is the
 | 
						|
  // cv-qualification on the member function declaration.
 | 
						|
  //
 | 
						|
  // However, when finding an implicit conversion sequence for the argument, we
 | 
						|
  // are not allowed to create temporaries or perform user-defined conversions
 | 
						|
  // (C++ [over.match.funcs]p5). We perform a simplified version of
 | 
						|
  // reference binding here, that allows class rvalues to bind to
 | 
						|
  // non-constant references.
 | 
						|
 | 
						|
  // First check the qualifiers.
 | 
						|
  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
 | 
						|
  if (ImplicitParamType.getCVRQualifiers()
 | 
						|
                                    != FromTypeCanon.getLocalCVRQualifiers() &&
 | 
						|
      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
 | 
						|
    ICS.setBad(BadConversionSequence::bad_qualifiers,
 | 
						|
               FromType, ImplicitParamType);
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that we have either the same type or a derived type. It
 | 
						|
  // affects the conversion rank.
 | 
						|
  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
 | 
						|
  ImplicitConversionKind SecondKind;
 | 
						|
  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
 | 
						|
    SecondKind = ICK_Identity;
 | 
						|
  } else if (S.IsDerivedFrom(FromType, ClassType))
 | 
						|
    SecondKind = ICK_Derived_To_Base;
 | 
						|
  else {
 | 
						|
    ICS.setBad(BadConversionSequence::unrelated_class,
 | 
						|
               FromType, ImplicitParamType);
 | 
						|
    return ICS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the ref-qualifier.
 | 
						|
  switch (Method->getRefQualifier()) {
 | 
						|
  case RQ_None:
 | 
						|
    // Do nothing; we don't care about lvalueness or rvalueness.
 | 
						|
    break;
 | 
						|
 | 
						|
  case RQ_LValue:
 | 
						|
    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
 | 
						|
      // non-const lvalue reference cannot bind to an rvalue
 | 
						|
      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
 | 
						|
                 ImplicitParamType);
 | 
						|
      return ICS;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case RQ_RValue:
 | 
						|
    if (!FromClassification.isRValue()) {
 | 
						|
      // rvalue reference cannot bind to an lvalue
 | 
						|
      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
 | 
						|
                 ImplicitParamType);
 | 
						|
      return ICS;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Success. Mark this as a reference binding.
 | 
						|
  ICS.setStandard();
 | 
						|
  ICS.Standard.setAsIdentityConversion();
 | 
						|
  ICS.Standard.Second = SecondKind;
 | 
						|
  ICS.Standard.setFromType(FromType);
 | 
						|
  ICS.Standard.setAllToTypes(ImplicitParamType);
 | 
						|
  ICS.Standard.ReferenceBinding = true;
 | 
						|
  ICS.Standard.DirectBinding = true;
 | 
						|
  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
 | 
						|
  ICS.Standard.BindsToFunctionLvalue = false;
 | 
						|
  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
 | 
						|
  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
 | 
						|
    = (Method->getRefQualifier() == RQ_None);
 | 
						|
  return ICS;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformObjectArgumentInitialization - Perform initialization of
 | 
						|
/// the implicit object parameter for the given Method with the given
 | 
						|
/// expression.
 | 
						|
ExprResult
 | 
						|
Sema::PerformObjectArgumentInitialization(Expr *From,
 | 
						|
                                          NestedNameSpecifier *Qualifier,
 | 
						|
                                          NamedDecl *FoundDecl,
 | 
						|
                                          CXXMethodDecl *Method) {
 | 
						|
  QualType FromRecordType, DestType;
 | 
						|
  QualType ImplicitParamRecordType  =
 | 
						|
    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
 | 
						|
 | 
						|
  Expr::Classification FromClassification;
 | 
						|
  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
 | 
						|
    FromRecordType = PT->getPointeeType();
 | 
						|
    DestType = Method->getThisType(Context);
 | 
						|
    FromClassification = Expr::Classification::makeSimpleLValue();
 | 
						|
  } else {
 | 
						|
    FromRecordType = From->getType();
 | 
						|
    DestType = ImplicitParamRecordType;
 | 
						|
    FromClassification = From->Classify(Context);
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that we always use the true parent context when performing
 | 
						|
  // the actual argument initialization.
 | 
						|
  ImplicitConversionSequence ICS
 | 
						|
    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
 | 
						|
                                      Method, Method->getParent());
 | 
						|
  if (ICS.isBad()) {
 | 
						|
    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
 | 
						|
      Qualifiers FromQs = FromRecordType.getQualifiers();
 | 
						|
      Qualifiers ToQs = DestType.getQualifiers();
 | 
						|
      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
 | 
						|
      if (CVR) {
 | 
						|
        Diag(From->getLocStart(),
 | 
						|
             diag::err_member_function_call_bad_cvr)
 | 
						|
          << Method->getDeclName() << FromRecordType << (CVR - 1)
 | 
						|
          << From->getSourceRange();
 | 
						|
        Diag(Method->getLocation(), diag::note_previous_decl)
 | 
						|
          << Method->getDeclName();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return Diag(From->getLocStart(),
 | 
						|
                diag::err_implicit_object_parameter_init)
 | 
						|
       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  if (ICS.Standard.Second == ICK_Derived_To_Base) {
 | 
						|
    ExprResult FromRes =
 | 
						|
      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
 | 
						|
    if (FromRes.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    From = FromRes.take();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Context.hasSameType(From->getType(), DestType))
 | 
						|
    From = ImpCastExprToType(From, DestType, CK_NoOp,
 | 
						|
                             From->getValueKind()).take();
 | 
						|
  return Owned(From);
 | 
						|
}
 | 
						|
 | 
						|
/// TryContextuallyConvertToBool - Attempt to contextually convert the
 | 
						|
/// expression From to bool (C++0x [conv]p3).
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryContextuallyConvertToBool(Sema &S, Expr *From) {
 | 
						|
  // FIXME: This is pretty broken.
 | 
						|
  return TryImplicitConversion(S, From, S.Context.BoolTy,
 | 
						|
                               // FIXME: Are these flags correct?
 | 
						|
                               /*SuppressUserConversions=*/false,
 | 
						|
                               /*AllowExplicit=*/true,
 | 
						|
                               /*InOverloadResolution=*/false,
 | 
						|
                               /*CStyle=*/false,
 | 
						|
                               /*AllowObjCWritebackConversion=*/false);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformContextuallyConvertToBool - Perform a contextual conversion
 | 
						|
/// of the expression From to bool (C++0x [conv]p3).
 | 
						|
ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
 | 
						|
  if (checkPlaceholderForOverload(*this, From))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
 | 
						|
  if (!ICS.isBad())
 | 
						|
    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
 | 
						|
 | 
						|
  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
 | 
						|
    return Diag(From->getLocStart(),
 | 
						|
                diag::err_typecheck_bool_condition)
 | 
						|
                  << From->getType() << From->getSourceRange();
 | 
						|
  return ExprError();
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the specified conversion is permitted in a converted constant
 | 
						|
/// expression, according to C++11 [expr.const]p3. Return true if the conversion
 | 
						|
/// is acceptable.
 | 
						|
static bool CheckConvertedConstantConversions(Sema &S,
 | 
						|
                                              StandardConversionSequence &SCS) {
 | 
						|
  // Since we know that the target type is an integral or unscoped enumeration
 | 
						|
  // type, most conversion kinds are impossible. All possible First and Third
 | 
						|
  // conversions are fine.
 | 
						|
  switch (SCS.Second) {
 | 
						|
  case ICK_Identity:
 | 
						|
  case ICK_Integral_Promotion:
 | 
						|
  case ICK_Integral_Conversion:
 | 
						|
    return true;
 | 
						|
 | 
						|
  case ICK_Boolean_Conversion:
 | 
						|
    // Conversion from an integral or unscoped enumeration type to bool is
 | 
						|
    // classified as ICK_Boolean_Conversion, but it's also an integral
 | 
						|
    // conversion, so it's permitted in a converted constant expression.
 | 
						|
    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
 | 
						|
           SCS.getToType(2)->isBooleanType();
 | 
						|
 | 
						|
  case ICK_Floating_Integral:
 | 
						|
  case ICK_Complex_Real:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case ICK_Lvalue_To_Rvalue:
 | 
						|
  case ICK_Array_To_Pointer:
 | 
						|
  case ICK_Function_To_Pointer:
 | 
						|
  case ICK_NoReturn_Adjustment:
 | 
						|
  case ICK_Qualification:
 | 
						|
  case ICK_Compatible_Conversion:
 | 
						|
  case ICK_Vector_Conversion:
 | 
						|
  case ICK_Vector_Splat:
 | 
						|
  case ICK_Derived_To_Base:
 | 
						|
  case ICK_Pointer_Conversion:
 | 
						|
  case ICK_Pointer_Member:
 | 
						|
  case ICK_Block_Pointer_Conversion:
 | 
						|
  case ICK_Writeback_Conversion:
 | 
						|
  case ICK_Floating_Promotion:
 | 
						|
  case ICK_Complex_Promotion:
 | 
						|
  case ICK_Complex_Conversion:
 | 
						|
  case ICK_Floating_Conversion:
 | 
						|
  case ICK_TransparentUnionConversion:
 | 
						|
    llvm_unreachable("unexpected second conversion kind");
 | 
						|
 | 
						|
  case ICK_Num_Conversion_Kinds:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown conversion kind");
 | 
						|
}
 | 
						|
 | 
						|
/// CheckConvertedConstantExpression - Check that the expression From is a
 | 
						|
/// converted constant expression of type T, perform the conversion and produce
 | 
						|
/// the converted expression, per C++11 [expr.const]p3.
 | 
						|
ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
 | 
						|
                                                  llvm::APSInt &Value,
 | 
						|
                                                  CCEKind CCE) {
 | 
						|
  assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11");
 | 
						|
  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
 | 
						|
 | 
						|
  if (checkPlaceholderForOverload(*this, From))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // C++11 [expr.const]p3 with proposed wording fixes:
 | 
						|
  //  A converted constant expression of type T is a core constant expression,
 | 
						|
  //  implicitly converted to a prvalue of type T, where the converted
 | 
						|
  //  expression is a literal constant expression and the implicit conversion
 | 
						|
  //  sequence contains only user-defined conversions, lvalue-to-rvalue
 | 
						|
  //  conversions, integral promotions, and integral conversions other than
 | 
						|
  //  narrowing conversions.
 | 
						|
  ImplicitConversionSequence ICS =
 | 
						|
    TryImplicitConversion(From, T,
 | 
						|
                          /*SuppressUserConversions=*/false,
 | 
						|
                          /*AllowExplicit=*/false,
 | 
						|
                          /*InOverloadResolution=*/false,
 | 
						|
                          /*CStyle=*/false,
 | 
						|
                          /*AllowObjcWritebackConversion=*/false);
 | 
						|
  StandardConversionSequence *SCS = 0;
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
 | 
						|
      return Diag(From->getLocStart(),
 | 
						|
                  diag::err_typecheck_converted_constant_expression_disallowed)
 | 
						|
               << From->getType() << From->getSourceRange() << T;
 | 
						|
    SCS = &ICS.Standard;
 | 
						|
    break;
 | 
						|
  case ImplicitConversionSequence::UserDefinedConversion:
 | 
						|
    // We are converting from class type to an integral or enumeration type, so
 | 
						|
    // the Before sequence must be trivial.
 | 
						|
    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
 | 
						|
      return Diag(From->getLocStart(),
 | 
						|
                  diag::err_typecheck_converted_constant_expression_disallowed)
 | 
						|
               << From->getType() << From->getSourceRange() << T;
 | 
						|
    SCS = &ICS.UserDefined.After;
 | 
						|
    break;
 | 
						|
  case ImplicitConversionSequence::AmbiguousConversion:
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    if (!DiagnoseMultipleUserDefinedConversion(From, T))
 | 
						|
      return Diag(From->getLocStart(),
 | 
						|
                  diag::err_typecheck_converted_constant_expression)
 | 
						|
                    << From->getType() << From->getSourceRange() << T;
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case ImplicitConversionSequence::EllipsisConversion:
 | 
						|
    llvm_unreachable("ellipsis conversion in converted constant expression");
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
 | 
						|
  if (Result.isInvalid())
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Check for a narrowing implicit conversion.
 | 
						|
  APValue PreNarrowingValue;
 | 
						|
  QualType PreNarrowingType;
 | 
						|
  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
 | 
						|
                                PreNarrowingType)) {
 | 
						|
  case NK_Variable_Narrowing:
 | 
						|
    // Implicit conversion to a narrower type, and the value is not a constant
 | 
						|
    // expression. We'll diagnose this in a moment.
 | 
						|
  case NK_Not_Narrowing:
 | 
						|
    break;
 | 
						|
 | 
						|
  case NK_Constant_Narrowing:
 | 
						|
    Diag(From->getLocStart(),
 | 
						|
         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
 | 
						|
                             diag::err_cce_narrowing)
 | 
						|
      << CCE << /*Constant*/1
 | 
						|
      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
 | 
						|
    break;
 | 
						|
 | 
						|
  case NK_Type_Narrowing:
 | 
						|
    Diag(From->getLocStart(),
 | 
						|
         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
 | 
						|
                             diag::err_cce_narrowing)
 | 
						|
      << CCE << /*Constant*/0 << From->getType() << T;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the expression is a constant expression.
 | 
						|
  SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
  Expr::EvalResult Eval;
 | 
						|
  Eval.Diag = &Notes;
 | 
						|
 | 
						|
  if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
 | 
						|
    // The expression can't be folded, so we can't keep it at this position in
 | 
						|
    // the AST.
 | 
						|
    Result = ExprError();
 | 
						|
  } else {
 | 
						|
    Value = Eval.Val.getInt();
 | 
						|
 | 
						|
    if (Notes.empty()) {
 | 
						|
      // It's a constant expression.
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // It's not a constant expression. Produce an appropriate diagnostic.
 | 
						|
  if (Notes.size() == 1 &&
 | 
						|
      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
 | 
						|
    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
 | 
						|
  else {
 | 
						|
    Diag(From->getLocStart(), diag::err_expr_not_cce)
 | 
						|
      << CCE << From->getSourceRange();
 | 
						|
    for (unsigned I = 0; I < Notes.size(); ++I)
 | 
						|
      Diag(Notes[I].first, Notes[I].second);
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// dropPointerConversions - If the given standard conversion sequence
 | 
						|
/// involves any pointer conversions, remove them.  This may change
 | 
						|
/// the result type of the conversion sequence.
 | 
						|
static void dropPointerConversion(StandardConversionSequence &SCS) {
 | 
						|
  if (SCS.Second == ICK_Pointer_Conversion) {
 | 
						|
    SCS.Second = ICK_Identity;
 | 
						|
    SCS.Third = ICK_Identity;
 | 
						|
    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// TryContextuallyConvertToObjCPointer - Attempt to contextually
 | 
						|
/// convert the expression From to an Objective-C pointer type.
 | 
						|
static ImplicitConversionSequence
 | 
						|
TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
 | 
						|
  // Do an implicit conversion to 'id'.
 | 
						|
  QualType Ty = S.Context.getObjCIdType();
 | 
						|
  ImplicitConversionSequence ICS
 | 
						|
    = TryImplicitConversion(S, From, Ty,
 | 
						|
                            // FIXME: Are these flags correct?
 | 
						|
                            /*SuppressUserConversions=*/false,
 | 
						|
                            /*AllowExplicit=*/true,
 | 
						|
                            /*InOverloadResolution=*/false,
 | 
						|
                            /*CStyle=*/false,
 | 
						|
                            /*AllowObjCWritebackConversion=*/false);
 | 
						|
 | 
						|
  // Strip off any final conversions to 'id'.
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
  case ImplicitConversionSequence::AmbiguousConversion:
 | 
						|
  case ImplicitConversionSequence::EllipsisConversion:
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::UserDefinedConversion:
 | 
						|
    dropPointerConversion(ICS.UserDefined.After);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    dropPointerConversion(ICS.Standard);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return ICS;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformContextuallyConvertToObjCPointer - Perform a contextual
 | 
						|
/// conversion of the expression From to an Objective-C pointer type.
 | 
						|
ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
 | 
						|
  if (checkPlaceholderForOverload(*this, From))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType Ty = Context.getObjCIdType();
 | 
						|
  ImplicitConversionSequence ICS =
 | 
						|
    TryContextuallyConvertToObjCPointer(*this, From);
 | 
						|
  if (!ICS.isBad())
 | 
						|
    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
 | 
						|
  return ExprError();
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether the provided type is an integral type, or an enumeration
 | 
						|
/// type of a permitted flavor.
 | 
						|
static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
 | 
						|
  return AllowScopedEnum ? T->isIntegralOrEnumerationType()
 | 
						|
                         : T->isIntegralOrUnscopedEnumerationType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Attempt to convert the given expression to an integral or
 | 
						|
/// enumeration type.
 | 
						|
///
 | 
						|
/// This routine will attempt to convert an expression of class type to an
 | 
						|
/// integral or enumeration type, if that class type only has a single
 | 
						|
/// conversion to an integral or enumeration type.
 | 
						|
///
 | 
						|
/// \param Loc The source location of the construct that requires the
 | 
						|
/// conversion.
 | 
						|
///
 | 
						|
/// \param From The expression we're converting from.
 | 
						|
///
 | 
						|
/// \param Diagnoser Used to output any diagnostics.
 | 
						|
///
 | 
						|
/// \param AllowScopedEnumerations Specifies whether conversions to scoped
 | 
						|
/// enumerations should be considered.
 | 
						|
///
 | 
						|
/// \returns The expression, converted to an integral or enumeration type if
 | 
						|
/// successful.
 | 
						|
ExprResult
 | 
						|
Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
 | 
						|
                                         ICEConvertDiagnoser &Diagnoser,
 | 
						|
                                         bool AllowScopedEnumerations) {
 | 
						|
  // We can't perform any more checking for type-dependent expressions.
 | 
						|
  if (From->isTypeDependent())
 | 
						|
    return Owned(From);
 | 
						|
 | 
						|
  // Process placeholders immediately.
 | 
						|
  if (From->hasPlaceholderType()) {
 | 
						|
    ExprResult result = CheckPlaceholderExpr(From);
 | 
						|
    if (result.isInvalid()) return result;
 | 
						|
    From = result.take();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the expression already has integral or enumeration type, we're golden.
 | 
						|
  QualType T = From->getType();
 | 
						|
  if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
 | 
						|
    return DefaultLvalueConversion(From);
 | 
						|
 | 
						|
  // FIXME: Check for missing '()' if T is a function type?
 | 
						|
 | 
						|
  // If we don't have a class type in C++, there's no way we can get an
 | 
						|
  // expression of integral or enumeration type.
 | 
						|
  const RecordType *RecordTy = T->getAs<RecordType>();
 | 
						|
  if (!RecordTy || !getLangOpts().CPlusPlus) {
 | 
						|
    if (!Diagnoser.Suppress)
 | 
						|
      Diagnoser.diagnoseNotInt(*this, Loc, T) << From->getSourceRange();
 | 
						|
    return Owned(From);
 | 
						|
  }
 | 
						|
 | 
						|
  // We must have a complete class type.
 | 
						|
  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
 | 
						|
    ICEConvertDiagnoser &Diagnoser;
 | 
						|
    Expr *From;
 | 
						|
    
 | 
						|
    TypeDiagnoserPartialDiag(ICEConvertDiagnoser &Diagnoser, Expr *From)
 | 
						|
      : TypeDiagnoser(Diagnoser.Suppress), Diagnoser(Diagnoser), From(From) {}
 | 
						|
    
 | 
						|
    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
 | 
						|
      Diagnoser.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
 | 
						|
    }
 | 
						|
  } IncompleteDiagnoser(Diagnoser, From);
 | 
						|
 | 
						|
  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
 | 
						|
    return Owned(From);
 | 
						|
 | 
						|
  // Look for a conversion to an integral or enumeration type.
 | 
						|
  UnresolvedSet<4> ViableConversions;
 | 
						|
  UnresolvedSet<4> ExplicitConversions;
 | 
						|
  std::pair<CXXRecordDecl::conversion_iterator,
 | 
						|
            CXXRecordDecl::conversion_iterator> Conversions
 | 
						|
    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
 | 
						|
 | 
						|
  bool HadMultipleCandidates
 | 
						|
    = (std::distance(Conversions.first, Conversions.second) > 1);
 | 
						|
 | 
						|
  for (CXXRecordDecl::conversion_iterator
 | 
						|
         I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | 
						|
    if (CXXConversionDecl *Conversion
 | 
						|
          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
 | 
						|
      if (isIntegralOrEnumerationType(
 | 
						|
            Conversion->getConversionType().getNonReferenceType(),
 | 
						|
            AllowScopedEnumerations)) {
 | 
						|
        if (Conversion->isExplicit())
 | 
						|
          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
 | 
						|
        else
 | 
						|
          ViableConversions.addDecl(I.getDecl(), I.getAccess());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (ViableConversions.size()) {
 | 
						|
  case 0:
 | 
						|
    if (ExplicitConversions.size() == 1 && !Diagnoser.Suppress) {
 | 
						|
      DeclAccessPair Found = ExplicitConversions[0];
 | 
						|
      CXXConversionDecl *Conversion
 | 
						|
        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
 | 
						|
 | 
						|
      // The user probably meant to invoke the given explicit
 | 
						|
      // conversion; use it.
 | 
						|
      QualType ConvTy
 | 
						|
        = Conversion->getConversionType().getNonReferenceType();
 | 
						|
      std::string TypeStr;
 | 
						|
      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
 | 
						|
 | 
						|
      Diagnoser.diagnoseExplicitConv(*this, Loc, T, ConvTy)
 | 
						|
        << FixItHint::CreateInsertion(From->getLocStart(),
 | 
						|
                                      "static_cast<" + TypeStr + ">(")
 | 
						|
        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
 | 
						|
                                      ")");
 | 
						|
      Diagnoser.noteExplicitConv(*this, Conversion, ConvTy);
 | 
						|
 | 
						|
      // If we aren't in a SFINAE context, build a call to the
 | 
						|
      // explicit conversion function.
 | 
						|
      if (isSFINAEContext())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
 | 
						|
      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
 | 
						|
                                                 HadMultipleCandidates);
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      // Record usage of conversion in an implicit cast.
 | 
						|
      From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
 | 
						|
                                      CK_UserDefinedConversion,
 | 
						|
                                      Result.get(), 0,
 | 
						|
                                      Result.get()->getValueKind());
 | 
						|
    }
 | 
						|
 | 
						|
    // We'll complain below about a non-integral condition type.
 | 
						|
    break;
 | 
						|
 | 
						|
  case 1: {
 | 
						|
    // Apply this conversion.
 | 
						|
    DeclAccessPair Found = ViableConversions[0];
 | 
						|
    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
 | 
						|
 | 
						|
    CXXConversionDecl *Conversion
 | 
						|
      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
 | 
						|
    QualType ConvTy
 | 
						|
      = Conversion->getConversionType().getNonReferenceType();
 | 
						|
    if (!Diagnoser.SuppressConversion) {
 | 
						|
      if (isSFINAEContext())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      Diagnoser.diagnoseConversion(*this, Loc, T, ConvTy)
 | 
						|
        << From->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
 | 
						|
                                               HadMultipleCandidates);
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    // Record usage of conversion in an implicit cast.
 | 
						|
    From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
 | 
						|
                                    CK_UserDefinedConversion,
 | 
						|
                                    Result.get(), 0,
 | 
						|
                                    Result.get()->getValueKind());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    if (Diagnoser.Suppress)
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    Diagnoser.diagnoseAmbiguous(*this, Loc, T) << From->getSourceRange();
 | 
						|
    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
 | 
						|
      CXXConversionDecl *Conv
 | 
						|
        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
 | 
						|
      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
 | 
						|
      Diagnoser.noteAmbiguous(*this, Conv, ConvTy);
 | 
						|
    }
 | 
						|
    return Owned(From);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
 | 
						|
      !Diagnoser.Suppress) {
 | 
						|
    Diagnoser.diagnoseNotInt(*this, Loc, From->getType())
 | 
						|
      << From->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  return DefaultLvalueConversion(From);
 | 
						|
}
 | 
						|
 | 
						|
/// AddOverloadCandidate - Adds the given function to the set of
 | 
						|
/// candidate functions, using the given function call arguments.  If
 | 
						|
/// @p SuppressUserConversions, then don't allow user-defined
 | 
						|
/// conversions via constructors or conversion operators.
 | 
						|
///
 | 
						|
/// \param PartialOverloading true if we are performing "partial" overloading
 | 
						|
/// based on an incomplete set of function arguments. This feature is used by
 | 
						|
/// code completion.
 | 
						|
void
 | 
						|
Sema::AddOverloadCandidate(FunctionDecl *Function,
 | 
						|
                           DeclAccessPair FoundDecl,
 | 
						|
                           ArrayRef<Expr *> Args,
 | 
						|
                           OverloadCandidateSet& CandidateSet,
 | 
						|
                           bool SuppressUserConversions,
 | 
						|
                           bool PartialOverloading,
 | 
						|
                           bool AllowExplicit) {
 | 
						|
  const FunctionProtoType* Proto
 | 
						|
    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
 | 
						|
  assert(Proto && "Functions without a prototype cannot be overloaded");
 | 
						|
  assert(!Function->getDescribedFunctionTemplate() &&
 | 
						|
         "Use AddTemplateOverloadCandidate for function templates");
 | 
						|
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
 | 
						|
    if (!isa<CXXConstructorDecl>(Method)) {
 | 
						|
      // If we get here, it's because we're calling a member function
 | 
						|
      // that is named without a member access expression (e.g.,
 | 
						|
      // "this->f") that was either written explicitly or created
 | 
						|
      // implicitly. This can happen with a qualified call to a member
 | 
						|
      // function, e.g., X::f(). We use an empty type for the implied
 | 
						|
      // object argument (C++ [over.call.func]p3), and the acting context
 | 
						|
      // is irrelevant.
 | 
						|
      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
 | 
						|
                         QualType(), Expr::Classification::makeSimpleLValue(),
 | 
						|
                         Args, CandidateSet, SuppressUserConversions);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // We treat a constructor like a non-member function, since its object
 | 
						|
    // argument doesn't participate in overload resolution.
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CandidateSet.isNewCandidate(Function))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Overload resolution is always an unevaluated context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
 | 
						|
  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
 | 
						|
    // C++ [class.copy]p3:
 | 
						|
    //   A member function template is never instantiated to perform the copy
 | 
						|
    //   of a class object to an object of its class type.
 | 
						|
    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
 | 
						|
    if (Args.size() == 1 &&
 | 
						|
        Constructor->isSpecializationCopyingObject() &&
 | 
						|
        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
 | 
						|
         IsDerivedFrom(Args[0]->getType(), ClassType)))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add this candidate
 | 
						|
  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
 | 
						|
  Candidate.FoundDecl = FoundDecl;
 | 
						|
  Candidate.Function = Function;
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.ExplicitCallArguments = Args.size();
 | 
						|
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having fewer than m
 | 
						|
  // parameters is viable only if it has an ellipsis in its parameter
 | 
						|
  // list (8.3.5).
 | 
						|
  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
 | 
						|
      !Proto->isVariadic()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_too_many_arguments;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having more than m parameters
 | 
						|
  // is viable only if the (m+1)st parameter has a default argument
 | 
						|
  // (8.3.6). For the purposes of overload resolution, the
 | 
						|
  // parameter list is truncated on the right, so that there are
 | 
						|
  // exactly m parameters.
 | 
						|
  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
 | 
						|
  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
 | 
						|
    // Not enough arguments.
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_too_few_arguments;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // (CUDA B.1): Check for invalid calls between targets.
 | 
						|
  if (getLangOpts().CUDA)
 | 
						|
    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
 | 
						|
      if (CheckCUDATarget(Caller, Function)) {
 | 
						|
        Candidate.Viable = false;
 | 
						|
        Candidate.FailureKind = ovl_fail_bad_target;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
 | 
						|
    if (ArgIdx < NumArgsInProto) {
 | 
						|
      // (C++ 13.3.2p3): for F to be a viable function, there shall
 | 
						|
      // exist for each argument an implicit conversion sequence
 | 
						|
      // (13.3.3.1) that converts that argument to the corresponding
 | 
						|
      // parameter of F.
 | 
						|
      QualType ParamType = Proto->getArgType(ArgIdx);
 | 
						|
      Candidate.Conversions[ArgIdx]
 | 
						|
        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
 | 
						|
                                SuppressUserConversions,
 | 
						|
                                /*InOverloadResolution=*/true,
 | 
						|
                                /*AllowObjCWritebackConversion=*/
 | 
						|
                                  getLangOpts().ObjCAutoRefCount,
 | 
						|
                                AllowExplicit);
 | 
						|
      if (Candidate.Conversions[ArgIdx].isBad()) {
 | 
						|
        Candidate.Viable = false;
 | 
						|
        Candidate.FailureKind = ovl_fail_bad_conversion;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | 
						|
      // argument for which there is no corresponding parameter is
 | 
						|
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | 
						|
      Candidate.Conversions[ArgIdx].setEllipsis();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add all of the function declarations in the given function set to
 | 
						|
/// the overload canddiate set.
 | 
						|
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
 | 
						|
                                 ArrayRef<Expr *> Args,
 | 
						|
                                 OverloadCandidateSet& CandidateSet,
 | 
						|
                                 bool SuppressUserConversions,
 | 
						|
                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
 | 
						|
  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
 | 
						|
    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
 | 
						|
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
 | 
						|
        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
 | 
						|
                           cast<CXXMethodDecl>(FD)->getParent(),
 | 
						|
                           Args[0]->getType(), Args[0]->Classify(Context),
 | 
						|
                           Args.slice(1), CandidateSet,
 | 
						|
                           SuppressUserConversions);
 | 
						|
      else
 | 
						|
        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
 | 
						|
                             SuppressUserConversions);
 | 
						|
    } else {
 | 
						|
      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
 | 
						|
      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
 | 
						|
          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
 | 
						|
        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
 | 
						|
                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
 | 
						|
                                   ExplicitTemplateArgs,
 | 
						|
                                   Args[0]->getType(),
 | 
						|
                                   Args[0]->Classify(Context), Args.slice(1),
 | 
						|
                                   CandidateSet, SuppressUserConversions);
 | 
						|
      else
 | 
						|
        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
 | 
						|
                                     ExplicitTemplateArgs, Args,
 | 
						|
                                     CandidateSet, SuppressUserConversions);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddMethodCandidate - Adds a named decl (which is some kind of
 | 
						|
/// method) as a method candidate to the given overload set.
 | 
						|
void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
 | 
						|
                              QualType ObjectType,
 | 
						|
                              Expr::Classification ObjectClassification,
 | 
						|
                              Expr **Args, unsigned NumArgs,
 | 
						|
                              OverloadCandidateSet& CandidateSet,
 | 
						|
                              bool SuppressUserConversions) {
 | 
						|
  NamedDecl *Decl = FoundDecl.getDecl();
 | 
						|
  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
 | 
						|
 | 
						|
  if (isa<UsingShadowDecl>(Decl))
 | 
						|
    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
 | 
						|
 | 
						|
  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
 | 
						|
    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
 | 
						|
           "Expected a member function template");
 | 
						|
    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
 | 
						|
                               /*ExplicitArgs*/ 0,
 | 
						|
                               ObjectType, ObjectClassification,
 | 
						|
                               llvm::makeArrayRef(Args, NumArgs), CandidateSet,
 | 
						|
                               SuppressUserConversions);
 | 
						|
  } else {
 | 
						|
    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
 | 
						|
                       ObjectType, ObjectClassification,
 | 
						|
                       llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                       CandidateSet, SuppressUserConversions);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddMethodCandidate - Adds the given C++ member function to the set
 | 
						|
/// of candidate functions, using the given function call arguments
 | 
						|
/// and the object argument (@c Object). For example, in a call
 | 
						|
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
 | 
						|
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
 | 
						|
/// allow user-defined conversions via constructors or conversion
 | 
						|
/// operators.
 | 
						|
void
 | 
						|
Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
 | 
						|
                         CXXRecordDecl *ActingContext, QualType ObjectType,
 | 
						|
                         Expr::Classification ObjectClassification,
 | 
						|
                         ArrayRef<Expr *> Args,
 | 
						|
                         OverloadCandidateSet& CandidateSet,
 | 
						|
                         bool SuppressUserConversions) {
 | 
						|
  const FunctionProtoType* Proto
 | 
						|
    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
 | 
						|
  assert(Proto && "Methods without a prototype cannot be overloaded");
 | 
						|
  assert(!isa<CXXConstructorDecl>(Method) &&
 | 
						|
         "Use AddOverloadCandidate for constructors");
 | 
						|
 | 
						|
  if (!CandidateSet.isNewCandidate(Method))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Overload resolution is always an unevaluated context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
 | 
						|
  // Add this candidate
 | 
						|
  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
 | 
						|
  Candidate.FoundDecl = FoundDecl;
 | 
						|
  Candidate.Function = Method;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.ExplicitCallArguments = Args.size();
 | 
						|
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having fewer than m
 | 
						|
  // parameters is viable only if it has an ellipsis in its parameter
 | 
						|
  // list (8.3.5).
 | 
						|
  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_too_many_arguments;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having more than m parameters
 | 
						|
  // is viable only if the (m+1)st parameter has a default argument
 | 
						|
  // (8.3.6). For the purposes of overload resolution, the
 | 
						|
  // parameter list is truncated on the right, so that there are
 | 
						|
  // exactly m parameters.
 | 
						|
  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
 | 
						|
  if (Args.size() < MinRequiredArgs) {
 | 
						|
    // Not enough arguments.
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_too_few_arguments;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Candidate.Viable = true;
 | 
						|
 | 
						|
  if (Method->isStatic() || ObjectType.isNull())
 | 
						|
    // The implicit object argument is ignored.
 | 
						|
    Candidate.IgnoreObjectArgument = true;
 | 
						|
  else {
 | 
						|
    // Determine the implicit conversion sequence for the object
 | 
						|
    // parameter.
 | 
						|
    Candidate.Conversions[0]
 | 
						|
      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
 | 
						|
                                        Method, ActingContext);
 | 
						|
    if (Candidate.Conversions[0].isBad()) {
 | 
						|
      Candidate.Viable = false;
 | 
						|
      Candidate.FailureKind = ovl_fail_bad_conversion;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
 | 
						|
    if (ArgIdx < NumArgsInProto) {
 | 
						|
      // (C++ 13.3.2p3): for F to be a viable function, there shall
 | 
						|
      // exist for each argument an implicit conversion sequence
 | 
						|
      // (13.3.3.1) that converts that argument to the corresponding
 | 
						|
      // parameter of F.
 | 
						|
      QualType ParamType = Proto->getArgType(ArgIdx);
 | 
						|
      Candidate.Conversions[ArgIdx + 1]
 | 
						|
        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
 | 
						|
                                SuppressUserConversions,
 | 
						|
                                /*InOverloadResolution=*/true,
 | 
						|
                                /*AllowObjCWritebackConversion=*/
 | 
						|
                                  getLangOpts().ObjCAutoRefCount);
 | 
						|
      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
 | 
						|
        Candidate.Viable = false;
 | 
						|
        Candidate.FailureKind = ovl_fail_bad_conversion;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | 
						|
      // argument for which there is no corresponding parameter is
 | 
						|
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | 
						|
      Candidate.Conversions[ArgIdx + 1].setEllipsis();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add a C++ member function template as a candidate to the candidate
 | 
						|
/// set, using template argument deduction to produce an appropriate member
 | 
						|
/// function template specialization.
 | 
						|
void
 | 
						|
Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
 | 
						|
                                 DeclAccessPair FoundDecl,
 | 
						|
                                 CXXRecordDecl *ActingContext,
 | 
						|
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                                 QualType ObjectType,
 | 
						|
                                 Expr::Classification ObjectClassification,
 | 
						|
                                 ArrayRef<Expr *> Args,
 | 
						|
                                 OverloadCandidateSet& CandidateSet,
 | 
						|
                                 bool SuppressUserConversions) {
 | 
						|
  if (!CandidateSet.isNewCandidate(MethodTmpl))
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++ [over.match.funcs]p7:
 | 
						|
  //   In each case where a candidate is a function template, candidate
 | 
						|
  //   function template specializations are generated using template argument
 | 
						|
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
 | 
						|
  //   candidate functions in the usual way.113) A given name can refer to one
 | 
						|
  //   or more function templates and also to a set of overloaded non-template
 | 
						|
  //   functions. In such a case, the candidate functions generated from each
 | 
						|
  //   function template are combined with the set of non-template candidate
 | 
						|
  //   functions.
 | 
						|
  TemplateDeductionInfo Info(CandidateSet.getLocation());
 | 
						|
  FunctionDecl *Specialization = 0;
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
 | 
						|
                                Specialization, Info)) {
 | 
						|
    OverloadCandidate &Candidate = CandidateSet.addCandidate();
 | 
						|
    Candidate.FoundDecl = FoundDecl;
 | 
						|
    Candidate.Function = MethodTmpl->getTemplatedDecl();
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_bad_deduction;
 | 
						|
    Candidate.IsSurrogate = false;
 | 
						|
    Candidate.IgnoreObjectArgument = false;
 | 
						|
    Candidate.ExplicitCallArguments = Args.size();
 | 
						|
    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
 | 
						|
                                                          Info);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the function template specialization produced by template argument
 | 
						|
  // deduction as a candidate.
 | 
						|
  assert(Specialization && "Missing member function template specialization?");
 | 
						|
  assert(isa<CXXMethodDecl>(Specialization) &&
 | 
						|
         "Specialization is not a member function?");
 | 
						|
  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
 | 
						|
                     ActingContext, ObjectType, ObjectClassification, Args,
 | 
						|
                     CandidateSet, SuppressUserConversions);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add a C++ function template specialization as a candidate
 | 
						|
/// in the candidate set, using template argument deduction to produce
 | 
						|
/// an appropriate function template specialization.
 | 
						|
void
 | 
						|
Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                                   DeclAccessPair FoundDecl,
 | 
						|
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                                   ArrayRef<Expr *> Args,
 | 
						|
                                   OverloadCandidateSet& CandidateSet,
 | 
						|
                                   bool SuppressUserConversions) {
 | 
						|
  if (!CandidateSet.isNewCandidate(FunctionTemplate))
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++ [over.match.funcs]p7:
 | 
						|
  //   In each case where a candidate is a function template, candidate
 | 
						|
  //   function template specializations are generated using template argument
 | 
						|
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
 | 
						|
  //   candidate functions in the usual way.113) A given name can refer to one
 | 
						|
  //   or more function templates and also to a set of overloaded non-template
 | 
						|
  //   functions. In such a case, the candidate functions generated from each
 | 
						|
  //   function template are combined with the set of non-template candidate
 | 
						|
  //   functions.
 | 
						|
  TemplateDeductionInfo Info(CandidateSet.getLocation());
 | 
						|
  FunctionDecl *Specialization = 0;
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
 | 
						|
                                  Specialization, Info)) {
 | 
						|
    OverloadCandidate &Candidate = CandidateSet.addCandidate();
 | 
						|
    Candidate.FoundDecl = FoundDecl;
 | 
						|
    Candidate.Function = FunctionTemplate->getTemplatedDecl();
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_bad_deduction;
 | 
						|
    Candidate.IsSurrogate = false;
 | 
						|
    Candidate.IgnoreObjectArgument = false;
 | 
						|
    Candidate.ExplicitCallArguments = Args.size();
 | 
						|
    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
 | 
						|
                                                          Info);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the function template specialization produced by template argument
 | 
						|
  // deduction as a candidate.
 | 
						|
  assert(Specialization && "Missing function template specialization?");
 | 
						|
  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
 | 
						|
                       SuppressUserConversions);
 | 
						|
}
 | 
						|
 | 
						|
/// AddConversionCandidate - Add a C++ conversion function as a
 | 
						|
/// candidate in the candidate set (C++ [over.match.conv],
 | 
						|
/// C++ [over.match.copy]). From is the expression we're converting from,
 | 
						|
/// and ToType is the type that we're eventually trying to convert to
 | 
						|
/// (which may or may not be the same type as the type that the
 | 
						|
/// conversion function produces).
 | 
						|
void
 | 
						|
Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
 | 
						|
                             DeclAccessPair FoundDecl,
 | 
						|
                             CXXRecordDecl *ActingContext,
 | 
						|
                             Expr *From, QualType ToType,
 | 
						|
                             OverloadCandidateSet& CandidateSet) {
 | 
						|
  assert(!Conversion->getDescribedFunctionTemplate() &&
 | 
						|
         "Conversion function templates use AddTemplateConversionCandidate");
 | 
						|
  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
 | 
						|
  if (!CandidateSet.isNewCandidate(Conversion))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Overload resolution is always an unevaluated context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
 | 
						|
  // Add this candidate
 | 
						|
  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
 | 
						|
  Candidate.FoundDecl = FoundDecl;
 | 
						|
  Candidate.Function = Conversion;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.FinalConversion.setAsIdentityConversion();
 | 
						|
  Candidate.FinalConversion.setFromType(ConvType);
 | 
						|
  Candidate.FinalConversion.setAllToTypes(ToType);
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.ExplicitCallArguments = 1;
 | 
						|
 | 
						|
  // C++ [over.match.funcs]p4:
 | 
						|
  //   For conversion functions, the function is considered to be a member of
 | 
						|
  //   the class of the implicit implied object argument for the purpose of
 | 
						|
  //   defining the type of the implicit object parameter.
 | 
						|
  //
 | 
						|
  // Determine the implicit conversion sequence for the implicit
 | 
						|
  // object parameter.
 | 
						|
  QualType ImplicitParamType = From->getType();
 | 
						|
  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
 | 
						|
    ImplicitParamType = FromPtrType->getPointeeType();
 | 
						|
  CXXRecordDecl *ConversionContext
 | 
						|
    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
  Candidate.Conversions[0]
 | 
						|
    = TryObjectArgumentInitialization(*this, From->getType(),
 | 
						|
                                      From->Classify(Context),
 | 
						|
                                      Conversion, ConversionContext);
 | 
						|
 | 
						|
  if (Candidate.Conversions[0].isBad()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_bad_conversion;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We won't go through a user-define type conversion function to convert a
 | 
						|
  // derived to base as such conversions are given Conversion Rank. They only
 | 
						|
  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
 | 
						|
  QualType FromCanon
 | 
						|
    = Context.getCanonicalType(From->getType().getUnqualifiedType());
 | 
						|
  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
 | 
						|
  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_trivial_conversion;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // To determine what the conversion from the result of calling the
 | 
						|
  // conversion function to the type we're eventually trying to
 | 
						|
  // convert to (ToType), we need to synthesize a call to the
 | 
						|
  // conversion function and attempt copy initialization from it. This
 | 
						|
  // makes sure that we get the right semantics with respect to
 | 
						|
  // lvalues/rvalues and the type. Fortunately, we can allocate this
 | 
						|
  // call on the stack and we don't need its arguments to be
 | 
						|
  // well-formed.
 | 
						|
  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
 | 
						|
                            VK_LValue, From->getLocStart());
 | 
						|
  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
 | 
						|
                                Context.getPointerType(Conversion->getType()),
 | 
						|
                                CK_FunctionToPointerDecay,
 | 
						|
                                &ConversionRef, VK_RValue);
 | 
						|
 | 
						|
  QualType ConversionType = Conversion->getConversionType();
 | 
						|
  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_bad_final_conversion;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
 | 
						|
 | 
						|
  // Note that it is safe to allocate CallExpr on the stack here because
 | 
						|
  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
 | 
						|
  // allocator).
 | 
						|
  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
 | 
						|
  CallExpr Call(Context, &ConversionFn, MultiExprArg(), CallResultType, VK,
 | 
						|
                From->getLocStart());
 | 
						|
  ImplicitConversionSequence ICS =
 | 
						|
    TryCopyInitialization(*this, &Call, ToType,
 | 
						|
                          /*SuppressUserConversions=*/true,
 | 
						|
                          /*InOverloadResolution=*/false,
 | 
						|
                          /*AllowObjCWritebackConversion=*/false);
 | 
						|
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    Candidate.FinalConversion = ICS.Standard;
 | 
						|
 | 
						|
    // C++ [over.ics.user]p3:
 | 
						|
    //   If the user-defined conversion is specified by a specialization of a
 | 
						|
    //   conversion function template, the second standard conversion sequence
 | 
						|
    //   shall have exact match rank.
 | 
						|
    if (Conversion->getPrimaryTemplate() &&
 | 
						|
        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
 | 
						|
      Candidate.Viable = false;
 | 
						|
      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [dcl.init.ref]p5:
 | 
						|
    //    In the second case, if the reference is an rvalue reference and
 | 
						|
    //    the second standard conversion sequence of the user-defined
 | 
						|
    //    conversion sequence includes an lvalue-to-rvalue conversion, the
 | 
						|
    //    program is ill-formed.
 | 
						|
    if (ToType->isRValueReferenceType() &&
 | 
						|
        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
 | 
						|
      Candidate.Viable = false;
 | 
						|
      Candidate.FailureKind = ovl_fail_bad_final_conversion;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_bad_final_conversion;
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable(
 | 
						|
           "Can only end up with a standard conversion sequence or failure");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds a conversion function template specialization
 | 
						|
/// candidate to the overload set, using template argument deduction
 | 
						|
/// to deduce the template arguments of the conversion function
 | 
						|
/// template from the type that we are converting to (C++
 | 
						|
/// [temp.deduct.conv]).
 | 
						|
void
 | 
						|
Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
 | 
						|
                                     DeclAccessPair FoundDecl,
 | 
						|
                                     CXXRecordDecl *ActingDC,
 | 
						|
                                     Expr *From, QualType ToType,
 | 
						|
                                     OverloadCandidateSet &CandidateSet) {
 | 
						|
  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
 | 
						|
         "Only conversion function templates permitted here");
 | 
						|
 | 
						|
  if (!CandidateSet.isNewCandidate(FunctionTemplate))
 | 
						|
    return;
 | 
						|
 | 
						|
  TemplateDeductionInfo Info(CandidateSet.getLocation());
 | 
						|
  CXXConversionDecl *Specialization = 0;
 | 
						|
  if (TemplateDeductionResult Result
 | 
						|
        = DeduceTemplateArguments(FunctionTemplate, ToType,
 | 
						|
                                  Specialization, Info)) {
 | 
						|
    OverloadCandidate &Candidate = CandidateSet.addCandidate();
 | 
						|
    Candidate.FoundDecl = FoundDecl;
 | 
						|
    Candidate.Function = FunctionTemplate->getTemplatedDecl();
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_bad_deduction;
 | 
						|
    Candidate.IsSurrogate = false;
 | 
						|
    Candidate.IgnoreObjectArgument = false;
 | 
						|
    Candidate.ExplicitCallArguments = 1;
 | 
						|
    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
 | 
						|
                                                          Info);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the conversion function template specialization produced by
 | 
						|
  // template argument deduction as a candidate.
 | 
						|
  assert(Specialization && "Missing function template specialization?");
 | 
						|
  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
 | 
						|
                         CandidateSet);
 | 
						|
}
 | 
						|
 | 
						|
/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
 | 
						|
/// converts the given @c Object to a function pointer via the
 | 
						|
/// conversion function @c Conversion, and then attempts to call it
 | 
						|
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
 | 
						|
/// the type of function that we'll eventually be calling.
 | 
						|
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
 | 
						|
                                 DeclAccessPair FoundDecl,
 | 
						|
                                 CXXRecordDecl *ActingContext,
 | 
						|
                                 const FunctionProtoType *Proto,
 | 
						|
                                 Expr *Object,
 | 
						|
                                 ArrayRef<Expr *> Args,
 | 
						|
                                 OverloadCandidateSet& CandidateSet) {
 | 
						|
  if (!CandidateSet.isNewCandidate(Conversion))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Overload resolution is always an unevaluated context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
 | 
						|
  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
 | 
						|
  Candidate.FoundDecl = FoundDecl;
 | 
						|
  Candidate.Function = 0;
 | 
						|
  Candidate.Surrogate = Conversion;
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.IsSurrogate = true;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.ExplicitCallArguments = Args.size();
 | 
						|
 | 
						|
  // Determine the implicit conversion sequence for the implicit
 | 
						|
  // object parameter.
 | 
						|
  ImplicitConversionSequence ObjectInit
 | 
						|
    = TryObjectArgumentInitialization(*this, Object->getType(),
 | 
						|
                                      Object->Classify(Context),
 | 
						|
                                      Conversion, ActingContext);
 | 
						|
  if (ObjectInit.isBad()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_bad_conversion;
 | 
						|
    Candidate.Conversions[0] = ObjectInit;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The first conversion is actually a user-defined conversion whose
 | 
						|
  // first conversion is ObjectInit's standard conversion (which is
 | 
						|
  // effectively a reference binding). Record it as such.
 | 
						|
  Candidate.Conversions[0].setUserDefined();
 | 
						|
  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
 | 
						|
  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
 | 
						|
  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
 | 
						|
  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
 | 
						|
  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
 | 
						|
  Candidate.Conversions[0].UserDefined.After
 | 
						|
    = Candidate.Conversions[0].UserDefined.Before;
 | 
						|
  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
 | 
						|
 | 
						|
  // Find the
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
 | 
						|
  // (C++ 13.3.2p2): A candidate function having fewer than m
 | 
						|
  // parameters is viable only if it has an ellipsis in its parameter
 | 
						|
  // list (8.3.5).
 | 
						|
  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_too_many_arguments;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Function types don't have any default arguments, so just check if
 | 
						|
  // we have enough arguments.
 | 
						|
  if (Args.size() < NumArgsInProto) {
 | 
						|
    // Not enough arguments.
 | 
						|
    Candidate.Viable = false;
 | 
						|
    Candidate.FailureKind = ovl_fail_too_few_arguments;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
 | 
						|
    if (ArgIdx < NumArgsInProto) {
 | 
						|
      // (C++ 13.3.2p3): for F to be a viable function, there shall
 | 
						|
      // exist for each argument an implicit conversion sequence
 | 
						|
      // (13.3.3.1) that converts that argument to the corresponding
 | 
						|
      // parameter of F.
 | 
						|
      QualType ParamType = Proto->getArgType(ArgIdx);
 | 
						|
      Candidate.Conversions[ArgIdx + 1]
 | 
						|
        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
 | 
						|
                                /*SuppressUserConversions=*/false,
 | 
						|
                                /*InOverloadResolution=*/false,
 | 
						|
                                /*AllowObjCWritebackConversion=*/
 | 
						|
                                  getLangOpts().ObjCAutoRefCount);
 | 
						|
      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
 | 
						|
        Candidate.Viable = false;
 | 
						|
        Candidate.FailureKind = ovl_fail_bad_conversion;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
 | 
						|
      // argument for which there is no corresponding parameter is
 | 
						|
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
 | 
						|
      Candidate.Conversions[ArgIdx + 1].setEllipsis();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add overload candidates for overloaded operators that are
 | 
						|
/// member functions.
 | 
						|
///
 | 
						|
/// Add the overloaded operator candidates that are member functions
 | 
						|
/// for the operator Op that was used in an operator expression such
 | 
						|
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
 | 
						|
/// CandidateSet will store the added overload candidates. (C++
 | 
						|
/// [over.match.oper]).
 | 
						|
void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
 | 
						|
                                       SourceLocation OpLoc,
 | 
						|
                                       Expr **Args, unsigned NumArgs,
 | 
						|
                                       OverloadCandidateSet& CandidateSet,
 | 
						|
                                       SourceRange OpRange) {
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
 | 
						|
  // C++ [over.match.oper]p3:
 | 
						|
  //   For a unary operator @ with an operand of a type whose
 | 
						|
  //   cv-unqualified version is T1, and for a binary operator @ with
 | 
						|
  //   a left operand of a type whose cv-unqualified version is T1 and
 | 
						|
  //   a right operand of a type whose cv-unqualified version is T2,
 | 
						|
  //   three sets of candidate functions, designated member
 | 
						|
  //   candidates, non-member candidates and built-in candidates, are
 | 
						|
  //   constructed as follows:
 | 
						|
  QualType T1 = Args[0]->getType();
 | 
						|
 | 
						|
  //     -- If T1 is a class type, the set of member candidates is the
 | 
						|
  //        result of the qualified lookup of T1::operator@
 | 
						|
  //        (13.3.1.1.1); otherwise, the set of member candidates is
 | 
						|
  //        empty.
 | 
						|
  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
 | 
						|
    // Complete the type if it can be completed. Otherwise, we're done.
 | 
						|
    if (RequireCompleteType(OpLoc, T1, 0))
 | 
						|
      return;
 | 
						|
 | 
						|
    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
 | 
						|
    LookupQualifiedName(Operators, T1Rec->getDecl());
 | 
						|
    Operators.suppressDiagnostics();
 | 
						|
 | 
						|
    for (LookupResult::iterator Oper = Operators.begin(),
 | 
						|
                             OperEnd = Operators.end();
 | 
						|
         Oper != OperEnd;
 | 
						|
         ++Oper)
 | 
						|
      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
 | 
						|
                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
 | 
						|
                         CandidateSet,
 | 
						|
                         /* SuppressUserConversions = */ false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddBuiltinCandidate - Add a candidate for a built-in
 | 
						|
/// operator. ResultTy and ParamTys are the result and parameter types
 | 
						|
/// of the built-in candidate, respectively. Args and NumArgs are the
 | 
						|
/// arguments being passed to the candidate. IsAssignmentOperator
 | 
						|
/// should be true when this built-in candidate is an assignment
 | 
						|
/// operator. NumContextualBoolArguments is the number of arguments
 | 
						|
/// (at the beginning of the argument list) that will be contextually
 | 
						|
/// converted to bool.
 | 
						|
void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
 | 
						|
                               Expr **Args, unsigned NumArgs,
 | 
						|
                               OverloadCandidateSet& CandidateSet,
 | 
						|
                               bool IsAssignmentOperator,
 | 
						|
                               unsigned NumContextualBoolArguments) {
 | 
						|
  // Overload resolution is always an unevaluated context.
 | 
						|
  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
 | 
						|
 | 
						|
  // Add this candidate
 | 
						|
  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
 | 
						|
  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
 | 
						|
  Candidate.Function = 0;
 | 
						|
  Candidate.IsSurrogate = false;
 | 
						|
  Candidate.IgnoreObjectArgument = false;
 | 
						|
  Candidate.BuiltinTypes.ResultTy = ResultTy;
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
 | 
						|
    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
 | 
						|
 | 
						|
  // Determine the implicit conversion sequences for each of the
 | 
						|
  // arguments.
 | 
						|
  Candidate.Viable = true;
 | 
						|
  Candidate.ExplicitCallArguments = NumArgs;
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    // C++ [over.match.oper]p4:
 | 
						|
    //   For the built-in assignment operators, conversions of the
 | 
						|
    //   left operand are restricted as follows:
 | 
						|
    //     -- no temporaries are introduced to hold the left operand, and
 | 
						|
    //     -- no user-defined conversions are applied to the left
 | 
						|
    //        operand to achieve a type match with the left-most
 | 
						|
    //        parameter of a built-in candidate.
 | 
						|
    //
 | 
						|
    // We block these conversions by turning off user-defined
 | 
						|
    // conversions, since that is the only way that initialization of
 | 
						|
    // a reference to a non-class type can occur from something that
 | 
						|
    // is not of the same type.
 | 
						|
    if (ArgIdx < NumContextualBoolArguments) {
 | 
						|
      assert(ParamTys[ArgIdx] == Context.BoolTy &&
 | 
						|
             "Contextual conversion to bool requires bool type");
 | 
						|
      Candidate.Conversions[ArgIdx]
 | 
						|
        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
 | 
						|
    } else {
 | 
						|
      Candidate.Conversions[ArgIdx]
 | 
						|
        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
 | 
						|
                                ArgIdx == 0 && IsAssignmentOperator,
 | 
						|
                                /*InOverloadResolution=*/false,
 | 
						|
                                /*AllowObjCWritebackConversion=*/
 | 
						|
                                  getLangOpts().ObjCAutoRefCount);
 | 
						|
    }
 | 
						|
    if (Candidate.Conversions[ArgIdx].isBad()) {
 | 
						|
      Candidate.Viable = false;
 | 
						|
      Candidate.FailureKind = ovl_fail_bad_conversion;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// BuiltinCandidateTypeSet - A set of types that will be used for the
 | 
						|
/// candidate operator functions for built-in operators (C++
 | 
						|
/// [over.built]). The types are separated into pointer types and
 | 
						|
/// enumeration types.
 | 
						|
class BuiltinCandidateTypeSet  {
 | 
						|
  /// TypeSet - A set of types.
 | 
						|
  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
 | 
						|
 | 
						|
  /// PointerTypes - The set of pointer types that will be used in the
 | 
						|
  /// built-in candidates.
 | 
						|
  TypeSet PointerTypes;
 | 
						|
 | 
						|
  /// MemberPointerTypes - The set of member pointer types that will be
 | 
						|
  /// used in the built-in candidates.
 | 
						|
  TypeSet MemberPointerTypes;
 | 
						|
 | 
						|
  /// EnumerationTypes - The set of enumeration types that will be
 | 
						|
  /// used in the built-in candidates.
 | 
						|
  TypeSet EnumerationTypes;
 | 
						|
 | 
						|
  /// \brief The set of vector types that will be used in the built-in
 | 
						|
  /// candidates.
 | 
						|
  TypeSet VectorTypes;
 | 
						|
 | 
						|
  /// \brief A flag indicating non-record types are viable candidates
 | 
						|
  bool HasNonRecordTypes;
 | 
						|
 | 
						|
  /// \brief A flag indicating whether either arithmetic or enumeration types
 | 
						|
  /// were present in the candidate set.
 | 
						|
  bool HasArithmeticOrEnumeralTypes;
 | 
						|
 | 
						|
  /// \brief A flag indicating whether the nullptr type was present in the
 | 
						|
  /// candidate set.
 | 
						|
  bool HasNullPtrType;
 | 
						|
  
 | 
						|
  /// Sema - The semantic analysis instance where we are building the
 | 
						|
  /// candidate type set.
 | 
						|
  Sema &SemaRef;
 | 
						|
 | 
						|
  /// Context - The AST context in which we will build the type sets.
 | 
						|
  ASTContext &Context;
 | 
						|
 | 
						|
  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
 | 
						|
                                               const Qualifiers &VisibleQuals);
 | 
						|
  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
 | 
						|
 | 
						|
public:
 | 
						|
  /// iterator - Iterates through the types that are part of the set.
 | 
						|
  typedef TypeSet::iterator iterator;
 | 
						|
 | 
						|
  BuiltinCandidateTypeSet(Sema &SemaRef)
 | 
						|
    : HasNonRecordTypes(false),
 | 
						|
      HasArithmeticOrEnumeralTypes(false),
 | 
						|
      HasNullPtrType(false),
 | 
						|
      SemaRef(SemaRef),
 | 
						|
      Context(SemaRef.Context) { }
 | 
						|
 | 
						|
  void AddTypesConvertedFrom(QualType Ty,
 | 
						|
                             SourceLocation Loc,
 | 
						|
                             bool AllowUserConversions,
 | 
						|
                             bool AllowExplicitConversions,
 | 
						|
                             const Qualifiers &VisibleTypeConversionsQuals);
 | 
						|
 | 
						|
  /// pointer_begin - First pointer type found;
 | 
						|
  iterator pointer_begin() { return PointerTypes.begin(); }
 | 
						|
 | 
						|
  /// pointer_end - Past the last pointer type found;
 | 
						|
  iterator pointer_end() { return PointerTypes.end(); }
 | 
						|
 | 
						|
  /// member_pointer_begin - First member pointer type found;
 | 
						|
  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
 | 
						|
 | 
						|
  /// member_pointer_end - Past the last member pointer type found;
 | 
						|
  iterator member_pointer_end() { return MemberPointerTypes.end(); }
 | 
						|
 | 
						|
  /// enumeration_begin - First enumeration type found;
 | 
						|
  iterator enumeration_begin() { return EnumerationTypes.begin(); }
 | 
						|
 | 
						|
  /// enumeration_end - Past the last enumeration type found;
 | 
						|
  iterator enumeration_end() { return EnumerationTypes.end(); }
 | 
						|
 | 
						|
  iterator vector_begin() { return VectorTypes.begin(); }
 | 
						|
  iterator vector_end() { return VectorTypes.end(); }
 | 
						|
 | 
						|
  bool hasNonRecordTypes() { return HasNonRecordTypes; }
 | 
						|
  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
 | 
						|
  bool hasNullPtrType() const { return HasNullPtrType; }
 | 
						|
};
 | 
						|
 | 
						|
/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
 | 
						|
/// the set of pointer types along with any more-qualified variants of
 | 
						|
/// that type. For example, if @p Ty is "int const *", this routine
 | 
						|
/// will add "int const *", "int const volatile *", "int const
 | 
						|
/// restrict *", and "int const volatile restrict *" to the set of
 | 
						|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
 | 
						|
/// false otherwise.
 | 
						|
///
 | 
						|
/// FIXME: what to do about extended qualifiers?
 | 
						|
bool
 | 
						|
BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
 | 
						|
                                             const Qualifiers &VisibleQuals) {
 | 
						|
 | 
						|
  // Insert this type.
 | 
						|
  if (!PointerTypes.insert(Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType PointeeTy;
 | 
						|
  const PointerType *PointerTy = Ty->getAs<PointerType>();
 | 
						|
  bool buildObjCPtr = false;
 | 
						|
  if (!PointerTy) {
 | 
						|
    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
 | 
						|
    PointeeTy = PTy->getPointeeType();
 | 
						|
    buildObjCPtr = true;
 | 
						|
  } else {
 | 
						|
    PointeeTy = PointerTy->getPointeeType();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Don't add qualified variants of arrays. For one, they're not allowed
 | 
						|
  // (the qualifier would sink to the element type), and for another, the
 | 
						|
  // only overload situation where it matters is subscript or pointer +- int,
 | 
						|
  // and those shouldn't have qualifier variants anyway.
 | 
						|
  if (PointeeTy->isArrayType())
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
 | 
						|
  bool hasVolatile = VisibleQuals.hasVolatile();
 | 
						|
  bool hasRestrict = VisibleQuals.hasRestrict();
 | 
						|
 | 
						|
  // Iterate through all strict supersets of BaseCVR.
 | 
						|
  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
 | 
						|
    if ((CVR | BaseCVR) != CVR) continue;
 | 
						|
    // Skip over volatile if no volatile found anywhere in the types.
 | 
						|
    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
 | 
						|
    
 | 
						|
    // Skip over restrict if no restrict found anywhere in the types, or if
 | 
						|
    // the type cannot be restrict-qualified.
 | 
						|
    if ((CVR & Qualifiers::Restrict) &&
 | 
						|
        (!hasRestrict ||
 | 
						|
         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
 | 
						|
      continue;
 | 
						|
  
 | 
						|
    // Build qualified pointee type.
 | 
						|
    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
 | 
						|
    
 | 
						|
    // Build qualified pointer type.
 | 
						|
    QualType QPointerTy;
 | 
						|
    if (!buildObjCPtr)
 | 
						|
      QPointerTy = Context.getPointerType(QPointeeTy);
 | 
						|
    else
 | 
						|
      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
 | 
						|
    
 | 
						|
    // Insert qualified pointer type.
 | 
						|
    PointerTypes.insert(QPointerTy);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
 | 
						|
/// to the set of pointer types along with any more-qualified variants of
 | 
						|
/// that type. For example, if @p Ty is "int const *", this routine
 | 
						|
/// will add "int const *", "int const volatile *", "int const
 | 
						|
/// restrict *", and "int const volatile restrict *" to the set of
 | 
						|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
 | 
						|
/// false otherwise.
 | 
						|
///
 | 
						|
/// FIXME: what to do about extended qualifiers?
 | 
						|
bool
 | 
						|
BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
 | 
						|
    QualType Ty) {
 | 
						|
  // Insert this type.
 | 
						|
  if (!MemberPointerTypes.insert(Ty))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
 | 
						|
  assert(PointerTy && "type was not a member pointer type!");
 | 
						|
 | 
						|
  QualType PointeeTy = PointerTy->getPointeeType();
 | 
						|
  // Don't add qualified variants of arrays. For one, they're not allowed
 | 
						|
  // (the qualifier would sink to the element type), and for another, the
 | 
						|
  // only overload situation where it matters is subscript or pointer +- int,
 | 
						|
  // and those shouldn't have qualifier variants anyway.
 | 
						|
  if (PointeeTy->isArrayType())
 | 
						|
    return true;
 | 
						|
  const Type *ClassTy = PointerTy->getClass();
 | 
						|
 | 
						|
  // Iterate through all strict supersets of the pointee type's CVR
 | 
						|
  // qualifiers.
 | 
						|
  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
 | 
						|
  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
 | 
						|
    if ((CVR | BaseCVR) != CVR) continue;
 | 
						|
 | 
						|
    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
 | 
						|
    MemberPointerTypes.insert(
 | 
						|
      Context.getMemberPointerType(QPointeeTy, ClassTy));
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AddTypesConvertedFrom - Add each of the types to which the type @p
 | 
						|
/// Ty can be implicit converted to the given set of @p Types. We're
 | 
						|
/// primarily interested in pointer types and enumeration types. We also
 | 
						|
/// take member pointer types, for the conditional operator.
 | 
						|
/// AllowUserConversions is true if we should look at the conversion
 | 
						|
/// functions of a class type, and AllowExplicitConversions if we
 | 
						|
/// should also include the explicit conversion functions of a class
 | 
						|
/// type.
 | 
						|
void
 | 
						|
BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
 | 
						|
                                               SourceLocation Loc,
 | 
						|
                                               bool AllowUserConversions,
 | 
						|
                                               bool AllowExplicitConversions,
 | 
						|
                                               const Qualifiers &VisibleQuals) {
 | 
						|
  // Only deal with canonical types.
 | 
						|
  Ty = Context.getCanonicalType(Ty);
 | 
						|
 | 
						|
  // Look through reference types; they aren't part of the type of an
 | 
						|
  // expression for the purposes of conversions.
 | 
						|
  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
 | 
						|
    Ty = RefTy->getPointeeType();
 | 
						|
 | 
						|
  // If we're dealing with an array type, decay to the pointer.
 | 
						|
  if (Ty->isArrayType())
 | 
						|
    Ty = SemaRef.Context.getArrayDecayedType(Ty);
 | 
						|
 | 
						|
  // Otherwise, we don't care about qualifiers on the type.
 | 
						|
  Ty = Ty.getLocalUnqualifiedType();
 | 
						|
 | 
						|
  // Flag if we ever add a non-record type.
 | 
						|
  const RecordType *TyRec = Ty->getAs<RecordType>();
 | 
						|
  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
 | 
						|
 | 
						|
  // Flag if we encounter an arithmetic type.
 | 
						|
  HasArithmeticOrEnumeralTypes =
 | 
						|
    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
 | 
						|
 | 
						|
  if (Ty->isObjCIdType() || Ty->isObjCClassType())
 | 
						|
    PointerTypes.insert(Ty);
 | 
						|
  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
 | 
						|
    // Insert our type, and its more-qualified variants, into the set
 | 
						|
    // of types.
 | 
						|
    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
 | 
						|
      return;
 | 
						|
  } else if (Ty->isMemberPointerType()) {
 | 
						|
    // Member pointers are far easier, since the pointee can't be converted.
 | 
						|
    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
 | 
						|
      return;
 | 
						|
  } else if (Ty->isEnumeralType()) {
 | 
						|
    HasArithmeticOrEnumeralTypes = true;
 | 
						|
    EnumerationTypes.insert(Ty);
 | 
						|
  } else if (Ty->isVectorType()) {
 | 
						|
    // We treat vector types as arithmetic types in many contexts as an
 | 
						|
    // extension.
 | 
						|
    HasArithmeticOrEnumeralTypes = true;
 | 
						|
    VectorTypes.insert(Ty);
 | 
						|
  } else if (Ty->isNullPtrType()) {
 | 
						|
    HasNullPtrType = true;
 | 
						|
  } else if (AllowUserConversions && TyRec) {
 | 
						|
    // No conversion functions in incomplete types.
 | 
						|
    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
 | 
						|
      return;
 | 
						|
 | 
						|
    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
 | 
						|
    std::pair<CXXRecordDecl::conversion_iterator,
 | 
						|
              CXXRecordDecl::conversion_iterator>
 | 
						|
      Conversions = ClassDecl->getVisibleConversionFunctions();
 | 
						|
    for (CXXRecordDecl::conversion_iterator
 | 
						|
           I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | 
						|
      NamedDecl *D = I.getDecl();
 | 
						|
      if (isa<UsingShadowDecl>(D))
 | 
						|
        D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
      // Skip conversion function templates; they don't tell us anything
 | 
						|
      // about which builtin types we can convert to.
 | 
						|
      if (isa<FunctionTemplateDecl>(D))
 | 
						|
        continue;
 | 
						|
 | 
						|
      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
 | 
						|
      if (AllowExplicitConversions || !Conv->isExplicit()) {
 | 
						|
        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
 | 
						|
                              VisibleQuals);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
 | 
						|
/// the volatile- and non-volatile-qualified assignment operators for the
 | 
						|
/// given type to the candidate set.
 | 
						|
static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
 | 
						|
                                                   QualType T,
 | 
						|
                                                   Expr **Args,
 | 
						|
                                                   unsigned NumArgs,
 | 
						|
                                    OverloadCandidateSet &CandidateSet) {
 | 
						|
  QualType ParamTypes[2];
 | 
						|
 | 
						|
  // T& operator=(T&, T)
 | 
						|
  ParamTypes[0] = S.Context.getLValueReferenceType(T);
 | 
						|
  ParamTypes[1] = T;
 | 
						|
  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                        /*IsAssignmentOperator=*/true);
 | 
						|
 | 
						|
  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
 | 
						|
    // volatile T& operator=(volatile T&, T)
 | 
						|
    ParamTypes[0]
 | 
						|
      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
 | 
						|
    ParamTypes[1] = T;
 | 
						|
    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                          /*IsAssignmentOperator=*/true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
 | 
						|
/// if any, found in visible type conversion functions found in ArgExpr's type.
 | 
						|
static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
 | 
						|
    Qualifiers VRQuals;
 | 
						|
    const RecordType *TyRec;
 | 
						|
    if (const MemberPointerType *RHSMPType =
 | 
						|
        ArgExpr->getType()->getAs<MemberPointerType>())
 | 
						|
      TyRec = RHSMPType->getClass()->getAs<RecordType>();
 | 
						|
    else
 | 
						|
      TyRec = ArgExpr->getType()->getAs<RecordType>();
 | 
						|
    if (!TyRec) {
 | 
						|
      // Just to be safe, assume the worst case.
 | 
						|
      VRQuals.addVolatile();
 | 
						|
      VRQuals.addRestrict();
 | 
						|
      return VRQuals;
 | 
						|
    }
 | 
						|
 | 
						|
    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
 | 
						|
    if (!ClassDecl->hasDefinition())
 | 
						|
      return VRQuals;
 | 
						|
 | 
						|
    std::pair<CXXRecordDecl::conversion_iterator,
 | 
						|
              CXXRecordDecl::conversion_iterator>
 | 
						|
      Conversions = ClassDecl->getVisibleConversionFunctions();
 | 
						|
 | 
						|
    for (CXXRecordDecl::conversion_iterator
 | 
						|
           I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | 
						|
      NamedDecl *D = I.getDecl();
 | 
						|
      if (isa<UsingShadowDecl>(D))
 | 
						|
        D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
 | 
						|
        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
 | 
						|
        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
 | 
						|
          CanTy = ResTypeRef->getPointeeType();
 | 
						|
        // Need to go down the pointer/mempointer chain and add qualifiers
 | 
						|
        // as see them.
 | 
						|
        bool done = false;
 | 
						|
        while (!done) {
 | 
						|
          if (CanTy.isRestrictQualified())
 | 
						|
            VRQuals.addRestrict();
 | 
						|
          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
 | 
						|
            CanTy = ResTypePtr->getPointeeType();
 | 
						|
          else if (const MemberPointerType *ResTypeMPtr =
 | 
						|
                CanTy->getAs<MemberPointerType>())
 | 
						|
            CanTy = ResTypeMPtr->getPointeeType();
 | 
						|
          else
 | 
						|
            done = true;
 | 
						|
          if (CanTy.isVolatileQualified())
 | 
						|
            VRQuals.addVolatile();
 | 
						|
          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
 | 
						|
            return VRQuals;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return VRQuals;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// \brief Helper class to manage the addition of builtin operator overload
 | 
						|
/// candidates. It provides shared state and utility methods used throughout
 | 
						|
/// the process, as well as a helper method to add each group of builtin
 | 
						|
/// operator overloads from the standard to a candidate set.
 | 
						|
class BuiltinOperatorOverloadBuilder {
 | 
						|
  // Common instance state available to all overload candidate addition methods.
 | 
						|
  Sema &S;
 | 
						|
  Expr **Args;
 | 
						|
  unsigned NumArgs;
 | 
						|
  Qualifiers VisibleTypeConversionsQuals;
 | 
						|
  bool HasArithmeticOrEnumeralCandidateType;
 | 
						|
  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
 | 
						|
  OverloadCandidateSet &CandidateSet;
 | 
						|
 | 
						|
  // Define some constants used to index and iterate over the arithemetic types
 | 
						|
  // provided via the getArithmeticType() method below.
 | 
						|
  // The "promoted arithmetic types" are the arithmetic
 | 
						|
  // types are that preserved by promotion (C++ [over.built]p2).
 | 
						|
  static const unsigned FirstIntegralType = 3;
 | 
						|
  static const unsigned LastIntegralType = 20;
 | 
						|
  static const unsigned FirstPromotedIntegralType = 3,
 | 
						|
                        LastPromotedIntegralType = 11;
 | 
						|
  static const unsigned FirstPromotedArithmeticType = 0,
 | 
						|
                        LastPromotedArithmeticType = 11;
 | 
						|
  static const unsigned NumArithmeticTypes = 20;
 | 
						|
 | 
						|
  /// \brief Get the canonical type for a given arithmetic type index.
 | 
						|
  CanQualType getArithmeticType(unsigned index) {
 | 
						|
    assert(index < NumArithmeticTypes);
 | 
						|
    static CanQualType ASTContext::* const
 | 
						|
      ArithmeticTypes[NumArithmeticTypes] = {
 | 
						|
      // Start of promoted types.
 | 
						|
      &ASTContext::FloatTy,
 | 
						|
      &ASTContext::DoubleTy,
 | 
						|
      &ASTContext::LongDoubleTy,
 | 
						|
 | 
						|
      // Start of integral types.
 | 
						|
      &ASTContext::IntTy,
 | 
						|
      &ASTContext::LongTy,
 | 
						|
      &ASTContext::LongLongTy,
 | 
						|
      &ASTContext::Int128Ty,
 | 
						|
      &ASTContext::UnsignedIntTy,
 | 
						|
      &ASTContext::UnsignedLongTy,
 | 
						|
      &ASTContext::UnsignedLongLongTy,
 | 
						|
      &ASTContext::UnsignedInt128Ty,
 | 
						|
      // End of promoted types.
 | 
						|
 | 
						|
      &ASTContext::BoolTy,
 | 
						|
      &ASTContext::CharTy,
 | 
						|
      &ASTContext::WCharTy,
 | 
						|
      &ASTContext::Char16Ty,
 | 
						|
      &ASTContext::Char32Ty,
 | 
						|
      &ASTContext::SignedCharTy,
 | 
						|
      &ASTContext::ShortTy,
 | 
						|
      &ASTContext::UnsignedCharTy,
 | 
						|
      &ASTContext::UnsignedShortTy,
 | 
						|
      // End of integral types.
 | 
						|
      // FIXME: What about complex? What about half?
 | 
						|
    };
 | 
						|
    return S.Context.*ArithmeticTypes[index];
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Gets the canonical type resulting from the usual arithemetic
 | 
						|
  /// converions for the given arithmetic types.
 | 
						|
  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
 | 
						|
    // Accelerator table for performing the usual arithmetic conversions.
 | 
						|
    // The rules are basically:
 | 
						|
    //   - if either is floating-point, use the wider floating-point
 | 
						|
    //   - if same signedness, use the higher rank
 | 
						|
    //   - if same size, use unsigned of the higher rank
 | 
						|
    //   - use the larger type
 | 
						|
    // These rules, together with the axiom that higher ranks are
 | 
						|
    // never smaller, are sufficient to precompute all of these results
 | 
						|
    // *except* when dealing with signed types of higher rank.
 | 
						|
    // (we could precompute SLL x UI for all known platforms, but it's
 | 
						|
    // better not to make any assumptions).
 | 
						|
    // We assume that int128 has a higher rank than long long on all platforms.
 | 
						|
    enum PromotedType {
 | 
						|
            Dep=-1,
 | 
						|
            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
 | 
						|
    };
 | 
						|
    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
 | 
						|
                                        [LastPromotedArithmeticType] = {
 | 
						|
/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
 | 
						|
/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
 | 
						|
/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
 | 
						|
/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
 | 
						|
/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
 | 
						|
/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
 | 
						|
/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
 | 
						|
/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
 | 
						|
/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
 | 
						|
/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
 | 
						|
/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
 | 
						|
    };
 | 
						|
 | 
						|
    assert(L < LastPromotedArithmeticType);
 | 
						|
    assert(R < LastPromotedArithmeticType);
 | 
						|
    int Idx = ConversionsTable[L][R];
 | 
						|
 | 
						|
    // Fast path: the table gives us a concrete answer.
 | 
						|
    if (Idx != Dep) return getArithmeticType(Idx);
 | 
						|
 | 
						|
    // Slow path: we need to compare widths.
 | 
						|
    // An invariant is that the signed type has higher rank.
 | 
						|
    CanQualType LT = getArithmeticType(L),
 | 
						|
                RT = getArithmeticType(R);
 | 
						|
    unsigned LW = S.Context.getIntWidth(LT),
 | 
						|
             RW = S.Context.getIntWidth(RT);
 | 
						|
 | 
						|
    // If they're different widths, use the signed type.
 | 
						|
    if (LW > RW) return LT;
 | 
						|
    else if (LW < RW) return RT;
 | 
						|
 | 
						|
    // Otherwise, use the unsigned type of the signed type's rank.
 | 
						|
    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
 | 
						|
    assert(L == SLL || R == SLL);
 | 
						|
    return S.Context.UnsignedLongLongTy;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Helper method to factor out the common pattern of adding overloads
 | 
						|
  /// for '++' and '--' builtin operators.
 | 
						|
  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
 | 
						|
                                           bool HasVolatile,
 | 
						|
                                           bool HasRestrict) {
 | 
						|
    QualType ParamTypes[2] = {
 | 
						|
      S.Context.getLValueReferenceType(CandidateTy),
 | 
						|
      S.Context.IntTy
 | 
						|
    };
 | 
						|
 | 
						|
    // Non-volatile version.
 | 
						|
    if (NumArgs == 1)
 | 
						|
      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
 | 
						|
    else
 | 
						|
      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
 | 
						|
    // Use a heuristic to reduce number of builtin candidates in the set:
 | 
						|
    // add volatile version only if there are conversions to a volatile type.
 | 
						|
    if (HasVolatile) {
 | 
						|
      ParamTypes[0] =
 | 
						|
        S.Context.getLValueReferenceType(
 | 
						|
          S.Context.getVolatileType(CandidateTy));
 | 
						|
      if (NumArgs == 1)
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
 | 
						|
      else
 | 
						|
        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add restrict version only if there are conversions to a restrict type
 | 
						|
    // and our candidate type is a non-restrict-qualified pointer.
 | 
						|
    if (HasRestrict && CandidateTy->isAnyPointerType() &&
 | 
						|
        !CandidateTy.isRestrictQualified()) {
 | 
						|
      ParamTypes[0]
 | 
						|
        = S.Context.getLValueReferenceType(
 | 
						|
            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
 | 
						|
      if (NumArgs == 1)
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
 | 
						|
      else
 | 
						|
        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
      
 | 
						|
      if (HasVolatile) {
 | 
						|
        ParamTypes[0]
 | 
						|
          = S.Context.getLValueReferenceType(
 | 
						|
              S.Context.getCVRQualifiedType(CandidateTy,
 | 
						|
                                            (Qualifiers::Volatile |
 | 
						|
                                             Qualifiers::Restrict)));
 | 
						|
        if (NumArgs == 1)
 | 
						|
          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1,
 | 
						|
                                CandidateSet);
 | 
						|
        else
 | 
						|
          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  BuiltinOperatorOverloadBuilder(
 | 
						|
    Sema &S, Expr **Args, unsigned NumArgs,
 | 
						|
    Qualifiers VisibleTypeConversionsQuals,
 | 
						|
    bool HasArithmeticOrEnumeralCandidateType,
 | 
						|
    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
 | 
						|
    OverloadCandidateSet &CandidateSet)
 | 
						|
    : S(S), Args(Args), NumArgs(NumArgs),
 | 
						|
      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
 | 
						|
      HasArithmeticOrEnumeralCandidateType(
 | 
						|
        HasArithmeticOrEnumeralCandidateType),
 | 
						|
      CandidateTypes(CandidateTypes),
 | 
						|
      CandidateSet(CandidateSet) {
 | 
						|
    // Validate some of our static helper constants in debug builds.
 | 
						|
    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
 | 
						|
           "Invalid first promoted integral type");
 | 
						|
    assert(getArithmeticType(LastPromotedIntegralType - 1)
 | 
						|
             == S.Context.UnsignedInt128Ty &&
 | 
						|
           "Invalid last promoted integral type");
 | 
						|
    assert(getArithmeticType(FirstPromotedArithmeticType)
 | 
						|
             == S.Context.FloatTy &&
 | 
						|
           "Invalid first promoted arithmetic type");
 | 
						|
    assert(getArithmeticType(LastPromotedArithmeticType - 1)
 | 
						|
             == S.Context.UnsignedInt128Ty &&
 | 
						|
           "Invalid last promoted arithmetic type");
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p3:
 | 
						|
  //
 | 
						|
  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
 | 
						|
  //   is either volatile or empty, there exist candidate operator
 | 
						|
  //   functions of the form
 | 
						|
  //
 | 
						|
  //       VQ T&      operator++(VQ T&);
 | 
						|
  //       T          operator++(VQ T&, int);
 | 
						|
  //
 | 
						|
  // C++ [over.built]p4:
 | 
						|
  //
 | 
						|
  //   For every pair (T, VQ), where T is an arithmetic type other
 | 
						|
  //   than bool, and VQ is either volatile or empty, there exist
 | 
						|
  //   candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //       VQ T&      operator--(VQ T&);
 | 
						|
  //       T          operator--(VQ T&, int);
 | 
						|
  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
 | 
						|
    if (!HasArithmeticOrEnumeralCandidateType)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
 | 
						|
         Arith < NumArithmeticTypes; ++Arith) {
 | 
						|
      addPlusPlusMinusMinusStyleOverloads(
 | 
						|
        getArithmeticType(Arith),
 | 
						|
        VisibleTypeConversionsQuals.hasVolatile(),
 | 
						|
        VisibleTypeConversionsQuals.hasRestrict());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p5:
 | 
						|
  //
 | 
						|
  //   For every pair (T, VQ), where T is a cv-qualified or
 | 
						|
  //   cv-unqualified object type, and VQ is either volatile or
 | 
						|
  //   empty, there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //       T*VQ&      operator++(T*VQ&);
 | 
						|
  //       T*VQ&      operator--(T*VQ&);
 | 
						|
  //       T*         operator++(T*VQ&, int);
 | 
						|
  //       T*         operator--(T*VQ&, int);
 | 
						|
  void addPlusPlusMinusMinusPointerOverloads() {
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Ptr = CandidateTypes[0].pointer_begin(),
 | 
						|
           PtrEnd = CandidateTypes[0].pointer_end();
 | 
						|
         Ptr != PtrEnd; ++Ptr) {
 | 
						|
      // Skip pointer types that aren't pointers to object types.
 | 
						|
      if (!(*Ptr)->getPointeeType()->isObjectType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      addPlusPlusMinusMinusStyleOverloads(*Ptr,
 | 
						|
        (!(*Ptr).isVolatileQualified() &&
 | 
						|
         VisibleTypeConversionsQuals.hasVolatile()),
 | 
						|
        (!(*Ptr).isRestrictQualified() &&
 | 
						|
         VisibleTypeConversionsQuals.hasRestrict()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p6:
 | 
						|
  //   For every cv-qualified or cv-unqualified object type T, there
 | 
						|
  //   exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //       T&         operator*(T*);
 | 
						|
  //
 | 
						|
  // C++ [over.built]p7:
 | 
						|
  //   For every function type T that does not have cv-qualifiers or a
 | 
						|
  //   ref-qualifier, there exist candidate operator functions of the form
 | 
						|
  //       T&         operator*(T*);
 | 
						|
  void addUnaryStarPointerOverloads() {
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Ptr = CandidateTypes[0].pointer_begin(),
 | 
						|
           PtrEnd = CandidateTypes[0].pointer_end();
 | 
						|
         Ptr != PtrEnd; ++Ptr) {
 | 
						|
      QualType ParamTy = *Ptr;
 | 
						|
      QualType PointeeTy = ParamTy->getPointeeType();
 | 
						|
      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
 | 
						|
        if (Proto->getTypeQuals() || Proto->getRefQualifier())
 | 
						|
          continue;
 | 
						|
 | 
						|
      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
 | 
						|
                            &ParamTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p9:
 | 
						|
  //  For every promoted arithmetic type T, there exist candidate
 | 
						|
  //  operator functions of the form
 | 
						|
  //
 | 
						|
  //       T         operator+(T);
 | 
						|
  //       T         operator-(T);
 | 
						|
  void addUnaryPlusOrMinusArithmeticOverloads() {
 | 
						|
    if (!HasArithmeticOrEnumeralCandidateType)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (unsigned Arith = FirstPromotedArithmeticType;
 | 
						|
         Arith < LastPromotedArithmeticType; ++Arith) {
 | 
						|
      QualType ArithTy = getArithmeticType(Arith);
 | 
						|
      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
 | 
						|
    // Extension: We also add these operators for vector types.
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Vec = CandidateTypes[0].vector_begin(),
 | 
						|
           VecEnd = CandidateTypes[0].vector_end();
 | 
						|
         Vec != VecEnd; ++Vec) {
 | 
						|
      QualType VecTy = *Vec;
 | 
						|
      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p8:
 | 
						|
  //   For every type T, there exist candidate operator functions of
 | 
						|
  //   the form
 | 
						|
  //
 | 
						|
  //       T*         operator+(T*);
 | 
						|
  void addUnaryPlusPointerOverloads() {
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Ptr = CandidateTypes[0].pointer_begin(),
 | 
						|
           PtrEnd = CandidateTypes[0].pointer_end();
 | 
						|
         Ptr != PtrEnd; ++Ptr) {
 | 
						|
      QualType ParamTy = *Ptr;
 | 
						|
      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p10:
 | 
						|
  //   For every promoted integral type T, there exist candidate
 | 
						|
  //   operator functions of the form
 | 
						|
  //
 | 
						|
  //        T         operator~(T);
 | 
						|
  void addUnaryTildePromotedIntegralOverloads() {
 | 
						|
    if (!HasArithmeticOrEnumeralCandidateType)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (unsigned Int = FirstPromotedIntegralType;
 | 
						|
         Int < LastPromotedIntegralType; ++Int) {
 | 
						|
      QualType IntTy = getArithmeticType(Int);
 | 
						|
      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
 | 
						|
    // Extension: We also add this operator for vector types.
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Vec = CandidateTypes[0].vector_begin(),
 | 
						|
           VecEnd = CandidateTypes[0].vector_end();
 | 
						|
         Vec != VecEnd; ++Vec) {
 | 
						|
      QualType VecTy = *Vec;
 | 
						|
      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.match.oper]p16:
 | 
						|
  //   For every pointer to member type T, there exist candidate operator
 | 
						|
  //   functions of the form
 | 
						|
  //
 | 
						|
  //        bool operator==(T,T);
 | 
						|
  //        bool operator!=(T,T);
 | 
						|
  void addEqualEqualOrNotEqualMemberPointerOverloads() {
 | 
						|
    /// Set of (canonical) types that we've already handled.
 | 
						|
    llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | 
						|
 | 
						|
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
 | 
						|
             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
 | 
						|
           MemPtr != MemPtrEnd;
 | 
						|
           ++MemPtr) {
 | 
						|
        // Don't add the same builtin candidate twice.
 | 
						|
        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
 | 
						|
        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
 | 
						|
                              CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p15:
 | 
						|
  //
 | 
						|
  //   For every T, where T is an enumeration type, a pointer type, or 
 | 
						|
  //   std::nullptr_t, there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        bool       operator<(T, T);
 | 
						|
  //        bool       operator>(T, T);
 | 
						|
  //        bool       operator<=(T, T);
 | 
						|
  //        bool       operator>=(T, T);
 | 
						|
  //        bool       operator==(T, T);
 | 
						|
  //        bool       operator!=(T, T);
 | 
						|
  void addRelationalPointerOrEnumeralOverloads() {
 | 
						|
    // C++ [over.match.oper]p3:
 | 
						|
    //   [...]the built-in candidates include all of the candidate operator
 | 
						|
    //   functions defined in 13.6 that, compared to the given operator, [...]
 | 
						|
    //   do not have the same parameter-type-list as any non-template non-member
 | 
						|
    //   candidate.
 | 
						|
    //
 | 
						|
    // Note that in practice, this only affects enumeration types because there
 | 
						|
    // aren't any built-in candidates of record type, and a user-defined operator
 | 
						|
    // must have an operand of record or enumeration type. Also, the only other
 | 
						|
    // overloaded operator with enumeration arguments, operator=,
 | 
						|
    // cannot be overloaded for enumeration types, so this is the only place
 | 
						|
    // where we must suppress candidates like this.
 | 
						|
    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
 | 
						|
      UserDefinedBinaryOperators;
 | 
						|
 | 
						|
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
      if (CandidateTypes[ArgIdx].enumeration_begin() !=
 | 
						|
          CandidateTypes[ArgIdx].enumeration_end()) {
 | 
						|
        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
 | 
						|
                                         CEnd = CandidateSet.end();
 | 
						|
             C != CEnd; ++C) {
 | 
						|
          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
 | 
						|
            continue;
 | 
						|
 | 
						|
          if (C->Function->isFunctionTemplateSpecialization())
 | 
						|
            continue;
 | 
						|
 | 
						|
          QualType FirstParamType =
 | 
						|
            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
 | 
						|
          QualType SecondParamType =
 | 
						|
            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
 | 
						|
 | 
						|
          // Skip if either parameter isn't of enumeral type.
 | 
						|
          if (!FirstParamType->isEnumeralType() ||
 | 
						|
              !SecondParamType->isEnumeralType())
 | 
						|
            continue;
 | 
						|
 | 
						|
          // Add this operator to the set of known user-defined operators.
 | 
						|
          UserDefinedBinaryOperators.insert(
 | 
						|
            std::make_pair(S.Context.getCanonicalType(FirstParamType),
 | 
						|
                           S.Context.getCanonicalType(SecondParamType)));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Set of (canonical) types that we've already handled.
 | 
						|
    llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | 
						|
 | 
						|
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
 | 
						|
             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
 | 
						|
           Ptr != PtrEnd; ++Ptr) {
 | 
						|
        // Don't add the same builtin candidate twice.
 | 
						|
        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        QualType ParamTypes[2] = { *Ptr, *Ptr };
 | 
						|
        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
 | 
						|
                              CandidateSet);
 | 
						|
      }
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
 | 
						|
             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
 | 
						|
           Enum != EnumEnd; ++Enum) {
 | 
						|
        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
 | 
						|
 | 
						|
        // Don't add the same builtin candidate twice, or if a user defined
 | 
						|
        // candidate exists.
 | 
						|
        if (!AddedTypes.insert(CanonType) ||
 | 
						|
            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
 | 
						|
                                                            CanonType)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        QualType ParamTypes[2] = { *Enum, *Enum };
 | 
						|
        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
 | 
						|
                              CandidateSet);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
 | 
						|
        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
 | 
						|
        if (AddedTypes.insert(NullPtrTy) &&
 | 
						|
            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, 
 | 
						|
                                                             NullPtrTy))) {
 | 
						|
          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
 | 
						|
          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 
 | 
						|
                                CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p13:
 | 
						|
  //
 | 
						|
  //   For every cv-qualified or cv-unqualified object type T
 | 
						|
  //   there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //      T*         operator+(T*, ptrdiff_t);
 | 
						|
  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
 | 
						|
  //      T*         operator-(T*, ptrdiff_t);
 | 
						|
  //      T*         operator+(ptrdiff_t, T*);
 | 
						|
  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
 | 
						|
  //
 | 
						|
  // C++ [over.built]p14:
 | 
						|
  //
 | 
						|
  //   For every T, where T is a pointer to object type, there
 | 
						|
  //   exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //      ptrdiff_t  operator-(T, T);
 | 
						|
  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
 | 
						|
    /// Set of (canonical) types that we've already handled.
 | 
						|
    llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | 
						|
 | 
						|
    for (int Arg = 0; Arg < 2; ++Arg) {
 | 
						|
      QualType AsymetricParamTypes[2] = {
 | 
						|
        S.Context.getPointerDiffType(),
 | 
						|
        S.Context.getPointerDiffType(),
 | 
						|
      };
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Ptr = CandidateTypes[Arg].pointer_begin(),
 | 
						|
             PtrEnd = CandidateTypes[Arg].pointer_end();
 | 
						|
           Ptr != PtrEnd; ++Ptr) {
 | 
						|
        QualType PointeeTy = (*Ptr)->getPointeeType();
 | 
						|
        if (!PointeeTy->isObjectType())
 | 
						|
          continue;
 | 
						|
 | 
						|
        AsymetricParamTypes[Arg] = *Ptr;
 | 
						|
        if (Arg == 0 || Op == OO_Plus) {
 | 
						|
          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
 | 
						|
          // T* operator+(ptrdiff_t, T*);
 | 
						|
          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
 | 
						|
                                CandidateSet);
 | 
						|
        }
 | 
						|
        if (Op == OO_Minus) {
 | 
						|
          // ptrdiff_t operator-(T, T);
 | 
						|
          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | 
						|
            continue;
 | 
						|
 | 
						|
          QualType ParamTypes[2] = { *Ptr, *Ptr };
 | 
						|
          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
 | 
						|
                                Args, 2, CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p12:
 | 
						|
  //
 | 
						|
  //   For every pair of promoted arithmetic types L and R, there
 | 
						|
  //   exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        LR         operator*(L, R);
 | 
						|
  //        LR         operator/(L, R);
 | 
						|
  //        LR         operator+(L, R);
 | 
						|
  //        LR         operator-(L, R);
 | 
						|
  //        bool       operator<(L, R);
 | 
						|
  //        bool       operator>(L, R);
 | 
						|
  //        bool       operator<=(L, R);
 | 
						|
  //        bool       operator>=(L, R);
 | 
						|
  //        bool       operator==(L, R);
 | 
						|
  //        bool       operator!=(L, R);
 | 
						|
  //
 | 
						|
  //   where LR is the result of the usual arithmetic conversions
 | 
						|
  //   between types L and R.
 | 
						|
  //
 | 
						|
  // C++ [over.built]p24:
 | 
						|
  //
 | 
						|
  //   For every pair of promoted arithmetic types L and R, there exist
 | 
						|
  //   candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        LR       operator?(bool, L, R);
 | 
						|
  //
 | 
						|
  //   where LR is the result of the usual arithmetic conversions
 | 
						|
  //   between types L and R.
 | 
						|
  // Our candidates ignore the first parameter.
 | 
						|
  void addGenericBinaryArithmeticOverloads(bool isComparison) {
 | 
						|
    if (!HasArithmeticOrEnumeralCandidateType)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (unsigned Left = FirstPromotedArithmeticType;
 | 
						|
         Left < LastPromotedArithmeticType; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedArithmeticType;
 | 
						|
           Right < LastPromotedArithmeticType; ++Right) {
 | 
						|
        QualType LandR[2] = { getArithmeticType(Left),
 | 
						|
                              getArithmeticType(Right) };
 | 
						|
        QualType Result =
 | 
						|
          isComparison ? S.Context.BoolTy
 | 
						|
                       : getUsualArithmeticConversions(Left, Right);
 | 
						|
        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
 | 
						|
    // conditional operator for vector types.
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Vec1 = CandidateTypes[0].vector_begin(),
 | 
						|
           Vec1End = CandidateTypes[0].vector_end();
 | 
						|
         Vec1 != Vec1End; ++Vec1) {
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Vec2 = CandidateTypes[1].vector_begin(),
 | 
						|
             Vec2End = CandidateTypes[1].vector_end();
 | 
						|
           Vec2 != Vec2End; ++Vec2) {
 | 
						|
        QualType LandR[2] = { *Vec1, *Vec2 };
 | 
						|
        QualType Result = S.Context.BoolTy;
 | 
						|
        if (!isComparison) {
 | 
						|
          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
 | 
						|
            Result = *Vec1;
 | 
						|
          else
 | 
						|
            Result = *Vec2;
 | 
						|
        }
 | 
						|
 | 
						|
        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p17:
 | 
						|
  //
 | 
						|
  //   For every pair of promoted integral types L and R, there
 | 
						|
  //   exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //      LR         operator%(L, R);
 | 
						|
  //      LR         operator&(L, R);
 | 
						|
  //      LR         operator^(L, R);
 | 
						|
  //      LR         operator|(L, R);
 | 
						|
  //      L          operator<<(L, R);
 | 
						|
  //      L          operator>>(L, R);
 | 
						|
  //
 | 
						|
  //   where LR is the result of the usual arithmetic conversions
 | 
						|
  //   between types L and R.
 | 
						|
  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
 | 
						|
    if (!HasArithmeticOrEnumeralCandidateType)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (unsigned Left = FirstPromotedIntegralType;
 | 
						|
         Left < LastPromotedIntegralType; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedIntegralType;
 | 
						|
           Right < LastPromotedIntegralType; ++Right) {
 | 
						|
        QualType LandR[2] = { getArithmeticType(Left),
 | 
						|
                              getArithmeticType(Right) };
 | 
						|
        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
 | 
						|
            ? LandR[0]
 | 
						|
            : getUsualArithmeticConversions(Left, Right);
 | 
						|
        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p20:
 | 
						|
  //
 | 
						|
  //   For every pair (T, VQ), where T is an enumeration or
 | 
						|
  //   pointer to member type and VQ is either volatile or
 | 
						|
  //   empty, there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        VQ T&      operator=(VQ T&, T);
 | 
						|
  void addAssignmentMemberPointerOrEnumeralOverloads() {
 | 
						|
    /// Set of (canonical) types that we've already handled.
 | 
						|
    llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | 
						|
 | 
						|
    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
 | 
						|
             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
 | 
						|
           Enum != EnumEnd; ++Enum) {
 | 
						|
        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
 | 
						|
                                               CandidateSet);
 | 
						|
      }
 | 
						|
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
 | 
						|
             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
 | 
						|
           MemPtr != MemPtrEnd; ++MemPtr) {
 | 
						|
        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
 | 
						|
                                               CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p19:
 | 
						|
  //
 | 
						|
  //   For every pair (T, VQ), where T is any type and VQ is either
 | 
						|
  //   volatile or empty, there exist candidate operator functions
 | 
						|
  //   of the form
 | 
						|
  //
 | 
						|
  //        T*VQ&      operator=(T*VQ&, T*);
 | 
						|
  //
 | 
						|
  // C++ [over.built]p21:
 | 
						|
  //
 | 
						|
  //   For every pair (T, VQ), where T is a cv-qualified or
 | 
						|
  //   cv-unqualified object type and VQ is either volatile or
 | 
						|
  //   empty, there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
 | 
						|
  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
 | 
						|
  void addAssignmentPointerOverloads(bool isEqualOp) {
 | 
						|
    /// Set of (canonical) types that we've already handled.
 | 
						|
    llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | 
						|
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Ptr = CandidateTypes[0].pointer_begin(),
 | 
						|
           PtrEnd = CandidateTypes[0].pointer_end();
 | 
						|
         Ptr != PtrEnd; ++Ptr) {
 | 
						|
      // If this is operator=, keep track of the builtin candidates we added.
 | 
						|
      if (isEqualOp)
 | 
						|
        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
 | 
						|
      else if (!(*Ptr)->getPointeeType()->isObjectType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // non-volatile version
 | 
						|
      QualType ParamTypes[2] = {
 | 
						|
        S.Context.getLValueReferenceType(*Ptr),
 | 
						|
        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
 | 
						|
      };
 | 
						|
      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                            /*IsAssigmentOperator=*/ isEqualOp);
 | 
						|
 | 
						|
      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
 | 
						|
                          VisibleTypeConversionsQuals.hasVolatile();
 | 
						|
      if (NeedVolatile) {
 | 
						|
        // volatile version
 | 
						|
        ParamTypes[0] =
 | 
						|
          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                              /*IsAssigmentOperator=*/isEqualOp);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (!(*Ptr).isRestrictQualified() &&
 | 
						|
          VisibleTypeConversionsQuals.hasRestrict()) {
 | 
						|
        // restrict version
 | 
						|
        ParamTypes[0]
 | 
						|
          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                              /*IsAssigmentOperator=*/isEqualOp);
 | 
						|
        
 | 
						|
        if (NeedVolatile) {
 | 
						|
          // volatile restrict version
 | 
						|
          ParamTypes[0]
 | 
						|
            = S.Context.getLValueReferenceType(
 | 
						|
                S.Context.getCVRQualifiedType(*Ptr,
 | 
						|
                                              (Qualifiers::Volatile |
 | 
						|
                                               Qualifiers::Restrict)));
 | 
						|
          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
 | 
						|
                                CandidateSet,
 | 
						|
                                /*IsAssigmentOperator=*/isEqualOp);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isEqualOp) {
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Ptr = CandidateTypes[1].pointer_begin(),
 | 
						|
             PtrEnd = CandidateTypes[1].pointer_end();
 | 
						|
           Ptr != PtrEnd; ++Ptr) {
 | 
						|
        // Make sure we don't add the same candidate twice.
 | 
						|
        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        QualType ParamTypes[2] = {
 | 
						|
          S.Context.getLValueReferenceType(*Ptr),
 | 
						|
          *Ptr,
 | 
						|
        };
 | 
						|
 | 
						|
        // non-volatile version
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                              /*IsAssigmentOperator=*/true);
 | 
						|
 | 
						|
        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
 | 
						|
                           VisibleTypeConversionsQuals.hasVolatile();
 | 
						|
        if (NeedVolatile) {
 | 
						|
          // volatile version
 | 
						|
          ParamTypes[0] =
 | 
						|
            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
 | 
						|
          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
 | 
						|
                                CandidateSet, /*IsAssigmentOperator=*/true);
 | 
						|
        }
 | 
						|
      
 | 
						|
        if (!(*Ptr).isRestrictQualified() &&
 | 
						|
            VisibleTypeConversionsQuals.hasRestrict()) {
 | 
						|
          // restrict version
 | 
						|
          ParamTypes[0]
 | 
						|
            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
 | 
						|
          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
 | 
						|
                                CandidateSet, /*IsAssigmentOperator=*/true);
 | 
						|
          
 | 
						|
          if (NeedVolatile) {
 | 
						|
            // volatile restrict version
 | 
						|
            ParamTypes[0]
 | 
						|
              = S.Context.getLValueReferenceType(
 | 
						|
                  S.Context.getCVRQualifiedType(*Ptr,
 | 
						|
                                                (Qualifiers::Volatile |
 | 
						|
                                                 Qualifiers::Restrict)));
 | 
						|
            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
 | 
						|
                                  CandidateSet, /*IsAssigmentOperator=*/true);
 | 
						|
            
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p18:
 | 
						|
  //
 | 
						|
  //   For every triple (L, VQ, R), where L is an arithmetic type,
 | 
						|
  //   VQ is either volatile or empty, and R is a promoted
 | 
						|
  //   arithmetic type, there exist candidate operator functions of
 | 
						|
  //   the form
 | 
						|
  //
 | 
						|
  //        VQ L&      operator=(VQ L&, R);
 | 
						|
  //        VQ L&      operator*=(VQ L&, R);
 | 
						|
  //        VQ L&      operator/=(VQ L&, R);
 | 
						|
  //        VQ L&      operator+=(VQ L&, R);
 | 
						|
  //        VQ L&      operator-=(VQ L&, R);
 | 
						|
  void addAssignmentArithmeticOverloads(bool isEqualOp) {
 | 
						|
    if (!HasArithmeticOrEnumeralCandidateType)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedArithmeticType;
 | 
						|
           Right < LastPromotedArithmeticType; ++Right) {
 | 
						|
        QualType ParamTypes[2];
 | 
						|
        ParamTypes[1] = getArithmeticType(Right);
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is empty).
 | 
						|
        ParamTypes[0] =
 | 
						|
          S.Context.getLValueReferenceType(getArithmeticType(Left));
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                              /*IsAssigmentOperator=*/isEqualOp);
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is 'volatile').
 | 
						|
        if (VisibleTypeConversionsQuals.hasVolatile()) {
 | 
						|
          ParamTypes[0] =
 | 
						|
            S.Context.getVolatileType(getArithmeticType(Left));
 | 
						|
          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
 | 
						|
          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
 | 
						|
                                CandidateSet,
 | 
						|
                                /*IsAssigmentOperator=*/isEqualOp);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Vec1 = CandidateTypes[0].vector_begin(),
 | 
						|
           Vec1End = CandidateTypes[0].vector_end();
 | 
						|
         Vec1 != Vec1End; ++Vec1) {
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Vec2 = CandidateTypes[1].vector_begin(),
 | 
						|
             Vec2End = CandidateTypes[1].vector_end();
 | 
						|
           Vec2 != Vec2End; ++Vec2) {
 | 
						|
        QualType ParamTypes[2];
 | 
						|
        ParamTypes[1] = *Vec2;
 | 
						|
        // Add this built-in operator as a candidate (VQ is empty).
 | 
						|
        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
 | 
						|
                              /*IsAssigmentOperator=*/isEqualOp);
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is 'volatile').
 | 
						|
        if (VisibleTypeConversionsQuals.hasVolatile()) {
 | 
						|
          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
 | 
						|
          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
 | 
						|
          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
 | 
						|
                                CandidateSet,
 | 
						|
                                /*IsAssigmentOperator=*/isEqualOp);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p22:
 | 
						|
  //
 | 
						|
  //   For every triple (L, VQ, R), where L is an integral type, VQ
 | 
						|
  //   is either volatile or empty, and R is a promoted integral
 | 
						|
  //   type, there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        VQ L&       operator%=(VQ L&, R);
 | 
						|
  //        VQ L&       operator<<=(VQ L&, R);
 | 
						|
  //        VQ L&       operator>>=(VQ L&, R);
 | 
						|
  //        VQ L&       operator&=(VQ L&, R);
 | 
						|
  //        VQ L&       operator^=(VQ L&, R);
 | 
						|
  //        VQ L&       operator|=(VQ L&, R);
 | 
						|
  void addAssignmentIntegralOverloads() {
 | 
						|
    if (!HasArithmeticOrEnumeralCandidateType)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
 | 
						|
      for (unsigned Right = FirstPromotedIntegralType;
 | 
						|
           Right < LastPromotedIntegralType; ++Right) {
 | 
						|
        QualType ParamTypes[2];
 | 
						|
        ParamTypes[1] = getArithmeticType(Right);
 | 
						|
 | 
						|
        // Add this built-in operator as a candidate (VQ is empty).
 | 
						|
        ParamTypes[0] =
 | 
						|
          S.Context.getLValueReferenceType(getArithmeticType(Left));
 | 
						|
        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
 | 
						|
        if (VisibleTypeConversionsQuals.hasVolatile()) {
 | 
						|
          // Add this built-in operator as a candidate (VQ is 'volatile').
 | 
						|
          ParamTypes[0] = getArithmeticType(Left);
 | 
						|
          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
 | 
						|
          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
 | 
						|
          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
 | 
						|
                                CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.operator]p23:
 | 
						|
  //
 | 
						|
  //   There also exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        bool        operator!(bool);
 | 
						|
  //        bool        operator&&(bool, bool);
 | 
						|
  //        bool        operator||(bool, bool);
 | 
						|
  void addExclaimOverload() {
 | 
						|
    QualType ParamTy = S.Context.BoolTy;
 | 
						|
    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
 | 
						|
                          /*IsAssignmentOperator=*/false,
 | 
						|
                          /*NumContextualBoolArguments=*/1);
 | 
						|
  }
 | 
						|
  void addAmpAmpOrPipePipeOverload() {
 | 
						|
    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
 | 
						|
    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
 | 
						|
                          /*IsAssignmentOperator=*/false,
 | 
						|
                          /*NumContextualBoolArguments=*/2);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p13:
 | 
						|
  //
 | 
						|
  //   For every cv-qualified or cv-unqualified object type T there
 | 
						|
  //   exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
 | 
						|
  //        T&         operator[](T*, ptrdiff_t);
 | 
						|
  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
 | 
						|
  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
 | 
						|
  //        T&         operator[](ptrdiff_t, T*);
 | 
						|
  void addSubscriptOverloads() {
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Ptr = CandidateTypes[0].pointer_begin(),
 | 
						|
           PtrEnd = CandidateTypes[0].pointer_end();
 | 
						|
         Ptr != PtrEnd; ++Ptr) {
 | 
						|
      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
 | 
						|
      QualType PointeeType = (*Ptr)->getPointeeType();
 | 
						|
      if (!PointeeType->isObjectType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
 | 
						|
 | 
						|
      // T& operator[](T*, ptrdiff_t)
 | 
						|
      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
              Ptr = CandidateTypes[1].pointer_begin(),
 | 
						|
           PtrEnd = CandidateTypes[1].pointer_end();
 | 
						|
         Ptr != PtrEnd; ++Ptr) {
 | 
						|
      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
 | 
						|
      QualType PointeeType = (*Ptr)->getPointeeType();
 | 
						|
      if (!PointeeType->isObjectType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
 | 
						|
 | 
						|
      // T& operator[](ptrdiff_t, T*)
 | 
						|
      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.built]p11:
 | 
						|
  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
 | 
						|
  //    C1 is the same type as C2 or is a derived class of C2, T is an object
 | 
						|
  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
 | 
						|
  //    there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
 | 
						|
  //
 | 
						|
  //    where CV12 is the union of CV1 and CV2.
 | 
						|
  void addArrowStarOverloads() {
 | 
						|
    for (BuiltinCandidateTypeSet::iterator
 | 
						|
             Ptr = CandidateTypes[0].pointer_begin(),
 | 
						|
           PtrEnd = CandidateTypes[0].pointer_end();
 | 
						|
         Ptr != PtrEnd; ++Ptr) {
 | 
						|
      QualType C1Ty = (*Ptr);
 | 
						|
      QualType C1;
 | 
						|
      QualifierCollector Q1;
 | 
						|
      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
 | 
						|
      if (!isa<RecordType>(C1))
 | 
						|
        continue;
 | 
						|
      // heuristic to reduce number of builtin candidates in the set.
 | 
						|
      // Add volatile/restrict version only if there are conversions to a
 | 
						|
      // volatile/restrict type.
 | 
						|
      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
 | 
						|
        continue;
 | 
						|
      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
 | 
						|
        continue;
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                MemPtr = CandidateTypes[1].member_pointer_begin(),
 | 
						|
             MemPtrEnd = CandidateTypes[1].member_pointer_end();
 | 
						|
           MemPtr != MemPtrEnd; ++MemPtr) {
 | 
						|
        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
 | 
						|
        QualType C2 = QualType(mptr->getClass(), 0);
 | 
						|
        C2 = C2.getUnqualifiedType();
 | 
						|
        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
 | 
						|
          break;
 | 
						|
        QualType ParamTypes[2] = { *Ptr, *MemPtr };
 | 
						|
        // build CV12 T&
 | 
						|
        QualType T = mptr->getPointeeType();
 | 
						|
        if (!VisibleTypeConversionsQuals.hasVolatile() &&
 | 
						|
            T.isVolatileQualified())
 | 
						|
          continue;
 | 
						|
        if (!VisibleTypeConversionsQuals.hasRestrict() &&
 | 
						|
            T.isRestrictQualified())
 | 
						|
          continue;
 | 
						|
        T = Q1.apply(S.Context, T);
 | 
						|
        QualType ResultTy = S.Context.getLValueReferenceType(T);
 | 
						|
        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that we don't consider the first argument, since it has been
 | 
						|
  // contextually converted to bool long ago. The candidates below are
 | 
						|
  // therefore added as binary.
 | 
						|
  //
 | 
						|
  // C++ [over.built]p25:
 | 
						|
  //   For every type T, where T is a pointer, pointer-to-member, or scoped
 | 
						|
  //   enumeration type, there exist candidate operator functions of the form
 | 
						|
  //
 | 
						|
  //        T        operator?(bool, T, T);
 | 
						|
  //
 | 
						|
  void addConditionalOperatorOverloads() {
 | 
						|
    /// Set of (canonical) types that we've already handled.
 | 
						|
    llvm::SmallPtrSet<QualType, 8> AddedTypes;
 | 
						|
 | 
						|
    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
 | 
						|
             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
 | 
						|
           Ptr != PtrEnd; ++Ptr) {
 | 
						|
        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        QualType ParamTypes[2] = { *Ptr, *Ptr };
 | 
						|
        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
 | 
						|
      for (BuiltinCandidateTypeSet::iterator
 | 
						|
                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
 | 
						|
             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
 | 
						|
           MemPtr != MemPtrEnd; ++MemPtr) {
 | 
						|
        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
 | 
						|
        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
 | 
						|
      }
 | 
						|
 | 
						|
      if (S.getLangOpts().CPlusPlus11) {
 | 
						|
        for (BuiltinCandidateTypeSet::iterator
 | 
						|
                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
 | 
						|
               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
 | 
						|
             Enum != EnumEnd; ++Enum) {
 | 
						|
          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
 | 
						|
            continue;
 | 
						|
 | 
						|
          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
 | 
						|
            continue;
 | 
						|
 | 
						|
          QualType ParamTypes[2] = { *Enum, *Enum };
 | 
						|
          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
 | 
						|
/// operator overloads to the candidate set (C++ [over.built]), based
 | 
						|
/// on the operator @p Op and the arguments given. For example, if the
 | 
						|
/// operator is a binary '+', this routine might add "int
 | 
						|
/// operator+(int, int)" to cover integer addition.
 | 
						|
void
 | 
						|
Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
 | 
						|
                                   SourceLocation OpLoc,
 | 
						|
                                   Expr **Args, unsigned NumArgs,
 | 
						|
                                   OverloadCandidateSet& CandidateSet) {
 | 
						|
  // Find all of the types that the arguments can convert to, but only
 | 
						|
  // if the operator we're looking at has built-in operator candidates
 | 
						|
  // that make use of these types. Also record whether we encounter non-record
 | 
						|
  // candidate types or either arithmetic or enumeral candidate types.
 | 
						|
  Qualifiers VisibleTypeConversionsQuals;
 | 
						|
  VisibleTypeConversionsQuals.addConst();
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
 | 
						|
    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
 | 
						|
 | 
						|
  bool HasNonRecordCandidateType = false;
 | 
						|
  bool HasArithmeticOrEnumeralCandidateType = false;
 | 
						|
  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
 | 
						|
    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
 | 
						|
                                                 OpLoc,
 | 
						|
                                                 true,
 | 
						|
                                                 (Op == OO_Exclaim ||
 | 
						|
                                                  Op == OO_AmpAmp ||
 | 
						|
                                                  Op == OO_PipePipe),
 | 
						|
                                                 VisibleTypeConversionsQuals);
 | 
						|
    HasNonRecordCandidateType = HasNonRecordCandidateType ||
 | 
						|
        CandidateTypes[ArgIdx].hasNonRecordTypes();
 | 
						|
    HasArithmeticOrEnumeralCandidateType =
 | 
						|
        HasArithmeticOrEnumeralCandidateType ||
 | 
						|
        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
 | 
						|
  }
 | 
						|
 | 
						|
  // Exit early when no non-record types have been added to the candidate set
 | 
						|
  // for any of the arguments to the operator.
 | 
						|
  //
 | 
						|
  // We can't exit early for !, ||, or &&, since there we have always have
 | 
						|
  // 'bool' overloads.
 | 
						|
  if (!HasNonRecordCandidateType && 
 | 
						|
      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Setup an object to manage the common state for building overloads.
 | 
						|
  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
 | 
						|
                                           VisibleTypeConversionsQuals,
 | 
						|
                                           HasArithmeticOrEnumeralCandidateType,
 | 
						|
                                           CandidateTypes, CandidateSet);
 | 
						|
 | 
						|
  // Dispatch over the operation to add in only those overloads which apply.
 | 
						|
  switch (Op) {
 | 
						|
  case OO_None:
 | 
						|
  case NUM_OVERLOADED_OPERATORS:
 | 
						|
    llvm_unreachable("Expected an overloaded operator");
 | 
						|
 | 
						|
  case OO_New:
 | 
						|
  case OO_Delete:
 | 
						|
  case OO_Array_New:
 | 
						|
  case OO_Array_Delete:
 | 
						|
  case OO_Call:
 | 
						|
    llvm_unreachable(
 | 
						|
                    "Special operators don't use AddBuiltinOperatorCandidates");
 | 
						|
 | 
						|
  case OO_Comma:
 | 
						|
  case OO_Arrow:
 | 
						|
    // C++ [over.match.oper]p3:
 | 
						|
    //   -- For the operator ',', the unary operator '&', or the
 | 
						|
    //      operator '->', the built-in candidates set is empty.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Plus: // '+' is either unary or binary
 | 
						|
    if (NumArgs == 1)
 | 
						|
      OpBuilder.addUnaryPlusPointerOverloads();
 | 
						|
    // Fall through.
 | 
						|
 | 
						|
  case OO_Minus: // '-' is either unary or binary
 | 
						|
    if (NumArgs == 1) {
 | 
						|
      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
 | 
						|
    } else {
 | 
						|
      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
 | 
						|
      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Star: // '*' is either unary or binary
 | 
						|
    if (NumArgs == 1)
 | 
						|
      OpBuilder.addUnaryStarPointerOverloads();
 | 
						|
    else
 | 
						|
      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Slash:
 | 
						|
    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_PlusPlus:
 | 
						|
  case OO_MinusMinus:
 | 
						|
    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
 | 
						|
    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_EqualEqual:
 | 
						|
  case OO_ExclaimEqual:
 | 
						|
    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
 | 
						|
    // Fall through.
 | 
						|
 | 
						|
  case OO_Less:
 | 
						|
  case OO_Greater:
 | 
						|
  case OO_LessEqual:
 | 
						|
  case OO_GreaterEqual:
 | 
						|
    OpBuilder.addRelationalPointerOrEnumeralOverloads();
 | 
						|
    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Percent:
 | 
						|
  case OO_Caret:
 | 
						|
  case OO_Pipe:
 | 
						|
  case OO_LessLess:
 | 
						|
  case OO_GreaterGreater:
 | 
						|
    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Amp: // '&' is either unary or binary
 | 
						|
    if (NumArgs == 1)
 | 
						|
      // C++ [over.match.oper]p3:
 | 
						|
      //   -- For the operator ',', the unary operator '&', or the
 | 
						|
      //      operator '->', the built-in candidates set is empty.
 | 
						|
      break;
 | 
						|
 | 
						|
    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Tilde:
 | 
						|
    OpBuilder.addUnaryTildePromotedIntegralOverloads();
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Equal:
 | 
						|
    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
 | 
						|
    // Fall through.
 | 
						|
 | 
						|
  case OO_PlusEqual:
 | 
						|
  case OO_MinusEqual:
 | 
						|
    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
 | 
						|
    // Fall through.
 | 
						|
 | 
						|
  case OO_StarEqual:
 | 
						|
  case OO_SlashEqual:
 | 
						|
    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_PercentEqual:
 | 
						|
  case OO_LessLessEqual:
 | 
						|
  case OO_GreaterGreaterEqual:
 | 
						|
  case OO_AmpEqual:
 | 
						|
  case OO_CaretEqual:
 | 
						|
  case OO_PipeEqual:
 | 
						|
    OpBuilder.addAssignmentIntegralOverloads();
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Exclaim:
 | 
						|
    OpBuilder.addExclaimOverload();
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_AmpAmp:
 | 
						|
  case OO_PipePipe:
 | 
						|
    OpBuilder.addAmpAmpOrPipePipeOverload();
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Subscript:
 | 
						|
    OpBuilder.addSubscriptOverloads();
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_ArrowStar:
 | 
						|
    OpBuilder.addArrowStarOverloads();
 | 
						|
    break;
 | 
						|
 | 
						|
  case OO_Conditional:
 | 
						|
    OpBuilder.addConditionalOperatorOverloads();
 | 
						|
    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add function candidates found via argument-dependent lookup
 | 
						|
/// to the set of overloading candidates.
 | 
						|
///
 | 
						|
/// This routine performs argument-dependent name lookup based on the
 | 
						|
/// given function name (which may also be an operator name) and adds
 | 
						|
/// all of the overload candidates found by ADL to the overload
 | 
						|
/// candidate set (C++ [basic.lookup.argdep]).
 | 
						|
void
 | 
						|
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
 | 
						|
                                           bool Operator, SourceLocation Loc,
 | 
						|
                                           ArrayRef<Expr *> Args,
 | 
						|
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                                           OverloadCandidateSet& CandidateSet,
 | 
						|
                                           bool PartialOverloading) {
 | 
						|
  ADLResult Fns;
 | 
						|
 | 
						|
  // FIXME: This approach for uniquing ADL results (and removing
 | 
						|
  // redundant candidates from the set) relies on pointer-equality,
 | 
						|
  // which means we need to key off the canonical decl.  However,
 | 
						|
  // always going back to the canonical decl might not get us the
 | 
						|
  // right set of default arguments.  What default arguments are
 | 
						|
  // we supposed to consider on ADL candidates, anyway?
 | 
						|
 | 
						|
  // FIXME: Pass in the explicit template arguments?
 | 
						|
  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns);
 | 
						|
 | 
						|
  // Erase all of the candidates we already knew about.
 | 
						|
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
 | 
						|
                                   CandEnd = CandidateSet.end();
 | 
						|
       Cand != CandEnd; ++Cand)
 | 
						|
    if (Cand->Function) {
 | 
						|
      Fns.erase(Cand->Function);
 | 
						|
      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
 | 
						|
        Fns.erase(FunTmpl);
 | 
						|
    }
 | 
						|
 | 
						|
  // For each of the ADL candidates we found, add it to the overload
 | 
						|
  // set.
 | 
						|
  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
 | 
						|
    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
 | 
						|
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
 | 
						|
      if (ExplicitTemplateArgs)
 | 
						|
        continue;
 | 
						|
 | 
						|
      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
 | 
						|
                           PartialOverloading);
 | 
						|
    } else
 | 
						|
      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
 | 
						|
                                   FoundDecl, ExplicitTemplateArgs,
 | 
						|
                                   Args, CandidateSet);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isBetterOverloadCandidate - Determines whether the first overload
 | 
						|
/// candidate is a better candidate than the second (C++ 13.3.3p1).
 | 
						|
bool
 | 
						|
isBetterOverloadCandidate(Sema &S,
 | 
						|
                          const OverloadCandidate &Cand1,
 | 
						|
                          const OverloadCandidate &Cand2,
 | 
						|
                          SourceLocation Loc,
 | 
						|
                          bool UserDefinedConversion) {
 | 
						|
  // Define viable functions to be better candidates than non-viable
 | 
						|
  // functions.
 | 
						|
  if (!Cand2.Viable)
 | 
						|
    return Cand1.Viable;
 | 
						|
  else if (!Cand1.Viable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [over.match.best]p1:
 | 
						|
  //
 | 
						|
  //   -- if F is a static member function, ICS1(F) is defined such
 | 
						|
  //      that ICS1(F) is neither better nor worse than ICS1(G) for
 | 
						|
  //      any function G, and, symmetrically, ICS1(G) is neither
 | 
						|
  //      better nor worse than ICS1(F).
 | 
						|
  unsigned StartArg = 0;
 | 
						|
  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
 | 
						|
    StartArg = 1;
 | 
						|
 | 
						|
  // C++ [over.match.best]p1:
 | 
						|
  //   A viable function F1 is defined to be a better function than another
 | 
						|
  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
 | 
						|
  //   conversion sequence than ICSi(F2), and then...
 | 
						|
  unsigned NumArgs = Cand1.NumConversions;
 | 
						|
  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
 | 
						|
  bool HasBetterConversion = false;
 | 
						|
  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
 | 
						|
    switch (CompareImplicitConversionSequences(S,
 | 
						|
                                               Cand1.Conversions[ArgIdx],
 | 
						|
                                               Cand2.Conversions[ArgIdx])) {
 | 
						|
    case ImplicitConversionSequence::Better:
 | 
						|
      // Cand1 has a better conversion sequence.
 | 
						|
      HasBetterConversion = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Worse:
 | 
						|
      // Cand1 can't be better than Cand2.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Indistinguishable:
 | 
						|
      // Do nothing.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
 | 
						|
  //       ICSj(F2), or, if not that,
 | 
						|
  if (HasBetterConversion)
 | 
						|
    return true;
 | 
						|
 | 
						|
  //     - F1 is a non-template function and F2 is a function template
 | 
						|
  //       specialization, or, if not that,
 | 
						|
  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
 | 
						|
      Cand2.Function && Cand2.Function->getPrimaryTemplate())
 | 
						|
    return true;
 | 
						|
 | 
						|
  //   -- F1 and F2 are function template specializations, and the function
 | 
						|
  //      template for F1 is more specialized than the template for F2
 | 
						|
  //      according to the partial ordering rules described in 14.5.5.2, or,
 | 
						|
  //      if not that,
 | 
						|
  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
 | 
						|
      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
 | 
						|
    if (FunctionTemplateDecl *BetterTemplate
 | 
						|
          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
 | 
						|
                                         Cand2.Function->getPrimaryTemplate(),
 | 
						|
                                         Loc,
 | 
						|
                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
 | 
						|
                                                             : TPOC_Call,
 | 
						|
                                         Cand1.ExplicitCallArguments))
 | 
						|
      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
 | 
						|
  }
 | 
						|
 | 
						|
  //   -- the context is an initialization by user-defined conversion
 | 
						|
  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
 | 
						|
  //      from the return type of F1 to the destination type (i.e.,
 | 
						|
  //      the type of the entity being initialized) is a better
 | 
						|
  //      conversion sequence than the standard conversion sequence
 | 
						|
  //      from the return type of F2 to the destination type.
 | 
						|
  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
 | 
						|
      isa<CXXConversionDecl>(Cand1.Function) &&
 | 
						|
      isa<CXXConversionDecl>(Cand2.Function)) {
 | 
						|
    // First check whether we prefer one of the conversion functions over the
 | 
						|
    // other. This only distinguishes the results in non-standard, extension
 | 
						|
    // cases such as the conversion from a lambda closure type to a function
 | 
						|
    // pointer or block.
 | 
						|
    ImplicitConversionSequence::CompareKind FuncResult
 | 
						|
      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
 | 
						|
    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
 | 
						|
      return FuncResult;
 | 
						|
          
 | 
						|
    switch (CompareStandardConversionSequences(S,
 | 
						|
                                               Cand1.FinalConversion,
 | 
						|
                                               Cand2.FinalConversion)) {
 | 
						|
    case ImplicitConversionSequence::Better:
 | 
						|
      // Cand1 has a better conversion sequence.
 | 
						|
      return true;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Worse:
 | 
						|
      // Cand1 can't be better than Cand2.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case ImplicitConversionSequence::Indistinguishable:
 | 
						|
      // Do nothing
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Computes the best viable function (C++ 13.3.3)
 | 
						|
/// within an overload candidate set.
 | 
						|
///
 | 
						|
/// \param Loc The location of the function name (or operator symbol) for
 | 
						|
/// which overload resolution occurs.
 | 
						|
///
 | 
						|
/// \param Best If overload resolution was successful or found a deleted
 | 
						|
/// function, \p Best points to the candidate function found.
 | 
						|
///
 | 
						|
/// \returns The result of overload resolution.
 | 
						|
OverloadingResult
 | 
						|
OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
 | 
						|
                                         iterator &Best,
 | 
						|
                                         bool UserDefinedConversion) {
 | 
						|
  // Find the best viable function.
 | 
						|
  Best = end();
 | 
						|
  for (iterator Cand = begin(); Cand != end(); ++Cand) {
 | 
						|
    if (Cand->Viable)
 | 
						|
      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
 | 
						|
                                                     UserDefinedConversion))
 | 
						|
        Best = Cand;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find any viable functions, abort.
 | 
						|
  if (Best == end())
 | 
						|
    return OR_No_Viable_Function;
 | 
						|
 | 
						|
  // Make sure that this function is better than every other viable
 | 
						|
  // function. If not, we have an ambiguity.
 | 
						|
  for (iterator Cand = begin(); Cand != end(); ++Cand) {
 | 
						|
    if (Cand->Viable &&
 | 
						|
        Cand != Best &&
 | 
						|
        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
 | 
						|
                                   UserDefinedConversion)) {
 | 
						|
      Best = end();
 | 
						|
      return OR_Ambiguous;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Best is the best viable function.
 | 
						|
  if (Best->Function &&
 | 
						|
      (Best->Function->isDeleted() ||
 | 
						|
       S.isFunctionConsideredUnavailable(Best->Function)))
 | 
						|
    return OR_Deleted;
 | 
						|
 | 
						|
  return OR_Success;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
enum OverloadCandidateKind {
 | 
						|
  oc_function,
 | 
						|
  oc_method,
 | 
						|
  oc_constructor,
 | 
						|
  oc_function_template,
 | 
						|
  oc_method_template,
 | 
						|
  oc_constructor_template,
 | 
						|
  oc_implicit_default_constructor,
 | 
						|
  oc_implicit_copy_constructor,
 | 
						|
  oc_implicit_move_constructor,
 | 
						|
  oc_implicit_copy_assignment,
 | 
						|
  oc_implicit_move_assignment,
 | 
						|
  oc_implicit_inherited_constructor
 | 
						|
};
 | 
						|
 | 
						|
OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
 | 
						|
                                                FunctionDecl *Fn,
 | 
						|
                                                std::string &Description) {
 | 
						|
  bool isTemplate = false;
 | 
						|
 | 
						|
  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
 | 
						|
    isTemplate = true;
 | 
						|
    Description = S.getTemplateArgumentBindingsText(
 | 
						|
      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
 | 
						|
    if (!Ctor->isImplicit())
 | 
						|
      return isTemplate ? oc_constructor_template : oc_constructor;
 | 
						|
 | 
						|
    if (Ctor->getInheritedConstructor())
 | 
						|
      return oc_implicit_inherited_constructor;
 | 
						|
 | 
						|
    if (Ctor->isDefaultConstructor())
 | 
						|
      return oc_implicit_default_constructor;
 | 
						|
 | 
						|
    if (Ctor->isMoveConstructor())
 | 
						|
      return oc_implicit_move_constructor;
 | 
						|
 | 
						|
    assert(Ctor->isCopyConstructor() &&
 | 
						|
           "unexpected sort of implicit constructor");
 | 
						|
    return oc_implicit_copy_constructor;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
 | 
						|
    // This actually gets spelled 'candidate function' for now, but
 | 
						|
    // it doesn't hurt to split it out.
 | 
						|
    if (!Meth->isImplicit())
 | 
						|
      return isTemplate ? oc_method_template : oc_method;
 | 
						|
 | 
						|
    if (Meth->isMoveAssignmentOperator())
 | 
						|
      return oc_implicit_move_assignment;
 | 
						|
 | 
						|
    if (Meth->isCopyAssignmentOperator())
 | 
						|
      return oc_implicit_copy_assignment;
 | 
						|
 | 
						|
    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
 | 
						|
    return oc_method;
 | 
						|
  }
 | 
						|
 | 
						|
  return isTemplate ? oc_function_template : oc_function;
 | 
						|
}
 | 
						|
 | 
						|
void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
 | 
						|
  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
 | 
						|
  if (!Ctor) return;
 | 
						|
 | 
						|
  Ctor = Ctor->getInheritedConstructor();
 | 
						|
  if (!Ctor) return;
 | 
						|
 | 
						|
  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Notes the location of an overload candidate.
 | 
						|
void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
 | 
						|
  std::string FnDesc;
 | 
						|
  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
 | 
						|
  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
 | 
						|
                             << (unsigned) K << FnDesc;
 | 
						|
  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
 | 
						|
  Diag(Fn->getLocation(), PD);
 | 
						|
  MaybeEmitInheritedConstructorNote(*this, Fn);
 | 
						|
}
 | 
						|
 | 
						|
//Notes the location of all overload candidates designated through 
 | 
						|
// OverloadedExpr
 | 
						|
void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
 | 
						|
  assert(OverloadedExpr->getType() == Context.OverloadTy);
 | 
						|
 | 
						|
  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
 | 
						|
  OverloadExpr *OvlExpr = Ovl.Expression;
 | 
						|
 | 
						|
  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
 | 
						|
                            IEnd = OvlExpr->decls_end(); 
 | 
						|
       I != IEnd; ++I) {
 | 
						|
    if (FunctionTemplateDecl *FunTmpl = 
 | 
						|
                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
 | 
						|
      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
 | 
						|
    } else if (FunctionDecl *Fun 
 | 
						|
                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
 | 
						|
      NoteOverloadCandidate(Fun, DestType);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
 | 
						|
/// "lead" diagnostic; it will be given two arguments, the source and
 | 
						|
/// target types of the conversion.
 | 
						|
void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
 | 
						|
                                 Sema &S,
 | 
						|
                                 SourceLocation CaretLoc,
 | 
						|
                                 const PartialDiagnostic &PDiag) const {
 | 
						|
  S.Diag(CaretLoc, PDiag)
 | 
						|
    << Ambiguous.getFromType() << Ambiguous.getToType();
 | 
						|
  // FIXME: The note limiting machinery is borrowed from
 | 
						|
  // OverloadCandidateSet::NoteCandidates; there's an opportunity for
 | 
						|
  // refactoring here.
 | 
						|
  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
 | 
						|
  unsigned CandsShown = 0;
 | 
						|
  AmbiguousConversionSequence::const_iterator I, E;
 | 
						|
  for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
 | 
						|
    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
 | 
						|
      break;
 | 
						|
    ++CandsShown;
 | 
						|
    S.NoteOverloadCandidate(*I);
 | 
						|
  }
 | 
						|
  if (I != E)
 | 
						|
    S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
 | 
						|
  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
 | 
						|
  assert(Conv.isBad());
 | 
						|
  assert(Cand->Function && "for now, candidate must be a function");
 | 
						|
  FunctionDecl *Fn = Cand->Function;
 | 
						|
 | 
						|
  // There's a conversion slot for the object argument if this is a
 | 
						|
  // non-constructor method.  Note that 'I' corresponds the
 | 
						|
  // conversion-slot index.
 | 
						|
  bool isObjectArgument = false;
 | 
						|
  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
 | 
						|
    if (I == 0)
 | 
						|
      isObjectArgument = true;
 | 
						|
    else
 | 
						|
      I--;
 | 
						|
  }
 | 
						|
 | 
						|
  std::string FnDesc;
 | 
						|
  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
 | 
						|
 | 
						|
  Expr *FromExpr = Conv.Bad.FromExpr;
 | 
						|
  QualType FromTy = Conv.Bad.getFromType();
 | 
						|
  QualType ToTy = Conv.Bad.getToType();
 | 
						|
 | 
						|
  if (FromTy == S.Context.OverloadTy) {
 | 
						|
    assert(FromExpr && "overload set argument came from implicit argument?");
 | 
						|
    Expr *E = FromExpr->IgnoreParens();
 | 
						|
    if (isa<UnaryOperator>(E))
 | 
						|
      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
 | 
						|
    DeclarationName Name = cast<OverloadExpr>(E)->getName();
 | 
						|
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
 | 
						|
      << (unsigned) FnKind << FnDesc
 | 
						|
      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
      << ToTy << Name << I+1;
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do some hand-waving analysis to see if the non-viability is due
 | 
						|
  // to a qualifier mismatch.
 | 
						|
  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
 | 
						|
  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
 | 
						|
  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
 | 
						|
    CToTy = RT->getPointeeType();
 | 
						|
  else {
 | 
						|
    // TODO: detect and diagnose the full richness of const mismatches.
 | 
						|
    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
 | 
						|
      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
 | 
						|
        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
 | 
						|
      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
 | 
						|
    Qualifiers FromQs = CFromTy.getQualifiers();
 | 
						|
    Qualifiers ToQs = CToTy.getQualifiers();
 | 
						|
 | 
						|
    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
 | 
						|
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
 | 
						|
        << (unsigned) FnKind << FnDesc
 | 
						|
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
        << FromTy
 | 
						|
        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
 | 
						|
        << (unsigned) isObjectArgument << I+1;
 | 
						|
      MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
 | 
						|
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
 | 
						|
        << (unsigned) FnKind << FnDesc
 | 
						|
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
        << FromTy
 | 
						|
        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
 | 
						|
        << (unsigned) isObjectArgument << I+1;
 | 
						|
      MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
 | 
						|
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
 | 
						|
      << (unsigned) FnKind << FnDesc
 | 
						|
      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
      << FromTy
 | 
						|
      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
 | 
						|
      << (unsigned) isObjectArgument << I+1;
 | 
						|
      MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
 | 
						|
    assert(CVR && "unexpected qualifiers mismatch");
 | 
						|
 | 
						|
    if (isObjectArgument) {
 | 
						|
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
 | 
						|
        << (unsigned) FnKind << FnDesc
 | 
						|
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
        << FromTy << (CVR - 1);
 | 
						|
    } else {
 | 
						|
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
 | 
						|
        << (unsigned) FnKind << FnDesc
 | 
						|
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
        << FromTy << (CVR - 1) << I+1;
 | 
						|
    }
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special diagnostic for failure to convert an initializer list, since
 | 
						|
  // telling the user that it has type void is not useful.
 | 
						|
  if (FromExpr && isa<InitListExpr>(FromExpr)) {
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
 | 
						|
      << (unsigned) FnKind << FnDesc
 | 
						|
      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose references or pointers to incomplete types differently,
 | 
						|
  // since it's far from impossible that the incompleteness triggered
 | 
						|
  // the failure.
 | 
						|
  QualType TempFromTy = FromTy.getNonReferenceType();
 | 
						|
  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
 | 
						|
    TempFromTy = PTy->getPointeeType();
 | 
						|
  if (TempFromTy->isIncompleteType()) {
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
 | 
						|
      << (unsigned) FnKind << FnDesc
 | 
						|
      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose base -> derived pointer conversions.
 | 
						|
  unsigned BaseToDerivedConversion = 0;
 | 
						|
  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
 | 
						|
    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
 | 
						|
      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
 | 
						|
                                               FromPtrTy->getPointeeType()) &&
 | 
						|
          !FromPtrTy->getPointeeType()->isIncompleteType() &&
 | 
						|
          !ToPtrTy->getPointeeType()->isIncompleteType() &&
 | 
						|
          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
 | 
						|
                          FromPtrTy->getPointeeType()))
 | 
						|
        BaseToDerivedConversion = 1;
 | 
						|
    }
 | 
						|
  } else if (const ObjCObjectPointerType *FromPtrTy
 | 
						|
                                    = FromTy->getAs<ObjCObjectPointerType>()) {
 | 
						|
    if (const ObjCObjectPointerType *ToPtrTy
 | 
						|
                                        = ToTy->getAs<ObjCObjectPointerType>())
 | 
						|
      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
 | 
						|
        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
 | 
						|
          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
 | 
						|
                                                FromPtrTy->getPointeeType()) &&
 | 
						|
              FromIface->isSuperClassOf(ToIface))
 | 
						|
            BaseToDerivedConversion = 2;
 | 
						|
  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
 | 
						|
    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
 | 
						|
        !FromTy->isIncompleteType() &&
 | 
						|
        !ToRefTy->getPointeeType()->isIncompleteType() &&
 | 
						|
        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
 | 
						|
      BaseToDerivedConversion = 3;
 | 
						|
    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
 | 
						|
               ToTy.getNonReferenceType().getCanonicalType() ==
 | 
						|
               FromTy.getNonReferenceType().getCanonicalType()) {
 | 
						|
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
 | 
						|
        << (unsigned) FnKind << FnDesc
 | 
						|
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
        << (unsigned) isObjectArgument << I + 1;
 | 
						|
      MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BaseToDerivedConversion) {
 | 
						|
    S.Diag(Fn->getLocation(),
 | 
						|
           diag::note_ovl_candidate_bad_base_to_derived_conv)
 | 
						|
      << (unsigned) FnKind << FnDesc
 | 
						|
      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
      << (BaseToDerivedConversion - 1)
 | 
						|
      << FromTy << ToTy << I+1;
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ObjCObjectPointerType>(CFromTy) &&
 | 
						|
      isa<PointerType>(CToTy)) {
 | 
						|
      Qualifiers FromQs = CFromTy.getQualifiers();
 | 
						|
      Qualifiers ToQs = CToTy.getQualifiers();
 | 
						|
      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
 | 
						|
        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
 | 
						|
        << (unsigned) FnKind << FnDesc
 | 
						|
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
 | 
						|
        MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Emit the generic diagnostic and, optionally, add the hints to it.
 | 
						|
  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
 | 
						|
  FDiag << (unsigned) FnKind << FnDesc
 | 
						|
    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
 | 
						|
    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
 | 
						|
    << (unsigned) (Cand->Fix.Kind);
 | 
						|
 | 
						|
  // If we can fix the conversion, suggest the FixIts.
 | 
						|
  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
 | 
						|
       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
 | 
						|
    FDiag << *HI;
 | 
						|
  S.Diag(Fn->getLocation(), FDiag);
 | 
						|
 | 
						|
  MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
}
 | 
						|
 | 
						|
void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
 | 
						|
                           unsigned NumFormalArgs) {
 | 
						|
  // TODO: treat calls to a missing default constructor as a special case
 | 
						|
 | 
						|
  FunctionDecl *Fn = Cand->Function;
 | 
						|
  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
  unsigned MinParams = Fn->getMinRequiredArguments();
 | 
						|
 | 
						|
  // With invalid overloaded operators, it's possible that we think we
 | 
						|
  // have an arity mismatch when it fact it looks like we have the
 | 
						|
  // right number of arguments, because only overloaded operators have
 | 
						|
  // the weird behavior of overloading member and non-member functions.
 | 
						|
  // Just don't report anything.
 | 
						|
  if (Fn->isInvalidDecl() && 
 | 
						|
      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
 | 
						|
    return;
 | 
						|
 | 
						|
  // at least / at most / exactly
 | 
						|
  unsigned mode, modeCount;
 | 
						|
  if (NumFormalArgs < MinParams) {
 | 
						|
    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
 | 
						|
           (Cand->FailureKind == ovl_fail_bad_deduction &&
 | 
						|
            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
 | 
						|
    if (MinParams != FnTy->getNumArgs() ||
 | 
						|
        FnTy->isVariadic() || FnTy->isTemplateVariadic())
 | 
						|
      mode = 0; // "at least"
 | 
						|
    else
 | 
						|
      mode = 2; // "exactly"
 | 
						|
    modeCount = MinParams;
 | 
						|
  } else {
 | 
						|
    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
 | 
						|
           (Cand->FailureKind == ovl_fail_bad_deduction &&
 | 
						|
            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
 | 
						|
    if (MinParams != FnTy->getNumArgs())
 | 
						|
      mode = 1; // "at most"
 | 
						|
    else
 | 
						|
      mode = 2; // "exactly"
 | 
						|
    modeCount = FnTy->getNumArgs();
 | 
						|
  }
 | 
						|
 | 
						|
  std::string Description;
 | 
						|
  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
 | 
						|
 | 
						|
  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
 | 
						|
      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
 | 
						|
      << Fn->getParamDecl(0) << NumFormalArgs;
 | 
						|
  else
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
 | 
						|
      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
 | 
						|
      << modeCount << NumFormalArgs;
 | 
						|
  MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose a failed template-argument deduction.
 | 
						|
void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
 | 
						|
                          unsigned NumArgs) {
 | 
						|
  FunctionDecl *Fn = Cand->Function; // pattern
 | 
						|
 | 
						|
  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
 | 
						|
  NamedDecl *ParamD;
 | 
						|
  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
 | 
						|
  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
 | 
						|
  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
 | 
						|
  switch (Cand->DeductionFailure.Result) {
 | 
						|
  case Sema::TDK_Success:
 | 
						|
    llvm_unreachable("TDK_success while diagnosing bad deduction");
 | 
						|
 | 
						|
  case Sema::TDK_Incomplete: {
 | 
						|
    assert(ParamD && "no parameter found for incomplete deduction result");
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
 | 
						|
      << ParamD->getDeclName();
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case Sema::TDK_Underqualified: {
 | 
						|
    assert(ParamD && "no parameter found for bad qualifiers deduction result");
 | 
						|
    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
 | 
						|
 | 
						|
    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
 | 
						|
 | 
						|
    // Param will have been canonicalized, but it should just be a
 | 
						|
    // qualified version of ParamD, so move the qualifiers to that.
 | 
						|
    QualifierCollector Qs;
 | 
						|
    Qs.strip(Param);
 | 
						|
    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
 | 
						|
    assert(S.Context.hasSameType(Param, NonCanonParam));
 | 
						|
 | 
						|
    // Arg has also been canonicalized, but there's nothing we can do
 | 
						|
    // about that.  It also doesn't matter as much, because it won't
 | 
						|
    // have any template parameters in it (because deduction isn't
 | 
						|
    // done on dependent types).
 | 
						|
    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
 | 
						|
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
 | 
						|
      << ParamD->getDeclName() << Arg << NonCanonParam;
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case Sema::TDK_Inconsistent: {
 | 
						|
    assert(ParamD && "no parameter found for inconsistent deduction result");
 | 
						|
    int which = 0;
 | 
						|
    if (isa<TemplateTypeParmDecl>(ParamD))
 | 
						|
      which = 0;
 | 
						|
    else if (isa<NonTypeTemplateParmDecl>(ParamD))
 | 
						|
      which = 1;
 | 
						|
    else {
 | 
						|
      which = 2;
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
 | 
						|
      << which << ParamD->getDeclName()
 | 
						|
      << *Cand->DeductionFailure.getFirstArg()
 | 
						|
      << *Cand->DeductionFailure.getSecondArg();
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case Sema::TDK_InvalidExplicitArguments:
 | 
						|
    assert(ParamD && "no parameter found for invalid explicit arguments");
 | 
						|
    if (ParamD->getDeclName())
 | 
						|
      S.Diag(Fn->getLocation(),
 | 
						|
             diag::note_ovl_candidate_explicit_arg_mismatch_named)
 | 
						|
        << ParamD->getDeclName();
 | 
						|
    else {
 | 
						|
      int index = 0;
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
 | 
						|
        index = TTP->getIndex();
 | 
						|
      else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
 | 
						|
        index = NTTP->getIndex();
 | 
						|
      else
 | 
						|
        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
 | 
						|
      S.Diag(Fn->getLocation(),
 | 
						|
             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
 | 
						|
        << (index + 1);
 | 
						|
    }
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
 | 
						|
  case Sema::TDK_TooManyArguments:
 | 
						|
  case Sema::TDK_TooFewArguments:
 | 
						|
    DiagnoseArityMismatch(S, Cand, NumArgs);
 | 
						|
    return;
 | 
						|
 | 
						|
  case Sema::TDK_InstantiationDepth:
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
 | 
						|
  case Sema::TDK_SubstitutionFailure: {
 | 
						|
    // Format the template argument list into the argument string.
 | 
						|
    SmallString<128> TemplateArgString;
 | 
						|
    if (TemplateArgumentList *Args =
 | 
						|
          Cand->DeductionFailure.getTemplateArgumentList()) {
 | 
						|
      TemplateArgString = " ";
 | 
						|
      TemplateArgString += S.getTemplateArgumentBindingsText(
 | 
						|
          Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this candidate was disabled by enable_if, say so.
 | 
						|
    PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic();
 | 
						|
    if (PDiag && PDiag->second.getDiagID() ==
 | 
						|
          diag::err_typename_nested_not_found_enable_if) {
 | 
						|
      // FIXME: Use the source range of the condition, and the fully-qualified
 | 
						|
      //        name of the enable_if template. These are both present in PDiag.
 | 
						|
      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
 | 
						|
        << "'enable_if'" << TemplateArgString;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Format the SFINAE diagnostic into the argument string.
 | 
						|
    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
 | 
						|
    //        formatted message in another diagnostic.
 | 
						|
    SmallString<128> SFINAEArgString;
 | 
						|
    SourceRange R;
 | 
						|
    if (PDiag) {
 | 
						|
      SFINAEArgString = ": ";
 | 
						|
      R = SourceRange(PDiag->first, PDiag->first);
 | 
						|
      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
 | 
						|
      << TemplateArgString << SFINAEArgString << R;
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: diagnose these individually, then kill off
 | 
						|
  // note_ovl_candidate_bad_deduction, which is uselessly vague.
 | 
						|
  case Sema::TDK_NonDeducedMismatch:
 | 
						|
  case Sema::TDK_FailedOverloadResolution:
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CUDA: diagnose an invalid call across targets.
 | 
						|
void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
 | 
						|
  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
 | 
						|
  FunctionDecl *Callee = Cand->Function;
 | 
						|
 | 
						|
  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
 | 
						|
                           CalleeTarget = S.IdentifyCUDATarget(Callee);
 | 
						|
 | 
						|
  std::string FnDesc;
 | 
						|
  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
 | 
						|
 | 
						|
  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
 | 
						|
      << (unsigned) FnKind << CalleeTarget << CallerTarget;
 | 
						|
}
 | 
						|
 | 
						|
/// Generates a 'note' diagnostic for an overload candidate.  We've
 | 
						|
/// already generated a primary error at the call site.
 | 
						|
///
 | 
						|
/// It really does need to be a single diagnostic with its caret
 | 
						|
/// pointed at the candidate declaration.  Yes, this creates some
 | 
						|
/// major challenges of technical writing.  Yes, this makes pointing
 | 
						|
/// out problems with specific arguments quite awkward.  It's still
 | 
						|
/// better than generating twenty screens of text for every failed
 | 
						|
/// overload.
 | 
						|
///
 | 
						|
/// It would be great to be able to express per-candidate problems
 | 
						|
/// more richly for those diagnostic clients that cared, but we'd
 | 
						|
/// still have to be just as careful with the default diagnostics.
 | 
						|
void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
 | 
						|
                           unsigned NumArgs) {
 | 
						|
  FunctionDecl *Fn = Cand->Function;
 | 
						|
 | 
						|
  // Note deleted candidates, but only if they're viable.
 | 
						|
  if (Cand->Viable && (Fn->isDeleted() ||
 | 
						|
      S.isFunctionConsideredUnavailable(Fn))) {
 | 
						|
    std::string FnDesc;
 | 
						|
    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
 | 
						|
 | 
						|
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
 | 
						|
      << FnKind << FnDesc
 | 
						|
      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
 | 
						|
    MaybeEmitInheritedConstructorNote(S, Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't really have anything else to say about viable candidates.
 | 
						|
  if (Cand->Viable) {
 | 
						|
    S.NoteOverloadCandidate(Fn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Cand->FailureKind) {
 | 
						|
  case ovl_fail_too_many_arguments:
 | 
						|
  case ovl_fail_too_few_arguments:
 | 
						|
    return DiagnoseArityMismatch(S, Cand, NumArgs);
 | 
						|
 | 
						|
  case ovl_fail_bad_deduction:
 | 
						|
    return DiagnoseBadDeduction(S, Cand, NumArgs);
 | 
						|
 | 
						|
  case ovl_fail_trivial_conversion:
 | 
						|
  case ovl_fail_bad_final_conversion:
 | 
						|
  case ovl_fail_final_conversion_not_exact:
 | 
						|
    return S.NoteOverloadCandidate(Fn);
 | 
						|
 | 
						|
  case ovl_fail_bad_conversion: {
 | 
						|
    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
 | 
						|
    for (unsigned N = Cand->NumConversions; I != N; ++I)
 | 
						|
      if (Cand->Conversions[I].isBad())
 | 
						|
        return DiagnoseBadConversion(S, Cand, I);
 | 
						|
 | 
						|
    // FIXME: this currently happens when we're called from SemaInit
 | 
						|
    // when user-conversion overload fails.  Figure out how to handle
 | 
						|
    // those conditions and diagnose them well.
 | 
						|
    return S.NoteOverloadCandidate(Fn);
 | 
						|
  }
 | 
						|
 | 
						|
  case ovl_fail_bad_target:
 | 
						|
    return DiagnoseBadTarget(S, Cand);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
 | 
						|
  // Desugar the type of the surrogate down to a function type,
 | 
						|
  // retaining as many typedefs as possible while still showing
 | 
						|
  // the function type (and, therefore, its parameter types).
 | 
						|
  QualType FnType = Cand->Surrogate->getConversionType();
 | 
						|
  bool isLValueReference = false;
 | 
						|
  bool isRValueReference = false;
 | 
						|
  bool isPointer = false;
 | 
						|
  if (const LValueReferenceType *FnTypeRef =
 | 
						|
        FnType->getAs<LValueReferenceType>()) {
 | 
						|
    FnType = FnTypeRef->getPointeeType();
 | 
						|
    isLValueReference = true;
 | 
						|
  } else if (const RValueReferenceType *FnTypeRef =
 | 
						|
               FnType->getAs<RValueReferenceType>()) {
 | 
						|
    FnType = FnTypeRef->getPointeeType();
 | 
						|
    isRValueReference = true;
 | 
						|
  }
 | 
						|
  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
 | 
						|
    FnType = FnTypePtr->getPointeeType();
 | 
						|
    isPointer = true;
 | 
						|
  }
 | 
						|
  // Desugar down to a function type.
 | 
						|
  FnType = QualType(FnType->getAs<FunctionType>(), 0);
 | 
						|
  // Reconstruct the pointer/reference as appropriate.
 | 
						|
  if (isPointer) FnType = S.Context.getPointerType(FnType);
 | 
						|
  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
 | 
						|
  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
 | 
						|
 | 
						|
  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
 | 
						|
    << FnType;
 | 
						|
  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
 | 
						|
}
 | 
						|
 | 
						|
void NoteBuiltinOperatorCandidate(Sema &S,
 | 
						|
                                  StringRef Opc,
 | 
						|
                                  SourceLocation OpLoc,
 | 
						|
                                  OverloadCandidate *Cand) {
 | 
						|
  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
 | 
						|
  std::string TypeStr("operator");
 | 
						|
  TypeStr += Opc;
 | 
						|
  TypeStr += "(";
 | 
						|
  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
 | 
						|
  if (Cand->NumConversions == 1) {
 | 
						|
    TypeStr += ")";
 | 
						|
    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
 | 
						|
  } else {
 | 
						|
    TypeStr += ", ";
 | 
						|
    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
 | 
						|
    TypeStr += ")";
 | 
						|
    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
 | 
						|
                                  OverloadCandidate *Cand) {
 | 
						|
  unsigned NoOperands = Cand->NumConversions;
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
 | 
						|
    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
 | 
						|
    if (ICS.isBad()) break; // all meaningless after first invalid
 | 
						|
    if (!ICS.isAmbiguous()) continue;
 | 
						|
 | 
						|
    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
 | 
						|
                              S.PDiag(diag::note_ambiguous_type_conversion));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
 | 
						|
  if (Cand->Function)
 | 
						|
    return Cand->Function->getLocation();
 | 
						|
  if (Cand->IsSurrogate)
 | 
						|
    return Cand->Surrogate->getLocation();
 | 
						|
  return SourceLocation();
 | 
						|
}
 | 
						|
 | 
						|
static unsigned
 | 
						|
RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
 | 
						|
  switch ((Sema::TemplateDeductionResult)DFI.Result) {
 | 
						|
  case Sema::TDK_Success:
 | 
						|
    llvm_unreachable("TDK_success while diagnosing bad deduction");
 | 
						|
 | 
						|
  case Sema::TDK_Invalid:
 | 
						|
  case Sema::TDK_Incomplete:
 | 
						|
    return 1;
 | 
						|
 | 
						|
  case Sema::TDK_Underqualified:
 | 
						|
  case Sema::TDK_Inconsistent:
 | 
						|
    return 2;
 | 
						|
 | 
						|
  case Sema::TDK_SubstitutionFailure:
 | 
						|
  case Sema::TDK_NonDeducedMismatch:
 | 
						|
    return 3;
 | 
						|
 | 
						|
  case Sema::TDK_InstantiationDepth:
 | 
						|
  case Sema::TDK_FailedOverloadResolution:
 | 
						|
    return 4;
 | 
						|
 | 
						|
  case Sema::TDK_InvalidExplicitArguments:
 | 
						|
    return 5;
 | 
						|
 | 
						|
  case Sema::TDK_TooManyArguments:
 | 
						|
  case Sema::TDK_TooFewArguments:
 | 
						|
    return 6;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled deduction result");
 | 
						|
}
 | 
						|
 | 
						|
struct CompareOverloadCandidatesForDisplay {
 | 
						|
  Sema &S;
 | 
						|
  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
 | 
						|
 | 
						|
  bool operator()(const OverloadCandidate *L,
 | 
						|
                  const OverloadCandidate *R) {
 | 
						|
    // Fast-path this check.
 | 
						|
    if (L == R) return false;
 | 
						|
 | 
						|
    // Order first by viability.
 | 
						|
    if (L->Viable) {
 | 
						|
      if (!R->Viable) return true;
 | 
						|
 | 
						|
      // TODO: introduce a tri-valued comparison for overload
 | 
						|
      // candidates.  Would be more worthwhile if we had a sort
 | 
						|
      // that could exploit it.
 | 
						|
      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
 | 
						|
      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
 | 
						|
    } else if (R->Viable)
 | 
						|
      return false;
 | 
						|
 | 
						|
    assert(L->Viable == R->Viable);
 | 
						|
 | 
						|
    // Criteria by which we can sort non-viable candidates:
 | 
						|
    if (!L->Viable) {
 | 
						|
      // 1. Arity mismatches come after other candidates.
 | 
						|
      if (L->FailureKind == ovl_fail_too_many_arguments ||
 | 
						|
          L->FailureKind == ovl_fail_too_few_arguments)
 | 
						|
        return false;
 | 
						|
      if (R->FailureKind == ovl_fail_too_many_arguments ||
 | 
						|
          R->FailureKind == ovl_fail_too_few_arguments)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // 2. Bad conversions come first and are ordered by the number
 | 
						|
      // of bad conversions and quality of good conversions.
 | 
						|
      if (L->FailureKind == ovl_fail_bad_conversion) {
 | 
						|
        if (R->FailureKind != ovl_fail_bad_conversion)
 | 
						|
          return true;
 | 
						|
 | 
						|
        // The conversion that can be fixed with a smaller number of changes,
 | 
						|
        // comes first.
 | 
						|
        unsigned numLFixes = L->Fix.NumConversionsFixed;
 | 
						|
        unsigned numRFixes = R->Fix.NumConversionsFixed;
 | 
						|
        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
 | 
						|
        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
 | 
						|
        if (numLFixes != numRFixes) {
 | 
						|
          if (numLFixes < numRFixes)
 | 
						|
            return true;
 | 
						|
          else
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // If there's any ordering between the defined conversions...
 | 
						|
        // FIXME: this might not be transitive.
 | 
						|
        assert(L->NumConversions == R->NumConversions);
 | 
						|
 | 
						|
        int leftBetter = 0;
 | 
						|
        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
 | 
						|
        for (unsigned E = L->NumConversions; I != E; ++I) {
 | 
						|
          switch (CompareImplicitConversionSequences(S,
 | 
						|
                                                     L->Conversions[I],
 | 
						|
                                                     R->Conversions[I])) {
 | 
						|
          case ImplicitConversionSequence::Better:
 | 
						|
            leftBetter++;
 | 
						|
            break;
 | 
						|
 | 
						|
          case ImplicitConversionSequence::Worse:
 | 
						|
            leftBetter--;
 | 
						|
            break;
 | 
						|
 | 
						|
          case ImplicitConversionSequence::Indistinguishable:
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (leftBetter > 0) return true;
 | 
						|
        if (leftBetter < 0) return false;
 | 
						|
 | 
						|
      } else if (R->FailureKind == ovl_fail_bad_conversion)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (L->FailureKind == ovl_fail_bad_deduction) {
 | 
						|
        if (R->FailureKind != ovl_fail_bad_deduction)
 | 
						|
          return true;
 | 
						|
 | 
						|
        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
 | 
						|
          return RankDeductionFailure(L->DeductionFailure)
 | 
						|
               < RankDeductionFailure(R->DeductionFailure);
 | 
						|
      } else if (R->FailureKind == ovl_fail_bad_deduction)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // TODO: others?
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort everything else by location.
 | 
						|
    SourceLocation LLoc = GetLocationForCandidate(L);
 | 
						|
    SourceLocation RLoc = GetLocationForCandidate(R);
 | 
						|
 | 
						|
    // Put candidates without locations (e.g. builtins) at the end.
 | 
						|
    if (LLoc.isInvalid()) return false;
 | 
						|
    if (RLoc.isInvalid()) return true;
 | 
						|
 | 
						|
    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// CompleteNonViableCandidate - Normally, overload resolution only
 | 
						|
/// computes up to the first. Produces the FixIt set if possible.
 | 
						|
void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
 | 
						|
                                ArrayRef<Expr *> Args) {
 | 
						|
  assert(!Cand->Viable);
 | 
						|
 | 
						|
  // Don't do anything on failures other than bad conversion.
 | 
						|
  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
 | 
						|
 | 
						|
  // We only want the FixIts if all the arguments can be corrected.
 | 
						|
  bool Unfixable = false;
 | 
						|
  // Use a implicit copy initialization to check conversion fixes.
 | 
						|
  Cand->Fix.setConversionChecker(TryCopyInitialization);
 | 
						|
 | 
						|
  // Skip forward to the first bad conversion.
 | 
						|
  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
 | 
						|
  unsigned ConvCount = Cand->NumConversions;
 | 
						|
  while (true) {
 | 
						|
    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
 | 
						|
    ConvIdx++;
 | 
						|
    if (Cand->Conversions[ConvIdx - 1].isBad()) {
 | 
						|
      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConvIdx == ConvCount)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
 | 
						|
         "remaining conversion is initialized?");
 | 
						|
 | 
						|
  // FIXME: this should probably be preserved from the overload
 | 
						|
  // operation somehow.
 | 
						|
  bool SuppressUserConversions = false;
 | 
						|
 | 
						|
  const FunctionProtoType* Proto;
 | 
						|
  unsigned ArgIdx = ConvIdx;
 | 
						|
 | 
						|
  if (Cand->IsSurrogate) {
 | 
						|
    QualType ConvType
 | 
						|
      = Cand->Surrogate->getConversionType().getNonReferenceType();
 | 
						|
    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | 
						|
      ConvType = ConvPtrType->getPointeeType();
 | 
						|
    Proto = ConvType->getAs<FunctionProtoType>();
 | 
						|
    ArgIdx--;
 | 
						|
  } else if (Cand->Function) {
 | 
						|
    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
 | 
						|
    if (isa<CXXMethodDecl>(Cand->Function) &&
 | 
						|
        !isa<CXXConstructorDecl>(Cand->Function))
 | 
						|
      ArgIdx--;
 | 
						|
  } else {
 | 
						|
    // Builtin binary operator with a bad first conversion.
 | 
						|
    assert(ConvCount <= 3);
 | 
						|
    for (; ConvIdx != ConvCount; ++ConvIdx)
 | 
						|
      Cand->Conversions[ConvIdx]
 | 
						|
        = TryCopyInitialization(S, Args[ConvIdx],
 | 
						|
                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
 | 
						|
                                SuppressUserConversions,
 | 
						|
                                /*InOverloadResolution*/ true,
 | 
						|
                                /*AllowObjCWritebackConversion=*/
 | 
						|
                                  S.getLangOpts().ObjCAutoRefCount);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill in the rest of the conversions.
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
 | 
						|
    if (ArgIdx < NumArgsInProto) {
 | 
						|
      Cand->Conversions[ConvIdx]
 | 
						|
        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
 | 
						|
                                SuppressUserConversions,
 | 
						|
                                /*InOverloadResolution=*/true,
 | 
						|
                                /*AllowObjCWritebackConversion=*/
 | 
						|
                                  S.getLangOpts().ObjCAutoRefCount);
 | 
						|
      // Store the FixIt in the candidate if it exists.
 | 
						|
      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
 | 
						|
        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      Cand->Conversions[ConvIdx].setEllipsis();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// PrintOverloadCandidates - When overload resolution fails, prints
 | 
						|
/// diagnostic messages containing the candidates in the candidate
 | 
						|
/// set.
 | 
						|
void OverloadCandidateSet::NoteCandidates(Sema &S,
 | 
						|
                                          OverloadCandidateDisplayKind OCD,
 | 
						|
                                          ArrayRef<Expr *> Args,
 | 
						|
                                          StringRef Opc,
 | 
						|
                                          SourceLocation OpLoc) {
 | 
						|
  // Sort the candidates by viability and position.  Sorting directly would
 | 
						|
  // be prohibitive, so we make a set of pointers and sort those.
 | 
						|
  SmallVector<OverloadCandidate*, 32> Cands;
 | 
						|
  if (OCD == OCD_AllCandidates) Cands.reserve(size());
 | 
						|
  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
 | 
						|
    if (Cand->Viable)
 | 
						|
      Cands.push_back(Cand);
 | 
						|
    else if (OCD == OCD_AllCandidates) {
 | 
						|
      CompleteNonViableCandidate(S, Cand, Args);
 | 
						|
      if (Cand->Function || Cand->IsSurrogate)
 | 
						|
        Cands.push_back(Cand);
 | 
						|
      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
 | 
						|
      // want to list every possible builtin candidate.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::sort(Cands.begin(), Cands.end(),
 | 
						|
            CompareOverloadCandidatesForDisplay(S));
 | 
						|
 | 
						|
  bool ReportedAmbiguousConversions = false;
 | 
						|
 | 
						|
  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
 | 
						|
  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
 | 
						|
  unsigned CandsShown = 0;
 | 
						|
  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
 | 
						|
    OverloadCandidate *Cand = *I;
 | 
						|
 | 
						|
    // Set an arbitrary limit on the number of candidate functions we'll spam
 | 
						|
    // the user with.  FIXME: This limit should depend on details of the
 | 
						|
    // candidate list.
 | 
						|
    if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    ++CandsShown;
 | 
						|
 | 
						|
    if (Cand->Function)
 | 
						|
      NoteFunctionCandidate(S, Cand, Args.size());
 | 
						|
    else if (Cand->IsSurrogate)
 | 
						|
      NoteSurrogateCandidate(S, Cand);
 | 
						|
    else {
 | 
						|
      assert(Cand->Viable &&
 | 
						|
             "Non-viable built-in candidates are not added to Cands.");
 | 
						|
      // Generally we only see ambiguities including viable builtin
 | 
						|
      // operators if overload resolution got screwed up by an
 | 
						|
      // ambiguous user-defined conversion.
 | 
						|
      //
 | 
						|
      // FIXME: It's quite possible for different conversions to see
 | 
						|
      // different ambiguities, though.
 | 
						|
      if (!ReportedAmbiguousConversions) {
 | 
						|
        NoteAmbiguousUserConversions(S, OpLoc, Cand);
 | 
						|
        ReportedAmbiguousConversions = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is a viable builtin, print it.
 | 
						|
      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (I != E)
 | 
						|
    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
 | 
						|
}
 | 
						|
 | 
						|
// [PossiblyAFunctionType]  -->   [Return]
 | 
						|
// NonFunctionType --> NonFunctionType
 | 
						|
// R (A) --> R(A)
 | 
						|
// R (*)(A) --> R (A)
 | 
						|
// R (&)(A) --> R (A)
 | 
						|
// R (S::*)(A) --> R (A)
 | 
						|
QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
 | 
						|
  QualType Ret = PossiblyAFunctionType;
 | 
						|
  if (const PointerType *ToTypePtr = 
 | 
						|
    PossiblyAFunctionType->getAs<PointerType>())
 | 
						|
    Ret = ToTypePtr->getPointeeType();
 | 
						|
  else if (const ReferenceType *ToTypeRef = 
 | 
						|
    PossiblyAFunctionType->getAs<ReferenceType>())
 | 
						|
    Ret = ToTypeRef->getPointeeType();
 | 
						|
  else if (const MemberPointerType *MemTypePtr =
 | 
						|
    PossiblyAFunctionType->getAs<MemberPointerType>()) 
 | 
						|
    Ret = MemTypePtr->getPointeeType();   
 | 
						|
  Ret = 
 | 
						|
    Context.getCanonicalType(Ret).getUnqualifiedType();
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
// A helper class to help with address of function resolution
 | 
						|
// - allows us to avoid passing around all those ugly parameters
 | 
						|
class AddressOfFunctionResolver 
 | 
						|
{
 | 
						|
  Sema& S;
 | 
						|
  Expr* SourceExpr;
 | 
						|
  const QualType& TargetType; 
 | 
						|
  QualType TargetFunctionType; // Extracted function type from target type 
 | 
						|
   
 | 
						|
  bool Complain;
 | 
						|
  //DeclAccessPair& ResultFunctionAccessPair;
 | 
						|
  ASTContext& Context;
 | 
						|
 | 
						|
  bool TargetTypeIsNonStaticMemberFunction;
 | 
						|
  bool FoundNonTemplateFunction;
 | 
						|
 | 
						|
  OverloadExpr::FindResult OvlExprInfo; 
 | 
						|
  OverloadExpr *OvlExpr;
 | 
						|
  TemplateArgumentListInfo OvlExplicitTemplateArgs;
 | 
						|
  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
 | 
						|
 | 
						|
public:
 | 
						|
  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 
 | 
						|
                            const QualType& TargetType, bool Complain)
 | 
						|
    : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 
 | 
						|
      Complain(Complain), Context(S.getASTContext()), 
 | 
						|
      TargetTypeIsNonStaticMemberFunction(
 | 
						|
                                    !!TargetType->getAs<MemberPointerType>()),
 | 
						|
      FoundNonTemplateFunction(false),
 | 
						|
      OvlExprInfo(OverloadExpr::find(SourceExpr)),
 | 
						|
      OvlExpr(OvlExprInfo.Expression)
 | 
						|
  {
 | 
						|
    ExtractUnqualifiedFunctionTypeFromTargetType();
 | 
						|
    
 | 
						|
    if (!TargetFunctionType->isFunctionType()) {        
 | 
						|
      if (OvlExpr->hasExplicitTemplateArgs()) {
 | 
						|
        DeclAccessPair dap;
 | 
						|
        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
 | 
						|
                                            OvlExpr, false, &dap) ) {
 | 
						|
 | 
						|
          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
 | 
						|
            if (!Method->isStatic()) {
 | 
						|
              // If the target type is a non-function type and the function
 | 
						|
              // found is a non-static member function, pretend as if that was
 | 
						|
              // the target, it's the only possible type to end up with.
 | 
						|
              TargetTypeIsNonStaticMemberFunction = true;
 | 
						|
 | 
						|
              // And skip adding the function if its not in the proper form.
 | 
						|
              // We'll diagnose this due to an empty set of functions.
 | 
						|
              if (!OvlExprInfo.HasFormOfMemberPointer)
 | 
						|
                return;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          Matches.push_back(std::make_pair(dap,Fn));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (OvlExpr->hasExplicitTemplateArgs())
 | 
						|
      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
 | 
						|
 | 
						|
    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
 | 
						|
      // C++ [over.over]p4:
 | 
						|
      //   If more than one function is selected, [...]
 | 
						|
      if (Matches.size() > 1) {
 | 
						|
        if (FoundNonTemplateFunction)
 | 
						|
          EliminateAllTemplateMatches();
 | 
						|
        else
 | 
						|
          EliminateAllExceptMostSpecializedTemplate();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
private:
 | 
						|
  bool isTargetTypeAFunction() const {
 | 
						|
    return TargetFunctionType->isFunctionType();
 | 
						|
  }
 | 
						|
 | 
						|
  // [ToType]     [Return]
 | 
						|
 | 
						|
  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
 | 
						|
  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
 | 
						|
  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
 | 
						|
  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
 | 
						|
    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
 | 
						|
  }
 | 
						|
 | 
						|
  // return true if any matching specializations were found
 | 
						|
  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 
 | 
						|
                                   const DeclAccessPair& CurAccessFunPair) {
 | 
						|
    if (CXXMethodDecl *Method
 | 
						|
              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
 | 
						|
      // Skip non-static function templates when converting to pointer, and
 | 
						|
      // static when converting to member pointer.
 | 
						|
      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
 | 
						|
        return false;
 | 
						|
    } 
 | 
						|
    else if (TargetTypeIsNonStaticMemberFunction)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // C++ [over.over]p2:
 | 
						|
    //   If the name is a function template, template argument deduction is
 | 
						|
    //   done (14.8.2.2), and if the argument deduction succeeds, the
 | 
						|
    //   resulting template argument list is used to generate a single
 | 
						|
    //   function template specialization, which is added to the set of
 | 
						|
    //   overloaded functions considered.
 | 
						|
    FunctionDecl *Specialization = 0;
 | 
						|
    TemplateDeductionInfo Info(OvlExpr->getNameLoc());
 | 
						|
    if (Sema::TemplateDeductionResult Result
 | 
						|
          = S.DeduceTemplateArguments(FunctionTemplate, 
 | 
						|
                                      &OvlExplicitTemplateArgs,
 | 
						|
                                      TargetFunctionType, Specialization, 
 | 
						|
                                      Info)) {
 | 
						|
      // FIXME: make a note of the failed deduction for diagnostics.
 | 
						|
      (void)Result;
 | 
						|
      return false;
 | 
						|
    } 
 | 
						|
    
 | 
						|
    // Template argument deduction ensures that we have an exact match.
 | 
						|
    // This function template specicalization works.
 | 
						|
    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
 | 
						|
    assert(TargetFunctionType
 | 
						|
                      == Context.getCanonicalType(Specialization->getType()));
 | 
						|
    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 
 | 
						|
                                      const DeclAccessPair& CurAccessFunPair) {
 | 
						|
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
 | 
						|
      // Skip non-static functions when converting to pointer, and static
 | 
						|
      // when converting to member pointer.
 | 
						|
      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
 | 
						|
        return false;
 | 
						|
    } 
 | 
						|
    else if (TargetTypeIsNonStaticMemberFunction)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
 | 
						|
      if (S.getLangOpts().CUDA)
 | 
						|
        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
 | 
						|
          if (S.CheckCUDATarget(Caller, FunDecl))
 | 
						|
            return false;
 | 
						|
 | 
						|
      QualType ResultTy;
 | 
						|
      if (Context.hasSameUnqualifiedType(TargetFunctionType, 
 | 
						|
                                         FunDecl->getType()) ||
 | 
						|
          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
 | 
						|
                                 ResultTy)) {
 | 
						|
        Matches.push_back(std::make_pair(CurAccessFunPair,
 | 
						|
          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
 | 
						|
        FoundNonTemplateFunction = true;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool FindAllFunctionsThatMatchTargetTypeExactly() {
 | 
						|
    bool Ret = false;
 | 
						|
    
 | 
						|
    // If the overload expression doesn't have the form of a pointer to
 | 
						|
    // member, don't try to convert it to a pointer-to-member type.
 | 
						|
    if (IsInvalidFormOfPointerToMemberFunction())
 | 
						|
      return false;
 | 
						|
 | 
						|
    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
 | 
						|
                               E = OvlExpr->decls_end(); 
 | 
						|
         I != E; ++I) {
 | 
						|
      // Look through any using declarations to find the underlying function.
 | 
						|
      NamedDecl *Fn = (*I)->getUnderlyingDecl();
 | 
						|
 | 
						|
      // C++ [over.over]p3:
 | 
						|
      //   Non-member functions and static member functions match
 | 
						|
      //   targets of type "pointer-to-function" or "reference-to-function."
 | 
						|
      //   Nonstatic member functions match targets of
 | 
						|
      //   type "pointer-to-member-function."
 | 
						|
      // Note that according to DR 247, the containing class does not matter.
 | 
						|
      if (FunctionTemplateDecl *FunctionTemplate
 | 
						|
                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
 | 
						|
        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
 | 
						|
          Ret = true;
 | 
						|
      }
 | 
						|
      // If we have explicit template arguments supplied, skip non-templates.
 | 
						|
      else if (!OvlExpr->hasExplicitTemplateArgs() &&
 | 
						|
               AddMatchingNonTemplateFunction(Fn, I.getPair()))
 | 
						|
        Ret = true;
 | 
						|
    }
 | 
						|
    assert(Ret || Matches.empty());
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
 | 
						|
  void EliminateAllExceptMostSpecializedTemplate() {
 | 
						|
    //   [...] and any given function template specialization F1 is
 | 
						|
    //   eliminated if the set contains a second function template
 | 
						|
    //   specialization whose function template is more specialized
 | 
						|
    //   than the function template of F1 according to the partial
 | 
						|
    //   ordering rules of 14.5.5.2.
 | 
						|
 | 
						|
    // The algorithm specified above is quadratic. We instead use a
 | 
						|
    // two-pass algorithm (similar to the one used to identify the
 | 
						|
    // best viable function in an overload set) that identifies the
 | 
						|
    // best function template (if it exists).
 | 
						|
 | 
						|
    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
 | 
						|
    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
 | 
						|
      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
 | 
						|
 | 
						|
    UnresolvedSetIterator Result =
 | 
						|
      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
 | 
						|
                           TPOC_Other, 0, SourceExpr->getLocStart(),
 | 
						|
                           S.PDiag(),
 | 
						|
                           S.PDiag(diag::err_addr_ovl_ambiguous)
 | 
						|
                             << Matches[0].second->getDeclName(),
 | 
						|
                           S.PDiag(diag::note_ovl_candidate)
 | 
						|
                             << (unsigned) oc_function_template,
 | 
						|
                           Complain, TargetFunctionType);
 | 
						|
 | 
						|
    if (Result != MatchesCopy.end()) {
 | 
						|
      // Make it the first and only element
 | 
						|
      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
 | 
						|
      Matches[0].second = cast<FunctionDecl>(*Result);
 | 
						|
      Matches.resize(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void EliminateAllTemplateMatches() {
 | 
						|
    //   [...] any function template specializations in the set are
 | 
						|
    //   eliminated if the set also contains a non-template function, [...]
 | 
						|
    for (unsigned I = 0, N = Matches.size(); I != N; ) {
 | 
						|
      if (Matches[I].second->getPrimaryTemplate() == 0)
 | 
						|
        ++I;
 | 
						|
      else {
 | 
						|
        Matches[I] = Matches[--N];
 | 
						|
        Matches.set_size(N);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  void ComplainNoMatchesFound() const {
 | 
						|
    assert(Matches.empty());
 | 
						|
    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
 | 
						|
        << OvlExpr->getName() << TargetFunctionType
 | 
						|
        << OvlExpr->getSourceRange();
 | 
						|
    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
 | 
						|
  } 
 | 
						|
  
 | 
						|
  bool IsInvalidFormOfPointerToMemberFunction() const {
 | 
						|
    return TargetTypeIsNonStaticMemberFunction &&
 | 
						|
      !OvlExprInfo.HasFormOfMemberPointer;
 | 
						|
  }
 | 
						|
  
 | 
						|
  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
 | 
						|
      // TODO: Should we condition this on whether any functions might
 | 
						|
      // have matched, or is it more appropriate to do that in callers?
 | 
						|
      // TODO: a fixit wouldn't hurt.
 | 
						|
      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
 | 
						|
        << TargetType << OvlExpr->getSourceRange();
 | 
						|
  }
 | 
						|
  
 | 
						|
  void ComplainOfInvalidConversion() const {
 | 
						|
    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
 | 
						|
      << OvlExpr->getName() << TargetType;
 | 
						|
  }
 | 
						|
 | 
						|
  void ComplainMultipleMatchesFound() const {
 | 
						|
    assert(Matches.size() > 1);
 | 
						|
    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
 | 
						|
      << OvlExpr->getName()
 | 
						|
      << OvlExpr->getSourceRange();
 | 
						|
    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
 | 
						|
  }
 | 
						|
 | 
						|
  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
 | 
						|
 | 
						|
  int getNumMatches() const { return Matches.size(); }
 | 
						|
  
 | 
						|
  FunctionDecl* getMatchingFunctionDecl() const {
 | 
						|
    if (Matches.size() != 1) return 0;
 | 
						|
    return Matches[0].second;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const DeclAccessPair* getMatchingFunctionAccessPair() const {
 | 
						|
    if (Matches.size() != 1) return 0;
 | 
						|
    return &Matches[0].first;
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
 | 
						|
/// an overloaded function (C++ [over.over]), where @p From is an
 | 
						|
/// expression with overloaded function type and @p ToType is the type
 | 
						|
/// we're trying to resolve to. For example:
 | 
						|
///
 | 
						|
/// @code
 | 
						|
/// int f(double);
 | 
						|
/// int f(int);
 | 
						|
///
 | 
						|
/// int (*pfd)(double) = f; // selects f(double)
 | 
						|
/// @endcode
 | 
						|
///
 | 
						|
/// This routine returns the resulting FunctionDecl if it could be
 | 
						|
/// resolved, and NULL otherwise. When @p Complain is true, this
 | 
						|
/// routine will emit diagnostics if there is an error.
 | 
						|
FunctionDecl *
 | 
						|
Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
 | 
						|
                                         QualType TargetType,
 | 
						|
                                         bool Complain,
 | 
						|
                                         DeclAccessPair &FoundResult,
 | 
						|
                                         bool *pHadMultipleCandidates) {
 | 
						|
  assert(AddressOfExpr->getType() == Context.OverloadTy);
 | 
						|
 | 
						|
  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
 | 
						|
                                     Complain);
 | 
						|
  int NumMatches = Resolver.getNumMatches();
 | 
						|
  FunctionDecl* Fn = 0;
 | 
						|
  if (NumMatches == 0 && Complain) {
 | 
						|
    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
 | 
						|
      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
 | 
						|
    else
 | 
						|
      Resolver.ComplainNoMatchesFound();
 | 
						|
  }
 | 
						|
  else if (NumMatches > 1 && Complain)
 | 
						|
    Resolver.ComplainMultipleMatchesFound();
 | 
						|
  else if (NumMatches == 1) {
 | 
						|
    Fn = Resolver.getMatchingFunctionDecl();
 | 
						|
    assert(Fn);
 | 
						|
    FoundResult = *Resolver.getMatchingFunctionAccessPair();
 | 
						|
    if (Complain)
 | 
						|
      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
 | 
						|
  }
 | 
						|
 | 
						|
  if (pHadMultipleCandidates)
 | 
						|
    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
 | 
						|
  return Fn;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given an expression that refers to an overloaded function, try to
 | 
						|
/// resolve that overloaded function expression down to a single function.
 | 
						|
///
 | 
						|
/// This routine can only resolve template-ids that refer to a single function
 | 
						|
/// template, where that template-id refers to a single template whose template
 | 
						|
/// arguments are either provided by the template-id or have defaults,
 | 
						|
/// as described in C++0x [temp.arg.explicit]p3.
 | 
						|
FunctionDecl *
 | 
						|
Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 
 | 
						|
                                                  bool Complain,
 | 
						|
                                                  DeclAccessPair *FoundResult) {
 | 
						|
  // C++ [over.over]p1:
 | 
						|
  //   [...] [Note: any redundant set of parentheses surrounding the
 | 
						|
  //   overloaded function name is ignored (5.1). ]
 | 
						|
  // C++ [over.over]p1:
 | 
						|
  //   [...] The overloaded function name can be preceded by the &
 | 
						|
  //   operator.
 | 
						|
 | 
						|
  // If we didn't actually find any template-ids, we're done.
 | 
						|
  if (!ovl->hasExplicitTemplateArgs())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  TemplateArgumentListInfo ExplicitTemplateArgs;
 | 
						|
  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
 | 
						|
 | 
						|
  // Look through all of the overloaded functions, searching for one
 | 
						|
  // whose type matches exactly.
 | 
						|
  FunctionDecl *Matched = 0;
 | 
						|
  for (UnresolvedSetIterator I = ovl->decls_begin(),
 | 
						|
         E = ovl->decls_end(); I != E; ++I) {
 | 
						|
    // C++0x [temp.arg.explicit]p3:
 | 
						|
    //   [...] In contexts where deduction is done and fails, or in contexts
 | 
						|
    //   where deduction is not done, if a template argument list is
 | 
						|
    //   specified and it, along with any default template arguments,
 | 
						|
    //   identifies a single function template specialization, then the
 | 
						|
    //   template-id is an lvalue for the function template specialization.
 | 
						|
    FunctionTemplateDecl *FunctionTemplate
 | 
						|
      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
 | 
						|
 | 
						|
    // C++ [over.over]p2:
 | 
						|
    //   If the name is a function template, template argument deduction is
 | 
						|
    //   done (14.8.2.2), and if the argument deduction succeeds, the
 | 
						|
    //   resulting template argument list is used to generate a single
 | 
						|
    //   function template specialization, which is added to the set of
 | 
						|
    //   overloaded functions considered.
 | 
						|
    FunctionDecl *Specialization = 0;
 | 
						|
    TemplateDeductionInfo Info(ovl->getNameLoc());
 | 
						|
    if (TemplateDeductionResult Result
 | 
						|
          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
 | 
						|
                                    Specialization, Info)) {
 | 
						|
      // FIXME: make a note of the failed deduction for diagnostics.
 | 
						|
      (void)Result;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(Specialization && "no specialization and no error?");
 | 
						|
 | 
						|
    // Multiple matches; we can't resolve to a single declaration.
 | 
						|
    if (Matched) {
 | 
						|
      if (Complain) {
 | 
						|
        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
 | 
						|
          << ovl->getName();
 | 
						|
        NoteAllOverloadCandidates(ovl);
 | 
						|
      }
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Matched = Specialization;
 | 
						|
    if (FoundResult) *FoundResult = I.getPair();    
 | 
						|
  }
 | 
						|
 | 
						|
  return Matched;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// Resolve and fix an overloaded expression that can be resolved
 | 
						|
// because it identifies a single function template specialization.
 | 
						|
//
 | 
						|
// Last three arguments should only be supplied if Complain = true
 | 
						|
//
 | 
						|
// Return true if it was logically possible to so resolve the
 | 
						|
// expression, regardless of whether or not it succeeded.  Always
 | 
						|
// returns true if 'complain' is set.
 | 
						|
bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
 | 
						|
                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
 | 
						|
                   bool complain, const SourceRange& OpRangeForComplaining, 
 | 
						|
                                           QualType DestTypeForComplaining, 
 | 
						|
                                            unsigned DiagIDForComplaining) {
 | 
						|
  assert(SrcExpr.get()->getType() == Context.OverloadTy);
 | 
						|
 | 
						|
  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
 | 
						|
 | 
						|
  DeclAccessPair found;
 | 
						|
  ExprResult SingleFunctionExpression;
 | 
						|
  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
 | 
						|
                           ovl.Expression, /*complain*/ false, &found)) {
 | 
						|
    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
 | 
						|
      SrcExpr = ExprError();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // It is only correct to resolve to an instance method if we're
 | 
						|
    // resolving a form that's permitted to be a pointer to member.
 | 
						|
    // Otherwise we'll end up making a bound member expression, which
 | 
						|
    // is illegal in all the contexts we resolve like this.
 | 
						|
    if (!ovl.HasFormOfMemberPointer &&
 | 
						|
        isa<CXXMethodDecl>(fn) &&
 | 
						|
        cast<CXXMethodDecl>(fn)->isInstance()) {
 | 
						|
      if (!complain) return false;
 | 
						|
 | 
						|
      Diag(ovl.Expression->getExprLoc(),
 | 
						|
           diag::err_bound_member_function)
 | 
						|
        << 0 << ovl.Expression->getSourceRange();
 | 
						|
 | 
						|
      // TODO: I believe we only end up here if there's a mix of
 | 
						|
      // static and non-static candidates (otherwise the expression
 | 
						|
      // would have 'bound member' type, not 'overload' type).
 | 
						|
      // Ideally we would note which candidate was chosen and why
 | 
						|
      // the static candidates were rejected.
 | 
						|
      SrcExpr = ExprError();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fix the expression to refer to 'fn'.
 | 
						|
    SingleFunctionExpression =
 | 
						|
      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
 | 
						|
 | 
						|
    // If desired, do function-to-pointer decay.
 | 
						|
    if (doFunctionPointerConverion) {
 | 
						|
      SingleFunctionExpression =
 | 
						|
        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
 | 
						|
      if (SingleFunctionExpression.isInvalid()) {
 | 
						|
        SrcExpr = ExprError();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SingleFunctionExpression.isUsable()) {
 | 
						|
    if (complain) {
 | 
						|
      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
 | 
						|
        << ovl.Expression->getName()
 | 
						|
        << DestTypeForComplaining
 | 
						|
        << OpRangeForComplaining 
 | 
						|
        << ovl.Expression->getQualifierLoc().getSourceRange();
 | 
						|
      NoteAllOverloadCandidates(SrcExpr.get());
 | 
						|
 | 
						|
      SrcExpr = ExprError();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  SrcExpr = SingleFunctionExpression;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add a single candidate to the overload set.
 | 
						|
static void AddOverloadedCallCandidate(Sema &S,
 | 
						|
                                       DeclAccessPair FoundDecl,
 | 
						|
                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                                       ArrayRef<Expr *> Args,
 | 
						|
                                       OverloadCandidateSet &CandidateSet,
 | 
						|
                                       bool PartialOverloading,
 | 
						|
                                       bool KnownValid) {
 | 
						|
  NamedDecl *Callee = FoundDecl.getDecl();
 | 
						|
  if (isa<UsingShadowDecl>(Callee))
 | 
						|
    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
 | 
						|
 | 
						|
  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
 | 
						|
    if (ExplicitTemplateArgs) {
 | 
						|
      assert(!KnownValid && "Explicit template arguments?");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
 | 
						|
                           PartialOverloading);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FunctionTemplateDecl *FuncTemplate
 | 
						|
      = dyn_cast<FunctionTemplateDecl>(Callee)) {
 | 
						|
    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
 | 
						|
                                   ExplicitTemplateArgs, Args, CandidateSet);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!KnownValid && "unhandled case in overloaded call candidate");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add the overload candidates named by callee and/or found by argument
 | 
						|
/// dependent lookup to the given overload set.
 | 
						|
void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
 | 
						|
                                       ArrayRef<Expr *> Args,
 | 
						|
                                       OverloadCandidateSet &CandidateSet,
 | 
						|
                                       bool PartialOverloading) {
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that ArgumentDependentLookup is consistent with the rules
 | 
						|
  // in C++0x [basic.lookup.argdep]p3:
 | 
						|
  //
 | 
						|
  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
 | 
						|
  //   and let Y be the lookup set produced by argument dependent
 | 
						|
  //   lookup (defined as follows). If X contains
 | 
						|
  //
 | 
						|
  //     -- a declaration of a class member, or
 | 
						|
  //
 | 
						|
  //     -- a block-scope function declaration that is not a
 | 
						|
  //        using-declaration, or
 | 
						|
  //
 | 
						|
  //     -- a declaration that is neither a function or a function
 | 
						|
  //        template
 | 
						|
  //
 | 
						|
  //   then Y is empty.
 | 
						|
 | 
						|
  if (ULE->requiresADL()) {
 | 
						|
    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
 | 
						|
           E = ULE->decls_end(); I != E; ++I) {
 | 
						|
      assert(!(*I)->getDeclContext()->isRecord());
 | 
						|
      assert(isa<UsingShadowDecl>(*I) ||
 | 
						|
             !(*I)->getDeclContext()->isFunctionOrMethod());
 | 
						|
      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // It would be nice to avoid this copy.
 | 
						|
  TemplateArgumentListInfo TABuffer;
 | 
						|
  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
 | 
						|
  if (ULE->hasExplicitTemplateArgs()) {
 | 
						|
    ULE->copyTemplateArgumentsInto(TABuffer);
 | 
						|
    ExplicitTemplateArgs = &TABuffer;
 | 
						|
  }
 | 
						|
 | 
						|
  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
 | 
						|
         E = ULE->decls_end(); I != E; ++I)
 | 
						|
    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
 | 
						|
                               CandidateSet, PartialOverloading,
 | 
						|
                               /*KnownValid*/ true);
 | 
						|
 | 
						|
  if (ULE->requiresADL())
 | 
						|
    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
 | 
						|
                                         ULE->getExprLoc(),
 | 
						|
                                         Args, ExplicitTemplateArgs,
 | 
						|
                                         CandidateSet, PartialOverloading);
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to recover from an ill-formed use of a non-dependent name in a
 | 
						|
/// template, where the non-dependent name was declared after the template
 | 
						|
/// was defined. This is common in code written for a compilers which do not
 | 
						|
/// correctly implement two-stage name lookup.
 | 
						|
///
 | 
						|
/// Returns true if a viable candidate was found and a diagnostic was issued.
 | 
						|
static bool
 | 
						|
DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
 | 
						|
                       const CXXScopeSpec &SS, LookupResult &R,
 | 
						|
                       TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                       ArrayRef<Expr *> Args) {
 | 
						|
  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
 | 
						|
    if (DC->isTransparentContext())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SemaRef.LookupQualifiedName(R, DC);
 | 
						|
 | 
						|
    if (!R.empty()) {
 | 
						|
      R.suppressDiagnostics();
 | 
						|
 | 
						|
      if (isa<CXXRecordDecl>(DC)) {
 | 
						|
        // Don't diagnose names we find in classes; we get much better
 | 
						|
        // diagnostics for these from DiagnoseEmptyLookup.
 | 
						|
        R.clear();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      OverloadCandidateSet Candidates(FnLoc);
 | 
						|
      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | 
						|
        AddOverloadedCallCandidate(SemaRef, I.getPair(),
 | 
						|
                                   ExplicitTemplateArgs, Args,
 | 
						|
                                   Candidates, false, /*KnownValid*/ false);
 | 
						|
 | 
						|
      OverloadCandidateSet::iterator Best;
 | 
						|
      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
 | 
						|
        // No viable functions. Don't bother the user with notes for functions
 | 
						|
        // which don't work and shouldn't be found anyway.
 | 
						|
        R.clear();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Find the namespaces where ADL would have looked, and suggest
 | 
						|
      // declaring the function there instead.
 | 
						|
      Sema::AssociatedNamespaceSet AssociatedNamespaces;
 | 
						|
      Sema::AssociatedClassSet AssociatedClasses;
 | 
						|
      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
 | 
						|
                                                 AssociatedNamespaces,
 | 
						|
                                                 AssociatedClasses);
 | 
						|
      Sema::AssociatedNamespaceSet SuggestedNamespaces;
 | 
						|
      DeclContext *Std = SemaRef.getStdNamespace();
 | 
						|
      for (Sema::AssociatedNamespaceSet::iterator
 | 
						|
             it = AssociatedNamespaces.begin(),
 | 
						|
             end = AssociatedNamespaces.end(); it != end; ++it) {
 | 
						|
        // Never suggest declaring a function within namespace 'std'.
 | 
						|
        if (Std && Std->Encloses(*it))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        // Never suggest declaring a function within a namespace with a reserved
 | 
						|
        // name, like __gnu_cxx.
 | 
						|
        NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
 | 
						|
        if (NS &&
 | 
						|
            NS->getQualifiedNameAsString().find("__") != std::string::npos)
 | 
						|
          continue;
 | 
						|
 | 
						|
        SuggestedNamespaces.insert(*it);
 | 
						|
      }
 | 
						|
 | 
						|
      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
 | 
						|
        << R.getLookupName();
 | 
						|
      if (SuggestedNamespaces.empty()) {
 | 
						|
        SemaRef.Diag(Best->Function->getLocation(),
 | 
						|
                     diag::note_not_found_by_two_phase_lookup)
 | 
						|
          << R.getLookupName() << 0;
 | 
						|
      } else if (SuggestedNamespaces.size() == 1) {
 | 
						|
        SemaRef.Diag(Best->Function->getLocation(),
 | 
						|
                     diag::note_not_found_by_two_phase_lookup)
 | 
						|
          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
 | 
						|
      } else {
 | 
						|
        // FIXME: It would be useful to list the associated namespaces here,
 | 
						|
        // but the diagnostics infrastructure doesn't provide a way to produce
 | 
						|
        // a localized representation of a list of items.
 | 
						|
        SemaRef.Diag(Best->Function->getLocation(),
 | 
						|
                     diag::note_not_found_by_two_phase_lookup)
 | 
						|
          << R.getLookupName() << 2;
 | 
						|
      }
 | 
						|
 | 
						|
      // Try to recover by calling this function.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    R.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to recover from ill-formed use of a non-dependent operator in a
 | 
						|
/// template, where the non-dependent operator was declared after the template
 | 
						|
/// was defined.
 | 
						|
///
 | 
						|
/// Returns true if a viable candidate was found and a diagnostic was issued.
 | 
						|
static bool
 | 
						|
DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
 | 
						|
                               SourceLocation OpLoc,
 | 
						|
                               ArrayRef<Expr *> Args) {
 | 
						|
  DeclarationName OpName =
 | 
						|
    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
 | 
						|
  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
 | 
						|
                                /*ExplicitTemplateArgs=*/0, Args);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// Callback to limit the allowed keywords and to only accept typo corrections
 | 
						|
// that are keywords or whose decls refer to functions (or template functions)
 | 
						|
// that accept the given number of arguments.
 | 
						|
class RecoveryCallCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
 | 
						|
      : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
 | 
						|
    WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
 | 
						|
    WantRemainingKeywords = false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | 
						|
    if (!candidate.getCorrectionDecl())
 | 
						|
      return candidate.isKeyword();
 | 
						|
 | 
						|
    for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
 | 
						|
           DIEnd = candidate.end(); DI != DIEnd; ++DI) {
 | 
						|
      FunctionDecl *FD = 0;
 | 
						|
      NamedDecl *ND = (*DI)->getUnderlyingDecl();
 | 
						|
      if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
 | 
						|
        FD = FTD->getTemplatedDecl();
 | 
						|
      if (!HasExplicitTemplateArgs && !FD) {
 | 
						|
        if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
 | 
						|
          // If the Decl is neither a function nor a template function,
 | 
						|
          // determine if it is a pointer or reference to a function. If so,
 | 
						|
          // check against the number of arguments expected for the pointee.
 | 
						|
          QualType ValType = cast<ValueDecl>(ND)->getType();
 | 
						|
          if (ValType->isAnyPointerType() || ValType->isReferenceType())
 | 
						|
            ValType = ValType->getPointeeType();
 | 
						|
          if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
 | 
						|
            if (FPT->getNumArgs() == NumArgs)
 | 
						|
              return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (FD && FD->getNumParams() >= NumArgs &&
 | 
						|
          FD->getMinRequiredArguments() <= NumArgs)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  unsigned NumArgs;
 | 
						|
  bool HasExplicitTemplateArgs;
 | 
						|
};
 | 
						|
 | 
						|
// Callback that effectively disabled typo correction
 | 
						|
class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  NoTypoCorrectionCCC() {
 | 
						|
    WantTypeSpecifiers = false;
 | 
						|
    WantExpressionKeywords = false;
 | 
						|
    WantCXXNamedCasts = false;
 | 
						|
    WantRemainingKeywords = false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class BuildRecoveryCallExprRAII {
 | 
						|
  Sema &SemaRef;
 | 
						|
public:
 | 
						|
  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
 | 
						|
    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
 | 
						|
    SemaRef.IsBuildingRecoveryCallExpr = true;
 | 
						|
  }
 | 
						|
 | 
						|
  ~BuildRecoveryCallExprRAII() {
 | 
						|
    SemaRef.IsBuildingRecoveryCallExpr = false;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// Attempts to recover from a call where no functions were found.
 | 
						|
///
 | 
						|
/// Returns true if new candidates were found.
 | 
						|
static ExprResult
 | 
						|
BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
 | 
						|
                      UnresolvedLookupExpr *ULE,
 | 
						|
                      SourceLocation LParenLoc,
 | 
						|
                      llvm::MutableArrayRef<Expr *> Args,
 | 
						|
                      SourceLocation RParenLoc,
 | 
						|
                      bool EmptyLookup, bool AllowTypoCorrection) {
 | 
						|
  // Do not try to recover if it is already building a recovery call.
 | 
						|
  // This stops infinite loops for template instantiations like
 | 
						|
  //
 | 
						|
  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
 | 
						|
  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
 | 
						|
  //
 | 
						|
  if (SemaRef.IsBuildingRecoveryCallExpr)
 | 
						|
    return ExprError();
 | 
						|
  BuildRecoveryCallExprRAII RCE(SemaRef);
 | 
						|
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  SS.Adopt(ULE->getQualifierLoc());
 | 
						|
  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
 | 
						|
 | 
						|
  TemplateArgumentListInfo TABuffer;
 | 
						|
  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
 | 
						|
  if (ULE->hasExplicitTemplateArgs()) {
 | 
						|
    ULE->copyTemplateArgumentsInto(TABuffer);
 | 
						|
    ExplicitTemplateArgs = &TABuffer;
 | 
						|
  }
 | 
						|
 | 
						|
  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
 | 
						|
                 Sema::LookupOrdinaryName);
 | 
						|
  RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
 | 
						|
  NoTypoCorrectionCCC RejectAll;
 | 
						|
  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
 | 
						|
      (CorrectionCandidateCallback*)&Validator :
 | 
						|
      (CorrectionCandidateCallback*)&RejectAll;
 | 
						|
  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
 | 
						|
                              ExplicitTemplateArgs, Args) &&
 | 
						|
      (!EmptyLookup ||
 | 
						|
       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
 | 
						|
                                   ExplicitTemplateArgs, Args)))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  assert(!R.empty() && "lookup results empty despite recovery");
 | 
						|
 | 
						|
  // Build an implicit member call if appropriate.  Just drop the
 | 
						|
  // casts and such from the call, we don't really care.
 | 
						|
  ExprResult NewFn = ExprError();
 | 
						|
  if ((*R.begin())->isCXXClassMember())
 | 
						|
    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
 | 
						|
                                                    R, ExplicitTemplateArgs);
 | 
						|
  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
 | 
						|
    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
 | 
						|
                                        ExplicitTemplateArgs);
 | 
						|
  else
 | 
						|
    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
 | 
						|
 | 
						|
  if (NewFn.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // This shouldn't cause an infinite loop because we're giving it
 | 
						|
  // an expression with viable lookup results, which should never
 | 
						|
  // end up here.
 | 
						|
  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
 | 
						|
                               MultiExprArg(Args.data(), Args.size()),
 | 
						|
                               RParenLoc);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Constructs and populates an OverloadedCandidateSet from
 | 
						|
/// the given function.
 | 
						|
/// \returns true when an the ExprResult output parameter has been set.
 | 
						|
bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
 | 
						|
                                  UnresolvedLookupExpr *ULE,
 | 
						|
                                  Expr **Args, unsigned NumArgs,
 | 
						|
                                  SourceLocation RParenLoc,
 | 
						|
                                  OverloadCandidateSet *CandidateSet,
 | 
						|
                                  ExprResult *Result) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (ULE->requiresADL()) {
 | 
						|
    // To do ADL, we must have found an unqualified name.
 | 
						|
    assert(!ULE->getQualifier() && "qualified name with ADL");
 | 
						|
 | 
						|
    // We don't perform ADL for implicit declarations of builtins.
 | 
						|
    // Verify that this was correctly set up.
 | 
						|
    FunctionDecl *F;
 | 
						|
    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
 | 
						|
        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
 | 
						|
        F->getBuiltinID() && F->isImplicit())
 | 
						|
      llvm_unreachable("performing ADL for builtin");
 | 
						|
 | 
						|
    // We don't perform ADL in C.
 | 
						|
    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  UnbridgedCastsSet UnbridgedCasts;
 | 
						|
  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) {
 | 
						|
    *Result = ExprError();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the functions denoted by the callee to the set of candidate
 | 
						|
  // functions, including those from argument-dependent lookup.
 | 
						|
  AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                              *CandidateSet);
 | 
						|
 | 
						|
  // If we found nothing, try to recover.
 | 
						|
  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
 | 
						|
  // out if it fails.
 | 
						|
  if (CandidateSet->empty()) {
 | 
						|
    // In Microsoft mode, if we are inside a template class member function then
 | 
						|
    // create a type dependent CallExpr. The goal is to postpone name lookup
 | 
						|
    // to instantiation time to be able to search into type dependent base
 | 
						|
    // classes.
 | 
						|
    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() && 
 | 
						|
        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
 | 
						|
      CallExpr *CE = new (Context) CallExpr(Context, Fn,
 | 
						|
                                            llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                            Context.DependentTy, VK_RValue,
 | 
						|
                                            RParenLoc);
 | 
						|
      CE->setTypeDependent(true);
 | 
						|
      *Result = Owned(CE);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  UnbridgedCasts.restore();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
 | 
						|
/// the completed call expression. If overload resolution fails, emits
 | 
						|
/// diagnostics and returns ExprError()
 | 
						|
static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
 | 
						|
                                           UnresolvedLookupExpr *ULE,
 | 
						|
                                           SourceLocation LParenLoc,
 | 
						|
                                           Expr **Args, unsigned NumArgs,
 | 
						|
                                           SourceLocation RParenLoc,
 | 
						|
                                           Expr *ExecConfig,
 | 
						|
                                           OverloadCandidateSet *CandidateSet,
 | 
						|
                                           OverloadCandidateSet::iterator *Best,
 | 
						|
                                           OverloadingResult OverloadResult,
 | 
						|
                                           bool AllowTypoCorrection) {
 | 
						|
  if (CandidateSet->empty())
 | 
						|
    return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
 | 
						|
                                 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
 | 
						|
                                 RParenLoc, /*EmptyLookup=*/true,
 | 
						|
                                 AllowTypoCorrection);
 | 
						|
 | 
						|
  switch (OverloadResult) {
 | 
						|
  case OR_Success: {
 | 
						|
    FunctionDecl *FDecl = (*Best)->Function;
 | 
						|
    SemaRef.MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
 | 
						|
    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
 | 
						|
    SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
 | 
						|
    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
 | 
						|
    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
 | 
						|
                                         RParenLoc, ExecConfig);
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_No_Viable_Function: {
 | 
						|
    // Try to recover by looking for viable functions which the user might
 | 
						|
    // have meant to call.
 | 
						|
    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
 | 
						|
                                  llvm::MutableArrayRef<Expr *>(Args, NumArgs),
 | 
						|
                                                RParenLoc,
 | 
						|
                                                /*EmptyLookup=*/false,
 | 
						|
                                                AllowTypoCorrection);
 | 
						|
    if (!Recovery.isInvalid())
 | 
						|
      return Recovery;
 | 
						|
 | 
						|
    SemaRef.Diag(Fn->getLocStart(),
 | 
						|
         diag::err_ovl_no_viable_function_in_call)
 | 
						|
      << ULE->getName() << Fn->getSourceRange();
 | 
						|
    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
 | 
						|
                                 llvm::makeArrayRef(Args, NumArgs));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
 | 
						|
      << ULE->getName() << Fn->getSourceRange();
 | 
						|
    CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates,
 | 
						|
                                 llvm::makeArrayRef(Args, NumArgs));
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Deleted: {
 | 
						|
    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
 | 
						|
      << (*Best)->Function->isDeleted()
 | 
						|
      << ULE->getName()
 | 
						|
      << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
 | 
						|
      << Fn->getSourceRange();
 | 
						|
    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
 | 
						|
                                 llvm::makeArrayRef(Args, NumArgs));
 | 
						|
 | 
						|
    // We emitted an error for the unvailable/deleted function call but keep
 | 
						|
    // the call in the AST.
 | 
						|
    FunctionDecl *FDecl = (*Best)->Function;
 | 
						|
    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
 | 
						|
    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
 | 
						|
                                 RParenLoc, ExecConfig);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // Overload resolution failed.
 | 
						|
  return ExprError();
 | 
						|
}
 | 
						|
 | 
						|
/// BuildOverloadedCallExpr - Given the call expression that calls Fn
 | 
						|
/// (which eventually refers to the declaration Func) and the call
 | 
						|
/// arguments Args/NumArgs, attempt to resolve the function call down
 | 
						|
/// to a specific function. If overload resolution succeeds, returns
 | 
						|
/// the call expression produced by overload resolution.
 | 
						|
/// Otherwise, emits diagnostics and returns ExprError.
 | 
						|
ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
 | 
						|
                                         UnresolvedLookupExpr *ULE,
 | 
						|
                                         SourceLocation LParenLoc,
 | 
						|
                                         Expr **Args, unsigned NumArgs,
 | 
						|
                                         SourceLocation RParenLoc,
 | 
						|
                                         Expr *ExecConfig,
 | 
						|
                                         bool AllowTypoCorrection) {
 | 
						|
  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
 | 
						|
  ExprResult result;
 | 
						|
 | 
						|
  if (buildOverloadedCallSet(S, Fn, ULE, Args, NumArgs, LParenLoc,
 | 
						|
                             &CandidateSet, &result))
 | 
						|
    return result;
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  OverloadingResult OverloadResult =
 | 
						|
      CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
 | 
						|
 | 
						|
  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
 | 
						|
                                  RParenLoc, ExecConfig, &CandidateSet,
 | 
						|
                                  &Best, OverloadResult,
 | 
						|
                                  AllowTypoCorrection);
 | 
						|
}
 | 
						|
 | 
						|
static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
 | 
						|
  return Functions.size() > 1 ||
 | 
						|
    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a unary operation that may resolve to an overloaded
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param OpLoc The location of the operator itself (e.g., '*').
 | 
						|
///
 | 
						|
/// \param OpcIn The UnaryOperator::Opcode that describes this
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param Fns The set of non-member functions that will be
 | 
						|
/// considered by overload resolution. The caller needs to build this
 | 
						|
/// set based on the context using, e.g.,
 | 
						|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
 | 
						|
/// set should not contain any member functions; those will be added
 | 
						|
/// by CreateOverloadedUnaryOp().
 | 
						|
///
 | 
						|
/// \param Input The input argument.
 | 
						|
ExprResult
 | 
						|
Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
 | 
						|
                              const UnresolvedSetImpl &Fns,
 | 
						|
                              Expr *Input) {
 | 
						|
  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
 | 
						|
 | 
						|
  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
 | 
						|
  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
  // TODO: provide better source location info.
 | 
						|
  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
 | 
						|
 | 
						|
  if (checkPlaceholderForOverload(*this, Input))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  Expr *Args[2] = { Input, 0 };
 | 
						|
  unsigned NumArgs = 1;
 | 
						|
 | 
						|
  // For post-increment and post-decrement, add the implicit '0' as
 | 
						|
  // the second argument, so that we know this is a post-increment or
 | 
						|
  // post-decrement.
 | 
						|
  if (Opc == UO_PostInc || Opc == UO_PostDec) {
 | 
						|
    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
 | 
						|
    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
 | 
						|
                                     SourceLocation());
 | 
						|
    NumArgs = 2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Input->isTypeDependent()) {
 | 
						|
    if (Fns.empty())
 | 
						|
      return Owned(new (Context) UnaryOperator(Input,
 | 
						|
                                               Opc,
 | 
						|
                                               Context.DependentTy,
 | 
						|
                                               VK_RValue, OK_Ordinary,
 | 
						|
                                               OpLoc));
 | 
						|
 | 
						|
    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
 | 
						|
    UnresolvedLookupExpr *Fn
 | 
						|
      = UnresolvedLookupExpr::Create(Context, NamingClass,
 | 
						|
                                     NestedNameSpecifierLoc(), OpNameInfo,
 | 
						|
                                     /*ADL*/ true, IsOverloaded(Fns),
 | 
						|
                                     Fns.begin(), Fns.end());
 | 
						|
    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
 | 
						|
                                              llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                                   Context.DependentTy,
 | 
						|
                                                   VK_RValue,
 | 
						|
                                                   OpLoc, false));
 | 
						|
  }
 | 
						|
 | 
						|
  // Build an empty overload set.
 | 
						|
  OverloadCandidateSet CandidateSet(OpLoc);
 | 
						|
 | 
						|
  // Add the candidates from the given function set.
 | 
						|
  AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
 | 
						|
                        false);
 | 
						|
 | 
						|
  // Add operator candidates that are member functions.
 | 
						|
  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
 | 
						|
 | 
						|
  // Add candidates from ADL.
 | 
						|
  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
 | 
						|
                                       OpLoc, llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                       /*ExplicitTemplateArgs*/ 0,
 | 
						|
                                       CandidateSet);
 | 
						|
 | 
						|
  // Add builtin operator candidates.
 | 
						|
  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
 | 
						|
  case OR_Success: {
 | 
						|
    // We found a built-in operator or an overloaded operator.
 | 
						|
    FunctionDecl *FnDecl = Best->Function;
 | 
						|
 | 
						|
    if (FnDecl) {
 | 
						|
      // We matched an overloaded operator. Build a call to that
 | 
						|
      // operator.
 | 
						|
 | 
						|
      MarkFunctionReferenced(OpLoc, FnDecl);
 | 
						|
 | 
						|
      // Convert the arguments.
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | 
						|
        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
 | 
						|
 | 
						|
        ExprResult InputRes =
 | 
						|
          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
 | 
						|
                                              Best->FoundDecl, Method);
 | 
						|
        if (InputRes.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        Input = InputRes.take();
 | 
						|
      } else {
 | 
						|
        // Convert the arguments.
 | 
						|
        ExprResult InputInit
 | 
						|
          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | 
						|
                                                      Context,
 | 
						|
                                                      FnDecl->getParamDecl(0)),
 | 
						|
                                      SourceLocation(),
 | 
						|
                                      Input);
 | 
						|
        if (InputInit.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        Input = InputInit.take();
 | 
						|
      }
 | 
						|
 | 
						|
      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
 | 
						|
 | 
						|
      // Determine the result type.
 | 
						|
      QualType ResultTy = FnDecl->getResultType();
 | 
						|
      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | 
						|
      ResultTy = ResultTy.getNonLValueExprType(Context);
 | 
						|
 | 
						|
      // Build the actual expression node.
 | 
						|
      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
 | 
						|
                                                HadMultipleCandidates, OpLoc);
 | 
						|
      if (FnExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      Args[0] = Input;
 | 
						|
      CallExpr *TheCall =
 | 
						|
        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
 | 
						|
                                          llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                          ResultTy, VK, OpLoc, false);
 | 
						|
 | 
						|
      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
 | 
						|
                              FnDecl))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      return MaybeBindToTemporary(TheCall);
 | 
						|
    } else {
 | 
						|
      // We matched a built-in operator. Convert the arguments, then
 | 
						|
      // break out so that we will build the appropriate built-in
 | 
						|
      // operator node.
 | 
						|
      ExprResult InputRes =
 | 
						|
        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
 | 
						|
                                  Best->Conversions[0], AA_Passing);
 | 
						|
      if (InputRes.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      Input = InputRes.take();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    // This is an erroneous use of an operator which can be overloaded by
 | 
						|
    // a non-member function. Check for non-member operators which were
 | 
						|
    // defined too late to be candidates.
 | 
						|
    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
 | 
						|
                                       llvm::makeArrayRef(Args, NumArgs)))
 | 
						|
      // FIXME: Recover by calling the found function.
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // No viable function; fall through to handling this as a
 | 
						|
    // built-in operator, which will produce an error message for us.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
 | 
						|
        << UnaryOperator::getOpcodeStr(Opc)
 | 
						|
        << Input->getType()
 | 
						|
        << Input->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
 | 
						|
                                llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    Diag(OpLoc, diag::err_ovl_deleted_oper)
 | 
						|
      << Best->Function->isDeleted()
 | 
						|
      << UnaryOperator::getOpcodeStr(Opc)
 | 
						|
      << getDeletedOrUnavailableSuffix(Best->Function)
 | 
						|
      << Input->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
 | 
						|
                                llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Either we found no viable overloaded operator or we matched a
 | 
						|
  // built-in operator. In either case, fall through to trying to
 | 
						|
  // build a built-in operation.
 | 
						|
  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Create a binary operation that may resolve to an overloaded
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param OpLoc The location of the operator itself (e.g., '+').
 | 
						|
///
 | 
						|
/// \param OpcIn The BinaryOperator::Opcode that describes this
 | 
						|
/// operator.
 | 
						|
///
 | 
						|
/// \param Fns The set of non-member functions that will be
 | 
						|
/// considered by overload resolution. The caller needs to build this
 | 
						|
/// set based on the context using, e.g.,
 | 
						|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
 | 
						|
/// set should not contain any member functions; those will be added
 | 
						|
/// by CreateOverloadedBinOp().
 | 
						|
///
 | 
						|
/// \param LHS Left-hand argument.
 | 
						|
/// \param RHS Right-hand argument.
 | 
						|
ExprResult
 | 
						|
Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
 | 
						|
                            unsigned OpcIn,
 | 
						|
                            const UnresolvedSetImpl &Fns,
 | 
						|
                            Expr *LHS, Expr *RHS) {
 | 
						|
  Expr *Args[2] = { LHS, RHS };
 | 
						|
  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
 | 
						|
 | 
						|
  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
 | 
						|
  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
 | 
						|
  // If either side is type-dependent, create an appropriate dependent
 | 
						|
  // expression.
 | 
						|
  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
 | 
						|
    if (Fns.empty()) {
 | 
						|
      // If there are no functions to store, just build a dependent
 | 
						|
      // BinaryOperator or CompoundAssignment.
 | 
						|
      if (Opc <= BO_Assign || Opc > BO_OrAssign)
 | 
						|
        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
 | 
						|
                                                  Context.DependentTy,
 | 
						|
                                                  VK_RValue, OK_Ordinary,
 | 
						|
                                                  OpLoc,
 | 
						|
                                                  FPFeatures.fp_contract));
 | 
						|
 | 
						|
      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
 | 
						|
                                                        Context.DependentTy,
 | 
						|
                                                        VK_LValue,
 | 
						|
                                                        OK_Ordinary,
 | 
						|
                                                        Context.DependentTy,
 | 
						|
                                                        Context.DependentTy,
 | 
						|
                                                        OpLoc,
 | 
						|
                                                        FPFeatures.fp_contract));
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: save results of ADL from here?
 | 
						|
    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
 | 
						|
    // TODO: provide better source location info in DNLoc component.
 | 
						|
    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
 | 
						|
    UnresolvedLookupExpr *Fn
 | 
						|
      = UnresolvedLookupExpr::Create(Context, NamingClass, 
 | 
						|
                                     NestedNameSpecifierLoc(), OpNameInfo, 
 | 
						|
                                     /*ADL*/ true, IsOverloaded(Fns),
 | 
						|
                                     Fns.begin(), Fns.end());
 | 
						|
    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args,
 | 
						|
                                                Context.DependentTy, VK_RValue,
 | 
						|
                                                OpLoc, FPFeatures.fp_contract));
 | 
						|
  }
 | 
						|
 | 
						|
  // Always do placeholder-like conversions on the RHS.
 | 
						|
  if (checkPlaceholderForOverload(*this, Args[1]))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Do placeholder-like conversion on the LHS; note that we should
 | 
						|
  // not get here with a PseudoObject LHS.
 | 
						|
  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
 | 
						|
  if (checkPlaceholderForOverload(*this, Args[0]))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // If this is the assignment operator, we only perform overload resolution
 | 
						|
  // if the left-hand side is a class or enumeration type. This is actually
 | 
						|
  // a hack. The standard requires that we do overload resolution between the
 | 
						|
  // various built-in candidates, but as DR507 points out, this can lead to
 | 
						|
  // problems. So we do it this way, which pretty much follows what GCC does.
 | 
						|
  // Note that we go the traditional code path for compound assignment forms.
 | 
						|
  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
 | 
						|
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | 
						|
 | 
						|
  // If this is the .* operator, which is not overloadable, just
 | 
						|
  // create a built-in binary operator.
 | 
						|
  if (Opc == BO_PtrMemD)
 | 
						|
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | 
						|
 | 
						|
  // Build an empty overload set.
 | 
						|
  OverloadCandidateSet CandidateSet(OpLoc);
 | 
						|
 | 
						|
  // Add the candidates from the given function set.
 | 
						|
  AddFunctionCandidates(Fns, Args, CandidateSet, false);
 | 
						|
 | 
						|
  // Add operator candidates that are member functions.
 | 
						|
  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
 | 
						|
 | 
						|
  // Add candidates from ADL.
 | 
						|
  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
 | 
						|
                                       OpLoc, Args,
 | 
						|
                                       /*ExplicitTemplateArgs*/ 0,
 | 
						|
                                       CandidateSet);
 | 
						|
 | 
						|
  // Add builtin operator candidates.
 | 
						|
  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
 | 
						|
    case OR_Success: {
 | 
						|
      // We found a built-in operator or an overloaded operator.
 | 
						|
      FunctionDecl *FnDecl = Best->Function;
 | 
						|
 | 
						|
      if (FnDecl) {
 | 
						|
        // We matched an overloaded operator. Build a call to that
 | 
						|
        // operator.
 | 
						|
 | 
						|
        MarkFunctionReferenced(OpLoc, FnDecl);
 | 
						|
 | 
						|
        // Convert the arguments.
 | 
						|
        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
 | 
						|
          // Best->Access is only meaningful for class members.
 | 
						|
          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
 | 
						|
 | 
						|
          ExprResult Arg1 =
 | 
						|
            PerformCopyInitialization(
 | 
						|
              InitializedEntity::InitializeParameter(Context,
 | 
						|
                                                     FnDecl->getParamDecl(0)),
 | 
						|
              SourceLocation(), Owned(Args[1]));
 | 
						|
          if (Arg1.isInvalid())
 | 
						|
            return ExprError();
 | 
						|
 | 
						|
          ExprResult Arg0 =
 | 
						|
            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
 | 
						|
                                                Best->FoundDecl, Method);
 | 
						|
          if (Arg0.isInvalid())
 | 
						|
            return ExprError();
 | 
						|
          Args[0] = Arg0.takeAs<Expr>();
 | 
						|
          Args[1] = RHS = Arg1.takeAs<Expr>();
 | 
						|
        } else {
 | 
						|
          // Convert the arguments.
 | 
						|
          ExprResult Arg0 = PerformCopyInitialization(
 | 
						|
            InitializedEntity::InitializeParameter(Context,
 | 
						|
                                                   FnDecl->getParamDecl(0)),
 | 
						|
            SourceLocation(), Owned(Args[0]));
 | 
						|
          if (Arg0.isInvalid())
 | 
						|
            return ExprError();
 | 
						|
 | 
						|
          ExprResult Arg1 =
 | 
						|
            PerformCopyInitialization(
 | 
						|
              InitializedEntity::InitializeParameter(Context,
 | 
						|
                                                     FnDecl->getParamDecl(1)),
 | 
						|
              SourceLocation(), Owned(Args[1]));
 | 
						|
          if (Arg1.isInvalid())
 | 
						|
            return ExprError();
 | 
						|
          Args[0] = LHS = Arg0.takeAs<Expr>();
 | 
						|
          Args[1] = RHS = Arg1.takeAs<Expr>();
 | 
						|
        }
 | 
						|
 | 
						|
        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
 | 
						|
 | 
						|
        // Determine the result type.
 | 
						|
        QualType ResultTy = FnDecl->getResultType();
 | 
						|
        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | 
						|
        ResultTy = ResultTy.getNonLValueExprType(Context);
 | 
						|
 | 
						|
        // Build the actual expression node.
 | 
						|
        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
 | 
						|
                                                  HadMultipleCandidates, OpLoc);
 | 
						|
        if (FnExpr.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        CXXOperatorCallExpr *TheCall =
 | 
						|
          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
 | 
						|
                                            Args, ResultTy, VK, OpLoc,
 | 
						|
                                            FPFeatures.fp_contract);
 | 
						|
 | 
						|
        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
 | 
						|
                                FnDecl))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        ArrayRef<const Expr *> ArgsArray(Args, 2);
 | 
						|
        // Cut off the implicit 'this'.
 | 
						|
        if (isa<CXXMethodDecl>(FnDecl))
 | 
						|
          ArgsArray = ArgsArray.slice(1);
 | 
						|
        checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc, 
 | 
						|
                  TheCall->getSourceRange(), VariadicDoesNotApply);
 | 
						|
 | 
						|
        return MaybeBindToTemporary(TheCall);
 | 
						|
      } else {
 | 
						|
        // We matched a built-in operator. Convert the arguments, then
 | 
						|
        // break out so that we will build the appropriate built-in
 | 
						|
        // operator node.
 | 
						|
        ExprResult ArgsRes0 =
 | 
						|
          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
 | 
						|
                                    Best->Conversions[0], AA_Passing);
 | 
						|
        if (ArgsRes0.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        Args[0] = ArgsRes0.take();
 | 
						|
 | 
						|
        ExprResult ArgsRes1 =
 | 
						|
          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
 | 
						|
                                    Best->Conversions[1], AA_Passing);
 | 
						|
        if (ArgsRes1.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        Args[1] = ArgsRes1.take();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_No_Viable_Function: {
 | 
						|
      // C++ [over.match.oper]p9:
 | 
						|
      //   If the operator is the operator , [...] and there are no
 | 
						|
      //   viable functions, then the operator is assumed to be the
 | 
						|
      //   built-in operator and interpreted according to clause 5.
 | 
						|
      if (Opc == BO_Comma)
 | 
						|
        break;
 | 
						|
 | 
						|
      // For class as left operand for assignment or compound assigment
 | 
						|
      // operator do not fall through to handling in built-in, but report that
 | 
						|
      // no overloaded assignment operator found
 | 
						|
      ExprResult Result = ExprError();
 | 
						|
      if (Args[0]->getType()->isRecordType() &&
 | 
						|
          Opc >= BO_Assign && Opc <= BO_OrAssign) {
 | 
						|
        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
 | 
						|
             << BinaryOperator::getOpcodeStr(Opc)
 | 
						|
             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      } else {
 | 
						|
        // This is an erroneous use of an operator which can be overloaded by
 | 
						|
        // a non-member function. Check for non-member operators which were
 | 
						|
        // defined too late to be candidates.
 | 
						|
        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
 | 
						|
          // FIXME: Recover by calling the found function.
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        // No viable function; try to create a built-in operation, which will
 | 
						|
        // produce an error. Then, show the non-viable candidates.
 | 
						|
        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | 
						|
      }
 | 
						|
      assert(Result.isInvalid() &&
 | 
						|
             "C++ binary operator overloading is missing candidates!");
 | 
						|
      if (Result.isInvalid())
 | 
						|
        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | 
						|
                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
 | 
						|
          << BinaryOperator::getOpcodeStr(Opc)
 | 
						|
          << Args[0]->getType() << Args[1]->getType()
 | 
						|
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
 | 
						|
                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      if (isImplicitlyDeleted(Best->Function)) {
 | 
						|
        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | 
						|
        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
 | 
						|
          << Context.getRecordType(Method->getParent())
 | 
						|
          << getSpecialMember(Method);
 | 
						|
 | 
						|
        // The user probably meant to call this special member. Just
 | 
						|
        // explain why it's deleted.
 | 
						|
        NoteDeletedFunction(Method);
 | 
						|
        return ExprError();
 | 
						|
      } else {
 | 
						|
        Diag(OpLoc, diag::err_ovl_deleted_oper)
 | 
						|
          << Best->Function->isDeleted()
 | 
						|
          << BinaryOperator::getOpcodeStr(Opc)
 | 
						|
          << getDeletedOrUnavailableSuffix(Best->Function)
 | 
						|
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      }
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | 
						|
                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // We matched a built-in operator; build it.
 | 
						|
  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
 | 
						|
                                         SourceLocation RLoc,
 | 
						|
                                         Expr *Base, Expr *Idx) {
 | 
						|
  Expr *Args[2] = { Base, Idx };
 | 
						|
  DeclarationName OpName =
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
 | 
						|
 | 
						|
  // If either side is type-dependent, create an appropriate dependent
 | 
						|
  // expression.
 | 
						|
  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
 | 
						|
 | 
						|
    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
 | 
						|
    // CHECKME: no 'operator' keyword?
 | 
						|
    DeclarationNameInfo OpNameInfo(OpName, LLoc);
 | 
						|
    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
 | 
						|
    UnresolvedLookupExpr *Fn
 | 
						|
      = UnresolvedLookupExpr::Create(Context, NamingClass,
 | 
						|
                                     NestedNameSpecifierLoc(), OpNameInfo,
 | 
						|
                                     /*ADL*/ true, /*Overloaded*/ false,
 | 
						|
                                     UnresolvedSetIterator(),
 | 
						|
                                     UnresolvedSetIterator());
 | 
						|
    // Can't add any actual overloads yet
 | 
						|
 | 
						|
    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
 | 
						|
                                                   Args,
 | 
						|
                                                   Context.DependentTy,
 | 
						|
                                                   VK_RValue,
 | 
						|
                                                   RLoc, false));
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle placeholders on both operands.
 | 
						|
  if (checkPlaceholderForOverload(*this, Args[0]))
 | 
						|
    return ExprError();
 | 
						|
  if (checkPlaceholderForOverload(*this, Args[1]))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Build an empty overload set.
 | 
						|
  OverloadCandidateSet CandidateSet(LLoc);
 | 
						|
 | 
						|
  // Subscript can only be overloaded as a member function.
 | 
						|
 | 
						|
  // Add operator candidates that are member functions.
 | 
						|
  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
 | 
						|
 | 
						|
  // Add builtin operator candidates.
 | 
						|
  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
 | 
						|
    case OR_Success: {
 | 
						|
      // We found a built-in operator or an overloaded operator.
 | 
						|
      FunctionDecl *FnDecl = Best->Function;
 | 
						|
 | 
						|
      if (FnDecl) {
 | 
						|
        // We matched an overloaded operator. Build a call to that
 | 
						|
        // operator.
 | 
						|
 | 
						|
        MarkFunctionReferenced(LLoc, FnDecl);
 | 
						|
 | 
						|
        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
 | 
						|
        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
 | 
						|
 | 
						|
        // Convert the arguments.
 | 
						|
        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
 | 
						|
        ExprResult Arg0 =
 | 
						|
          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
 | 
						|
                                              Best->FoundDecl, Method);
 | 
						|
        if (Arg0.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        Args[0] = Arg0.take();
 | 
						|
 | 
						|
        // Convert the arguments.
 | 
						|
        ExprResult InputInit
 | 
						|
          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | 
						|
                                                      Context,
 | 
						|
                                                      FnDecl->getParamDecl(0)),
 | 
						|
                                      SourceLocation(),
 | 
						|
                                      Owned(Args[1]));
 | 
						|
        if (InputInit.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        Args[1] = InputInit.takeAs<Expr>();
 | 
						|
 | 
						|
        // Determine the result type
 | 
						|
        QualType ResultTy = FnDecl->getResultType();
 | 
						|
        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | 
						|
        ResultTy = ResultTy.getNonLValueExprType(Context);
 | 
						|
 | 
						|
        // Build the actual expression node.
 | 
						|
        DeclarationNameInfo OpLocInfo(OpName, LLoc);
 | 
						|
        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
 | 
						|
        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
 | 
						|
                                                  HadMultipleCandidates,
 | 
						|
                                                  OpLocInfo.getLoc(),
 | 
						|
                                                  OpLocInfo.getInfo());
 | 
						|
        if (FnExpr.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        CXXOperatorCallExpr *TheCall =
 | 
						|
          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
 | 
						|
                                            FnExpr.take(), Args,
 | 
						|
                                            ResultTy, VK, RLoc,
 | 
						|
                                            false);
 | 
						|
 | 
						|
        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
 | 
						|
                                FnDecl))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        return MaybeBindToTemporary(TheCall);
 | 
						|
      } else {
 | 
						|
        // We matched a built-in operator. Convert the arguments, then
 | 
						|
        // break out so that we will build the appropriate built-in
 | 
						|
        // operator node.
 | 
						|
        ExprResult ArgsRes0 =
 | 
						|
          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
 | 
						|
                                    Best->Conversions[0], AA_Passing);
 | 
						|
        if (ArgsRes0.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        Args[0] = ArgsRes0.take();
 | 
						|
 | 
						|
        ExprResult ArgsRes1 =
 | 
						|
          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
 | 
						|
                                    Best->Conversions[1], AA_Passing);
 | 
						|
        if (ArgsRes1.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        Args[1] = ArgsRes1.take();
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_No_Viable_Function: {
 | 
						|
      if (CandidateSet.empty())
 | 
						|
        Diag(LLoc, diag::err_ovl_no_oper)
 | 
						|
          << Args[0]->getType() << /*subscript*/ 0
 | 
						|
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      else
 | 
						|
        Diag(LLoc, diag::err_ovl_no_viable_subscript)
 | 
						|
          << Args[0]->getType()
 | 
						|
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | 
						|
                                  "[]", LLoc);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
 | 
						|
          << "[]"
 | 
						|
          << Args[0]->getType() << Args[1]->getType()
 | 
						|
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
 | 
						|
                                  "[]", LLoc);
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      Diag(LLoc, diag::err_ovl_deleted_oper)
 | 
						|
        << Best->Function->isDeleted() << "[]"
 | 
						|
        << getDeletedOrUnavailableSuffix(Best->Function)
 | 
						|
        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
 | 
						|
                                  "[]", LLoc);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
  // We matched a built-in operator; build it.
 | 
						|
  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildCallToMemberFunction - Build a call to a member
 | 
						|
/// function. MemExpr is the expression that refers to the member
 | 
						|
/// function (and includes the object parameter), Args/NumArgs are the
 | 
						|
/// arguments to the function call (not including the object
 | 
						|
/// parameter). The caller needs to validate that the member
 | 
						|
/// expression refers to a non-static member function or an overloaded
 | 
						|
/// member function.
 | 
						|
ExprResult
 | 
						|
Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
 | 
						|
                                SourceLocation LParenLoc, Expr **Args,
 | 
						|
                                unsigned NumArgs, SourceLocation RParenLoc) {
 | 
						|
  assert(MemExprE->getType() == Context.BoundMemberTy ||
 | 
						|
         MemExprE->getType() == Context.OverloadTy);
 | 
						|
 | 
						|
  // Dig out the member expression. This holds both the object
 | 
						|
  // argument and the member function we're referring to.
 | 
						|
  Expr *NakedMemExpr = MemExprE->IgnoreParens();
 | 
						|
 | 
						|
  // Determine whether this is a call to a pointer-to-member function.
 | 
						|
  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
 | 
						|
    assert(op->getType() == Context.BoundMemberTy);
 | 
						|
    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
 | 
						|
 | 
						|
    QualType fnType =
 | 
						|
      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
 | 
						|
 | 
						|
    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
 | 
						|
    QualType resultType = proto->getCallResultType(Context);
 | 
						|
    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
 | 
						|
 | 
						|
    // Check that the object type isn't more qualified than the
 | 
						|
    // member function we're calling.
 | 
						|
    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
 | 
						|
 | 
						|
    QualType objectType = op->getLHS()->getType();
 | 
						|
    if (op->getOpcode() == BO_PtrMemI)
 | 
						|
      objectType = objectType->castAs<PointerType>()->getPointeeType();
 | 
						|
    Qualifiers objectQuals = objectType.getQualifiers();
 | 
						|
 | 
						|
    Qualifiers difference = objectQuals - funcQuals;
 | 
						|
    difference.removeObjCGCAttr();
 | 
						|
    difference.removeAddressSpace();
 | 
						|
    if (difference) {
 | 
						|
      std::string qualsString = difference.getAsString();
 | 
						|
      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
 | 
						|
        << fnType.getUnqualifiedType()
 | 
						|
        << qualsString
 | 
						|
        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
 | 
						|
    }
 | 
						|
              
 | 
						|
    CXXMemberCallExpr *call
 | 
						|
      = new (Context) CXXMemberCallExpr(Context, MemExprE,
 | 
						|
                                        llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                        resultType, valueKind, RParenLoc);
 | 
						|
 | 
						|
    if (CheckCallReturnType(proto->getResultType(),
 | 
						|
                            op->getRHS()->getLocStart(),
 | 
						|
                            call, 0))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    return MaybeBindToTemporary(call);
 | 
						|
  }
 | 
						|
 | 
						|
  UnbridgedCastsSet UnbridgedCasts;
 | 
						|
  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  MemberExpr *MemExpr;
 | 
						|
  CXXMethodDecl *Method = 0;
 | 
						|
  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
 | 
						|
  NestedNameSpecifier *Qualifier = 0;
 | 
						|
  if (isa<MemberExpr>(NakedMemExpr)) {
 | 
						|
    MemExpr = cast<MemberExpr>(NakedMemExpr);
 | 
						|
    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
 | 
						|
    FoundDecl = MemExpr->getFoundDecl();
 | 
						|
    Qualifier = MemExpr->getQualifier();
 | 
						|
    UnbridgedCasts.restore();
 | 
						|
  } else {
 | 
						|
    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
 | 
						|
    Qualifier = UnresExpr->getQualifier();
 | 
						|
 | 
						|
    QualType ObjectType = UnresExpr->getBaseType();
 | 
						|
    Expr::Classification ObjectClassification
 | 
						|
      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
 | 
						|
                            : UnresExpr->getBase()->Classify(Context);
 | 
						|
 | 
						|
    // Add overload candidates
 | 
						|
    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
 | 
						|
 | 
						|
    // FIXME: avoid copy.
 | 
						|
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
 | 
						|
    if (UnresExpr->hasExplicitTemplateArgs()) {
 | 
						|
      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
 | 
						|
      TemplateArgs = &TemplateArgsBuffer;
 | 
						|
    }
 | 
						|
 | 
						|
    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
 | 
						|
           E = UnresExpr->decls_end(); I != E; ++I) {
 | 
						|
 | 
						|
      NamedDecl *Func = *I;
 | 
						|
      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
 | 
						|
      if (isa<UsingShadowDecl>(Func))
 | 
						|
        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
 | 
						|
 | 
						|
 | 
						|
      // Microsoft supports direct constructor calls.
 | 
						|
      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
 | 
						|
        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
 | 
						|
                             llvm::makeArrayRef(Args, NumArgs), CandidateSet);
 | 
						|
      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
 | 
						|
        // If explicit template arguments were provided, we can't call a
 | 
						|
        // non-template member function.
 | 
						|
        if (TemplateArgs)
 | 
						|
          continue;
 | 
						|
 | 
						|
        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
 | 
						|
                           ObjectClassification,
 | 
						|
                           llvm::makeArrayRef(Args, NumArgs), CandidateSet,
 | 
						|
                           /*SuppressUserConversions=*/false);
 | 
						|
      } else {
 | 
						|
        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
 | 
						|
                                   I.getPair(), ActingDC, TemplateArgs,
 | 
						|
                                   ObjectType,  ObjectClassification,
 | 
						|
                                   llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                   CandidateSet,
 | 
						|
                                   /*SuppressUsedConversions=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DeclarationName DeclName = UnresExpr->getMemberName();
 | 
						|
 | 
						|
    UnbridgedCasts.restore();
 | 
						|
 | 
						|
    OverloadCandidateSet::iterator Best;
 | 
						|
    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
 | 
						|
                                            Best)) {
 | 
						|
    case OR_Success:
 | 
						|
      Method = cast<CXXMethodDecl>(Best->Function);
 | 
						|
      MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
 | 
						|
      FoundDecl = Best->FoundDecl;
 | 
						|
      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
 | 
						|
      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      Diag(UnresExpr->getMemberLoc(),
 | 
						|
           diag::err_ovl_no_viable_member_function_in_call)
 | 
						|
        << DeclName << MemExprE->getSourceRange();
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
 | 
						|
                                  llvm::makeArrayRef(Args, NumArgs));
 | 
						|
      // FIXME: Leaking incoming expressions!
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
 | 
						|
        << DeclName << MemExprE->getSourceRange();
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
 | 
						|
                                  llvm::makeArrayRef(Args, NumArgs));
 | 
						|
      // FIXME: Leaking incoming expressions!
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
 | 
						|
        << Best->Function->isDeleted()
 | 
						|
        << DeclName 
 | 
						|
        << getDeletedOrUnavailableSuffix(Best->Function)
 | 
						|
        << MemExprE->getSourceRange();
 | 
						|
      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
 | 
						|
                                  llvm::makeArrayRef(Args, NumArgs));
 | 
						|
      // FIXME: Leaking incoming expressions!
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
 | 
						|
 | 
						|
    // If overload resolution picked a static member, build a
 | 
						|
    // non-member call based on that function.
 | 
						|
    if (Method->isStatic()) {
 | 
						|
      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
 | 
						|
                                   Args, NumArgs, RParenLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ResultType = Method->getResultType();
 | 
						|
  ExprValueKind VK = Expr::getValueKindForType(ResultType);
 | 
						|
  ResultType = ResultType.getNonLValueExprType(Context);
 | 
						|
 | 
						|
  assert(Method && "Member call to something that isn't a method?");
 | 
						|
  CXXMemberCallExpr *TheCall =
 | 
						|
    new (Context) CXXMemberCallExpr(Context, MemExprE,
 | 
						|
                                    llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                                    ResultType, VK, RParenLoc);
 | 
						|
 | 
						|
  // Check for a valid return type.
 | 
						|
  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
 | 
						|
                          TheCall, Method))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Convert the object argument (for a non-static member function call).
 | 
						|
  // We only need to do this if there was actually an overload; otherwise
 | 
						|
  // it was done at lookup.
 | 
						|
  if (!Method->isStatic()) {
 | 
						|
    ExprResult ObjectArg =
 | 
						|
      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
 | 
						|
                                          FoundDecl, Method);
 | 
						|
    if (ObjectArg.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    MemExpr->setBase(ObjectArg.take());
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the rest of the arguments
 | 
						|
  const FunctionProtoType *Proto =
 | 
						|
    Method->getType()->getAs<FunctionProtoType>();
 | 
						|
  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
 | 
						|
                              RParenLoc))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
 | 
						|
 | 
						|
  if (CheckFunctionCall(Method, TheCall, Proto))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if ((isa<CXXConstructorDecl>(CurContext) || 
 | 
						|
       isa<CXXDestructorDecl>(CurContext)) && 
 | 
						|
      TheCall->getMethodDecl()->isPure()) {
 | 
						|
    const CXXMethodDecl *MD = TheCall->getMethodDecl();
 | 
						|
 | 
						|
    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
 | 
						|
      Diag(MemExpr->getLocStart(), 
 | 
						|
           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
 | 
						|
        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
 | 
						|
        << MD->getParent()->getDeclName();
 | 
						|
 | 
						|
      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MaybeBindToTemporary(TheCall);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildCallToObjectOfClassType - Build a call to an object of class
 | 
						|
/// type (C++ [over.call.object]), which can end up invoking an
 | 
						|
/// overloaded function call operator (@c operator()) or performing a
 | 
						|
/// user-defined conversion on the object argument.
 | 
						|
ExprResult
 | 
						|
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
 | 
						|
                                   SourceLocation LParenLoc,
 | 
						|
                                   Expr **Args, unsigned NumArgs,
 | 
						|
                                   SourceLocation RParenLoc) {
 | 
						|
  if (checkPlaceholderForOverload(*this, Obj))
 | 
						|
    return ExprError();
 | 
						|
  ExprResult Object = Owned(Obj);
 | 
						|
 | 
						|
  UnbridgedCastsSet UnbridgedCasts;
 | 
						|
  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
 | 
						|
  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
 | 
						|
 | 
						|
  // C++ [over.call.object]p1:
 | 
						|
  //  If the primary-expression E in the function call syntax
 | 
						|
  //  evaluates to a class object of type "cv T", then the set of
 | 
						|
  //  candidate functions includes at least the function call
 | 
						|
  //  operators of T. The function call operators of T are obtained by
 | 
						|
  //  ordinary lookup of the name operator() in the context of
 | 
						|
  //  (E).operator().
 | 
						|
  OverloadCandidateSet CandidateSet(LParenLoc);
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
 | 
						|
 | 
						|
  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
 | 
						|
                          diag::err_incomplete_object_call, Object.get()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(R, Record->getDecl());
 | 
						|
  R.suppressDiagnostics();
 | 
						|
 | 
						|
  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
 | 
						|
       Oper != OperEnd; ++Oper) {
 | 
						|
    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
 | 
						|
                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
 | 
						|
                       /*SuppressUserConversions=*/ false);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.call.object]p2:
 | 
						|
  //   In addition, for each (non-explicit in C++0x) conversion function 
 | 
						|
  //   declared in T of the form
 | 
						|
  //
 | 
						|
  //        operator conversion-type-id () cv-qualifier;
 | 
						|
  //
 | 
						|
  //   where cv-qualifier is the same cv-qualification as, or a
 | 
						|
  //   greater cv-qualification than, cv, and where conversion-type-id
 | 
						|
  //   denotes the type "pointer to function of (P1,...,Pn) returning
 | 
						|
  //   R", or the type "reference to pointer to function of
 | 
						|
  //   (P1,...,Pn) returning R", or the type "reference to function
 | 
						|
  //   of (P1,...,Pn) returning R", a surrogate call function [...]
 | 
						|
  //   is also considered as a candidate function. Similarly,
 | 
						|
  //   surrogate call functions are added to the set of candidate
 | 
						|
  //   functions for each conversion function declared in an
 | 
						|
  //   accessible base class provided the function is not hidden
 | 
						|
  //   within T by another intervening declaration.
 | 
						|
  std::pair<CXXRecordDecl::conversion_iterator,
 | 
						|
            CXXRecordDecl::conversion_iterator> Conversions
 | 
						|
    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
 | 
						|
  for (CXXRecordDecl::conversion_iterator
 | 
						|
         I = Conversions.first, E = Conversions.second; I != E; ++I) {
 | 
						|
    NamedDecl *D = *I;
 | 
						|
    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
 | 
						|
    if (isa<UsingShadowDecl>(D))
 | 
						|
      D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
    // Skip over templated conversion functions; they aren't
 | 
						|
    // surrogates.
 | 
						|
    if (isa<FunctionTemplateDecl>(D))
 | 
						|
      continue;
 | 
						|
 | 
						|
    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
 | 
						|
    if (!Conv->isExplicit()) {
 | 
						|
      // Strip the reference type (if any) and then the pointer type (if
 | 
						|
      // any) to get down to what might be a function type.
 | 
						|
      QualType ConvType = Conv->getConversionType().getNonReferenceType();
 | 
						|
      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | 
						|
        ConvType = ConvPtrType->getPointeeType();
 | 
						|
 | 
						|
      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
 | 
						|
      {
 | 
						|
        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
 | 
						|
                              Object.get(), llvm::makeArrayRef(Args, NumArgs),
 | 
						|
                              CandidateSet);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
 | 
						|
                             Best)) {
 | 
						|
  case OR_Success:
 | 
						|
    // Overload resolution succeeded; we'll build the appropriate call
 | 
						|
    // below.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    if (CandidateSet.empty())
 | 
						|
      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
 | 
						|
        << Object.get()->getType() << /*call*/ 1
 | 
						|
        << Object.get()->getSourceRange();
 | 
						|
    else
 | 
						|
      Diag(Object.get()->getLocStart(),
 | 
						|
           diag::err_ovl_no_viable_object_call)
 | 
						|
        << Object.get()->getType() << Object.get()->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
 | 
						|
                                llvm::makeArrayRef(Args, NumArgs));
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(Object.get()->getLocStart(),
 | 
						|
         diag::err_ovl_ambiguous_object_call)
 | 
						|
      << Object.get()->getType() << Object.get()->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
 | 
						|
                                llvm::makeArrayRef(Args, NumArgs));
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    Diag(Object.get()->getLocStart(),
 | 
						|
         diag::err_ovl_deleted_object_call)
 | 
						|
      << Best->Function->isDeleted()
 | 
						|
      << Object.get()->getType() 
 | 
						|
      << getDeletedOrUnavailableSuffix(Best->Function)
 | 
						|
      << Object.get()->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
 | 
						|
                                llvm::makeArrayRef(Args, NumArgs));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Best == CandidateSet.end())
 | 
						|
    return true;
 | 
						|
 | 
						|
  UnbridgedCasts.restore();
 | 
						|
 | 
						|
  if (Best->Function == 0) {
 | 
						|
    // Since there is no function declaration, this is one of the
 | 
						|
    // surrogate candidates. Dig out the conversion function.
 | 
						|
    CXXConversionDecl *Conv
 | 
						|
      = cast<CXXConversionDecl>(
 | 
						|
                         Best->Conversions[0].UserDefined.ConversionFunction);
 | 
						|
 | 
						|
    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
 | 
						|
    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
 | 
						|
 | 
						|
    // We selected one of the surrogate functions that converts the
 | 
						|
    // object parameter to a function pointer. Perform the conversion
 | 
						|
    // on the object argument, then let ActOnCallExpr finish the job.
 | 
						|
 | 
						|
    // Create an implicit member expr to refer to the conversion operator.
 | 
						|
    // and then call it.
 | 
						|
    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
 | 
						|
                                             Conv, HadMultipleCandidates);
 | 
						|
    if (Call.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    // Record usage of conversion in an implicit cast.
 | 
						|
    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
 | 
						|
                                          CK_UserDefinedConversion,
 | 
						|
                                          Call.get(), 0, VK_RValue));
 | 
						|
 | 
						|
    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
 | 
						|
                         RParenLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  MarkFunctionReferenced(LParenLoc, Best->Function);
 | 
						|
  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
 | 
						|
  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
 | 
						|
 | 
						|
  // We found an overloaded operator(). Build a CXXOperatorCallExpr
 | 
						|
  // that calls this method, using Object for the implicit object
 | 
						|
  // parameter and passing along the remaining arguments.
 | 
						|
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | 
						|
 | 
						|
  // An error diagnostic has already been printed when parsing the declaration.
 | 
						|
  if (Method->isInvalidDecl())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  const FunctionProtoType *Proto =
 | 
						|
    Method->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
  unsigned NumArgsToCheck = NumArgs;
 | 
						|
 | 
						|
  // Build the full argument list for the method call (the
 | 
						|
  // implicit object parameter is placed at the beginning of the
 | 
						|
  // list).
 | 
						|
  Expr **MethodArgs;
 | 
						|
  if (NumArgs < NumArgsInProto) {
 | 
						|
    NumArgsToCheck = NumArgsInProto;
 | 
						|
    MethodArgs = new Expr*[NumArgsInProto + 1];
 | 
						|
  } else {
 | 
						|
    MethodArgs = new Expr*[NumArgs + 1];
 | 
						|
  }
 | 
						|
  MethodArgs[0] = Object.get();
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
 | 
						|
    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
 | 
						|
 | 
						|
  DeclarationNameInfo OpLocInfo(
 | 
						|
               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
 | 
						|
  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
 | 
						|
  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
 | 
						|
                                           HadMultipleCandidates,
 | 
						|
                                           OpLocInfo.getLoc(),
 | 
						|
                                           OpLocInfo.getInfo());
 | 
						|
  if (NewFn.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Once we've built TheCall, all of the expressions are properly
 | 
						|
  // owned.
 | 
						|
  QualType ResultTy = Method->getResultType();
 | 
						|
  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | 
						|
  ResultTy = ResultTy.getNonLValueExprType(Context);
 | 
						|
 | 
						|
  CXXOperatorCallExpr *TheCall =
 | 
						|
    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
 | 
						|
                                      llvm::makeArrayRef(MethodArgs, NumArgs+1),
 | 
						|
                                      ResultTy, VK, RParenLoc, false);
 | 
						|
  delete [] MethodArgs;
 | 
						|
 | 
						|
  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
 | 
						|
                          Method))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We may have default arguments. If so, we need to allocate more
 | 
						|
  // slots in the call for them.
 | 
						|
  if (NumArgs < NumArgsInProto)
 | 
						|
    TheCall->setNumArgs(Context, NumArgsInProto + 1);
 | 
						|
  else if (NumArgs > NumArgsInProto)
 | 
						|
    NumArgsToCheck = NumArgsInProto;
 | 
						|
 | 
						|
  bool IsError = false;
 | 
						|
 | 
						|
  // Initialize the implicit object parameter.
 | 
						|
  ExprResult ObjRes =
 | 
						|
    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
 | 
						|
                                        Best->FoundDecl, Method);
 | 
						|
  if (ObjRes.isInvalid())
 | 
						|
    IsError = true;
 | 
						|
  else
 | 
						|
    Object = ObjRes;
 | 
						|
  TheCall->setArg(0, Object.take());
 | 
						|
 | 
						|
  // Check the argument types.
 | 
						|
  for (unsigned i = 0; i != NumArgsToCheck; i++) {
 | 
						|
    Expr *Arg;
 | 
						|
    if (i < NumArgs) {
 | 
						|
      Arg = Args[i];
 | 
						|
 | 
						|
      // Pass the argument.
 | 
						|
 | 
						|
      ExprResult InputInit
 | 
						|
        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
 | 
						|
                                                    Context,
 | 
						|
                                                    Method->getParamDecl(i)),
 | 
						|
                                    SourceLocation(), Arg);
 | 
						|
 | 
						|
      IsError |= InputInit.isInvalid();
 | 
						|
      Arg = InputInit.takeAs<Expr>();
 | 
						|
    } else {
 | 
						|
      ExprResult DefArg
 | 
						|
        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
 | 
						|
      if (DefArg.isInvalid()) {
 | 
						|
        IsError = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      Arg = DefArg.takeAs<Expr>();
 | 
						|
    }
 | 
						|
 | 
						|
    TheCall->setArg(i + 1, Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a variadic call, handle args passed through "...".
 | 
						|
  if (Proto->isVariadic()) {
 | 
						|
    // Promote the arguments (C99 6.5.2.2p7).
 | 
						|
    for (unsigned i = NumArgsInProto; i < NumArgs; i++) {
 | 
						|
      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
 | 
						|
      IsError |= Arg.isInvalid();
 | 
						|
      TheCall->setArg(i + 1, Arg.take());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsError) return true;
 | 
						|
 | 
						|
  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
 | 
						|
 | 
						|
  if (CheckFunctionCall(Method, TheCall, Proto))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return MaybeBindToTemporary(TheCall);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
 | 
						|
///  (if one exists), where @c Base is an expression of class type and
 | 
						|
/// @c Member is the name of the member we're trying to find.
 | 
						|
ExprResult
 | 
						|
Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
 | 
						|
  assert(Base->getType()->isRecordType() &&
 | 
						|
         "left-hand side must have class type");
 | 
						|
 | 
						|
  if (checkPlaceholderForOverload(*this, Base))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  SourceLocation Loc = Base->getExprLoc();
 | 
						|
 | 
						|
  // C++ [over.ref]p1:
 | 
						|
  //
 | 
						|
  //   [...] An expression x->m is interpreted as (x.operator->())->m
 | 
						|
  //   for a class object x of type T if T::operator->() exists and if
 | 
						|
  //   the operator is selected as the best match function by the
 | 
						|
  //   overload resolution mechanism (13.3).
 | 
						|
  DeclarationName OpName =
 | 
						|
    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
 | 
						|
  OverloadCandidateSet CandidateSet(Loc);
 | 
						|
  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
 | 
						|
 | 
						|
  if (RequireCompleteType(Loc, Base->getType(),
 | 
						|
                          diag::err_typecheck_incomplete_tag, Base))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(R, BaseRecord->getDecl());
 | 
						|
  R.suppressDiagnostics();
 | 
						|
 | 
						|
  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
 | 
						|
       Oper != OperEnd; ++Oper) {
 | 
						|
    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
 | 
						|
                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  // Perform overload resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
 | 
						|
  case OR_Success:
 | 
						|
    // Overload resolution succeeded; we'll build the call below.
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    if (CandidateSet.empty())
 | 
						|
      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
 | 
						|
        << Base->getType() << Base->getSourceRange();
 | 
						|
    else
 | 
						|
      Diag(OpLoc, diag::err_ovl_no_viable_oper)
 | 
						|
        << "operator->" << Base->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
 | 
						|
      << "->" << Base->getType() << Base->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    Diag(OpLoc,  diag::err_ovl_deleted_oper)
 | 
						|
      << Best->Function->isDeleted()
 | 
						|
      << "->" 
 | 
						|
      << getDeletedOrUnavailableSuffix(Best->Function)
 | 
						|
      << Base->getSourceRange();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  MarkFunctionReferenced(OpLoc, Best->Function);
 | 
						|
  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
 | 
						|
  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
 | 
						|
 | 
						|
  // Convert the object parameter.
 | 
						|
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
 | 
						|
  ExprResult BaseResult =
 | 
						|
    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
 | 
						|
                                        Best->FoundDecl, Method);
 | 
						|
  if (BaseResult.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  Base = BaseResult.take();
 | 
						|
 | 
						|
  // Build the operator call.
 | 
						|
  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
 | 
						|
                                            HadMultipleCandidates, OpLoc);
 | 
						|
  if (FnExpr.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType ResultTy = Method->getResultType();
 | 
						|
  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | 
						|
  ResultTy = ResultTy.getNonLValueExprType(Context);
 | 
						|
  CXXOperatorCallExpr *TheCall =
 | 
						|
    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
 | 
						|
                                      Base, ResultTy, VK, OpLoc, false);
 | 
						|
 | 
						|
  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
 | 
						|
                          Method))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
  return MaybeBindToTemporary(TheCall);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
 | 
						|
/// a literal operator described by the provided lookup results.
 | 
						|
ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
 | 
						|
                                          DeclarationNameInfo &SuffixInfo,
 | 
						|
                                          ArrayRef<Expr*> Args,
 | 
						|
                                          SourceLocation LitEndLoc,
 | 
						|
                                       TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
 | 
						|
 | 
						|
  OverloadCandidateSet CandidateSet(UDSuffixLoc);
 | 
						|
  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
 | 
						|
                        TemplateArgs);
 | 
						|
 | 
						|
  bool HadMultipleCandidates = (CandidateSet.size() > 1);
 | 
						|
 | 
						|
  // Perform overload resolution. This will usually be trivial, but might need
 | 
						|
  // to perform substitutions for a literal operator template.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
 | 
						|
  case OR_Success:
 | 
						|
  case OR_Deleted:
 | 
						|
    break;
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
 | 
						|
      << R.getLookupName();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
 | 
						|
    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *FD = Best->Function;
 | 
						|
  MarkFunctionReferenced(UDSuffixLoc, FD);
 | 
						|
  DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
 | 
						|
 | 
						|
  ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
 | 
						|
                                        SuffixInfo.getLoc(),
 | 
						|
                                        SuffixInfo.getInfo());
 | 
						|
  if (Fn.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check the argument types. This should almost always be a no-op, except
 | 
						|
  // that array-to-pointer decay is applied to string literals.
 | 
						|
  Expr *ConvArgs[2];
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
 | 
						|
    ExprResult InputInit = PerformCopyInitialization(
 | 
						|
      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
 | 
						|
      SourceLocation(), Args[ArgIdx]);
 | 
						|
    if (InputInit.isInvalid())
 | 
						|
      return true;
 | 
						|
    ConvArgs[ArgIdx] = InputInit.take();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ResultTy = FD->getResultType();
 | 
						|
  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
 | 
						|
  ResultTy = ResultTy.getNonLValueExprType(Context);
 | 
						|
 | 
						|
  UserDefinedLiteral *UDL =
 | 
						|
    new (Context) UserDefinedLiteral(Context, Fn.take(),
 | 
						|
                                     llvm::makeArrayRef(ConvArgs, Args.size()),
 | 
						|
                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
 | 
						|
 | 
						|
  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (CheckFunctionCall(FD, UDL, NULL))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return MaybeBindToTemporary(UDL);
 | 
						|
}
 | 
						|
 | 
						|
/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
 | 
						|
/// given LookupResult is non-empty, it is assumed to describe a member which
 | 
						|
/// will be invoked. Otherwise, the function will be found via argument
 | 
						|
/// dependent lookup.
 | 
						|
/// CallExpr is set to a valid expression and FRS_Success returned on success,
 | 
						|
/// otherwise CallExpr is set to ExprError() and some non-success value
 | 
						|
/// is returned.
 | 
						|
Sema::ForRangeStatus
 | 
						|
Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
 | 
						|
                                SourceLocation RangeLoc, VarDecl *Decl,
 | 
						|
                                BeginEndFunction BEF,
 | 
						|
                                const DeclarationNameInfo &NameInfo,
 | 
						|
                                LookupResult &MemberLookup,
 | 
						|
                                OverloadCandidateSet *CandidateSet,
 | 
						|
                                Expr *Range, ExprResult *CallExpr) {
 | 
						|
  CandidateSet->clear();
 | 
						|
  if (!MemberLookup.empty()) {
 | 
						|
    ExprResult MemberRef =
 | 
						|
        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
 | 
						|
                                 /*IsPtr=*/false, CXXScopeSpec(),
 | 
						|
                                 /*TemplateKWLoc=*/SourceLocation(),
 | 
						|
                                 /*FirstQualifierInScope=*/0,
 | 
						|
                                 MemberLookup,
 | 
						|
                                 /*TemplateArgs=*/0);
 | 
						|
    if (MemberRef.isInvalid()) {
 | 
						|
      *CallExpr = ExprError();
 | 
						|
      Diag(Range->getLocStart(), diag::note_in_for_range)
 | 
						|
          << RangeLoc << BEF << Range->getType();
 | 
						|
      return FRS_DiagnosticIssued;
 | 
						|
    }
 | 
						|
    *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(), Loc, 0);
 | 
						|
    if (CallExpr->isInvalid()) {
 | 
						|
      *CallExpr = ExprError();
 | 
						|
      Diag(Range->getLocStart(), diag::note_in_for_range)
 | 
						|
          << RangeLoc << BEF << Range->getType();
 | 
						|
      return FRS_DiagnosticIssued;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    UnresolvedSet<0> FoundNames;
 | 
						|
    UnresolvedLookupExpr *Fn =
 | 
						|
      UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
 | 
						|
                                   NestedNameSpecifierLoc(), NameInfo,
 | 
						|
                                   /*NeedsADL=*/true, /*Overloaded=*/false,
 | 
						|
                                   FoundNames.begin(), FoundNames.end());
 | 
						|
 | 
						|
    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, &Range, 1, Loc,
 | 
						|
                                                    CandidateSet, CallExpr);
 | 
						|
    if (CandidateSet->empty() || CandidateSetError) {
 | 
						|
      *CallExpr = ExprError();
 | 
						|
      return FRS_NoViableFunction;
 | 
						|
    }
 | 
						|
    OverloadCandidateSet::iterator Best;
 | 
						|
    OverloadingResult OverloadResult =
 | 
						|
        CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
 | 
						|
 | 
						|
    if (OverloadResult == OR_No_Viable_Function) {
 | 
						|
      *CallExpr = ExprError();
 | 
						|
      return FRS_NoViableFunction;
 | 
						|
    }
 | 
						|
    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, &Range, 1,
 | 
						|
                                         Loc, 0, CandidateSet, &Best,
 | 
						|
                                         OverloadResult,
 | 
						|
                                         /*AllowTypoCorrection=*/false);
 | 
						|
    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
 | 
						|
      *CallExpr = ExprError();
 | 
						|
      Diag(Range->getLocStart(), diag::note_in_for_range)
 | 
						|
          << RangeLoc << BEF << Range->getType();
 | 
						|
      return FRS_DiagnosticIssued;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FRS_Success;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FixOverloadedFunctionReference - E is an expression that refers to
 | 
						|
/// a C++ overloaded function (possibly with some parentheses and
 | 
						|
/// perhaps a '&' around it). We have resolved the overloaded function
 | 
						|
/// to the function declaration Fn, so patch up the expression E to
 | 
						|
/// refer (possibly indirectly) to Fn. Returns the new expr.
 | 
						|
Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
 | 
						|
                                           FunctionDecl *Fn) {
 | 
						|
  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
 | 
						|
    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
 | 
						|
                                                   Found, Fn);
 | 
						|
    if (SubExpr == PE->getSubExpr())
 | 
						|
      return PE;
 | 
						|
 | 
						|
    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | 
						|
    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
 | 
						|
                                                   Found, Fn);
 | 
						|
    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
 | 
						|
                               SubExpr->getType()) &&
 | 
						|
           "Implicit cast type cannot be determined from overload");
 | 
						|
    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
 | 
						|
    if (SubExpr == ICE->getSubExpr())
 | 
						|
      return ICE;
 | 
						|
 | 
						|
    return ImplicitCastExpr::Create(Context, ICE->getType(),
 | 
						|
                                    ICE->getCastKind(),
 | 
						|
                                    SubExpr, 0,
 | 
						|
                                    ICE->getValueKind());
 | 
						|
  }
 | 
						|
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
 | 
						|
    assert(UnOp->getOpcode() == UO_AddrOf &&
 | 
						|
           "Can only take the address of an overloaded function");
 | 
						|
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
 | 
						|
      if (Method->isStatic()) {
 | 
						|
        // Do nothing: static member functions aren't any different
 | 
						|
        // from non-member functions.
 | 
						|
      } else {
 | 
						|
        // Fix the sub expression, which really has to be an
 | 
						|
        // UnresolvedLookupExpr holding an overloaded member function
 | 
						|
        // or template.
 | 
						|
        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
 | 
						|
                                                       Found, Fn);
 | 
						|
        if (SubExpr == UnOp->getSubExpr())
 | 
						|
          return UnOp;
 | 
						|
 | 
						|
        assert(isa<DeclRefExpr>(SubExpr)
 | 
						|
               && "fixed to something other than a decl ref");
 | 
						|
        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
 | 
						|
               && "fixed to a member ref with no nested name qualifier");
 | 
						|
 | 
						|
        // We have taken the address of a pointer to member
 | 
						|
        // function. Perform the computation here so that we get the
 | 
						|
        // appropriate pointer to member type.
 | 
						|
        QualType ClassType
 | 
						|
          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
 | 
						|
        QualType MemPtrType
 | 
						|
          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
 | 
						|
 | 
						|
        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
 | 
						|
                                           VK_RValue, OK_Ordinary,
 | 
						|
                                           UnOp->getOperatorLoc());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
 | 
						|
                                                   Found, Fn);
 | 
						|
    if (SubExpr == UnOp->getSubExpr())
 | 
						|
      return UnOp;
 | 
						|
 | 
						|
    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
 | 
						|
                                     Context.getPointerType(SubExpr->getType()),
 | 
						|
                                       VK_RValue, OK_Ordinary,
 | 
						|
                                       UnOp->getOperatorLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
 | 
						|
    // FIXME: avoid copy.
 | 
						|
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
 | 
						|
    if (ULE->hasExplicitTemplateArgs()) {
 | 
						|
      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
 | 
						|
      TemplateArgs = &TemplateArgsBuffer;
 | 
						|
    }
 | 
						|
 | 
						|
    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
 | 
						|
                                           ULE->getQualifierLoc(),
 | 
						|
                                           ULE->getTemplateKeywordLoc(),
 | 
						|
                                           Fn,
 | 
						|
                                           /*enclosing*/ false, // FIXME?
 | 
						|
                                           ULE->getNameLoc(),
 | 
						|
                                           Fn->getType(),
 | 
						|
                                           VK_LValue,
 | 
						|
                                           Found.getDecl(),
 | 
						|
                                           TemplateArgs);
 | 
						|
    MarkDeclRefReferenced(DRE);
 | 
						|
    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
 | 
						|
    return DRE;
 | 
						|
  }
 | 
						|
 | 
						|
  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
 | 
						|
    // FIXME: avoid copy.
 | 
						|
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
 | 
						|
    if (MemExpr->hasExplicitTemplateArgs()) {
 | 
						|
      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
 | 
						|
      TemplateArgs = &TemplateArgsBuffer;
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *Base;
 | 
						|
 | 
						|
    // If we're filling in a static method where we used to have an
 | 
						|
    // implicit member access, rewrite to a simple decl ref.
 | 
						|
    if (MemExpr->isImplicitAccess()) {
 | 
						|
      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
 | 
						|
        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
 | 
						|
                                               MemExpr->getQualifierLoc(),
 | 
						|
                                               MemExpr->getTemplateKeywordLoc(),
 | 
						|
                                               Fn,
 | 
						|
                                               /*enclosing*/ false,
 | 
						|
                                               MemExpr->getMemberLoc(),
 | 
						|
                                               Fn->getType(),
 | 
						|
                                               VK_LValue,
 | 
						|
                                               Found.getDecl(),
 | 
						|
                                               TemplateArgs);
 | 
						|
        MarkDeclRefReferenced(DRE);
 | 
						|
        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
 | 
						|
        return DRE;
 | 
						|
      } else {
 | 
						|
        SourceLocation Loc = MemExpr->getMemberLoc();
 | 
						|
        if (MemExpr->getQualifier())
 | 
						|
          Loc = MemExpr->getQualifierLoc().getBeginLoc();
 | 
						|
        CheckCXXThisCapture(Loc);
 | 
						|
        Base = new (Context) CXXThisExpr(Loc,
 | 
						|
                                         MemExpr->getBaseType(),
 | 
						|
                                         /*isImplicit=*/true);
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      Base = MemExpr->getBase();
 | 
						|
 | 
						|
    ExprValueKind valueKind;
 | 
						|
    QualType type;
 | 
						|
    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
 | 
						|
      valueKind = VK_LValue;
 | 
						|
      type = Fn->getType();
 | 
						|
    } else {
 | 
						|
      valueKind = VK_RValue;
 | 
						|
      type = Context.BoundMemberTy;
 | 
						|
    }
 | 
						|
 | 
						|
    MemberExpr *ME = MemberExpr::Create(Context, Base,
 | 
						|
                                        MemExpr->isArrow(),
 | 
						|
                                        MemExpr->getQualifierLoc(),
 | 
						|
                                        MemExpr->getTemplateKeywordLoc(),
 | 
						|
                                        Fn,
 | 
						|
                                        Found,
 | 
						|
                                        MemExpr->getMemberNameInfo(),
 | 
						|
                                        TemplateArgs,
 | 
						|
                                        type, valueKind, OK_Ordinary);
 | 
						|
    ME->setHadMultipleCandidates(true);
 | 
						|
    MarkMemberReferenced(ME);
 | 
						|
    return ME;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid reference to overloaded function");
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
 | 
						|
                                                DeclAccessPair Found,
 | 
						|
                                                FunctionDecl *Fn) {
 | 
						|
  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace clang
 |