forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			10047 lines
		
	
	
		
			380 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10047 lines
		
	
	
		
			380 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for expressions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/AnalysisBasedWarnings.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTMutationListener.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/EvaluatedExprVisitor.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/LiteralSupport.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/Designator.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/ParsedTemplate.h"
 | 
						|
#include "clang/Sema/SemaFixItUtils.h"
 | 
						|
#include "clang/Sema/Template.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
 | 
						|
/// \brief Determine whether the use of this declaration is valid, and
 | 
						|
/// emit any corresponding diagnostics.
 | 
						|
///
 | 
						|
/// This routine diagnoses various problems with referencing
 | 
						|
/// declarations that can occur when using a declaration. For example,
 | 
						|
/// it might warn if a deprecated or unavailable declaration is being
 | 
						|
/// used, or produce an error (and return true) if a C++0x deleted
 | 
						|
/// function is being used.
 | 
						|
///
 | 
						|
/// If IgnoreDeprecated is set to true, this should not warn about deprecated
 | 
						|
/// decls.
 | 
						|
///
 | 
						|
/// \returns true if there was an error (this declaration cannot be
 | 
						|
/// referenced), false otherwise.
 | 
						|
///
 | 
						|
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
 | 
						|
                             const ObjCInterfaceDecl *UnknownObjCClass) {
 | 
						|
  if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
 | 
						|
    // If there were any diagnostics suppressed by template argument deduction,
 | 
						|
    // emit them now.
 | 
						|
    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
 | 
						|
      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
 | 
						|
    if (Pos != SuppressedDiagnostics.end()) {
 | 
						|
      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
 | 
						|
      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
 | 
						|
        Diag(Suppressed[I].first, Suppressed[I].second);
 | 
						|
      
 | 
						|
      // Clear out the list of suppressed diagnostics, so that we don't emit
 | 
						|
      // them again for this specialization. However, we don't obsolete this
 | 
						|
      // entry from the table, because we want to avoid ever emitting these
 | 
						|
      // diagnostics again.
 | 
						|
      Suppressed.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if this is an auto-typed variable whose initializer we are parsing.
 | 
						|
  if (ParsingInitForAutoVars.count(D)) {
 | 
						|
    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
 | 
						|
      << D->getDeclName();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if this is a deleted function.
 | 
						|
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (FD->isDeleted()) {
 | 
						|
      Diag(Loc, diag::err_deleted_function_use);
 | 
						|
      Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if this declaration is unavailable or deprecated.
 | 
						|
  std::string Message;
 | 
						|
  switch (D->getAvailability(&Message)) {
 | 
						|
  case AR_Available:
 | 
						|
  case AR_NotYetIntroduced:
 | 
						|
    break;
 | 
						|
 | 
						|
  case AR_Deprecated:
 | 
						|
    EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
 | 
						|
    break;
 | 
						|
 | 
						|
  case AR_Unavailable:
 | 
						|
    if (cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) {
 | 
						|
      if (Message.empty()) {
 | 
						|
        if (!UnknownObjCClass)
 | 
						|
          Diag(Loc, diag::err_unavailable) << D->getDeclName();
 | 
						|
        else
 | 
						|
          Diag(Loc, diag::warn_unavailable_fwdclass_message) 
 | 
						|
               << D->getDeclName();
 | 
						|
      }
 | 
						|
      else 
 | 
						|
        Diag(Loc, diag::err_unavailable_message) 
 | 
						|
          << D->getDeclName() << Message;
 | 
						|
      Diag(D->getLocation(), diag::note_unavailable_here) 
 | 
						|
        << isa<FunctionDecl>(D) << false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn if this is used but marked unused.
 | 
						|
  if (D->hasAttr<UnusedAttr>())
 | 
						|
    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieve the message suffix that should be added to a
 | 
						|
/// diagnostic complaining about the given function being deleted or
 | 
						|
/// unavailable.
 | 
						|
std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
 | 
						|
  // FIXME: C++0x implicitly-deleted special member functions could be
 | 
						|
  // detected here so that we could improve diagnostics to say, e.g.,
 | 
						|
  // "base class 'A' had a deleted copy constructor".
 | 
						|
  if (FD->isDeleted())
 | 
						|
    return std::string();
 | 
						|
 | 
						|
  std::string Message;
 | 
						|
  if (FD->getAvailability(&Message))
 | 
						|
    return ": " + Message;
 | 
						|
 | 
						|
  return std::string();
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
 | 
						|
/// (and other functions in future), which have been declared with sentinel
 | 
						|
/// attribute. It warns if call does not have the sentinel argument.
 | 
						|
///
 | 
						|
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
 | 
						|
                                 Expr **Args, unsigned NumArgs) {
 | 
						|
  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
 | 
						|
  if (!attr)
 | 
						|
    return;
 | 
						|
 | 
						|
  int sentinelPos = attr->getSentinel();
 | 
						|
  int nullPos = attr->getNullPos();
 | 
						|
 | 
						|
  unsigned int i = 0;
 | 
						|
  bool warnNotEnoughArgs = false;
 | 
						|
  int isMethod = 0;
 | 
						|
  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | 
						|
    // skip over named parameters.
 | 
						|
    ObjCMethodDecl::param_iterator P, E = MD->param_end();
 | 
						|
    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
 | 
						|
      if (nullPos)
 | 
						|
        --nullPos;
 | 
						|
      else
 | 
						|
        ++i;
 | 
						|
    }
 | 
						|
    warnNotEnoughArgs = (P != E || i >= NumArgs);
 | 
						|
    isMethod = 1;
 | 
						|
  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    // skip over named parameters.
 | 
						|
    ObjCMethodDecl::param_iterator P, E = FD->param_end();
 | 
						|
    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
 | 
						|
      if (nullPos)
 | 
						|
        --nullPos;
 | 
						|
      else
 | 
						|
        ++i;
 | 
						|
    }
 | 
						|
    warnNotEnoughArgs = (P != E || i >= NumArgs);
 | 
						|
  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
 | 
						|
    // block or function pointer call.
 | 
						|
    QualType Ty = V->getType();
 | 
						|
    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
 | 
						|
      const FunctionType *FT = Ty->isFunctionPointerType()
 | 
						|
      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
 | 
						|
      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
 | 
						|
      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
 | 
						|
        unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
        unsigned k;
 | 
						|
        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
 | 
						|
          if (nullPos)
 | 
						|
            --nullPos;
 | 
						|
          else
 | 
						|
            ++i;
 | 
						|
        }
 | 
						|
        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
 | 
						|
      }
 | 
						|
      if (Ty->isBlockPointerType())
 | 
						|
        isMethod = 2;
 | 
						|
    } else
 | 
						|
      return;
 | 
						|
  } else
 | 
						|
    return;
 | 
						|
 | 
						|
  if (warnNotEnoughArgs) {
 | 
						|
    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
 | 
						|
    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  int sentinel = i;
 | 
						|
  while (sentinelPos > 0 && i < NumArgs-1) {
 | 
						|
    --sentinelPos;
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
  if (sentinelPos > 0) {
 | 
						|
    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
 | 
						|
    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  while (i < NumArgs-1) {
 | 
						|
    ++i;
 | 
						|
    ++sentinel;
 | 
						|
  }
 | 
						|
  Expr *sentinelExpr = Args[sentinel];
 | 
						|
  if (!sentinelExpr) return;
 | 
						|
  if (sentinelExpr->isTypeDependent()) return;
 | 
						|
  if (sentinelExpr->isValueDependent()) return;
 | 
						|
 | 
						|
  // nullptr_t is always treated as null.
 | 
						|
  if (sentinelExpr->getType()->isNullPtrType()) return;
 | 
						|
 | 
						|
  if (sentinelExpr->getType()->isAnyPointerType() &&
 | 
						|
      sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
 | 
						|
                                            Expr::NPC_ValueDependentIsNull))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Unfortunately, __null has type 'int'.
 | 
						|
  if (isa<GNUNullExpr>(sentinelExpr)) return;
 | 
						|
 | 
						|
  SourceLocation MissingNilLoc 
 | 
						|
    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
 | 
						|
  std::string NullValue;
 | 
						|
  if (isMethod && PP.getIdentifierInfo("nil")->hasMacroDefinition())
 | 
						|
    NullValue = "nil";
 | 
						|
  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
 | 
						|
    NullValue = "NULL";
 | 
						|
  else if (Context.getTypeSize(Context.IntTy)
 | 
						|
                                  == Context.getTypeSize(Context.getSizeType()))
 | 
						|
    NullValue = "0";
 | 
						|
  else
 | 
						|
    NullValue = "0L";
 | 
						|
  
 | 
						|
  Diag(MissingNilLoc, diag::warn_missing_sentinel) 
 | 
						|
    << isMethod 
 | 
						|
    << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
 | 
						|
  Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
 | 
						|
}
 | 
						|
 | 
						|
SourceRange Sema::getExprRange(ExprTy *E) const {
 | 
						|
  Expr *Ex = (Expr *)E;
 | 
						|
  return Ex? Ex->getSourceRange() : SourceRange();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Standard Promotions and Conversions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
 | 
						|
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
 | 
						|
  QualType Ty = E->getType();
 | 
						|
  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
 | 
						|
 | 
						|
  if (Ty->isFunctionType())
 | 
						|
    E = ImpCastExprToType(E, Context.getPointerType(Ty),
 | 
						|
                          CK_FunctionToPointerDecay).take();
 | 
						|
  else if (Ty->isArrayType()) {
 | 
						|
    // In C90 mode, arrays only promote to pointers if the array expression is
 | 
						|
    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
 | 
						|
    // type 'array of type' is converted to an expression that has type 'pointer
 | 
						|
    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
 | 
						|
    // that has type 'array of type' ...".  The relevant change is "an lvalue"
 | 
						|
    // (C90) to "an expression" (C99).
 | 
						|
    //
 | 
						|
    // C++ 4.2p1:
 | 
						|
    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
 | 
						|
    // T" can be converted to an rvalue of type "pointer to T".
 | 
						|
    //
 | 
						|
    if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
 | 
						|
      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
 | 
						|
                            CK_ArrayToPointerDecay).take();
 | 
						|
  }
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
static void CheckForNullPointerDereference(Sema &S, Expr *E) {
 | 
						|
  // Check to see if we are dereferencing a null pointer.  If so,
 | 
						|
  // and if not volatile-qualified, this is undefined behavior that the
 | 
						|
  // optimizer will delete, so warn about it.  People sometimes try to use this
 | 
						|
  // to get a deterministic trap and are surprised by clang's behavior.  This
 | 
						|
  // only handles the pattern "*null", which is a very syntactic check.
 | 
						|
  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
 | 
						|
    if (UO->getOpcode() == UO_Deref &&
 | 
						|
        UO->getSubExpr()->IgnoreParenCasts()->
 | 
						|
          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
 | 
						|
        !UO->getType().isVolatileQualified()) {
 | 
						|
    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
 | 
						|
                          S.PDiag(diag::warn_indirection_through_null)
 | 
						|
                            << UO->getSubExpr()->getSourceRange());
 | 
						|
    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
 | 
						|
                        S.PDiag(diag::note_indirection_through_null));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::DefaultLvalueConversion(Expr *E) {
 | 
						|
  // C++ [conv.lval]p1:
 | 
						|
  //   A glvalue of a non-function, non-array type T can be
 | 
						|
  //   converted to a prvalue.
 | 
						|
  if (!E->isGLValue()) return Owned(E);
 | 
						|
 | 
						|
  QualType T = E->getType();
 | 
						|
  assert(!T.isNull() && "r-value conversion on typeless expression?");
 | 
						|
 | 
						|
  // Create a load out of an ObjCProperty l-value, if necessary.
 | 
						|
  if (E->getObjectKind() == OK_ObjCProperty) {
 | 
						|
    ExprResult Res = ConvertPropertyForRValue(E);
 | 
						|
    if (Res.isInvalid())
 | 
						|
      return Owned(E);
 | 
						|
    E = Res.take();
 | 
						|
    if (!E->isGLValue())
 | 
						|
      return Owned(E);
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't want to throw lvalue-to-rvalue casts on top of
 | 
						|
  // expressions of certain types in C++.
 | 
						|
  if (getLangOptions().CPlusPlus &&
 | 
						|
      (E->getType() == Context.OverloadTy ||
 | 
						|
       T->isDependentType() ||
 | 
						|
       T->isRecordType()))
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  // The C standard is actually really unclear on this point, and
 | 
						|
  // DR106 tells us what the result should be but not why.  It's
 | 
						|
  // generally best to say that void types just doesn't undergo
 | 
						|
  // lvalue-to-rvalue at all.  Note that expressions of unqualified
 | 
						|
  // 'void' type are never l-values, but qualified void can be.
 | 
						|
  if (T->isVoidType())
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  CheckForNullPointerDereference(*this, E);
 | 
						|
 | 
						|
  // C++ [conv.lval]p1:
 | 
						|
  //   [...] If T is a non-class type, the type of the prvalue is the
 | 
						|
  //   cv-unqualified version of T. Otherwise, the type of the
 | 
						|
  //   rvalue is T.
 | 
						|
  //
 | 
						|
  // C99 6.3.2.1p2:
 | 
						|
  //   If the lvalue has qualified type, the value has the unqualified
 | 
						|
  //   version of the type of the lvalue; otherwise, the value has the
 | 
						|
  //   type of the lvalue.    
 | 
						|
  if (T.hasQualifiers())
 | 
						|
    T = T.getUnqualifiedType();
 | 
						|
  
 | 
						|
  return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
 | 
						|
                                        E, 0, VK_RValue));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
 | 
						|
  ExprResult Res = DefaultFunctionArrayConversion(E);
 | 
						|
  if (Res.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  Res = DefaultLvalueConversion(Res.take());
 | 
						|
  if (Res.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  return move(Res);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// UsualUnaryConversions - Performs various conversions that are common to most
 | 
						|
/// operators (C99 6.3). The conversions of array and function types are
 | 
						|
/// sometimes suppressed. For example, the array->pointer conversion doesn't
 | 
						|
/// apply if the array is an argument to the sizeof or address (&) operators.
 | 
						|
/// In these instances, this routine should *not* be called.
 | 
						|
ExprResult Sema::UsualUnaryConversions(Expr *E) {
 | 
						|
  // First, convert to an r-value.
 | 
						|
  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
 | 
						|
  if (Res.isInvalid())
 | 
						|
    return Owned(E);
 | 
						|
  E = Res.take();
 | 
						|
  
 | 
						|
  QualType Ty = E->getType();
 | 
						|
  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
 | 
						|
  
 | 
						|
  // Try to perform integral promotions if the object has a theoretically
 | 
						|
  // promotable type.
 | 
						|
  if (Ty->isIntegralOrUnscopedEnumerationType()) {
 | 
						|
    // C99 6.3.1.1p2:
 | 
						|
    //
 | 
						|
    //   The following may be used in an expression wherever an int or
 | 
						|
    //   unsigned int may be used:
 | 
						|
    //     - an object or expression with an integer type whose integer
 | 
						|
    //       conversion rank is less than or equal to the rank of int
 | 
						|
    //       and unsigned int.
 | 
						|
    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
 | 
						|
    //
 | 
						|
    //   If an int can represent all values of the original type, the
 | 
						|
    //   value is converted to an int; otherwise, it is converted to an
 | 
						|
    //   unsigned int. These are called the integer promotions. All
 | 
						|
    //   other types are unchanged by the integer promotions.
 | 
						|
  
 | 
						|
    QualType PTy = Context.isPromotableBitField(E);
 | 
						|
    if (!PTy.isNull()) {
 | 
						|
      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
 | 
						|
      return Owned(E);
 | 
						|
    }
 | 
						|
    if (Ty->isPromotableIntegerType()) {
 | 
						|
      QualType PT = Context.getPromotedIntegerType(Ty);
 | 
						|
      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
 | 
						|
      return Owned(E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
 | 
						|
/// do not have a prototype. Arguments that have type float are promoted to
 | 
						|
/// double. All other argument types are converted by UsualUnaryConversions().
 | 
						|
ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
 | 
						|
  QualType Ty = E->getType();
 | 
						|
  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
 | 
						|
 | 
						|
  ExprResult Res = UsualUnaryConversions(E);
 | 
						|
  if (Res.isInvalid())
 | 
						|
    return Owned(E);
 | 
						|
  E = Res.take();
 | 
						|
 | 
						|
  // If this is a 'float' (CVR qualified or typedef) promote to double.
 | 
						|
  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
 | 
						|
    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
 | 
						|
 | 
						|
  // C++ performs lvalue-to-rvalue conversion as a default argument
 | 
						|
  // promotion, even on class types, but note:
 | 
						|
  //   C++11 [conv.lval]p2:
 | 
						|
  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
 | 
						|
  //     operand or a subexpression thereof the value contained in the
 | 
						|
  //     referenced object is not accessed. Otherwise, if the glvalue
 | 
						|
  //     has a class type, the conversion copy-initializes a temporary
 | 
						|
  //     of type T from the glvalue and the result of the conversion
 | 
						|
  //     is a prvalue for the temporary.
 | 
						|
  // FIXME: add some way to gate this entire thing for correctness in
 | 
						|
  // potentially potentially evaluated contexts.
 | 
						|
  if (getLangOptions().CPlusPlus && E->isGLValue() && 
 | 
						|
      ExprEvalContexts.back().Context != Unevaluated) {
 | 
						|
    ExprResult Temp = PerformCopyInitialization(
 | 
						|
                       InitializedEntity::InitializeTemporary(E->getType()),
 | 
						|
                                                E->getExprLoc(),
 | 
						|
                                                Owned(E));
 | 
						|
    if (Temp.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    E = Temp.get();
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
 | 
						|
/// will warn if the resulting type is not a POD type, and rejects ObjC
 | 
						|
/// interfaces passed by value.
 | 
						|
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
 | 
						|
                                                  FunctionDecl *FDecl) {
 | 
						|
  ExprResult ExprRes = CheckPlaceholderExpr(E);
 | 
						|
  if (ExprRes.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  
 | 
						|
  ExprRes = DefaultArgumentPromotion(E);
 | 
						|
  if (ExprRes.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  E = ExprRes.take();
 | 
						|
 | 
						|
  // Don't allow one to pass an Objective-C interface to a vararg.
 | 
						|
  if (E->getType()->isObjCObjectType() &&
 | 
						|
    DiagRuntimeBehavior(E->getLocStart(), 0,
 | 
						|
                        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
 | 
						|
                          << E->getType() << CT))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (!E->getType().isPODType(Context)) {
 | 
						|
    // C++0x [expr.call]p7:
 | 
						|
    //   Passing a potentially-evaluated argument of class type (Clause 9) 
 | 
						|
    //   having a non-trivial copy constructor, a non-trivial move constructor,
 | 
						|
    //   or a non-trivial destructor, with no corresponding parameter, 
 | 
						|
    //   is conditionally-supported with implementation-defined semantics.
 | 
						|
    bool TrivialEnough = false;
 | 
						|
    if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType())  {
 | 
						|
      if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
 | 
						|
        if (Record->hasTrivialCopyConstructor() &&
 | 
						|
            Record->hasTrivialMoveConstructor() &&
 | 
						|
            Record->hasTrivialDestructor())
 | 
						|
          TrivialEnough = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!TrivialEnough &&
 | 
						|
        getLangOptions().ObjCAutoRefCount &&
 | 
						|
        E->getType()->isObjCLifetimeType())
 | 
						|
      TrivialEnough = true;
 | 
						|
      
 | 
						|
    if (TrivialEnough) {
 | 
						|
      // Nothing to diagnose. This is okay.
 | 
						|
    } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
 | 
						|
                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
 | 
						|
                            << getLangOptions().CPlusPlus0x << E->getType() 
 | 
						|
                            << CT)) {
 | 
						|
      // Turn this into a trap.
 | 
						|
      CXXScopeSpec SS;
 | 
						|
      UnqualifiedId Name;
 | 
						|
      Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
 | 
						|
                         E->getLocStart());
 | 
						|
      ExprResult TrapFn = ActOnIdExpression(TUScope, SS, Name, true, false);
 | 
						|
      if (TrapFn.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
 | 
						|
                                      MultiExprArg(), E->getLocEnd());
 | 
						|
      if (Call.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      
 | 
						|
      ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
 | 
						|
                                    Call.get(), E);
 | 
						|
      if (Comma.isInvalid())
 | 
						|
        return ExprError();      
 | 
						|
      E = Comma.get();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Converts an integer to complex float type.  Helper function of
 | 
						|
/// UsualArithmeticConversions()
 | 
						|
///
 | 
						|
/// \return false if the integer expression is an integer type and is
 | 
						|
/// successfully converted to the complex type.
 | 
						|
static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &intExpr,
 | 
						|
                                                  ExprResult &complexExpr,
 | 
						|
                                                  QualType intTy,
 | 
						|
                                                  QualType complexTy,
 | 
						|
                                                  bool skipCast) {
 | 
						|
  if (intTy->isComplexType() || intTy->isRealFloatingType()) return true;
 | 
						|
  if (skipCast) return false;
 | 
						|
  if (intTy->isIntegerType()) {
 | 
						|
    QualType fpTy = cast<ComplexType>(complexTy)->getElementType();
 | 
						|
    intExpr = S.ImpCastExprToType(intExpr.take(), fpTy, CK_IntegralToFloating);
 | 
						|
    intExpr = S.ImpCastExprToType(intExpr.take(), complexTy,
 | 
						|
                                  CK_FloatingRealToComplex);
 | 
						|
  } else {
 | 
						|
    assert(intTy->isComplexIntegerType());
 | 
						|
    intExpr = S.ImpCastExprToType(intExpr.take(), complexTy,
 | 
						|
                                  CK_IntegralComplexToFloatingComplex);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Takes two complex float types and converts them to the same type.
 | 
						|
/// Helper function of UsualArithmeticConversions()
 | 
						|
static QualType
 | 
						|
handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
 | 
						|
                                            ExprResult &RHS, QualType LHSType,
 | 
						|
                                            QualType RHSType,
 | 
						|
                                            bool isCompAssign) {
 | 
						|
  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
 | 
						|
 | 
						|
  if (order < 0) {
 | 
						|
    // _Complex float -> _Complex double
 | 
						|
    if (!isCompAssign)
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
 | 
						|
    return RHSType;
 | 
						|
  }
 | 
						|
  if (order > 0)
 | 
						|
    // _Complex float -> _Complex double
 | 
						|
    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
 | 
						|
  return LHSType;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Converts otherExpr to complex float and promotes complexExpr if
 | 
						|
/// necessary.  Helper function of UsualArithmeticConversions()
 | 
						|
static QualType handleOtherComplexFloatConversion(Sema &S,
 | 
						|
                                                  ExprResult &complexExpr,
 | 
						|
                                                  ExprResult &otherExpr,
 | 
						|
                                                  QualType complexTy,
 | 
						|
                                                  QualType otherTy,
 | 
						|
                                                  bool convertComplexExpr,
 | 
						|
                                                  bool convertOtherExpr) {
 | 
						|
  int order = S.Context.getFloatingTypeOrder(complexTy, otherTy);
 | 
						|
 | 
						|
  // If just the complexExpr is complex, the otherExpr needs to be converted,
 | 
						|
  // and the complexExpr might need to be promoted.
 | 
						|
  if (order > 0) { // complexExpr is wider
 | 
						|
    // float -> _Complex double
 | 
						|
    if (convertOtherExpr) {
 | 
						|
      QualType fp = cast<ComplexType>(complexTy)->getElementType();
 | 
						|
      otherExpr = S.ImpCastExprToType(otherExpr.take(), fp, CK_FloatingCast);
 | 
						|
      otherExpr = S.ImpCastExprToType(otherExpr.take(), complexTy,
 | 
						|
                                      CK_FloatingRealToComplex);
 | 
						|
    }
 | 
						|
    return complexTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // otherTy is at least as wide.  Find its corresponding complex type.
 | 
						|
  QualType result = (order == 0 ? complexTy :
 | 
						|
                                  S.Context.getComplexType(otherTy));
 | 
						|
 | 
						|
  // double -> _Complex double
 | 
						|
  if (convertOtherExpr)
 | 
						|
    otherExpr = S.ImpCastExprToType(otherExpr.take(), result,
 | 
						|
                                    CK_FloatingRealToComplex);
 | 
						|
 | 
						|
  // _Complex float -> _Complex double
 | 
						|
  if (convertComplexExpr && order < 0)
 | 
						|
    complexExpr = S.ImpCastExprToType(complexExpr.take(), result,
 | 
						|
                                      CK_FloatingComplexCast);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle arithmetic conversion with complex types.  Helper function of
 | 
						|
/// UsualArithmeticConversions()
 | 
						|
static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
 | 
						|
                                             ExprResult &RHS, QualType LHSType,
 | 
						|
                                             QualType RHSType,
 | 
						|
                                             bool isCompAssign) {
 | 
						|
  // if we have an integer operand, the result is the complex type.
 | 
						|
  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
 | 
						|
                                             /*skipCast*/false))
 | 
						|
    return LHSType;
 | 
						|
  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
 | 
						|
                                             /*skipCast*/isCompAssign))
 | 
						|
    return RHSType;
 | 
						|
 | 
						|
  // This handles complex/complex, complex/float, or float/complex.
 | 
						|
  // When both operands are complex, the shorter operand is converted to the
 | 
						|
  // type of the longer, and that is the type of the result. This corresponds
 | 
						|
  // to what is done when combining two real floating-point operands.
 | 
						|
  // The fun begins when size promotion occur across type domains.
 | 
						|
  // From H&S 6.3.4: When one operand is complex and the other is a real
 | 
						|
  // floating-point type, the less precise type is converted, within it's
 | 
						|
  // real or complex domain, to the precision of the other type. For example,
 | 
						|
  // when combining a "long double" with a "double _Complex", the
 | 
						|
  // "double _Complex" is promoted to "long double _Complex".
 | 
						|
 | 
						|
  bool LHSComplexFloat = LHSType->isComplexType();
 | 
						|
  bool RHSComplexFloat = RHSType->isComplexType();
 | 
						|
 | 
						|
  // If both are complex, just cast to the more precise type.
 | 
						|
  if (LHSComplexFloat && RHSComplexFloat)
 | 
						|
    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
 | 
						|
                                                       LHSType, RHSType,
 | 
						|
                                                       isCompAssign);
 | 
						|
 | 
						|
  // If only one operand is complex, promote it if necessary and convert the
 | 
						|
  // other operand to complex.
 | 
						|
  if (LHSComplexFloat)
 | 
						|
    return handleOtherComplexFloatConversion(
 | 
						|
        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!isCompAssign,
 | 
						|
        /*convertOtherExpr*/ true);
 | 
						|
 | 
						|
  assert(RHSComplexFloat);
 | 
						|
  return handleOtherComplexFloatConversion(
 | 
						|
      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
 | 
						|
      /*convertOtherExpr*/ !isCompAssign);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Hande arithmetic conversion from integer to float.  Helper function
 | 
						|
/// of UsualArithmeticConversions()
 | 
						|
static QualType handleIntToFloatConversion(Sema &S, ExprResult &floatExpr,
 | 
						|
                                           ExprResult &intExpr,
 | 
						|
                                           QualType floatTy, QualType intTy,
 | 
						|
                                           bool convertFloat, bool convertInt) {
 | 
						|
  if (intTy->isIntegerType()) {
 | 
						|
    if (convertInt)
 | 
						|
      // Convert intExpr to the lhs floating point type.
 | 
						|
      intExpr = S.ImpCastExprToType(intExpr.take(), floatTy,
 | 
						|
                                    CK_IntegralToFloating);
 | 
						|
    return floatTy;
 | 
						|
  }
 | 
						|
     
 | 
						|
  // Convert both sides to the appropriate complex float.
 | 
						|
  assert(intTy->isComplexIntegerType());
 | 
						|
  QualType result = S.Context.getComplexType(floatTy);
 | 
						|
 | 
						|
  // _Complex int -> _Complex float
 | 
						|
  if (convertInt)
 | 
						|
    intExpr = S.ImpCastExprToType(intExpr.take(), result,
 | 
						|
                                  CK_IntegralComplexToFloatingComplex);
 | 
						|
 | 
						|
  // float -> _Complex float
 | 
						|
  if (convertFloat)
 | 
						|
    floatExpr = S.ImpCastExprToType(floatExpr.take(), result,
 | 
						|
                                    CK_FloatingRealToComplex);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle arithmethic conversion with floating point types.  Helper
 | 
						|
/// function of UsualArithmeticConversions()
 | 
						|
static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
 | 
						|
                                      ExprResult &RHS, QualType LHSType,
 | 
						|
                                      QualType RHSType, bool isCompAssign) {
 | 
						|
  bool LHSFloat = LHSType->isRealFloatingType();
 | 
						|
  bool RHSFloat = RHSType->isRealFloatingType();
 | 
						|
 | 
						|
  // If we have two real floating types, convert the smaller operand
 | 
						|
  // to the bigger result.
 | 
						|
  if (LHSFloat && RHSFloat) {
 | 
						|
    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
 | 
						|
    if (order > 0) {
 | 
						|
      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
 | 
						|
      return LHSType;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(order < 0 && "illegal float comparison");
 | 
						|
    if (!isCompAssign)
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
 | 
						|
    return RHSType;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSFloat)
 | 
						|
    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
 | 
						|
                                      /*convertFloat=*/!isCompAssign,
 | 
						|
                                      /*convertInt=*/ true);
 | 
						|
  assert(RHSFloat);
 | 
						|
  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
 | 
						|
                                    /*convertInt=*/ true,
 | 
						|
                                    /*convertFloat=*/!isCompAssign);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle conversions with GCC complex int extension.  Helper function
 | 
						|
/// of UsualArithmeticConversions()
 | 
						|
// FIXME: if the operands are (int, _Complex long), we currently
 | 
						|
// don't promote the complex.  Also, signedness?
 | 
						|
static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
 | 
						|
                                           ExprResult &RHS, QualType LHSType,
 | 
						|
                                           QualType RHSType,
 | 
						|
                                           bool isCompAssign) {
 | 
						|
  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
 | 
						|
  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
 | 
						|
 | 
						|
  if (LHSComplexInt && RHSComplexInt) {
 | 
						|
    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
 | 
						|
                                              RHSComplexInt->getElementType());
 | 
						|
    assert(order && "inequal types with equal element ordering");
 | 
						|
    if (order > 0) {
 | 
						|
      // _Complex int -> _Complex long
 | 
						|
      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
 | 
						|
      return LHSType;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isCompAssign)
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
 | 
						|
    return RHSType;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSComplexInt) {
 | 
						|
    // int -> _Complex int
 | 
						|
    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
 | 
						|
    return LHSType;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(RHSComplexInt);
 | 
						|
  // int -> _Complex int
 | 
						|
  if (!isCompAssign)
 | 
						|
    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
 | 
						|
  return RHSType;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle integer arithmetic conversions.  Helper function of
 | 
						|
/// UsualArithmeticConversions()
 | 
						|
static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
 | 
						|
                                        ExprResult &RHS, QualType LHSType,
 | 
						|
                                        QualType RHSType, bool isCompAssign) {
 | 
						|
  // The rules for this case are in C99 6.3.1.8
 | 
						|
  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
 | 
						|
  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
 | 
						|
  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
 | 
						|
  if (LHSSigned == RHSSigned) {
 | 
						|
    // Same signedness; use the higher-ranked type
 | 
						|
    if (order >= 0) {
 | 
						|
      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
 | 
						|
      return LHSType;
 | 
						|
    } else if (!isCompAssign)
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
 | 
						|
    return RHSType;
 | 
						|
  } else if (order != (LHSSigned ? 1 : -1)) {
 | 
						|
    // The unsigned type has greater than or equal rank to the
 | 
						|
    // signed type, so use the unsigned type
 | 
						|
    if (RHSSigned) {
 | 
						|
      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
 | 
						|
      return LHSType;
 | 
						|
    } else if (!isCompAssign)
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
 | 
						|
    return RHSType;
 | 
						|
  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
 | 
						|
    // The two types are different widths; if we are here, that
 | 
						|
    // means the signed type is larger than the unsigned type, so
 | 
						|
    // use the signed type.
 | 
						|
    if (LHSSigned) {
 | 
						|
      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
 | 
						|
      return LHSType;
 | 
						|
    } else if (!isCompAssign)
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
 | 
						|
    return RHSType;
 | 
						|
  } else {
 | 
						|
    // The signed type is higher-ranked than the unsigned type,
 | 
						|
    // but isn't actually any bigger (like unsigned int and long
 | 
						|
    // on most 32-bit systems).  Use the unsigned type corresponding
 | 
						|
    // to the signed type.
 | 
						|
    QualType result =
 | 
						|
      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
 | 
						|
    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
 | 
						|
    if (!isCompAssign)
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// UsualArithmeticConversions - Performs various conversions that are common to
 | 
						|
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
 | 
						|
/// routine returns the first non-arithmetic type found. The client is
 | 
						|
/// responsible for emitting appropriate error diagnostics.
 | 
						|
/// FIXME: verify the conversion rules for "complex int" are consistent with
 | 
						|
/// GCC.
 | 
						|
QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
 | 
						|
                                          bool isCompAssign) {
 | 
						|
  if (!isCompAssign) {
 | 
						|
    LHS = UsualUnaryConversions(LHS.take());
 | 
						|
    if (LHS.isInvalid())
 | 
						|
      return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  RHS = UsualUnaryConversions(RHS.take());
 | 
						|
  if (RHS.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // For conversion purposes, we ignore any qualifiers.
 | 
						|
  // For example, "const float" and "float" are equivalent.
 | 
						|
  QualType LHSType =
 | 
						|
    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
 | 
						|
  QualType RHSType =
 | 
						|
    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
 | 
						|
 | 
						|
  // If both types are identical, no conversion is needed.
 | 
						|
  if (LHSType == RHSType)
 | 
						|
    return LHSType;
 | 
						|
 | 
						|
  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
 | 
						|
  // The caller can deal with this (e.g. pointer + int).
 | 
						|
  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
 | 
						|
    return LHSType;
 | 
						|
 | 
						|
  // Apply unary and bitfield promotions to the LHS's type.
 | 
						|
  QualType LHSUnpromotedType = LHSType;
 | 
						|
  if (LHSType->isPromotableIntegerType())
 | 
						|
    LHSType = Context.getPromotedIntegerType(LHSType);
 | 
						|
  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
 | 
						|
  if (!LHSBitfieldPromoteTy.isNull())
 | 
						|
    LHSType = LHSBitfieldPromoteTy;
 | 
						|
  if (LHSType != LHSUnpromotedType && !isCompAssign)
 | 
						|
    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
 | 
						|
 | 
						|
  // If both types are identical, no conversion is needed.
 | 
						|
  if (LHSType == RHSType)
 | 
						|
    return LHSType;
 | 
						|
 | 
						|
  // At this point, we have two different arithmetic types.
 | 
						|
 | 
						|
  // Handle complex types first (C99 6.3.1.8p1).
 | 
						|
  if (LHSType->isComplexType() || RHSType->isComplexType())
 | 
						|
    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
 | 
						|
                                        isCompAssign);
 | 
						|
 | 
						|
  // Now handle "real" floating types (i.e. float, double, long double).
 | 
						|
  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
 | 
						|
    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
 | 
						|
                                 isCompAssign);
 | 
						|
 | 
						|
  // Handle GCC complex int extension.
 | 
						|
  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
 | 
						|
    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
 | 
						|
                                      isCompAssign);
 | 
						|
 | 
						|
  // Finally, we have two differing integer types.
 | 
						|
  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
 | 
						|
                                 isCompAssign);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Semantic Analysis for various Expression Types
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
 | 
						|
                                SourceLocation DefaultLoc,
 | 
						|
                                SourceLocation RParenLoc,
 | 
						|
                                Expr *ControllingExpr,
 | 
						|
                                MultiTypeArg types,
 | 
						|
                                MultiExprArg exprs) {
 | 
						|
  unsigned NumAssocs = types.size();
 | 
						|
  assert(NumAssocs == exprs.size());
 | 
						|
 | 
						|
  ParsedType *ParsedTypes = types.release();
 | 
						|
  Expr **Exprs = exprs.release();
 | 
						|
 | 
						|
  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
 | 
						|
  for (unsigned i = 0; i < NumAssocs; ++i) {
 | 
						|
    if (ParsedTypes[i])
 | 
						|
      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
 | 
						|
    else
 | 
						|
      Types[i] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
 | 
						|
                                             ControllingExpr, Types, Exprs,
 | 
						|
                                             NumAssocs);
 | 
						|
  delete [] Types;
 | 
						|
  return ER;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
 | 
						|
                                 SourceLocation DefaultLoc,
 | 
						|
                                 SourceLocation RParenLoc,
 | 
						|
                                 Expr *ControllingExpr,
 | 
						|
                                 TypeSourceInfo **Types,
 | 
						|
                                 Expr **Exprs,
 | 
						|
                                 unsigned NumAssocs) {
 | 
						|
  bool TypeErrorFound = false,
 | 
						|
       IsResultDependent = ControllingExpr->isTypeDependent(),
 | 
						|
       ContainsUnexpandedParameterPack
 | 
						|
         = ControllingExpr->containsUnexpandedParameterPack();
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumAssocs; ++i) {
 | 
						|
    if (Exprs[i]->containsUnexpandedParameterPack())
 | 
						|
      ContainsUnexpandedParameterPack = true;
 | 
						|
 | 
						|
    if (Types[i]) {
 | 
						|
      if (Types[i]->getType()->containsUnexpandedParameterPack())
 | 
						|
        ContainsUnexpandedParameterPack = true;
 | 
						|
 | 
						|
      if (Types[i]->getType()->isDependentType()) {
 | 
						|
        IsResultDependent = true;
 | 
						|
      } else {
 | 
						|
        // C1X 6.5.1.1p2 "The type name in a generic association shall specify a
 | 
						|
        // complete object type other than a variably modified type."
 | 
						|
        unsigned D = 0;
 | 
						|
        if (Types[i]->getType()->isIncompleteType())
 | 
						|
          D = diag::err_assoc_type_incomplete;
 | 
						|
        else if (!Types[i]->getType()->isObjectType())
 | 
						|
          D = diag::err_assoc_type_nonobject;
 | 
						|
        else if (Types[i]->getType()->isVariablyModifiedType())
 | 
						|
          D = diag::err_assoc_type_variably_modified;
 | 
						|
 | 
						|
        if (D != 0) {
 | 
						|
          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
 | 
						|
            << Types[i]->getTypeLoc().getSourceRange()
 | 
						|
            << Types[i]->getType();
 | 
						|
          TypeErrorFound = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // C1X 6.5.1.1p2 "No two generic associations in the same generic
 | 
						|
        // selection shall specify compatible types."
 | 
						|
        for (unsigned j = i+1; j < NumAssocs; ++j)
 | 
						|
          if (Types[j] && !Types[j]->getType()->isDependentType() &&
 | 
						|
              Context.typesAreCompatible(Types[i]->getType(),
 | 
						|
                                         Types[j]->getType())) {
 | 
						|
            Diag(Types[j]->getTypeLoc().getBeginLoc(),
 | 
						|
                 diag::err_assoc_compatible_types)
 | 
						|
              << Types[j]->getTypeLoc().getSourceRange()
 | 
						|
              << Types[j]->getType()
 | 
						|
              << Types[i]->getType();
 | 
						|
            Diag(Types[i]->getTypeLoc().getBeginLoc(),
 | 
						|
                 diag::note_compat_assoc)
 | 
						|
              << Types[i]->getTypeLoc().getSourceRange()
 | 
						|
              << Types[i]->getType();
 | 
						|
            TypeErrorFound = true;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (TypeErrorFound)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // If we determined that the generic selection is result-dependent, don't
 | 
						|
  // try to compute the result expression.
 | 
						|
  if (IsResultDependent)
 | 
						|
    return Owned(new (Context) GenericSelectionExpr(
 | 
						|
                   Context, KeyLoc, ControllingExpr,
 | 
						|
                   Types, Exprs, NumAssocs, DefaultLoc,
 | 
						|
                   RParenLoc, ContainsUnexpandedParameterPack));
 | 
						|
 | 
						|
  SmallVector<unsigned, 1> CompatIndices;
 | 
						|
  unsigned DefaultIndex = -1U;
 | 
						|
  for (unsigned i = 0; i < NumAssocs; ++i) {
 | 
						|
    if (!Types[i])
 | 
						|
      DefaultIndex = i;
 | 
						|
    else if (Context.typesAreCompatible(ControllingExpr->getType(),
 | 
						|
                                        Types[i]->getType()))
 | 
						|
      CompatIndices.push_back(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // C1X 6.5.1.1p2 "The controlling expression of a generic selection shall have
 | 
						|
  // type compatible with at most one of the types named in its generic
 | 
						|
  // association list."
 | 
						|
  if (CompatIndices.size() > 1) {
 | 
						|
    // We strip parens here because the controlling expression is typically
 | 
						|
    // parenthesized in macro definitions.
 | 
						|
    ControllingExpr = ControllingExpr->IgnoreParens();
 | 
						|
    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
 | 
						|
      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
 | 
						|
      << (unsigned) CompatIndices.size();
 | 
						|
    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
 | 
						|
         E = CompatIndices.end(); I != E; ++I) {
 | 
						|
      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
 | 
						|
           diag::note_compat_assoc)
 | 
						|
        << Types[*I]->getTypeLoc().getSourceRange()
 | 
						|
        << Types[*I]->getType();
 | 
						|
    }
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // C1X 6.5.1.1p2 "If a generic selection has no default generic association,
 | 
						|
  // its controlling expression shall have type compatible with exactly one of
 | 
						|
  // the types named in its generic association list."
 | 
						|
  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
 | 
						|
    // We strip parens here because the controlling expression is typically
 | 
						|
    // parenthesized in macro definitions.
 | 
						|
    ControllingExpr = ControllingExpr->IgnoreParens();
 | 
						|
    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
 | 
						|
      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // C1X 6.5.1.1p3 "If a generic selection has a generic association with a
 | 
						|
  // type name that is compatible with the type of the controlling expression,
 | 
						|
  // then the result expression of the generic selection is the expression
 | 
						|
  // in that generic association. Otherwise, the result expression of the
 | 
						|
  // generic selection is the expression in the default generic association."
 | 
						|
  unsigned ResultIndex =
 | 
						|
    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
 | 
						|
 | 
						|
  return Owned(new (Context) GenericSelectionExpr(
 | 
						|
                 Context, KeyLoc, ControllingExpr,
 | 
						|
                 Types, Exprs, NumAssocs, DefaultLoc,
 | 
						|
                 RParenLoc, ContainsUnexpandedParameterPack,
 | 
						|
                 ResultIndex));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
 | 
						|
/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
 | 
						|
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
 | 
						|
/// multiple tokens.  However, the common case is that StringToks points to one
 | 
						|
/// string.
 | 
						|
///
 | 
						|
ExprResult
 | 
						|
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
 | 
						|
  assert(NumStringToks && "Must have at least one string!");
 | 
						|
 | 
						|
  StringLiteralParser Literal(StringToks, NumStringToks, PP);
 | 
						|
  if (Literal.hadError)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  SmallVector<SourceLocation, 4> StringTokLocs;
 | 
						|
  for (unsigned i = 0; i != NumStringToks; ++i)
 | 
						|
    StringTokLocs.push_back(StringToks[i].getLocation());
 | 
						|
 | 
						|
  QualType StrTy = Context.CharTy;
 | 
						|
  if (Literal.isWide())
 | 
						|
    StrTy = Context.getWCharType();
 | 
						|
  else if (Literal.isUTF16())
 | 
						|
    StrTy = Context.Char16Ty;
 | 
						|
  else if (Literal.isUTF32())
 | 
						|
    StrTy = Context.Char32Ty;
 | 
						|
  else if (Literal.Pascal)
 | 
						|
    StrTy = Context.UnsignedCharTy;
 | 
						|
 | 
						|
  StringLiteral::StringKind Kind = StringLiteral::Ascii;
 | 
						|
  if (Literal.isWide())
 | 
						|
    Kind = StringLiteral::Wide;
 | 
						|
  else if (Literal.isUTF8())
 | 
						|
    Kind = StringLiteral::UTF8;
 | 
						|
  else if (Literal.isUTF16())
 | 
						|
    Kind = StringLiteral::UTF16;
 | 
						|
  else if (Literal.isUTF32())
 | 
						|
    Kind = StringLiteral::UTF32;
 | 
						|
 | 
						|
  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
 | 
						|
  if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
 | 
						|
    StrTy.addConst();
 | 
						|
 | 
						|
  // Get an array type for the string, according to C99 6.4.5.  This includes
 | 
						|
  // the nul terminator character as well as the string length for pascal
 | 
						|
  // strings.
 | 
						|
  StrTy = Context.getConstantArrayType(StrTy,
 | 
						|
                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
 | 
						|
                                       ArrayType::Normal, 0);
 | 
						|
 | 
						|
  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
 | 
						|
  return Owned(StringLiteral::Create(Context, Literal.GetString(),
 | 
						|
                                     Kind, Literal.Pascal, StrTy,
 | 
						|
                                     &StringTokLocs[0],
 | 
						|
                                     StringTokLocs.size()));
 | 
						|
}
 | 
						|
 | 
						|
enum CaptureResult {
 | 
						|
  /// No capture is required.
 | 
						|
  CR_NoCapture,
 | 
						|
 | 
						|
  /// A capture is required.
 | 
						|
  CR_Capture,
 | 
						|
 | 
						|
  /// A by-ref capture is required.
 | 
						|
  CR_CaptureByRef,
 | 
						|
 | 
						|
  /// An error occurred when trying to capture the given variable.
 | 
						|
  CR_Error
 | 
						|
};
 | 
						|
 | 
						|
/// Diagnose an uncapturable value reference.
 | 
						|
///
 | 
						|
/// \param var - the variable referenced
 | 
						|
/// \param DC - the context which we couldn't capture through
 | 
						|
static CaptureResult
 | 
						|
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
 | 
						|
                                   VarDecl *var, DeclContext *DC) {
 | 
						|
  switch (S.ExprEvalContexts.back().Context) {
 | 
						|
  case Sema::Unevaluated:
 | 
						|
    // The argument will never be evaluated, so don't complain.
 | 
						|
    return CR_NoCapture;
 | 
						|
 | 
						|
  case Sema::PotentiallyEvaluated:
 | 
						|
  case Sema::PotentiallyEvaluatedIfUsed:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::PotentiallyPotentiallyEvaluated:
 | 
						|
    // FIXME: delay these!
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't diagnose about capture if we're not actually in code right
 | 
						|
  // now; in general, there are more appropriate places that will
 | 
						|
  // diagnose this.
 | 
						|
  if (!S.CurContext->isFunctionOrMethod()) return CR_NoCapture;
 | 
						|
 | 
						|
  // Certain madnesses can happen with parameter declarations, which
 | 
						|
  // we want to ignore.
 | 
						|
  if (isa<ParmVarDecl>(var)) {
 | 
						|
    // - If the parameter still belongs to the translation unit, then
 | 
						|
    //   we're actually just using one parameter in the declaration of
 | 
						|
    //   the next.  This is useful in e.g. VLAs.
 | 
						|
    if (isa<TranslationUnitDecl>(var->getDeclContext()))
 | 
						|
      return CR_NoCapture;
 | 
						|
 | 
						|
    // - This particular madness can happen in ill-formed default
 | 
						|
    //   arguments; claim it's okay and let downstream code handle it.
 | 
						|
    if (S.CurContext == var->getDeclContext()->getParent())
 | 
						|
      return CR_NoCapture;
 | 
						|
  }
 | 
						|
 | 
						|
  DeclarationName functionName;
 | 
						|
  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(var->getDeclContext()))
 | 
						|
    functionName = fn->getDeclName();
 | 
						|
  // FIXME: variable from enclosing block that we couldn't capture from!
 | 
						|
 | 
						|
  S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
 | 
						|
    << var->getIdentifier() << functionName;
 | 
						|
  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
 | 
						|
    << var->getIdentifier();
 | 
						|
 | 
						|
  return CR_Error;
 | 
						|
}
 | 
						|
 | 
						|
/// There is a well-formed capture at a particular scope level;
 | 
						|
/// propagate it through all the nested blocks.
 | 
						|
static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
 | 
						|
                                      const BlockDecl::Capture &capture) {
 | 
						|
  VarDecl *var = capture.getVariable();
 | 
						|
 | 
						|
  // Update all the inner blocks with the capture information.
 | 
						|
  for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
 | 
						|
         i != e; ++i) {
 | 
						|
    BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
 | 
						|
    innerBlock->Captures.push_back(
 | 
						|
      BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
 | 
						|
                         /*nested*/ true, capture.getCopyExpr()));
 | 
						|
    innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
 | 
						|
  }
 | 
						|
 | 
						|
  return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
 | 
						|
}
 | 
						|
 | 
						|
/// shouldCaptureValueReference - Determine if a reference to the
 | 
						|
/// given value in the current context requires a variable capture.
 | 
						|
///
 | 
						|
/// This also keeps the captures set in the BlockScopeInfo records
 | 
						|
/// up-to-date.
 | 
						|
static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
 | 
						|
                                                 ValueDecl *value) {
 | 
						|
  // Only variables ever require capture.
 | 
						|
  VarDecl *var = dyn_cast<VarDecl>(value);
 | 
						|
  if (!var) return CR_NoCapture;
 | 
						|
 | 
						|
  // Fast path: variables from the current context never require capture.
 | 
						|
  DeclContext *DC = S.CurContext;
 | 
						|
  if (var->getDeclContext() == DC) return CR_NoCapture;
 | 
						|
 | 
						|
  // Only variables with local storage require capture.
 | 
						|
  // FIXME: What about 'const' variables in C++?
 | 
						|
  if (!var->hasLocalStorage()) return CR_NoCapture;
 | 
						|
 | 
						|
  // Otherwise, we need to capture.
 | 
						|
 | 
						|
  unsigned functionScopesIndex = S.FunctionScopes.size() - 1;
 | 
						|
  do {
 | 
						|
    // Only blocks (and eventually C++0x closures) can capture; other
 | 
						|
    // scopes don't work.
 | 
						|
    if (!isa<BlockDecl>(DC))
 | 
						|
      return diagnoseUncapturableValueReference(S, loc, var, DC);
 | 
						|
 | 
						|
    BlockScopeInfo *blockScope =
 | 
						|
      cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
 | 
						|
    assert(blockScope->TheDecl == static_cast<BlockDecl*>(DC));
 | 
						|
 | 
						|
    // Check whether we've already captured it in this block.  If so,
 | 
						|
    // we're done.
 | 
						|
    if (unsigned indexPlus1 = blockScope->CaptureMap[var])
 | 
						|
      return propagateCapture(S, functionScopesIndex,
 | 
						|
                              blockScope->Captures[indexPlus1 - 1]);
 | 
						|
 | 
						|
    functionScopesIndex--;
 | 
						|
    DC = cast<BlockDecl>(DC)->getDeclContext();
 | 
						|
  } while (var->getDeclContext() != DC);
 | 
						|
 | 
						|
  // Okay, we descended all the way to the block that defines the variable.
 | 
						|
  // Actually try to capture it.
 | 
						|
  QualType type = var->getType();
 | 
						|
 | 
						|
  // Prohibit variably-modified types.
 | 
						|
  if (type->isVariablyModifiedType()) {
 | 
						|
    S.Diag(loc, diag::err_ref_vm_type);
 | 
						|
    S.Diag(var->getLocation(), diag::note_declared_at);
 | 
						|
    return CR_Error;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prohibit arrays, even in __block variables, but not references to
 | 
						|
  // them.
 | 
						|
  if (type->isArrayType()) {
 | 
						|
    S.Diag(loc, diag::err_ref_array_type);
 | 
						|
    S.Diag(var->getLocation(), diag::note_declared_at);
 | 
						|
    return CR_Error;
 | 
						|
  }
 | 
						|
 | 
						|
  S.MarkDeclarationReferenced(loc, var);
 | 
						|
 | 
						|
  // The BlocksAttr indicates the variable is bound by-reference.
 | 
						|
  bool byRef = var->hasAttr<BlocksAttr>();
 | 
						|
 | 
						|
  // Build a copy expression.
 | 
						|
  Expr *copyExpr = 0;
 | 
						|
  const RecordType *rtype;
 | 
						|
  if (!byRef && S.getLangOptions().CPlusPlus && !type->isDependentType() &&
 | 
						|
      (rtype = type->getAs<RecordType>())) {
 | 
						|
 | 
						|
    // The capture logic needs the destructor, so make sure we mark it.
 | 
						|
    // Usually this is unnecessary because most local variables have
 | 
						|
    // their destructors marked at declaration time, but parameters are
 | 
						|
    // an exception because it's technically only the call site that
 | 
						|
    // actually requires the destructor.
 | 
						|
    if (isa<ParmVarDecl>(var))
 | 
						|
      S.FinalizeVarWithDestructor(var, rtype);
 | 
						|
 | 
						|
    // According to the blocks spec, the capture of a variable from
 | 
						|
    // the stack requires a const copy constructor.  This is not true
 | 
						|
    // of the copy/move done to move a __block variable to the heap.
 | 
						|
    type.addConst();
 | 
						|
 | 
						|
    Expr *declRef = new (S.Context) DeclRefExpr(var, type, VK_LValue, loc);
 | 
						|
    ExprResult result =
 | 
						|
      S.PerformCopyInitialization(
 | 
						|
                      InitializedEntity::InitializeBlock(var->getLocation(),
 | 
						|
                                                         type, false),
 | 
						|
                                  loc, S.Owned(declRef));
 | 
						|
 | 
						|
    // Build a full-expression copy expression if initialization
 | 
						|
    // succeeded and used a non-trivial constructor.  Recover from
 | 
						|
    // errors by pretending that the copy isn't necessary.
 | 
						|
    if (!result.isInvalid() &&
 | 
						|
        !cast<CXXConstructExpr>(result.get())->getConstructor()->isTrivial()) {
 | 
						|
      result = S.MaybeCreateExprWithCleanups(result);
 | 
						|
      copyExpr = result.take();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We're currently at the declarer; go back to the closure.
 | 
						|
  functionScopesIndex++;
 | 
						|
  BlockScopeInfo *blockScope =
 | 
						|
    cast<BlockScopeInfo>(S.FunctionScopes[functionScopesIndex]);
 | 
						|
 | 
						|
  // Build a valid capture in this scope.
 | 
						|
  blockScope->Captures.push_back(
 | 
						|
                 BlockDecl::Capture(var, byRef, /*nested*/ false, copyExpr));
 | 
						|
  blockScope->CaptureMap[var] = blockScope->Captures.size(); // +1
 | 
						|
 | 
						|
  // Propagate that to inner captures if necessary.
 | 
						|
  return propagateCapture(S, functionScopesIndex,
 | 
						|
                          blockScope->Captures.back());
 | 
						|
}
 | 
						|
 | 
						|
static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
 | 
						|
                                        const DeclarationNameInfo &NameInfo,
 | 
						|
                                        bool byRef) {
 | 
						|
  assert(isa<VarDecl>(vd) && "capturing non-variable");
 | 
						|
 | 
						|
  VarDecl *var = cast<VarDecl>(vd);
 | 
						|
  assert(var->hasLocalStorage() && "capturing non-local");
 | 
						|
  assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
 | 
						|
 | 
						|
  QualType exprType = var->getType().getNonReferenceType();
 | 
						|
 | 
						|
  BlockDeclRefExpr *BDRE;
 | 
						|
  if (!byRef) {
 | 
						|
    // The variable will be bound by copy; make it const within the
 | 
						|
    // closure, but record that this was done in the expression.
 | 
						|
    bool constAdded = !exprType.isConstQualified();
 | 
						|
    exprType.addConst();
 | 
						|
 | 
						|
    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
 | 
						|
                                            NameInfo.getLoc(), false,
 | 
						|
                                            constAdded);
 | 
						|
  } else {
 | 
						|
    BDRE = new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
 | 
						|
                                            NameInfo.getLoc(), true);
 | 
						|
  }
 | 
						|
 | 
						|
  return S.Owned(BDRE);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
 | 
						|
                       SourceLocation Loc,
 | 
						|
                       const CXXScopeSpec *SS) {
 | 
						|
  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
 | 
						|
  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildDeclRefExpr - Build an expression that references a
 | 
						|
/// declaration that does not require a closure capture.
 | 
						|
ExprResult
 | 
						|
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
 | 
						|
                       const DeclarationNameInfo &NameInfo,
 | 
						|
                       const CXXScopeSpec *SS) {
 | 
						|
  MarkDeclarationReferenced(NameInfo.getLoc(), D);
 | 
						|
 | 
						|
  Expr *E = DeclRefExpr::Create(Context,
 | 
						|
                                SS? SS->getWithLocInContext(Context) 
 | 
						|
                                  : NestedNameSpecifierLoc(),
 | 
						|
                                D, NameInfo, Ty, VK);
 | 
						|
 | 
						|
  // Just in case we're building an illegal pointer-to-member.
 | 
						|
  if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
 | 
						|
    E->setObjectKind(OK_BitField);
 | 
						|
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
/// Decomposes the given name into a DeclarationNameInfo, its location, and
 | 
						|
/// possibly a list of template arguments.
 | 
						|
///
 | 
						|
/// If this produces template arguments, it is permitted to call
 | 
						|
/// DecomposeTemplateName.
 | 
						|
///
 | 
						|
/// This actually loses a lot of source location information for
 | 
						|
/// non-standard name kinds; we should consider preserving that in
 | 
						|
/// some way.
 | 
						|
void
 | 
						|
Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
 | 
						|
                             TemplateArgumentListInfo &Buffer,
 | 
						|
                             DeclarationNameInfo &NameInfo,
 | 
						|
                             const TemplateArgumentListInfo *&TemplateArgs) {
 | 
						|
  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
 | 
						|
    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
 | 
						|
    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
 | 
						|
 | 
						|
    ASTTemplateArgsPtr TemplateArgsPtr(*this,
 | 
						|
                                       Id.TemplateId->getTemplateArgs(),
 | 
						|
                                       Id.TemplateId->NumArgs);
 | 
						|
    translateTemplateArguments(TemplateArgsPtr, Buffer);
 | 
						|
    TemplateArgsPtr.release();
 | 
						|
 | 
						|
    TemplateName TName = Id.TemplateId->Template.get();
 | 
						|
    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
 | 
						|
    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
 | 
						|
    TemplateArgs = &Buffer;
 | 
						|
  } else {
 | 
						|
    NameInfo = GetNameFromUnqualifiedId(Id);
 | 
						|
    TemplateArgs = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose an empty lookup.
 | 
						|
///
 | 
						|
/// \return false if new lookup candidates were found
 | 
						|
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
 | 
						|
                               CorrectTypoContext CTC,
 | 
						|
                               TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
                               Expr **Args, unsigned NumArgs) {
 | 
						|
  DeclarationName Name = R.getLookupName();
 | 
						|
 | 
						|
  unsigned diagnostic = diag::err_undeclared_var_use;
 | 
						|
  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
 | 
						|
  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
 | 
						|
      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
 | 
						|
      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
 | 
						|
    diagnostic = diag::err_undeclared_use;
 | 
						|
    diagnostic_suggest = diag::err_undeclared_use_suggest;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the original lookup was an unqualified lookup, fake an
 | 
						|
  // unqualified lookup.  This is useful when (for example) the
 | 
						|
  // original lookup would not have found something because it was a
 | 
						|
  // dependent name.
 | 
						|
  for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
 | 
						|
       DC; DC = DC->getParent()) {
 | 
						|
    if (isa<CXXRecordDecl>(DC)) {
 | 
						|
      LookupQualifiedName(R, DC);
 | 
						|
 | 
						|
      if (!R.empty()) {
 | 
						|
        // Don't give errors about ambiguities in this lookup.
 | 
						|
        R.suppressDiagnostics();
 | 
						|
 | 
						|
        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
 | 
						|
        bool isInstance = CurMethod &&
 | 
						|
                          CurMethod->isInstance() &&
 | 
						|
                          DC == CurMethod->getParent();
 | 
						|
 | 
						|
        // Give a code modification hint to insert 'this->'.
 | 
						|
        // TODO: fixit for inserting 'Base<T>::' in the other cases.
 | 
						|
        // Actually quite difficult!
 | 
						|
        if (isInstance) {
 | 
						|
          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
 | 
						|
              CallsUndergoingInstantiation.back()->getCallee());
 | 
						|
          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
 | 
						|
              CurMethod->getInstantiatedFromMemberFunction());
 | 
						|
          if (DepMethod) {
 | 
						|
            Diag(R.getNameLoc(), diagnostic) << Name
 | 
						|
              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
 | 
						|
            QualType DepThisType = DepMethod->getThisType(Context);
 | 
						|
            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
 | 
						|
                                       R.getNameLoc(), DepThisType, false);
 | 
						|
            TemplateArgumentListInfo TList;
 | 
						|
            if (ULE->hasExplicitTemplateArgs())
 | 
						|
              ULE->copyTemplateArgumentsInto(TList);
 | 
						|
            
 | 
						|
            CXXScopeSpec SS;
 | 
						|
            SS.Adopt(ULE->getQualifierLoc());
 | 
						|
            CXXDependentScopeMemberExpr *DepExpr =
 | 
						|
                CXXDependentScopeMemberExpr::Create(
 | 
						|
                    Context, DepThis, DepThisType, true, SourceLocation(),
 | 
						|
                    SS.getWithLocInContext(Context), NULL,
 | 
						|
                    R.getLookupNameInfo(),
 | 
						|
                    ULE->hasExplicitTemplateArgs() ? &TList : 0);
 | 
						|
            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
 | 
						|
          } else {
 | 
						|
            // FIXME: we should be able to handle this case too. It is correct
 | 
						|
            // to add this-> here. This is a workaround for PR7947.
 | 
						|
            Diag(R.getNameLoc(), diagnostic) << Name;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          Diag(R.getNameLoc(), diagnostic) << Name;
 | 
						|
        }
 | 
						|
 | 
						|
        // Do we really want to note all of these?
 | 
						|
        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | 
						|
          Diag((*I)->getLocation(), diag::note_dependent_var_use);
 | 
						|
 | 
						|
        // Tell the callee to try to recover.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      R.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We didn't find anything, so try to correct for a typo.
 | 
						|
  TypoCorrection Corrected;
 | 
						|
  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
 | 
						|
                                    S, &SS, NULL, false, CTC))) {
 | 
						|
    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
 | 
						|
    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
 | 
						|
    R.setLookupName(Corrected.getCorrection());
 | 
						|
 | 
						|
    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
 | 
						|
      if (Corrected.isOverloaded()) {
 | 
						|
        OverloadCandidateSet OCS(R.getNameLoc());
 | 
						|
        OverloadCandidateSet::iterator Best;
 | 
						|
        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
 | 
						|
                                        CDEnd = Corrected.end();
 | 
						|
             CD != CDEnd; ++CD) {
 | 
						|
          if (FunctionTemplateDecl *FTD =
 | 
						|
                   dyn_cast<FunctionTemplateDecl>(*CD))
 | 
						|
            AddTemplateOverloadCandidate(
 | 
						|
                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
 | 
						|
                Args, NumArgs, OCS);
 | 
						|
          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
 | 
						|
            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
 | 
						|
              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
 | 
						|
                                   Args, NumArgs, OCS);
 | 
						|
        }
 | 
						|
        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
 | 
						|
          case OR_Success:
 | 
						|
            ND = Best->Function;
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      R.addDecl(ND);
 | 
						|
      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
 | 
						|
        if (SS.isEmpty())
 | 
						|
          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
 | 
						|
            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
 | 
						|
        else
 | 
						|
          Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | 
						|
            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
 | 
						|
            << SS.getRange()
 | 
						|
            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
 | 
						|
        if (ND)
 | 
						|
          Diag(ND->getLocation(), diag::note_previous_decl)
 | 
						|
            << CorrectedQuotedStr;
 | 
						|
 | 
						|
        // Tell the callee to try to recover.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
 | 
						|
        // FIXME: If we ended up with a typo for a type name or
 | 
						|
        // Objective-C class name, we're in trouble because the parser
 | 
						|
        // is in the wrong place to recover. Suggest the typo
 | 
						|
        // correction, but don't make it a fix-it since we're not going
 | 
						|
        // to recover well anyway.
 | 
						|
        if (SS.isEmpty())
 | 
						|
          Diag(R.getNameLoc(), diagnostic_suggest)
 | 
						|
            << Name << CorrectedQuotedStr;
 | 
						|
        else
 | 
						|
          Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | 
						|
            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
 | 
						|
            << SS.getRange();
 | 
						|
 | 
						|
        // Don't try to recover; it won't work.
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
 | 
						|
      // because we aren't able to recover.
 | 
						|
      if (SS.isEmpty())
 | 
						|
        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
 | 
						|
      else
 | 
						|
        Diag(R.getNameLoc(), diag::err_no_member_suggest)
 | 
						|
        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
 | 
						|
        << SS.getRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  R.clear();
 | 
						|
 | 
						|
  // Emit a special diagnostic for failed member lookups.
 | 
						|
  // FIXME: computing the declaration context might fail here (?)
 | 
						|
  if (!SS.isEmpty()) {
 | 
						|
    Diag(R.getNameLoc(), diag::err_no_member)
 | 
						|
      << Name << computeDeclContext(SS, false)
 | 
						|
      << SS.getRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Give up, we can't recover.
 | 
						|
  Diag(R.getNameLoc(), diagnostic) << Name;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnIdExpression(Scope *S,
 | 
						|
                                   CXXScopeSpec &SS,
 | 
						|
                                   UnqualifiedId &Id,
 | 
						|
                                   bool HasTrailingLParen,
 | 
						|
                                   bool isAddressOfOperand) {
 | 
						|
  assert(!(isAddressOfOperand && HasTrailingLParen) &&
 | 
						|
         "cannot be direct & operand and have a trailing lparen");
 | 
						|
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  TemplateArgumentListInfo TemplateArgsBuffer;
 | 
						|
 | 
						|
  // Decompose the UnqualifiedId into the following data.
 | 
						|
  DeclarationNameInfo NameInfo;
 | 
						|
  const TemplateArgumentListInfo *TemplateArgs;
 | 
						|
  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
 | 
						|
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
  IdentifierInfo *II = Name.getAsIdentifierInfo();
 | 
						|
  SourceLocation NameLoc = NameInfo.getLoc();
 | 
						|
 | 
						|
  // C++ [temp.dep.expr]p3:
 | 
						|
  //   An id-expression is type-dependent if it contains:
 | 
						|
  //     -- an identifier that was declared with a dependent type,
 | 
						|
  //        (note: handled after lookup)
 | 
						|
  //     -- a template-id that is dependent,
 | 
						|
  //        (note: handled in BuildTemplateIdExpr)
 | 
						|
  //     -- a conversion-function-id that specifies a dependent type,
 | 
						|
  //     -- a nested-name-specifier that contains a class-name that
 | 
						|
  //        names a dependent type.
 | 
						|
  // Determine whether this is a member of an unknown specialization;
 | 
						|
  // we need to handle these differently.
 | 
						|
  bool DependentID = false;
 | 
						|
  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
 | 
						|
      Name.getCXXNameType()->isDependentType()) {
 | 
						|
    DependentID = true;
 | 
						|
  } else if (SS.isSet()) {
 | 
						|
    if (DeclContext *DC = computeDeclContext(SS, false)) {
 | 
						|
      if (RequireCompleteDeclContext(SS, DC))
 | 
						|
        return ExprError();
 | 
						|
    } else {
 | 
						|
      DependentID = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (DependentID)
 | 
						|
    return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
 | 
						|
                                      TemplateArgs);
 | 
						|
 | 
						|
  bool IvarLookupFollowUp = false;
 | 
						|
  // Perform the required lookup.
 | 
						|
  LookupResult R(*this, NameInfo, 
 | 
						|
                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam) 
 | 
						|
                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
 | 
						|
  if (TemplateArgs) {
 | 
						|
    // Lookup the template name again to correctly establish the context in
 | 
						|
    // which it was found. This is really unfortunate as we already did the
 | 
						|
    // lookup to determine that it was a template name in the first place. If
 | 
						|
    // this becomes a performance hit, we can work harder to preserve those
 | 
						|
    // results until we get here but it's likely not worth it.
 | 
						|
    bool MemberOfUnknownSpecialization;
 | 
						|
    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
 | 
						|
                       MemberOfUnknownSpecialization);
 | 
						|
    
 | 
						|
    if (MemberOfUnknownSpecialization ||
 | 
						|
        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
 | 
						|
      return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
 | 
						|
                                        TemplateArgs);
 | 
						|
  } else {
 | 
						|
    IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
 | 
						|
    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
 | 
						|
 | 
						|
    // If the result might be in a dependent base class, this is a dependent 
 | 
						|
    // id-expression.
 | 
						|
    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
 | 
						|
      return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
 | 
						|
                                        TemplateArgs);
 | 
						|
      
 | 
						|
    // If this reference is in an Objective-C method, then we need to do
 | 
						|
    // some special Objective-C lookup, too.
 | 
						|
    if (IvarLookupFollowUp) {
 | 
						|
      ExprResult E(LookupInObjCMethod(R, S, II, true));
 | 
						|
      if (E.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      if (Expr *Ex = E.takeAs<Expr>())
 | 
						|
        return Owned(Ex);
 | 
						|
      
 | 
						|
      // for further use, this must be set to false if in class method.
 | 
						|
      IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (R.isAmbiguous())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Determine whether this name might be a candidate for
 | 
						|
  // argument-dependent lookup.
 | 
						|
  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
 | 
						|
 | 
						|
  if (R.empty() && !ADL) {
 | 
						|
    // Otherwise, this could be an implicitly declared function reference (legal
 | 
						|
    // in C90, extension in C99, forbidden in C++).
 | 
						|
    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
 | 
						|
      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
 | 
						|
      if (D) R.addDecl(D);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this name wasn't predeclared and if this is not a function
 | 
						|
    // call, diagnose the problem.
 | 
						|
    if (R.empty()) {
 | 
						|
      if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      assert(!R.empty() &&
 | 
						|
             "DiagnoseEmptyLookup returned false but added no results");
 | 
						|
 | 
						|
      // If we found an Objective-C instance variable, let
 | 
						|
      // LookupInObjCMethod build the appropriate expression to
 | 
						|
      // reference the ivar.
 | 
						|
      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
 | 
						|
        R.clear();
 | 
						|
        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
 | 
						|
        assert(E.isInvalid() || E.get());
 | 
						|
        return move(E);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This is guaranteed from this point on.
 | 
						|
  assert(!R.empty() || ADL);
 | 
						|
 | 
						|
  // Check whether this might be a C++ implicit instance member access.
 | 
						|
  // C++ [class.mfct.non-static]p3:
 | 
						|
  //   When an id-expression that is not part of a class member access
 | 
						|
  //   syntax and not used to form a pointer to member is used in the
 | 
						|
  //   body of a non-static member function of class X, if name lookup
 | 
						|
  //   resolves the name in the id-expression to a non-static non-type
 | 
						|
  //   member of some class C, the id-expression is transformed into a
 | 
						|
  //   class member access expression using (*this) as the
 | 
						|
  //   postfix-expression to the left of the . operator.
 | 
						|
  //
 | 
						|
  // But we don't actually need to do this for '&' operands if R
 | 
						|
  // resolved to a function or overloaded function set, because the
 | 
						|
  // expression is ill-formed if it actually works out to be a
 | 
						|
  // non-static member function:
 | 
						|
  //
 | 
						|
  // C++ [expr.ref]p4:
 | 
						|
  //   Otherwise, if E1.E2 refers to a non-static member function. . .
 | 
						|
  //   [t]he expression can be used only as the left-hand operand of a
 | 
						|
  //   member function call.
 | 
						|
  //
 | 
						|
  // There are other safeguards against such uses, but it's important
 | 
						|
  // to get this right here so that we don't end up making a
 | 
						|
  // spuriously dependent expression if we're inside a dependent
 | 
						|
  // instance method.
 | 
						|
  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
 | 
						|
    bool MightBeImplicitMember;
 | 
						|
    if (!isAddressOfOperand)
 | 
						|
      MightBeImplicitMember = true;
 | 
						|
    else if (!SS.isEmpty())
 | 
						|
      MightBeImplicitMember = false;
 | 
						|
    else if (R.isOverloadedResult())
 | 
						|
      MightBeImplicitMember = false;
 | 
						|
    else if (R.isUnresolvableResult())
 | 
						|
      MightBeImplicitMember = true;
 | 
						|
    else
 | 
						|
      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
 | 
						|
                              isa<IndirectFieldDecl>(R.getFoundDecl());
 | 
						|
 | 
						|
    if (MightBeImplicitMember)
 | 
						|
      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TemplateArgs)
 | 
						|
    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
 | 
						|
 | 
						|
  return BuildDeclarationNameExpr(SS, R, ADL);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
 | 
						|
/// declaration name, generally during template instantiation.
 | 
						|
/// There's a large number of things which don't need to be done along
 | 
						|
/// this path.
 | 
						|
ExprResult
 | 
						|
Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
 | 
						|
                                        const DeclarationNameInfo &NameInfo) {
 | 
						|
  DeclContext *DC;
 | 
						|
  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
 | 
						|
    return BuildDependentDeclRefExpr(SS, NameInfo, 0);
 | 
						|
 | 
						|
  if (RequireCompleteDeclContext(SS, DC))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(R, DC);
 | 
						|
 | 
						|
  if (R.isAmbiguous())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (R.empty()) {
 | 
						|
    Diag(NameInfo.getLoc(), diag::err_no_member)
 | 
						|
      << NameInfo.getName() << DC << SS.getRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
 | 
						|
}
 | 
						|
 | 
						|
/// LookupInObjCMethod - The parser has read a name in, and Sema has
 | 
						|
/// detected that we're currently inside an ObjC method.  Perform some
 | 
						|
/// additional lookup.
 | 
						|
///
 | 
						|
/// Ideally, most of this would be done by lookup, but there's
 | 
						|
/// actually quite a lot of extra work involved.
 | 
						|
///
 | 
						|
/// Returns a null sentinel to indicate trivial success.
 | 
						|
ExprResult
 | 
						|
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
 | 
						|
                         IdentifierInfo *II, bool AllowBuiltinCreation) {
 | 
						|
  SourceLocation Loc = Lookup.getNameLoc();
 | 
						|
  ObjCMethodDecl *CurMethod = getCurMethodDecl();
 | 
						|
 | 
						|
  // There are two cases to handle here.  1) scoped lookup could have failed,
 | 
						|
  // in which case we should look for an ivar.  2) scoped lookup could have
 | 
						|
  // found a decl, but that decl is outside the current instance method (i.e.
 | 
						|
  // a global variable).  In these two cases, we do a lookup for an ivar with
 | 
						|
  // this name, if the lookup sucedes, we replace it our current decl.
 | 
						|
 | 
						|
  // If we're in a class method, we don't normally want to look for
 | 
						|
  // ivars.  But if we don't find anything else, and there's an
 | 
						|
  // ivar, that's an error.
 | 
						|
  bool IsClassMethod = CurMethod->isClassMethod();
 | 
						|
 | 
						|
  bool LookForIvars;
 | 
						|
  if (Lookup.empty())
 | 
						|
    LookForIvars = true;
 | 
						|
  else if (IsClassMethod)
 | 
						|
    LookForIvars = false;
 | 
						|
  else
 | 
						|
    LookForIvars = (Lookup.isSingleResult() &&
 | 
						|
                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
 | 
						|
  ObjCInterfaceDecl *IFace = 0;
 | 
						|
  if (LookForIvars) {
 | 
						|
    IFace = CurMethod->getClassInterface();
 | 
						|
    ObjCInterfaceDecl *ClassDeclared;
 | 
						|
    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
 | 
						|
      // Diagnose using an ivar in a class method.
 | 
						|
      if (IsClassMethod)
 | 
						|
        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
 | 
						|
                         << IV->getDeclName());
 | 
						|
 | 
						|
      // If we're referencing an invalid decl, just return this as a silent
 | 
						|
      // error node.  The error diagnostic was already emitted on the decl.
 | 
						|
      if (IV->isInvalidDecl())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // Check if referencing a field with __attribute__((deprecated)).
 | 
						|
      if (DiagnoseUseOfDecl(IV, Loc))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // Diagnose the use of an ivar outside of the declaring class.
 | 
						|
      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
 | 
						|
          ClassDeclared != IFace)
 | 
						|
        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
 | 
						|
 | 
						|
      // FIXME: This should use a new expr for a direct reference, don't
 | 
						|
      // turn this into Self->ivar, just return a BareIVarExpr or something.
 | 
						|
      IdentifierInfo &II = Context.Idents.get("self");
 | 
						|
      UnqualifiedId SelfName;
 | 
						|
      SelfName.setIdentifier(&II, SourceLocation());
 | 
						|
      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
 | 
						|
      CXXScopeSpec SelfScopeSpec;
 | 
						|
      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
 | 
						|
                                              SelfName, false, false);
 | 
						|
      if (SelfExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
 | 
						|
      if (SelfExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      MarkDeclarationReferenced(Loc, IV);
 | 
						|
      return Owned(new (Context)
 | 
						|
                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
 | 
						|
                                   SelfExpr.take(), true, true));
 | 
						|
    }
 | 
						|
  } else if (CurMethod->isInstanceMethod()) {
 | 
						|
    // We should warn if a local variable hides an ivar.
 | 
						|
    ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
 | 
						|
    ObjCInterfaceDecl *ClassDeclared;
 | 
						|
    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
 | 
						|
      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
 | 
						|
          IFace == ClassDeclared)
 | 
						|
        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Lookup.empty() && II && AllowBuiltinCreation) {
 | 
						|
    // FIXME. Consolidate this with similar code in LookupName.
 | 
						|
    if (unsigned BuiltinID = II->getBuiltinID()) {
 | 
						|
      if (!(getLangOptions().CPlusPlus &&
 | 
						|
            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
 | 
						|
        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
 | 
						|
                                           S, Lookup.isForRedeclaration(),
 | 
						|
                                           Lookup.getNameLoc());
 | 
						|
        if (D) Lookup.addDecl(D);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Sentinel value saying that we didn't do anything special.
 | 
						|
  return Owned((Expr*) 0);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Cast a base object to a member's actual type.
 | 
						|
///
 | 
						|
/// Logically this happens in three phases:
 | 
						|
///
 | 
						|
/// * First we cast from the base type to the naming class.
 | 
						|
///   The naming class is the class into which we were looking
 | 
						|
///   when we found the member;  it's the qualifier type if a
 | 
						|
///   qualifier was provided, and otherwise it's the base type.
 | 
						|
///
 | 
						|
/// * Next we cast from the naming class to the declaring class.
 | 
						|
///   If the member we found was brought into a class's scope by
 | 
						|
///   a using declaration, this is that class;  otherwise it's
 | 
						|
///   the class declaring the member.
 | 
						|
///
 | 
						|
/// * Finally we cast from the declaring class to the "true"
 | 
						|
///   declaring class of the member.  This conversion does not
 | 
						|
///   obey access control.
 | 
						|
ExprResult
 | 
						|
Sema::PerformObjectMemberConversion(Expr *From,
 | 
						|
                                    NestedNameSpecifier *Qualifier,
 | 
						|
                                    NamedDecl *FoundDecl,
 | 
						|
                                    NamedDecl *Member) {
 | 
						|
  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
 | 
						|
  if (!RD)
 | 
						|
    return Owned(From);
 | 
						|
 | 
						|
  QualType DestRecordType;
 | 
						|
  QualType DestType;
 | 
						|
  QualType FromRecordType;
 | 
						|
  QualType FromType = From->getType();
 | 
						|
  bool PointerConversions = false;
 | 
						|
  if (isa<FieldDecl>(Member)) {
 | 
						|
    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
 | 
						|
 | 
						|
    if (FromType->getAs<PointerType>()) {
 | 
						|
      DestType = Context.getPointerType(DestRecordType);
 | 
						|
      FromRecordType = FromType->getPointeeType();
 | 
						|
      PointerConversions = true;
 | 
						|
    } else {
 | 
						|
      DestType = DestRecordType;
 | 
						|
      FromRecordType = FromType;
 | 
						|
    }
 | 
						|
  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
 | 
						|
    if (Method->isStatic())
 | 
						|
      return Owned(From);
 | 
						|
 | 
						|
    DestType = Method->getThisType(Context);
 | 
						|
    DestRecordType = DestType->getPointeeType();
 | 
						|
 | 
						|
    if (FromType->getAs<PointerType>()) {
 | 
						|
      FromRecordType = FromType->getPointeeType();
 | 
						|
      PointerConversions = true;
 | 
						|
    } else {
 | 
						|
      FromRecordType = FromType;
 | 
						|
      DestType = DestRecordType;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // No conversion necessary.
 | 
						|
    return Owned(From);
 | 
						|
  }
 | 
						|
 | 
						|
  if (DestType->isDependentType() || FromType->isDependentType())
 | 
						|
    return Owned(From);
 | 
						|
 | 
						|
  // If the unqualified types are the same, no conversion is necessary.
 | 
						|
  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
 | 
						|
    return Owned(From);
 | 
						|
 | 
						|
  SourceRange FromRange = From->getSourceRange();
 | 
						|
  SourceLocation FromLoc = FromRange.getBegin();
 | 
						|
 | 
						|
  ExprValueKind VK = CastCategory(From);
 | 
						|
 | 
						|
  // C++ [class.member.lookup]p8:
 | 
						|
  //   [...] Ambiguities can often be resolved by qualifying a name with its
 | 
						|
  //   class name.
 | 
						|
  //
 | 
						|
  // If the member was a qualified name and the qualified referred to a
 | 
						|
  // specific base subobject type, we'll cast to that intermediate type
 | 
						|
  // first and then to the object in which the member is declared. That allows
 | 
						|
  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
 | 
						|
  //
 | 
						|
  //   class Base { public: int x; };
 | 
						|
  //   class Derived1 : public Base { };
 | 
						|
  //   class Derived2 : public Base { };
 | 
						|
  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
 | 
						|
  //
 | 
						|
  //   void VeryDerived::f() {
 | 
						|
  //     x = 17; // error: ambiguous base subobjects
 | 
						|
  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
 | 
						|
  //   }
 | 
						|
  if (Qualifier) {
 | 
						|
    QualType QType = QualType(Qualifier->getAsType(), 0);
 | 
						|
    assert(!QType.isNull() && "lookup done with dependent qualifier?");
 | 
						|
    assert(QType->isRecordType() && "lookup done with non-record type");
 | 
						|
 | 
						|
    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
 | 
						|
 | 
						|
    // In C++98, the qualifier type doesn't actually have to be a base
 | 
						|
    // type of the object type, in which case we just ignore it.
 | 
						|
    // Otherwise build the appropriate casts.
 | 
						|
    if (IsDerivedFrom(FromRecordType, QRecordType)) {
 | 
						|
      CXXCastPath BasePath;
 | 
						|
      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
 | 
						|
                                       FromLoc, FromRange, &BasePath))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      if (PointerConversions)
 | 
						|
        QType = Context.getPointerType(QType);
 | 
						|
      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
 | 
						|
                               VK, &BasePath).take();
 | 
						|
 | 
						|
      FromType = QType;
 | 
						|
      FromRecordType = QRecordType;
 | 
						|
 | 
						|
      // If the qualifier type was the same as the destination type,
 | 
						|
      // we're done.
 | 
						|
      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
 | 
						|
        return Owned(From);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool IgnoreAccess = false;
 | 
						|
 | 
						|
  // If we actually found the member through a using declaration, cast
 | 
						|
  // down to the using declaration's type.
 | 
						|
  //
 | 
						|
  // Pointer equality is fine here because only one declaration of a
 | 
						|
  // class ever has member declarations.
 | 
						|
  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
 | 
						|
    assert(isa<UsingShadowDecl>(FoundDecl));
 | 
						|
    QualType URecordType = Context.getTypeDeclType(
 | 
						|
                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
 | 
						|
 | 
						|
    // We only need to do this if the naming-class to declaring-class
 | 
						|
    // conversion is non-trivial.
 | 
						|
    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
 | 
						|
      assert(IsDerivedFrom(FromRecordType, URecordType));
 | 
						|
      CXXCastPath BasePath;
 | 
						|
      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
 | 
						|
                                       FromLoc, FromRange, &BasePath))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      QualType UType = URecordType;
 | 
						|
      if (PointerConversions)
 | 
						|
        UType = Context.getPointerType(UType);
 | 
						|
      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
 | 
						|
                               VK, &BasePath).take();
 | 
						|
      FromType = UType;
 | 
						|
      FromRecordType = URecordType;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't do access control for the conversion from the
 | 
						|
    // declaring class to the true declaring class.
 | 
						|
    IgnoreAccess = true;
 | 
						|
  }
 | 
						|
 | 
						|
  CXXCastPath BasePath;
 | 
						|
  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
 | 
						|
                                   FromLoc, FromRange, &BasePath,
 | 
						|
                                   IgnoreAccess))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
 | 
						|
                           VK, &BasePath);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
 | 
						|
                                      const LookupResult &R,
 | 
						|
                                      bool HasTrailingLParen) {
 | 
						|
  // Only when used directly as the postfix-expression of a call.
 | 
						|
  if (!HasTrailingLParen)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Never if a scope specifier was provided.
 | 
						|
  if (SS.isSet())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only in C++ or ObjC++.
 | 
						|
  if (!getLangOptions().CPlusPlus)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Turn off ADL when we find certain kinds of declarations during
 | 
						|
  // normal lookup:
 | 
						|
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | 
						|
    NamedDecl *D = *I;
 | 
						|
 | 
						|
    // C++0x [basic.lookup.argdep]p3:
 | 
						|
    //     -- a declaration of a class member
 | 
						|
    // Since using decls preserve this property, we check this on the
 | 
						|
    // original decl.
 | 
						|
    if (D->isCXXClassMember())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // C++0x [basic.lookup.argdep]p3:
 | 
						|
    //     -- a block-scope function declaration that is not a
 | 
						|
    //        using-declaration
 | 
						|
    // NOTE: we also trigger this for function templates (in fact, we
 | 
						|
    // don't check the decl type at all, since all other decl types
 | 
						|
    // turn off ADL anyway).
 | 
						|
    if (isa<UsingShadowDecl>(D))
 | 
						|
      D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
    else if (D->getDeclContext()->isFunctionOrMethod())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // C++0x [basic.lookup.argdep]p3:
 | 
						|
    //     -- a declaration that is neither a function or a function
 | 
						|
    //        template
 | 
						|
    // And also for builtin functions.
 | 
						|
    if (isa<FunctionDecl>(D)) {
 | 
						|
      FunctionDecl *FDecl = cast<FunctionDecl>(D);
 | 
						|
 | 
						|
      // But also builtin functions.
 | 
						|
      if (FDecl->getBuiltinID() && FDecl->isImplicit())
 | 
						|
        return false;
 | 
						|
    } else if (!isa<FunctionTemplateDecl>(D))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Diagnoses obvious problems with the use of the given declaration
 | 
						|
/// as an expression.  This is only actually called for lookups that
 | 
						|
/// were not overloaded, and it doesn't promise that the declaration
 | 
						|
/// will in fact be used.
 | 
						|
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
 | 
						|
  if (isa<TypedefNameDecl>(D)) {
 | 
						|
    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ObjCInterfaceDecl>(D)) {
 | 
						|
    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<NamespaceDecl>(D)) {
 | 
						|
    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
 | 
						|
                               LookupResult &R,
 | 
						|
                               bool NeedsADL) {
 | 
						|
  // If this is a single, fully-resolved result and we don't need ADL,
 | 
						|
  // just build an ordinary singleton decl ref.
 | 
						|
  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
 | 
						|
    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
 | 
						|
                                    R.getFoundDecl());
 | 
						|
 | 
						|
  // We only need to check the declaration if there's exactly one
 | 
						|
  // result, because in the overloaded case the results can only be
 | 
						|
  // functions and function templates.
 | 
						|
  if (R.isSingleResult() &&
 | 
						|
      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Otherwise, just build an unresolved lookup expression.  Suppress
 | 
						|
  // any lookup-related diagnostics; we'll hash these out later, when
 | 
						|
  // we've picked a target.
 | 
						|
  R.suppressDiagnostics();
 | 
						|
 | 
						|
  UnresolvedLookupExpr *ULE
 | 
						|
    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
 | 
						|
                                   SS.getWithLocInContext(Context),
 | 
						|
                                   R.getLookupNameInfo(),
 | 
						|
                                   NeedsADL, R.isOverloadedResult(),
 | 
						|
                                   R.begin(), R.end());
 | 
						|
 | 
						|
  return Owned(ULE);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Complete semantic analysis for a reference to the given declaration.
 | 
						|
ExprResult
 | 
						|
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
 | 
						|
                               const DeclarationNameInfo &NameInfo,
 | 
						|
                               NamedDecl *D) {
 | 
						|
  assert(D && "Cannot refer to a NULL declaration");
 | 
						|
  assert(!isa<FunctionTemplateDecl>(D) &&
 | 
						|
         "Cannot refer unambiguously to a function template");
 | 
						|
 | 
						|
  SourceLocation Loc = NameInfo.getLoc();
 | 
						|
  if (CheckDeclInExpr(*this, Loc, D))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
 | 
						|
    // Specifically diagnose references to class templates that are missing
 | 
						|
    // a template argument list.
 | 
						|
    Diag(Loc, diag::err_template_decl_ref)
 | 
						|
      << Template << SS.getRange();
 | 
						|
    Diag(Template->getLocation(), diag::note_template_decl_here);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that we're referring to a value.
 | 
						|
  ValueDecl *VD = dyn_cast<ValueDecl>(D);
 | 
						|
  if (!VD) {
 | 
						|
    Diag(Loc, diag::err_ref_non_value)
 | 
						|
      << D << SS.getRange();
 | 
						|
    Diag(D->getLocation(), diag::note_declared_at);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether this declaration can be used. Note that we suppress
 | 
						|
  // this check when we're going to perform argument-dependent lookup
 | 
						|
  // on this function name, because this might not be the function
 | 
						|
  // that overload resolution actually selects.
 | 
						|
  if (DiagnoseUseOfDecl(VD, Loc))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Only create DeclRefExpr's for valid Decl's.
 | 
						|
  if (VD->isInvalidDecl())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Handle members of anonymous structs and unions.  If we got here,
 | 
						|
  // and the reference is to a class member indirect field, then this
 | 
						|
  // must be the subject of a pointer-to-member expression.
 | 
						|
  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
 | 
						|
    if (!indirectField->isCXXClassMember())
 | 
						|
      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
 | 
						|
                                                      indirectField);
 | 
						|
 | 
						|
  // If the identifier reference is inside a block, and it refers to a value
 | 
						|
  // that is outside the block, create a BlockDeclRefExpr instead of a
 | 
						|
  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
 | 
						|
  // the block is formed.
 | 
						|
  //
 | 
						|
  // We do not do this for things like enum constants, global variables, etc,
 | 
						|
  // as they do not get snapshotted.
 | 
						|
  //
 | 
						|
  switch (shouldCaptureValueReference(*this, NameInfo.getLoc(), VD)) {
 | 
						|
  case CR_Error:
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  case CR_Capture:
 | 
						|
    assert(!SS.isSet() && "referenced local variable with scope specifier?");
 | 
						|
    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ false);
 | 
						|
 | 
						|
  case CR_CaptureByRef:
 | 
						|
    assert(!SS.isSet() && "referenced local variable with scope specifier?");
 | 
						|
    return BuildBlockDeclRefExpr(*this, VD, NameInfo, /*byref*/ true);
 | 
						|
 | 
						|
  case CR_NoCapture: {
 | 
						|
    // If this reference is not in a block or if the referenced
 | 
						|
    // variable is within the block, create a normal DeclRefExpr.
 | 
						|
 | 
						|
    QualType type = VD->getType();
 | 
						|
    ExprValueKind valueKind = VK_RValue;
 | 
						|
 | 
						|
    switch (D->getKind()) {
 | 
						|
    // Ignore all the non-ValueDecl kinds.
 | 
						|
#define ABSTRACT_DECL(kind)
 | 
						|
#define VALUE(type, base)
 | 
						|
#define DECL(type, base) \
 | 
						|
    case Decl::type:
 | 
						|
#include "clang/AST/DeclNodes.inc"
 | 
						|
      llvm_unreachable("invalid value decl kind");
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // These shouldn't make it here.
 | 
						|
    case Decl::ObjCAtDefsField:
 | 
						|
    case Decl::ObjCIvar:
 | 
						|
      llvm_unreachable("forming non-member reference to ivar?");
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // Enum constants are always r-values and never references.
 | 
						|
    // Unresolved using declarations are dependent.
 | 
						|
    case Decl::EnumConstant:
 | 
						|
    case Decl::UnresolvedUsingValue:
 | 
						|
      valueKind = VK_RValue;
 | 
						|
      break;
 | 
						|
 | 
						|
    // Fields and indirect fields that got here must be for
 | 
						|
    // pointer-to-member expressions; we just call them l-values for
 | 
						|
    // internal consistency, because this subexpression doesn't really
 | 
						|
    // exist in the high-level semantics.
 | 
						|
    case Decl::Field:
 | 
						|
    case Decl::IndirectField:
 | 
						|
      assert(getLangOptions().CPlusPlus &&
 | 
						|
             "building reference to field in C?");
 | 
						|
 | 
						|
      // These can't have reference type in well-formed programs, but
 | 
						|
      // for internal consistency we do this anyway.
 | 
						|
      type = type.getNonReferenceType();
 | 
						|
      valueKind = VK_LValue;
 | 
						|
      break;
 | 
						|
 | 
						|
    // Non-type template parameters are either l-values or r-values
 | 
						|
    // depending on the type.
 | 
						|
    case Decl::NonTypeTemplateParm: {
 | 
						|
      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
 | 
						|
        type = reftype->getPointeeType();
 | 
						|
        valueKind = VK_LValue; // even if the parameter is an r-value reference
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // For non-references, we need to strip qualifiers just in case
 | 
						|
      // the template parameter was declared as 'const int' or whatever.
 | 
						|
      valueKind = VK_RValue;
 | 
						|
      type = type.getUnqualifiedType();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Decl::Var:
 | 
						|
      // In C, "extern void blah;" is valid and is an r-value.
 | 
						|
      if (!getLangOptions().CPlusPlus &&
 | 
						|
          !type.hasQualifiers() &&
 | 
						|
          type->isVoidType()) {
 | 
						|
        valueKind = VK_RValue;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // fallthrough
 | 
						|
 | 
						|
    case Decl::ImplicitParam:
 | 
						|
    case Decl::ParmVar:
 | 
						|
      // These are always l-values.
 | 
						|
      valueKind = VK_LValue;
 | 
						|
      type = type.getNonReferenceType();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Decl::Function: {
 | 
						|
      const FunctionType *fty = type->castAs<FunctionType>();
 | 
						|
 | 
						|
      // If we're referring to a function with an __unknown_anytype
 | 
						|
      // result type, make the entire expression __unknown_anytype.
 | 
						|
      if (fty->getResultType() == Context.UnknownAnyTy) {
 | 
						|
        type = Context.UnknownAnyTy;
 | 
						|
        valueKind = VK_RValue;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Functions are l-values in C++.
 | 
						|
      if (getLangOptions().CPlusPlus) {
 | 
						|
        valueKind = VK_LValue;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // C99 DR 316 says that, if a function type comes from a
 | 
						|
      // function definition (without a prototype), that type is only
 | 
						|
      // used for checking compatibility. Therefore, when referencing
 | 
						|
      // the function, we pretend that we don't have the full function
 | 
						|
      // type.
 | 
						|
      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
 | 
						|
          isa<FunctionProtoType>(fty))
 | 
						|
        type = Context.getFunctionNoProtoType(fty->getResultType(),
 | 
						|
                                              fty->getExtInfo());
 | 
						|
 | 
						|
      // Functions are r-values in C.
 | 
						|
      valueKind = VK_RValue;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case Decl::CXXMethod:
 | 
						|
      // If we're referring to a method with an __unknown_anytype
 | 
						|
      // result type, make the entire expression __unknown_anytype.
 | 
						|
      // This should only be possible with a type written directly.
 | 
						|
      if (const FunctionProtoType *proto
 | 
						|
            = dyn_cast<FunctionProtoType>(VD->getType()))
 | 
						|
        if (proto->getResultType() == Context.UnknownAnyTy) {
 | 
						|
          type = Context.UnknownAnyTy;
 | 
						|
          valueKind = VK_RValue;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      // C++ methods are l-values if static, r-values if non-static.
 | 
						|
      if (cast<CXXMethodDecl>(VD)->isStatic()) {
 | 
						|
        valueKind = VK_LValue;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // fallthrough
 | 
						|
 | 
						|
    case Decl::CXXConversion:
 | 
						|
    case Decl::CXXDestructor:
 | 
						|
    case Decl::CXXConstructor:
 | 
						|
      valueKind = VK_RValue;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
 | 
						|
  }
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown capture result");
 | 
						|
  return ExprError();
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
 | 
						|
  PredefinedExpr::IdentType IT;
 | 
						|
 | 
						|
  switch (Kind) {
 | 
						|
  default: assert(0 && "Unknown simple primary expr!");
 | 
						|
  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
 | 
						|
  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
 | 
						|
  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Pre-defined identifiers are of type char[x], where x is the length of the
 | 
						|
  // string.
 | 
						|
 | 
						|
  Decl *currentDecl = getCurFunctionOrMethodDecl();
 | 
						|
  if (!currentDecl && getCurBlock())
 | 
						|
    currentDecl = getCurBlock()->TheDecl;
 | 
						|
  if (!currentDecl) {
 | 
						|
    Diag(Loc, diag::ext_predef_outside_function);
 | 
						|
    currentDecl = Context.getTranslationUnitDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ResTy;
 | 
						|
  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
 | 
						|
    ResTy = Context.DependentTy;
 | 
						|
  } else {
 | 
						|
    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
 | 
						|
 | 
						|
    llvm::APInt LengthI(32, Length + 1);
 | 
						|
    ResTy = Context.CharTy.withConst();
 | 
						|
    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
 | 
						|
  }
 | 
						|
  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
 | 
						|
  llvm::SmallString<16> CharBuffer;
 | 
						|
  bool Invalid = false;
 | 
						|
  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
 | 
						|
  if (Invalid)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
 | 
						|
                            PP, Tok.getKind());
 | 
						|
  if (Literal.hadError())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType Ty;
 | 
						|
  if (!getLangOptions().CPlusPlus)
 | 
						|
    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
 | 
						|
  else if (Literal.isWide())
 | 
						|
    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
 | 
						|
  else if (Literal.isUTF16())
 | 
						|
    Ty = Context.Char16Ty; // u'x' -> char16_t in C++0x.
 | 
						|
  else if (Literal.isUTF32())
 | 
						|
    Ty = Context.Char32Ty; // U'x' -> char32_t in C++0x.
 | 
						|
  else if (Literal.isMultiChar())
 | 
						|
    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
 | 
						|
  else
 | 
						|
    Ty = Context.CharTy;  // 'x' -> char in C++
 | 
						|
 | 
						|
  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
 | 
						|
  if (Literal.isWide())
 | 
						|
    Kind = CharacterLiteral::Wide;
 | 
						|
  else if (Literal.isUTF16())
 | 
						|
    Kind = CharacterLiteral::UTF16;
 | 
						|
  else if (Literal.isUTF32())
 | 
						|
    Kind = CharacterLiteral::UTF32;
 | 
						|
 | 
						|
  return Owned(new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
 | 
						|
                                              Tok.getLocation()));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
 | 
						|
  // Fast path for a single digit (which is quite common).  A single digit
 | 
						|
  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
 | 
						|
  if (Tok.getLength() == 1) {
 | 
						|
    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
 | 
						|
    unsigned IntSize = Context.getTargetInfo().getIntWidth();
 | 
						|
    return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
 | 
						|
                    Context.IntTy, Tok.getLocation()));
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::SmallString<512> IntegerBuffer;
 | 
						|
  // Add padding so that NumericLiteralParser can overread by one character.
 | 
						|
  IntegerBuffer.resize(Tok.getLength()+1);
 | 
						|
  const char *ThisTokBegin = &IntegerBuffer[0];
 | 
						|
 | 
						|
  // Get the spelling of the token, which eliminates trigraphs, etc.
 | 
						|
  bool Invalid = false;
 | 
						|
  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
 | 
						|
  if (Invalid)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
 | 
						|
                               Tok.getLocation(), PP);
 | 
						|
  if (Literal.hadError)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  Expr *Res;
 | 
						|
 | 
						|
  if (Literal.isFloatingLiteral()) {
 | 
						|
    QualType Ty;
 | 
						|
    if (Literal.isFloat)
 | 
						|
      Ty = Context.FloatTy;
 | 
						|
    else if (!Literal.isLong)
 | 
						|
      Ty = Context.DoubleTy;
 | 
						|
    else
 | 
						|
      Ty = Context.LongDoubleTy;
 | 
						|
 | 
						|
    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
 | 
						|
 | 
						|
    using llvm::APFloat;
 | 
						|
    APFloat Val(Format);
 | 
						|
 | 
						|
    APFloat::opStatus result = Literal.GetFloatValue(Val);
 | 
						|
 | 
						|
    // Overflow is always an error, but underflow is only an error if
 | 
						|
    // we underflowed to zero (APFloat reports denormals as underflow).
 | 
						|
    if ((result & APFloat::opOverflow) ||
 | 
						|
        ((result & APFloat::opUnderflow) && Val.isZero())) {
 | 
						|
      unsigned diagnostic;
 | 
						|
      llvm::SmallString<20> buffer;
 | 
						|
      if (result & APFloat::opOverflow) {
 | 
						|
        diagnostic = diag::warn_float_overflow;
 | 
						|
        APFloat::getLargest(Format).toString(buffer);
 | 
						|
      } else {
 | 
						|
        diagnostic = diag::warn_float_underflow;
 | 
						|
        APFloat::getSmallest(Format).toString(buffer);
 | 
						|
      }
 | 
						|
 | 
						|
      Diag(Tok.getLocation(), diagnostic)
 | 
						|
        << Ty
 | 
						|
        << StringRef(buffer.data(), buffer.size());
 | 
						|
    }
 | 
						|
 | 
						|
    bool isExact = (result == APFloat::opOK);
 | 
						|
    Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
 | 
						|
 | 
						|
    if (Ty == Context.DoubleTy) {
 | 
						|
      if (getLangOptions().SinglePrecisionConstants) {
 | 
						|
        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
 | 
						|
      } else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
 | 
						|
        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
 | 
						|
        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (!Literal.isIntegerLiteral()) {
 | 
						|
    return ExprError();
 | 
						|
  } else {
 | 
						|
    QualType Ty;
 | 
						|
 | 
						|
    // long long is a C99 feature.
 | 
						|
    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
 | 
						|
        Literal.isLongLong)
 | 
						|
      Diag(Tok.getLocation(), diag::ext_longlong);
 | 
						|
 | 
						|
    // Get the value in the widest-possible width.
 | 
						|
    llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
 | 
						|
 | 
						|
    if (Literal.GetIntegerValue(ResultVal)) {
 | 
						|
      // If this value didn't fit into uintmax_t, warn and force to ull.
 | 
						|
      Diag(Tok.getLocation(), diag::warn_integer_too_large);
 | 
						|
      Ty = Context.UnsignedLongLongTy;
 | 
						|
      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
 | 
						|
             "long long is not intmax_t?");
 | 
						|
    } else {
 | 
						|
      // If this value fits into a ULL, try to figure out what else it fits into
 | 
						|
      // according to the rules of C99 6.4.4.1p5.
 | 
						|
 | 
						|
      // Octal, Hexadecimal, and integers with a U suffix are allowed to
 | 
						|
      // be an unsigned int.
 | 
						|
      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
 | 
						|
 | 
						|
      // Check from smallest to largest, picking the smallest type we can.
 | 
						|
      unsigned Width = 0;
 | 
						|
      if (!Literal.isLong && !Literal.isLongLong) {
 | 
						|
        // Are int/unsigned possibilities?
 | 
						|
        unsigned IntSize = Context.getTargetInfo().getIntWidth();
 | 
						|
 | 
						|
        // Does it fit in a unsigned int?
 | 
						|
        if (ResultVal.isIntN(IntSize)) {
 | 
						|
          // Does it fit in a signed int?
 | 
						|
          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
 | 
						|
            Ty = Context.IntTy;
 | 
						|
          else if (AllowUnsigned)
 | 
						|
            Ty = Context.UnsignedIntTy;
 | 
						|
          Width = IntSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Are long/unsigned long possibilities?
 | 
						|
      if (Ty.isNull() && !Literal.isLongLong) {
 | 
						|
        unsigned LongSize = Context.getTargetInfo().getLongWidth();
 | 
						|
 | 
						|
        // Does it fit in a unsigned long?
 | 
						|
        if (ResultVal.isIntN(LongSize)) {
 | 
						|
          // Does it fit in a signed long?
 | 
						|
          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
 | 
						|
            Ty = Context.LongTy;
 | 
						|
          else if (AllowUnsigned)
 | 
						|
            Ty = Context.UnsignedLongTy;
 | 
						|
          Width = LongSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Finally, check long long if needed.
 | 
						|
      if (Ty.isNull()) {
 | 
						|
        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
 | 
						|
 | 
						|
        // Does it fit in a unsigned long long?
 | 
						|
        if (ResultVal.isIntN(LongLongSize)) {
 | 
						|
          // Does it fit in a signed long long?
 | 
						|
          // To be compatible with MSVC, hex integer literals ending with the
 | 
						|
          // LL or i64 suffix are always signed in Microsoft mode.
 | 
						|
          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
 | 
						|
              (getLangOptions().Microsoft && Literal.isLongLong)))
 | 
						|
            Ty = Context.LongLongTy;
 | 
						|
          else if (AllowUnsigned)
 | 
						|
            Ty = Context.UnsignedLongLongTy;
 | 
						|
          Width = LongLongSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we still couldn't decide a type, we probably have something that
 | 
						|
      // does not fit in a signed long long, but has no U suffix.
 | 
						|
      if (Ty.isNull()) {
 | 
						|
        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
 | 
						|
        Ty = Context.UnsignedLongLongTy;
 | 
						|
        Width = Context.getTargetInfo().getLongLongWidth();
 | 
						|
      }
 | 
						|
 | 
						|
      if (ResultVal.getBitWidth() != Width)
 | 
						|
        ResultVal = ResultVal.trunc(Width);
 | 
						|
    }
 | 
						|
    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
 | 
						|
  if (Literal.isImaginary)
 | 
						|
    Res = new (Context) ImaginaryLiteral(Res,
 | 
						|
                                        Context.getComplexType(Res->getType()));
 | 
						|
 | 
						|
  return Owned(Res);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnParenExpr(SourceLocation L,
 | 
						|
                                              SourceLocation R, Expr *E) {
 | 
						|
  assert((E != 0) && "ActOnParenExpr() missing expr");
 | 
						|
  return Owned(new (Context) ParenExpr(L, R, E));
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
 | 
						|
                                         SourceLocation Loc,
 | 
						|
                                         SourceRange ArgRange) {
 | 
						|
  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
 | 
						|
  // scalar or vector data type argument..."
 | 
						|
  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
 | 
						|
  // type (C99 6.2.5p18) or void.
 | 
						|
  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
 | 
						|
    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
 | 
						|
      << T << ArgRange;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert((T->isVoidType() || !T->isIncompleteType()) &&
 | 
						|
         "Scalar types should always be complete");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
 | 
						|
                                           SourceLocation Loc,
 | 
						|
                                           SourceRange ArgRange,
 | 
						|
                                           UnaryExprOrTypeTrait TraitKind) {
 | 
						|
  // C99 6.5.3.4p1:
 | 
						|
  if (T->isFunctionType()) {
 | 
						|
    // alignof(function) is allowed as an extension.
 | 
						|
    if (TraitKind == UETT_SizeOf)
 | 
						|
      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow sizeof(void)/alignof(void) as an extension.
 | 
						|
  if (T->isVoidType()) {
 | 
						|
    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
 | 
						|
                                             SourceLocation Loc,
 | 
						|
                                             SourceRange ArgRange,
 | 
						|
                                             UnaryExprOrTypeTrait TraitKind) {
 | 
						|
  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
 | 
						|
  if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
 | 
						|
    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
 | 
						|
      << T << (TraitKind == UETT_SizeOf)
 | 
						|
      << ArgRange;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the constrains on expression operands to unary type expression
 | 
						|
/// and type traits.
 | 
						|
///
 | 
						|
/// Completes any types necessary and validates the constraints on the operand
 | 
						|
/// expression. The logic mostly mirrors the type-based overload, but may modify
 | 
						|
/// the expression as it completes the type for that expression through template
 | 
						|
/// instantiation, etc.
 | 
						|
bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
 | 
						|
                                            UnaryExprOrTypeTrait ExprKind) {
 | 
						|
  QualType ExprTy = Op->getType();
 | 
						|
 | 
						|
  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
 | 
						|
  //   the result is the size of the referenced type."
 | 
						|
  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
 | 
						|
  //   result shall be the alignment of the referenced type."
 | 
						|
  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
 | 
						|
    ExprTy = Ref->getPointeeType();
 | 
						|
 | 
						|
  if (ExprKind == UETT_VecStep)
 | 
						|
    return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(),
 | 
						|
                                        Op->getSourceRange());
 | 
						|
 | 
						|
  // Whitelist some types as extensions
 | 
						|
  if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(),
 | 
						|
                                      Op->getSourceRange(), ExprKind))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (RequireCompleteExprType(Op,
 | 
						|
                              PDiag(diag::err_sizeof_alignof_incomplete_type)
 | 
						|
                              << ExprKind << Op->getSourceRange(),
 | 
						|
                              std::make_pair(SourceLocation(), PDiag(0))))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Completeing the expression's type may have changed it.
 | 
						|
  ExprTy = Op->getType();
 | 
						|
  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
 | 
						|
    ExprTy = Ref->getPointeeType();
 | 
						|
 | 
						|
  if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(),
 | 
						|
                                       Op->getSourceRange(), ExprKind))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (ExprKind == UETT_SizeOf) {
 | 
						|
    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) {
 | 
						|
      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
 | 
						|
        QualType OType = PVD->getOriginalType();
 | 
						|
        QualType Type = PVD->getType();
 | 
						|
        if (Type->isPointerType() && OType->isArrayType()) {
 | 
						|
          Diag(Op->getExprLoc(), diag::warn_sizeof_array_param)
 | 
						|
            << Type << OType;
 | 
						|
          Diag(PVD->getLocation(), diag::note_declared_at);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the constraints on operands to unary expression and type
 | 
						|
/// traits.
 | 
						|
///
 | 
						|
/// This will complete any types necessary, and validate the various constraints
 | 
						|
/// on those operands.
 | 
						|
///
 | 
						|
/// The UsualUnaryConversions() function is *not* called by this routine.
 | 
						|
/// C99 6.3.2.1p[2-4] all state:
 | 
						|
///   Except when it is the operand of the sizeof operator ...
 | 
						|
///
 | 
						|
/// C++ [expr.sizeof]p4
 | 
						|
///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
 | 
						|
///   standard conversions are not applied to the operand of sizeof.
 | 
						|
///
 | 
						|
/// This policy is followed for all of the unary trait expressions.
 | 
						|
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
 | 
						|
                                            SourceLocation OpLoc,
 | 
						|
                                            SourceRange ExprRange,
 | 
						|
                                            UnaryExprOrTypeTrait ExprKind) {
 | 
						|
  if (exprType->isDependentType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
 | 
						|
  //   the result is the size of the referenced type."
 | 
						|
  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
 | 
						|
  //   result shall be the alignment of the referenced type."
 | 
						|
  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
 | 
						|
    exprType = Ref->getPointeeType();
 | 
						|
 | 
						|
  if (ExprKind == UETT_VecStep)
 | 
						|
    return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange);
 | 
						|
 | 
						|
  // Whitelist some types as extensions
 | 
						|
  if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange,
 | 
						|
                                      ExprKind))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (RequireCompleteType(OpLoc, exprType,
 | 
						|
                          PDiag(diag::err_sizeof_alignof_incomplete_type)
 | 
						|
                          << ExprKind << ExprRange))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange,
 | 
						|
                                       ExprKind))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckAlignOfExpr(Sema &S, Expr *E) {
 | 
						|
  E = E->IgnoreParens();
 | 
						|
 | 
						|
  // alignof decl is always ok.
 | 
						|
  if (isa<DeclRefExpr>(E))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Cannot know anything else if the expression is dependent.
 | 
						|
  if (E->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (E->getBitField()) {
 | 
						|
    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
 | 
						|
       << 1 << E->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Alignment of a field access is always okay, so long as it isn't a
 | 
						|
  // bit-field.
 | 
						|
  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
 | 
						|
    if (isa<FieldDecl>(ME->getMemberDecl()))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckVecStepExpr(Expr *E) {
 | 
						|
  E = E->IgnoreParens();
 | 
						|
 | 
						|
  // Cannot know anything else if the expression is dependent.
 | 
						|
  if (E->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a sizeof or alignof expression given a type operand.
 | 
						|
ExprResult
 | 
						|
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
 | 
						|
                                     SourceLocation OpLoc,
 | 
						|
                                     UnaryExprOrTypeTrait ExprKind,
 | 
						|
                                     SourceRange R) {
 | 
						|
  if (!TInfo)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
 | 
						|
  if (!T->isDependentType() &&
 | 
						|
      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
 | 
						|
  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
 | 
						|
                                                      Context.getSizeType(),
 | 
						|
                                                      OpLoc, R.getEnd()));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a sizeof or alignof expression given an expression
 | 
						|
/// operand.
 | 
						|
ExprResult
 | 
						|
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
 | 
						|
                                     UnaryExprOrTypeTrait ExprKind) {
 | 
						|
  ExprResult PE = CheckPlaceholderExpr(E);
 | 
						|
  if (PE.isInvalid()) 
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  E = PE.get();
 | 
						|
  
 | 
						|
  // Verify that the operand is valid.
 | 
						|
  bool isInvalid = false;
 | 
						|
  if (E->isTypeDependent()) {
 | 
						|
    // Delay type-checking for type-dependent expressions.
 | 
						|
  } else if (ExprKind == UETT_AlignOf) {
 | 
						|
    isInvalid = CheckAlignOfExpr(*this, E);
 | 
						|
  } else if (ExprKind == UETT_VecStep) {
 | 
						|
    isInvalid = CheckVecStepExpr(E);
 | 
						|
  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
 | 
						|
    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
 | 
						|
    isInvalid = true;
 | 
						|
  } else {
 | 
						|
    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isInvalid)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
 | 
						|
  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
 | 
						|
      ExprKind, E, Context.getSizeType(), OpLoc,
 | 
						|
      E->getSourceRange().getEnd()));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
 | 
						|
/// expr and the same for @c alignof and @c __alignof
 | 
						|
/// Note that the ArgRange is invalid if isType is false.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
 | 
						|
                                    UnaryExprOrTypeTrait ExprKind, bool isType,
 | 
						|
                                    void *TyOrEx, const SourceRange &ArgRange) {
 | 
						|
  // If error parsing type, ignore.
 | 
						|
  if (TyOrEx == 0) return ExprError();
 | 
						|
 | 
						|
  if (isType) {
 | 
						|
    TypeSourceInfo *TInfo;
 | 
						|
    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
 | 
						|
    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *ArgEx = (Expr *)TyOrEx;
 | 
						|
  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
 | 
						|
  return move(Result);
 | 
						|
}
 | 
						|
 | 
						|
static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
 | 
						|
                                     bool isReal) {
 | 
						|
  if (V.get()->isTypeDependent())
 | 
						|
    return S.Context.DependentTy;
 | 
						|
 | 
						|
  // _Real and _Imag are only l-values for normal l-values.
 | 
						|
  if (V.get()->getObjectKind() != OK_Ordinary) {
 | 
						|
    V = S.DefaultLvalueConversion(V.take());
 | 
						|
    if (V.isInvalid())
 | 
						|
      return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // These operators return the element type of a complex type.
 | 
						|
  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
 | 
						|
    return CT->getElementType();
 | 
						|
 | 
						|
  // Otherwise they pass through real integer and floating point types here.
 | 
						|
  if (V.get()->getType()->isArithmeticType())
 | 
						|
    return V.get()->getType();
 | 
						|
 | 
						|
  // Test for placeholders.
 | 
						|
  ExprResult PR = S.CheckPlaceholderExpr(V.get());
 | 
						|
  if (PR.isInvalid()) return QualType();
 | 
						|
  if (PR.get() != V.get()) {
 | 
						|
    V = move(PR);
 | 
						|
    return CheckRealImagOperand(S, V, Loc, isReal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reject anything else.
 | 
						|
  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
 | 
						|
    << (isReal ? "__real" : "__imag");
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
 | 
						|
                          tok::TokenKind Kind, Expr *Input) {
 | 
						|
  UnaryOperatorKind Opc;
 | 
						|
  switch (Kind) {
 | 
						|
  default: assert(0 && "Unknown unary op!");
 | 
						|
  case tok::plusplus:   Opc = UO_PostInc; break;
 | 
						|
  case tok::minusminus: Opc = UO_PostDec; break;
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildUnaryOp(S, OpLoc, Opc, Input);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
 | 
						|
                              Expr *Idx, SourceLocation RLoc) {
 | 
						|
  // Since this might be a postfix expression, get rid of ParenListExprs.
 | 
						|
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | 
						|
  if (Result.isInvalid()) return ExprError();
 | 
						|
  Base = Result.take();
 | 
						|
 | 
						|
  Expr *LHSExp = Base, *RHSExp = Idx;
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus &&
 | 
						|
      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
 | 
						|
    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
 | 
						|
                                                  Context.DependentTy,
 | 
						|
                                                  VK_LValue, OK_Ordinary,
 | 
						|
                                                  RLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus &&
 | 
						|
      (LHSExp->getType()->isRecordType() ||
 | 
						|
       LHSExp->getType()->isEnumeralType() ||
 | 
						|
       RHSExp->getType()->isRecordType() ||
 | 
						|
       RHSExp->getType()->isEnumeralType())) {
 | 
						|
    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
 | 
						|
                                     Expr *Idx, SourceLocation RLoc) {
 | 
						|
  Expr *LHSExp = Base;
 | 
						|
  Expr *RHSExp = Idx;
 | 
						|
 | 
						|
  // Perform default conversions.
 | 
						|
  if (!LHSExp->getType()->getAs<VectorType>()) {
 | 
						|
    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    LHSExp = Result.take();
 | 
						|
  }
 | 
						|
  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
 | 
						|
  if (Result.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  RHSExp = Result.take();
 | 
						|
 | 
						|
  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
 | 
						|
  ExprValueKind VK = VK_LValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
 | 
						|
  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
 | 
						|
  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
 | 
						|
  // in the subscript position. As a result, we need to derive the array base
 | 
						|
  // and index from the expression types.
 | 
						|
  Expr *BaseExpr, *IndexExpr;
 | 
						|
  QualType ResultType;
 | 
						|
  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
 | 
						|
    BaseExpr = LHSExp;
 | 
						|
    IndexExpr = RHSExp;
 | 
						|
    ResultType = Context.DependentTy;
 | 
						|
  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
 | 
						|
    BaseExpr = LHSExp;
 | 
						|
    IndexExpr = RHSExp;
 | 
						|
    ResultType = PTy->getPointeeType();
 | 
						|
  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
 | 
						|
     // Handle the uncommon case of "123[Ptr]".
 | 
						|
    BaseExpr = RHSExp;
 | 
						|
    IndexExpr = LHSExp;
 | 
						|
    ResultType = PTy->getPointeeType();
 | 
						|
  } else if (const ObjCObjectPointerType *PTy =
 | 
						|
               LHSTy->getAs<ObjCObjectPointerType>()) {
 | 
						|
    BaseExpr = LHSExp;
 | 
						|
    IndexExpr = RHSExp;
 | 
						|
    ResultType = PTy->getPointeeType();
 | 
						|
  } else if (const ObjCObjectPointerType *PTy =
 | 
						|
               RHSTy->getAs<ObjCObjectPointerType>()) {
 | 
						|
     // Handle the uncommon case of "123[Ptr]".
 | 
						|
    BaseExpr = RHSExp;
 | 
						|
    IndexExpr = LHSExp;
 | 
						|
    ResultType = PTy->getPointeeType();
 | 
						|
  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
 | 
						|
    BaseExpr = LHSExp;    // vectors: V[123]
 | 
						|
    IndexExpr = RHSExp;
 | 
						|
    VK = LHSExp->getValueKind();
 | 
						|
    if (VK != VK_RValue)
 | 
						|
      OK = OK_VectorComponent;
 | 
						|
 | 
						|
    // FIXME: need to deal with const...
 | 
						|
    ResultType = VTy->getElementType();
 | 
						|
  } else if (LHSTy->isArrayType()) {
 | 
						|
    // If we see an array that wasn't promoted by
 | 
						|
    // DefaultFunctionArrayLvalueConversion, it must be an array that
 | 
						|
    // wasn't promoted because of the C90 rule that doesn't
 | 
						|
    // allow promoting non-lvalue arrays.  Warn, then
 | 
						|
    // force the promotion here.
 | 
						|
    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
 | 
						|
        LHSExp->getSourceRange();
 | 
						|
    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
 | 
						|
                               CK_ArrayToPointerDecay).take();
 | 
						|
    LHSTy = LHSExp->getType();
 | 
						|
 | 
						|
    BaseExpr = LHSExp;
 | 
						|
    IndexExpr = RHSExp;
 | 
						|
    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
  } else if (RHSTy->isArrayType()) {
 | 
						|
    // Same as previous, except for 123[f().a] case
 | 
						|
    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
 | 
						|
        RHSExp->getSourceRange();
 | 
						|
    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
 | 
						|
                               CK_ArrayToPointerDecay).take();
 | 
						|
    RHSTy = RHSExp->getType();
 | 
						|
 | 
						|
    BaseExpr = RHSExp;
 | 
						|
    IndexExpr = LHSExp;
 | 
						|
    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
  } else {
 | 
						|
    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
 | 
						|
       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
 | 
						|
  }
 | 
						|
  // C99 6.5.2.1p1
 | 
						|
  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
 | 
						|
    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
 | 
						|
                     << IndexExpr->getSourceRange());
 | 
						|
 | 
						|
  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
 | 
						|
       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
 | 
						|
         && !IndexExpr->isTypeDependent())
 | 
						|
    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
 | 
						|
 | 
						|
  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
 | 
						|
  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
 | 
						|
  // type. Note that Functions are not objects, and that (in C99 parlance)
 | 
						|
  // incomplete types are not object types.
 | 
						|
  if (ResultType->isFunctionType()) {
 | 
						|
    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
 | 
						|
      << ResultType << BaseExpr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
 | 
						|
    // GNU extension: subscripting on pointer to void
 | 
						|
    Diag(LLoc, diag::ext_gnu_subscript_void_type)
 | 
						|
      << BaseExpr->getSourceRange();
 | 
						|
 | 
						|
    // C forbids expressions of unqualified void type from being l-values.
 | 
						|
    // See IsCForbiddenLValueType.
 | 
						|
    if (!ResultType.hasQualifiers()) VK = VK_RValue;
 | 
						|
  } else if (!ResultType->isDependentType() &&
 | 
						|
      RequireCompleteType(LLoc, ResultType,
 | 
						|
                          PDiag(diag::err_subscript_incomplete_type)
 | 
						|
                            << BaseExpr->getSourceRange()))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Diagnose bad cases where we step over interface counts.
 | 
						|
  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
 | 
						|
    Diag(LLoc, diag::err_subscript_nonfragile_interface)
 | 
						|
      << ResultType << BaseExpr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
 | 
						|
         !ResultType.isCForbiddenLValueType());
 | 
						|
 | 
						|
  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
 | 
						|
                                                ResultType, VK, OK, RLoc));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
 | 
						|
                                        FunctionDecl *FD,
 | 
						|
                                        ParmVarDecl *Param) {
 | 
						|
  if (Param->hasUnparsedDefaultArg()) {
 | 
						|
    Diag(CallLoc,
 | 
						|
         diag::err_use_of_default_argument_to_function_declared_later) <<
 | 
						|
      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
 | 
						|
    Diag(UnparsedDefaultArgLocs[Param],
 | 
						|
         diag::note_default_argument_declared_here);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Param->hasUninstantiatedDefaultArg()) {
 | 
						|
    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
 | 
						|
 | 
						|
    // Instantiate the expression.
 | 
						|
    MultiLevelTemplateArgumentList ArgList
 | 
						|
      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
 | 
						|
 | 
						|
    std::pair<const TemplateArgument *, unsigned> Innermost
 | 
						|
      = ArgList.getInnermost();
 | 
						|
    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
 | 
						|
                               Innermost.second);
 | 
						|
 | 
						|
    ExprResult Result;
 | 
						|
    {
 | 
						|
      // C++ [dcl.fct.default]p5:
 | 
						|
      //   The names in the [default argument] expression are bound, and
 | 
						|
      //   the semantic constraints are checked, at the point where the
 | 
						|
      //   default argument expression appears.
 | 
						|
      ContextRAII SavedContext(*this, FD);
 | 
						|
      Result = SubstExpr(UninstExpr, ArgList);
 | 
						|
    }
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // Check the expression as an initializer for the parameter.
 | 
						|
    InitializedEntity Entity
 | 
						|
      = InitializedEntity::InitializeParameter(Context, Param);
 | 
						|
    InitializationKind Kind
 | 
						|
      = InitializationKind::CreateCopy(Param->getLocation(),
 | 
						|
             /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
 | 
						|
    Expr *ResultE = Result.takeAs<Expr>();
 | 
						|
 | 
						|
    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
 | 
						|
    Result = InitSeq.Perform(*this, Entity, Kind,
 | 
						|
                             MultiExprArg(*this, &ResultE, 1));
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // Build the default argument expression.
 | 
						|
    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
 | 
						|
                                           Result.takeAs<Expr>()));
 | 
						|
  }
 | 
						|
 | 
						|
  // If the default expression creates temporaries, we need to
 | 
						|
  // push them to the current stack of expression temporaries so they'll
 | 
						|
  // be properly destroyed.
 | 
						|
  // FIXME: We should really be rebuilding the default argument with new
 | 
						|
  // bound temporaries; see the comment in PR5810.
 | 
						|
  for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
 | 
						|
    CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
 | 
						|
    MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(), 
 | 
						|
                    const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
 | 
						|
    ExprTemporaries.push_back(Temporary);
 | 
						|
    ExprNeedsCleanups = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We already type-checked the argument, so we know it works. 
 | 
						|
  // Just mark all of the declarations in this potentially-evaluated expression
 | 
						|
  // as being "referenced".
 | 
						|
  MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
 | 
						|
  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertArgumentsForCall - Converts the arguments specified in
 | 
						|
/// Args/NumArgs to the parameter types of the function FDecl with
 | 
						|
/// function prototype Proto. Call is the call expression itself, and
 | 
						|
/// Fn is the function expression. For a C++ member function, this
 | 
						|
/// routine does not attempt to convert the object argument. Returns
 | 
						|
/// true if the call is ill-formed.
 | 
						|
bool
 | 
						|
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
 | 
						|
                              FunctionDecl *FDecl,
 | 
						|
                              const FunctionProtoType *Proto,
 | 
						|
                              Expr **Args, unsigned NumArgs,
 | 
						|
                              SourceLocation RParenLoc) {
 | 
						|
  // Bail out early if calling a builtin with custom typechecking.
 | 
						|
  // We don't need to do this in the 
 | 
						|
  if (FDecl)
 | 
						|
    if (unsigned ID = FDecl->getBuiltinID())
 | 
						|
      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
 | 
						|
        return false;
 | 
						|
 | 
						|
  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
 | 
						|
  // assignment, to the types of the corresponding parameter, ...
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // If too few arguments are available (and we don't have default
 | 
						|
  // arguments for the remaining parameters), don't make the call.
 | 
						|
  if (NumArgs < NumArgsInProto) {
 | 
						|
    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) {
 | 
						|
      Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
 | 
						|
        << Fn->getType()->isBlockPointerType()
 | 
						|
        << NumArgsInProto << NumArgs << Fn->getSourceRange();
 | 
						|
 | 
						|
      // Emit the location of the prototype.
 | 
						|
      if (FDecl && !FDecl->getBuiltinID())
 | 
						|
        Diag(FDecl->getLocStart(), diag::note_callee_decl)
 | 
						|
          << FDecl;
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    Call->setNumArgs(Context, NumArgsInProto);
 | 
						|
  }
 | 
						|
 | 
						|
  // If too many are passed and not variadic, error on the extras and drop
 | 
						|
  // them.
 | 
						|
  if (NumArgs > NumArgsInProto) {
 | 
						|
    if (!Proto->isVariadic()) {
 | 
						|
      Diag(Args[NumArgsInProto]->getLocStart(),
 | 
						|
           diag::err_typecheck_call_too_many_args)
 | 
						|
        << Fn->getType()->isBlockPointerType()
 | 
						|
        << NumArgsInProto << NumArgs << Fn->getSourceRange()
 | 
						|
        << SourceRange(Args[NumArgsInProto]->getLocStart(),
 | 
						|
                       Args[NumArgs-1]->getLocEnd());
 | 
						|
 | 
						|
      // Emit the location of the prototype.
 | 
						|
      if (FDecl && !FDecl->getBuiltinID())
 | 
						|
        Diag(FDecl->getLocStart(), diag::note_callee_decl)
 | 
						|
          << FDecl;
 | 
						|
      
 | 
						|
      // This deletes the extra arguments.
 | 
						|
      Call->setNumArgs(Context, NumArgsInProto);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SmallVector<Expr *, 8> AllArgs;
 | 
						|
  VariadicCallType CallType =
 | 
						|
    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
 | 
						|
  if (Fn->getType()->isBlockPointerType())
 | 
						|
    CallType = VariadicBlock; // Block
 | 
						|
  else if (isa<MemberExpr>(Fn))
 | 
						|
    CallType = VariadicMethod;
 | 
						|
  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
 | 
						|
                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
 | 
						|
  if (Invalid)
 | 
						|
    return true;
 | 
						|
  unsigned TotalNumArgs = AllArgs.size();
 | 
						|
  for (unsigned i = 0; i < TotalNumArgs; ++i)
 | 
						|
    Call->setArg(i, AllArgs[i]);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
 | 
						|
                                  FunctionDecl *FDecl,
 | 
						|
                                  const FunctionProtoType *Proto,
 | 
						|
                                  unsigned FirstProtoArg,
 | 
						|
                                  Expr **Args, unsigned NumArgs,
 | 
						|
                                  SmallVector<Expr *, 8> &AllArgs,
 | 
						|
                                  VariadicCallType CallType) {
 | 
						|
  unsigned NumArgsInProto = Proto->getNumArgs();
 | 
						|
  unsigned NumArgsToCheck = NumArgs;
 | 
						|
  bool Invalid = false;
 | 
						|
  if (NumArgs != NumArgsInProto)
 | 
						|
    // Use default arguments for missing arguments
 | 
						|
    NumArgsToCheck = NumArgsInProto;
 | 
						|
  unsigned ArgIx = 0;
 | 
						|
  // Continue to check argument types (even if we have too few/many args).
 | 
						|
  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
 | 
						|
    QualType ProtoArgType = Proto->getArgType(i);
 | 
						|
 | 
						|
    Expr *Arg;
 | 
						|
    if (ArgIx < NumArgs) {
 | 
						|
      Arg = Args[ArgIx++];
 | 
						|
 | 
						|
      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
 | 
						|
                              ProtoArgType,
 | 
						|
                              PDiag(diag::err_call_incomplete_argument)
 | 
						|
                              << Arg->getSourceRange()))
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Pass the argument
 | 
						|
      ParmVarDecl *Param = 0;
 | 
						|
      if (FDecl && i < FDecl->getNumParams())
 | 
						|
        Param = FDecl->getParamDecl(i);
 | 
						|
 | 
						|
      InitializedEntity Entity =
 | 
						|
        Param? InitializedEntity::InitializeParameter(Context, Param)
 | 
						|
             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
 | 
						|
                                                      Proto->isArgConsumed(i));
 | 
						|
      ExprResult ArgE = PerformCopyInitialization(Entity,
 | 
						|
                                                  SourceLocation(),
 | 
						|
                                                  Owned(Arg));
 | 
						|
      if (ArgE.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Arg = ArgE.takeAs<Expr>();
 | 
						|
    } else {
 | 
						|
      ParmVarDecl *Param = FDecl->getParamDecl(i);
 | 
						|
 | 
						|
      ExprResult ArgExpr =
 | 
						|
        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
 | 
						|
      if (ArgExpr.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Arg = ArgExpr.takeAs<Expr>();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for array bounds violations for each argument to the call. This
 | 
						|
    // check only triggers warnings when the argument isn't a more complex Expr
 | 
						|
    // with its own checking, such as a BinaryOperator.
 | 
						|
    CheckArrayAccess(Arg);
 | 
						|
 | 
						|
    AllArgs.push_back(Arg);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a variadic call, handle args passed through "...".
 | 
						|
  if (CallType != VariadicDoesNotApply) {
 | 
						|
 | 
						|
    // Assume that extern "C" functions with variadic arguments that
 | 
						|
    // return __unknown_anytype aren't *really* variadic.
 | 
						|
    if (Proto->getResultType() == Context.UnknownAnyTy &&
 | 
						|
        FDecl && FDecl->isExternC()) {
 | 
						|
      for (unsigned i = ArgIx; i != NumArgs; ++i) {
 | 
						|
        ExprResult arg;
 | 
						|
        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
 | 
						|
          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
 | 
						|
        else
 | 
						|
          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
 | 
						|
        Invalid |= arg.isInvalid();
 | 
						|
        AllArgs.push_back(arg.take());
 | 
						|
      }
 | 
						|
 | 
						|
    // Otherwise do argument promotion, (C99 6.5.2.2p7).
 | 
						|
    } else {
 | 
						|
      for (unsigned i = ArgIx; i != NumArgs; ++i) {
 | 
						|
        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
 | 
						|
                                                          FDecl);
 | 
						|
        Invalid |= Arg.isInvalid();
 | 
						|
        AllArgs.push_back(Arg.take());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a function expression of unknown-any type, try to rebuild it
 | 
						|
/// to have a function type.
 | 
						|
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
 | 
						|
 | 
						|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
 | 
						|
/// This provides the location of the left/right parens and a list of comma
 | 
						|
/// locations.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
 | 
						|
                    MultiExprArg args, SourceLocation RParenLoc,
 | 
						|
                    Expr *ExecConfig) {
 | 
						|
  unsigned NumArgs = args.size();
 | 
						|
 | 
						|
  // Since this might be a postfix expression, get rid of ParenListExprs.
 | 
						|
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
 | 
						|
  if (Result.isInvalid()) return ExprError();
 | 
						|
  Fn = Result.take();
 | 
						|
 | 
						|
  Expr **Args = args.release();
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // If this is a pseudo-destructor expression, build the call immediately.
 | 
						|
    if (isa<CXXPseudoDestructorExpr>(Fn)) {
 | 
						|
      if (NumArgs > 0) {
 | 
						|
        // Pseudo-destructor calls should not have any arguments.
 | 
						|
        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
 | 
						|
          << FixItHint::CreateRemoval(
 | 
						|
                                    SourceRange(Args[0]->getLocStart(),
 | 
						|
                                                Args[NumArgs-1]->getLocEnd()));
 | 
						|
 | 
						|
        NumArgs = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
 | 
						|
                                          VK_RValue, RParenLoc));
 | 
						|
    }
 | 
						|
 | 
						|
    // Determine whether this is a dependent call inside a C++ template,
 | 
						|
    // in which case we won't do any semantic analysis now.
 | 
						|
    // FIXME: Will need to cache the results of name lookup (including ADL) in
 | 
						|
    // Fn.
 | 
						|
    bool Dependent = false;
 | 
						|
    if (Fn->isTypeDependent())
 | 
						|
      Dependent = true;
 | 
						|
    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
 | 
						|
      Dependent = true;
 | 
						|
 | 
						|
    if (Dependent) {
 | 
						|
      if (ExecConfig) {
 | 
						|
        return Owned(new (Context) CUDAKernelCallExpr(
 | 
						|
            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
 | 
						|
            Context.DependentTy, VK_RValue, RParenLoc));
 | 
						|
      } else {
 | 
						|
        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
 | 
						|
                                            Context.DependentTy, VK_RValue,
 | 
						|
                                            RParenLoc));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Determine whether this is a call to an object (C++ [over.call.object]).
 | 
						|
    if (Fn->getType()->isRecordType())
 | 
						|
      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
 | 
						|
                                                RParenLoc));
 | 
						|
 | 
						|
    if (Fn->getType() == Context.UnknownAnyTy) {
 | 
						|
      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
 | 
						|
      if (result.isInvalid()) return ExprError();
 | 
						|
      Fn = result.take();
 | 
						|
    }
 | 
						|
 | 
						|
    if (Fn->getType() == Context.BoundMemberTy) {
 | 
						|
      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
 | 
						|
                                       RParenLoc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for overloaded calls.  This can happen even in C due to extensions.
 | 
						|
  if (Fn->getType() == Context.OverloadTy) {
 | 
						|
    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
 | 
						|
 | 
						|
    // We aren't supposed to apply this logic if there's an '&' involved.
 | 
						|
    if (!find.IsAddressOfOperand) {
 | 
						|
      OverloadExpr *ovl = find.Expression;
 | 
						|
      if (isa<UnresolvedLookupExpr>(ovl)) {
 | 
						|
        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
 | 
						|
        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
 | 
						|
                                       RParenLoc, ExecConfig);
 | 
						|
      } else {
 | 
						|
        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
 | 
						|
                                         RParenLoc);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're directly calling a function, get the appropriate declaration.
 | 
						|
 | 
						|
  Expr *NakedFn = Fn->IgnoreParens();
 | 
						|
 | 
						|
  NamedDecl *NDecl = 0;
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
 | 
						|
    if (UnOp->getOpcode() == UO_AddrOf)
 | 
						|
      NakedFn = UnOp->getSubExpr()->IgnoreParens();
 | 
						|
  
 | 
						|
  if (isa<DeclRefExpr>(NakedFn))
 | 
						|
    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
 | 
						|
  else if (isa<MemberExpr>(NakedFn))
 | 
						|
    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
 | 
						|
 | 
						|
  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
 | 
						|
                               ExecConfig);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
 | 
						|
                              MultiExprArg execConfig, SourceLocation GGGLoc) {
 | 
						|
  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
 | 
						|
  if (!ConfigDecl)
 | 
						|
    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
 | 
						|
                          << "cudaConfigureCall");
 | 
						|
  QualType ConfigQTy = ConfigDecl->getType();
 | 
						|
 | 
						|
  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
 | 
						|
      ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
 | 
						|
 | 
						|
  return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
 | 
						|
///
 | 
						|
/// __builtin_astype( value, dst type )
 | 
						|
///
 | 
						|
ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty,
 | 
						|
                                 SourceLocation BuiltinLoc,
 | 
						|
                                 SourceLocation RParenLoc) {
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
  QualType DstTy = GetTypeFromParser(destty);
 | 
						|
  QualType SrcTy = expr->getType();
 | 
						|
  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
 | 
						|
    return ExprError(Diag(BuiltinLoc,
 | 
						|
                          diag::err_invalid_astype_of_different_size)
 | 
						|
                     << DstTy
 | 
						|
                     << SrcTy
 | 
						|
                     << expr->getSourceRange());
 | 
						|
  return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc,
 | 
						|
               RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// BuildResolvedCallExpr - Build a call to a resolved expression,
 | 
						|
/// i.e. an expression not of \p OverloadTy.  The expression should
 | 
						|
/// unary-convert to an expression of function-pointer or
 | 
						|
/// block-pointer type.
 | 
						|
///
 | 
						|
/// \param NDecl the declaration being called, if available
 | 
						|
ExprResult
 | 
						|
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
 | 
						|
                            SourceLocation LParenLoc,
 | 
						|
                            Expr **Args, unsigned NumArgs,
 | 
						|
                            SourceLocation RParenLoc,
 | 
						|
                            Expr *Config) {
 | 
						|
  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
 | 
						|
 | 
						|
  // Promote the function operand.
 | 
						|
  ExprResult Result = UsualUnaryConversions(Fn);
 | 
						|
  if (Result.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  Fn = Result.take();
 | 
						|
 | 
						|
  // Make the call expr early, before semantic checks.  This guarantees cleanup
 | 
						|
  // of arguments and function on error.
 | 
						|
  CallExpr *TheCall;
 | 
						|
  if (Config) {
 | 
						|
    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
 | 
						|
                                               cast<CallExpr>(Config),
 | 
						|
                                               Args, NumArgs,
 | 
						|
                                               Context.BoolTy,
 | 
						|
                                               VK_RValue,
 | 
						|
                                               RParenLoc);
 | 
						|
  } else {
 | 
						|
    TheCall = new (Context) CallExpr(Context, Fn,
 | 
						|
                                     Args, NumArgs,
 | 
						|
                                     Context.BoolTy,
 | 
						|
                                     VK_RValue,
 | 
						|
                                     RParenLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
 | 
						|
 | 
						|
  // Bail out early if calling a builtin with custom typechecking.
 | 
						|
  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
 | 
						|
    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
 | 
						|
 | 
						|
 retry:
 | 
						|
  const FunctionType *FuncT;
 | 
						|
  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
 | 
						|
    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
 | 
						|
    // have type pointer to function".
 | 
						|
    FuncT = PT->getPointeeType()->getAs<FunctionType>();
 | 
						|
    if (FuncT == 0)
 | 
						|
      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
 | 
						|
                         << Fn->getType() << Fn->getSourceRange());
 | 
						|
  } else if (const BlockPointerType *BPT =
 | 
						|
               Fn->getType()->getAs<BlockPointerType>()) {
 | 
						|
    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
 | 
						|
  } else {
 | 
						|
    // Handle calls to expressions of unknown-any type.
 | 
						|
    if (Fn->getType() == Context.UnknownAnyTy) {
 | 
						|
      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
 | 
						|
      if (rewrite.isInvalid()) return ExprError();
 | 
						|
      Fn = rewrite.take();
 | 
						|
      TheCall->setCallee(Fn);
 | 
						|
      goto retry;
 | 
						|
    }
 | 
						|
 | 
						|
    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
 | 
						|
      << Fn->getType() << Fn->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().CUDA) {
 | 
						|
    if (Config) {
 | 
						|
      // CUDA: Kernel calls must be to global functions
 | 
						|
      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
 | 
						|
        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
 | 
						|
            << FDecl->getName() << Fn->getSourceRange());
 | 
						|
 | 
						|
      // CUDA: Kernel function must have 'void' return type
 | 
						|
      if (!FuncT->getResultType()->isVoidType())
 | 
						|
        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
 | 
						|
            << Fn->getType() << Fn->getSourceRange());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for a valid return type
 | 
						|
  if (CheckCallReturnType(FuncT->getResultType(),
 | 
						|
                          Fn->getSourceRange().getBegin(), TheCall,
 | 
						|
                          FDecl))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // We know the result type of the call, set it.
 | 
						|
  TheCall->setType(FuncT->getCallResultType(Context));
 | 
						|
  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
 | 
						|
 | 
						|
  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
 | 
						|
    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
 | 
						|
                                RParenLoc))
 | 
						|
      return ExprError();
 | 
						|
  } else {
 | 
						|
    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
 | 
						|
 | 
						|
    if (FDecl) {
 | 
						|
      // Check if we have too few/too many template arguments, based
 | 
						|
      // on our knowledge of the function definition.
 | 
						|
      const FunctionDecl *Def = 0;
 | 
						|
      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
 | 
						|
        const FunctionProtoType *Proto 
 | 
						|
          = Def->getType()->getAs<FunctionProtoType>();
 | 
						|
        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
 | 
						|
          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
 | 
						|
            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If the function we're calling isn't a function prototype, but we have
 | 
						|
      // a function prototype from a prior declaratiom, use that prototype.
 | 
						|
      if (!FDecl->hasPrototype())
 | 
						|
        Proto = FDecl->getType()->getAs<FunctionProtoType>();
 | 
						|
    }
 | 
						|
 | 
						|
    // Promote the arguments (C99 6.5.2.2p6).
 | 
						|
    for (unsigned i = 0; i != NumArgs; i++) {
 | 
						|
      Expr *Arg = Args[i];
 | 
						|
 | 
						|
      if (Proto && i < Proto->getNumArgs()) {
 | 
						|
        InitializedEntity Entity
 | 
						|
          = InitializedEntity::InitializeParameter(Context, 
 | 
						|
                                                   Proto->getArgType(i),
 | 
						|
                                                   Proto->isArgConsumed(i));
 | 
						|
        ExprResult ArgE = PerformCopyInitialization(Entity,
 | 
						|
                                                    SourceLocation(),
 | 
						|
                                                    Owned(Arg));
 | 
						|
        if (ArgE.isInvalid())
 | 
						|
          return true;
 | 
						|
        
 | 
						|
        Arg = ArgE.takeAs<Expr>();
 | 
						|
 | 
						|
      } else {
 | 
						|
        ExprResult ArgE = DefaultArgumentPromotion(Arg);
 | 
						|
 | 
						|
        if (ArgE.isInvalid())
 | 
						|
          return true;
 | 
						|
 | 
						|
        Arg = ArgE.takeAs<Expr>();
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
 | 
						|
                              Arg->getType(),
 | 
						|
                              PDiag(diag::err_call_incomplete_argument)
 | 
						|
                                << Arg->getSourceRange()))
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      TheCall->setArg(i, Arg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
 | 
						|
    if (!Method->isStatic())
 | 
						|
      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
 | 
						|
        << Fn->getSourceRange());
 | 
						|
 | 
						|
  // Check for sentinels
 | 
						|
  if (NDecl)
 | 
						|
    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
 | 
						|
 | 
						|
  // Do special checking on direct calls to functions.
 | 
						|
  if (FDecl) {
 | 
						|
    if (CheckFunctionCall(FDecl, TheCall))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (BuiltinID)
 | 
						|
      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
 | 
						|
  } else if (NDecl) {
 | 
						|
    if (CheckBlockCall(NDecl, TheCall))
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return MaybeBindToTemporary(TheCall);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
 | 
						|
                           SourceLocation RParenLoc, Expr *InitExpr) {
 | 
						|
  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
 | 
						|
  // FIXME: put back this assert when initializers are worked out.
 | 
						|
  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo;
 | 
						|
  QualType literalType = GetTypeFromParser(Ty, &TInfo);
 | 
						|
  if (!TInfo)
 | 
						|
    TInfo = Context.getTrivialTypeSourceInfo(literalType);
 | 
						|
 | 
						|
  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
 | 
						|
                               SourceLocation RParenLoc, Expr *literalExpr) {
 | 
						|
  QualType literalType = TInfo->getType();
 | 
						|
 | 
						|
  if (literalType->isArrayType()) {
 | 
						|
    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
 | 
						|
             PDiag(diag::err_illegal_decl_array_incomplete_type)
 | 
						|
               << SourceRange(LParenLoc,
 | 
						|
                              literalExpr->getSourceRange().getEnd())))
 | 
						|
      return ExprError();
 | 
						|
    if (literalType->isVariableArrayType())
 | 
						|
      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
 | 
						|
        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
 | 
						|
  } else if (!literalType->isDependentType() &&
 | 
						|
             RequireCompleteType(LParenLoc, literalType,
 | 
						|
                      PDiag(diag::err_typecheck_decl_incomplete_type)
 | 
						|
                        << SourceRange(LParenLoc,
 | 
						|
                                       literalExpr->getSourceRange().getEnd())))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  InitializedEntity Entity
 | 
						|
    = InitializedEntity::InitializeTemporary(literalType);
 | 
						|
  InitializationKind Kind
 | 
						|
    = InitializationKind::CreateCStyleCast(LParenLoc, 
 | 
						|
                                           SourceRange(LParenLoc, RParenLoc));
 | 
						|
  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
 | 
						|
  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
 | 
						|
                                       MultiExprArg(*this, &literalExpr, 1),
 | 
						|
                                            &literalType);
 | 
						|
  if (Result.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  literalExpr = Result.get();
 | 
						|
 | 
						|
  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
 | 
						|
  if (isFileScope) { // 6.5.2.5p3
 | 
						|
    if (CheckForConstantInitializer(literalExpr, literalType))
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // In C, compound literals are l-values for some reason.
 | 
						|
  ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
 | 
						|
 | 
						|
  return MaybeBindToTemporary(
 | 
						|
           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
 | 
						|
                                             VK, literalExpr, isFileScope));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
 | 
						|
                    SourceLocation RBraceLoc) {
 | 
						|
  unsigned NumInit = initlist.size();
 | 
						|
  Expr **InitList = initlist.release();
 | 
						|
 | 
						|
  // Semantic analysis for initializers is done by ActOnDeclarator() and
 | 
						|
  // CheckInitializer() - it requires knowledge of the object being intialized.
 | 
						|
 | 
						|
  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
 | 
						|
                                               NumInit, RBraceLoc);
 | 
						|
  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
/// Prepares for a scalar cast, performing all the necessary stages
 | 
						|
/// except the final cast and returning the kind required.
 | 
						|
static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
 | 
						|
  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
 | 
						|
  // Also, callers should have filtered out the invalid cases with
 | 
						|
  // pointers.  Everything else should be possible.
 | 
						|
 | 
						|
  QualType SrcTy = Src.get()->getType();
 | 
						|
  if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
 | 
						|
    return CK_NoOp;
 | 
						|
 | 
						|
  switch (SrcTy->getScalarTypeKind()) {
 | 
						|
  case Type::STK_MemberPointer:
 | 
						|
    llvm_unreachable("member pointer type in C");
 | 
						|
 | 
						|
  case Type::STK_Pointer:
 | 
						|
    switch (DestTy->getScalarTypeKind()) {
 | 
						|
    case Type::STK_Pointer:
 | 
						|
      return DestTy->isObjCObjectPointerType() ?
 | 
						|
                CK_AnyPointerToObjCPointerCast :
 | 
						|
                CK_BitCast;
 | 
						|
    case Type::STK_Bool:
 | 
						|
      return CK_PointerToBoolean;
 | 
						|
    case Type::STK_Integral:
 | 
						|
      return CK_PointerToIntegral;
 | 
						|
    case Type::STK_Floating:
 | 
						|
    case Type::STK_FloatingComplex:
 | 
						|
    case Type::STK_IntegralComplex:
 | 
						|
    case Type::STK_MemberPointer:
 | 
						|
      llvm_unreachable("illegal cast from pointer");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::STK_Bool: // casting from bool is like casting from an integer
 | 
						|
  case Type::STK_Integral:
 | 
						|
    switch (DestTy->getScalarTypeKind()) {
 | 
						|
    case Type::STK_Pointer:
 | 
						|
      if (Src.get()->isNullPointerConstant(S.Context,
 | 
						|
                                           Expr::NPC_ValueDependentIsNull))
 | 
						|
        return CK_NullToPointer;
 | 
						|
      return CK_IntegralToPointer;
 | 
						|
    case Type::STK_Bool:
 | 
						|
      return CK_IntegralToBoolean;
 | 
						|
    case Type::STK_Integral:
 | 
						|
      return CK_IntegralCast;
 | 
						|
    case Type::STK_Floating:
 | 
						|
      return CK_IntegralToFloating;
 | 
						|
    case Type::STK_IntegralComplex:
 | 
						|
      Src = S.ImpCastExprToType(Src.take(),
 | 
						|
                                DestTy->getAs<ComplexType>()->getElementType(),
 | 
						|
                                CK_IntegralCast);
 | 
						|
      return CK_IntegralRealToComplex;
 | 
						|
    case Type::STK_FloatingComplex:
 | 
						|
      Src = S.ImpCastExprToType(Src.take(),
 | 
						|
                                DestTy->getAs<ComplexType>()->getElementType(),
 | 
						|
                                CK_IntegralToFloating);
 | 
						|
      return CK_FloatingRealToComplex;
 | 
						|
    case Type::STK_MemberPointer:
 | 
						|
      llvm_unreachable("member pointer type in C");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::STK_Floating:
 | 
						|
    switch (DestTy->getScalarTypeKind()) {
 | 
						|
    case Type::STK_Floating:
 | 
						|
      return CK_FloatingCast;
 | 
						|
    case Type::STK_Bool:
 | 
						|
      return CK_FloatingToBoolean;
 | 
						|
    case Type::STK_Integral:
 | 
						|
      return CK_FloatingToIntegral;
 | 
						|
    case Type::STK_FloatingComplex:
 | 
						|
      Src = S.ImpCastExprToType(Src.take(),
 | 
						|
                                DestTy->getAs<ComplexType>()->getElementType(),
 | 
						|
                                CK_FloatingCast);
 | 
						|
      return CK_FloatingRealToComplex;
 | 
						|
    case Type::STK_IntegralComplex:
 | 
						|
      Src = S.ImpCastExprToType(Src.take(),
 | 
						|
                                DestTy->getAs<ComplexType>()->getElementType(),
 | 
						|
                                CK_FloatingToIntegral);
 | 
						|
      return CK_IntegralRealToComplex;
 | 
						|
    case Type::STK_Pointer:
 | 
						|
      llvm_unreachable("valid float->pointer cast?");
 | 
						|
    case Type::STK_MemberPointer:
 | 
						|
      llvm_unreachable("member pointer type in C");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::STK_FloatingComplex:
 | 
						|
    switch (DestTy->getScalarTypeKind()) {
 | 
						|
    case Type::STK_FloatingComplex:
 | 
						|
      return CK_FloatingComplexCast;
 | 
						|
    case Type::STK_IntegralComplex:
 | 
						|
      return CK_FloatingComplexToIntegralComplex;
 | 
						|
    case Type::STK_Floating: {
 | 
						|
      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
 | 
						|
      if (S.Context.hasSameType(ET, DestTy))
 | 
						|
        return CK_FloatingComplexToReal;
 | 
						|
      Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
 | 
						|
      return CK_FloatingCast;
 | 
						|
    }
 | 
						|
    case Type::STK_Bool:
 | 
						|
      return CK_FloatingComplexToBoolean;
 | 
						|
    case Type::STK_Integral:
 | 
						|
      Src = S.ImpCastExprToType(Src.take(),
 | 
						|
                                SrcTy->getAs<ComplexType>()->getElementType(),
 | 
						|
                                CK_FloatingComplexToReal);
 | 
						|
      return CK_FloatingToIntegral;
 | 
						|
    case Type::STK_Pointer:
 | 
						|
      llvm_unreachable("valid complex float->pointer cast?");
 | 
						|
    case Type::STK_MemberPointer:
 | 
						|
      llvm_unreachable("member pointer type in C");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::STK_IntegralComplex:
 | 
						|
    switch (DestTy->getScalarTypeKind()) {
 | 
						|
    case Type::STK_FloatingComplex:
 | 
						|
      return CK_IntegralComplexToFloatingComplex;
 | 
						|
    case Type::STK_IntegralComplex:
 | 
						|
      return CK_IntegralComplexCast;
 | 
						|
    case Type::STK_Integral: {
 | 
						|
      QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
 | 
						|
      if (S.Context.hasSameType(ET, DestTy))
 | 
						|
        return CK_IntegralComplexToReal;
 | 
						|
      Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
 | 
						|
      return CK_IntegralCast;
 | 
						|
    }
 | 
						|
    case Type::STK_Bool:
 | 
						|
      return CK_IntegralComplexToBoolean;
 | 
						|
    case Type::STK_Floating:
 | 
						|
      Src = S.ImpCastExprToType(Src.take(),
 | 
						|
                                SrcTy->getAs<ComplexType>()->getElementType(),
 | 
						|
                                CK_IntegralComplexToReal);
 | 
						|
      return CK_IntegralToFloating;
 | 
						|
    case Type::STK_Pointer:
 | 
						|
      llvm_unreachable("valid complex int->pointer cast?");
 | 
						|
    case Type::STK_MemberPointer:
 | 
						|
      llvm_unreachable("member pointer type in C");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unhandled scalar cast");
 | 
						|
  return CK_BitCast;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCastTypes - Check type constraints for casting between types.
 | 
						|
ExprResult Sema::CheckCastTypes(SourceLocation CastStartLoc, SourceRange TyR, 
 | 
						|
                                QualType castType, Expr *castExpr, 
 | 
						|
                                CastKind& Kind, ExprValueKind &VK,
 | 
						|
                                CXXCastPath &BasePath, bool FunctionalStyle) {
 | 
						|
  if (castExpr->getType() == Context.UnknownAnyTy)
 | 
						|
    return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus)
 | 
						|
    return CXXCheckCStyleCast(SourceRange(CastStartLoc,
 | 
						|
                                          castExpr->getLocEnd()), 
 | 
						|
                              castType, VK, castExpr, Kind, BasePath,
 | 
						|
                              FunctionalStyle);
 | 
						|
 | 
						|
  assert(!castExpr->getType()->isPlaceholderType());
 | 
						|
 | 
						|
  // We only support r-value casts in C.
 | 
						|
  VK = VK_RValue;
 | 
						|
 | 
						|
  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
 | 
						|
  // type needs to be scalar.
 | 
						|
  if (castType->isVoidType()) {
 | 
						|
    // We don't necessarily do lvalue-to-rvalue conversions on this.
 | 
						|
    ExprResult castExprRes = IgnoredValueConversions(castExpr);
 | 
						|
    if (castExprRes.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    castExpr = castExprRes.take();
 | 
						|
 | 
						|
    // Cast to void allows any expr type.
 | 
						|
    Kind = CK_ToVoid;
 | 
						|
    return Owned(castExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
 | 
						|
  if (castExprRes.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  castExpr = castExprRes.take();
 | 
						|
 | 
						|
  if (RequireCompleteType(TyR.getBegin(), castType,
 | 
						|
                          diag::err_typecheck_cast_to_incomplete))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (!castType->isScalarType() && !castType->isVectorType()) {
 | 
						|
    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
 | 
						|
        (castType->isStructureType() || castType->isUnionType())) {
 | 
						|
      // GCC struct/union extension: allow cast to self.
 | 
						|
      // FIXME: Check that the cast destination type is complete.
 | 
						|
      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
 | 
						|
        << castType << castExpr->getSourceRange();
 | 
						|
      Kind = CK_NoOp;
 | 
						|
      return Owned(castExpr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (castType->isUnionType()) {
 | 
						|
      // GCC cast to union extension
 | 
						|
      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
 | 
						|
      RecordDecl::field_iterator Field, FieldEnd;
 | 
						|
      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
 | 
						|
           Field != FieldEnd; ++Field) {
 | 
						|
        if (Context.hasSameUnqualifiedType(Field->getType(),
 | 
						|
                                           castExpr->getType()) &&
 | 
						|
            !Field->isUnnamedBitfield()) {
 | 
						|
          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
 | 
						|
            << castExpr->getSourceRange();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Field == FieldEnd) {
 | 
						|
        Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
 | 
						|
          << castExpr->getType() << castExpr->getSourceRange();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
      Kind = CK_ToUnion;
 | 
						|
      return Owned(castExpr);
 | 
						|
    }
 | 
						|
 | 
						|
    // Reject any other conversions to non-scalar types.
 | 
						|
    Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
 | 
						|
      << castType << castExpr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // The type we're casting to is known to be a scalar or vector.
 | 
						|
 | 
						|
  // Require the operand to be a scalar or vector.
 | 
						|
  if (!castExpr->getType()->isScalarType() &&
 | 
						|
      !castExpr->getType()->isVectorType()) {
 | 
						|
    Diag(castExpr->getLocStart(),
 | 
						|
                diag::err_typecheck_expect_scalar_operand)
 | 
						|
      << castExpr->getType() << castExpr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (castType->isExtVectorType())
 | 
						|
    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
 | 
						|
 | 
						|
  if (castType->isVectorType()) {
 | 
						|
    if (castType->getAs<VectorType>()->getVectorKind() ==
 | 
						|
        VectorType::AltiVecVector &&
 | 
						|
          (castExpr->getType()->isIntegerType() ||
 | 
						|
           castExpr->getType()->isFloatingType())) {
 | 
						|
      Kind = CK_VectorSplat;
 | 
						|
      return Owned(castExpr);
 | 
						|
    } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
 | 
						|
      return ExprError();
 | 
						|
    } else
 | 
						|
      return Owned(castExpr);
 | 
						|
  }
 | 
						|
  if (castExpr->getType()->isVectorType()) {
 | 
						|
    if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
 | 
						|
      return ExprError();
 | 
						|
    else
 | 
						|
      return Owned(castExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  // The source and target types are both scalars, i.e.
 | 
						|
  //   - arithmetic types (fundamental, enum, and complex)
 | 
						|
  //   - all kinds of pointers
 | 
						|
  // Note that member pointers were filtered out with C++, above.
 | 
						|
 | 
						|
  if (isa<ObjCSelectorExpr>(castExpr)) {
 | 
						|
    Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // If either type is a pointer, the other type has to be either an
 | 
						|
  // integer or a pointer.
 | 
						|
  QualType castExprType = castExpr->getType();
 | 
						|
  if (!castType->isArithmeticType()) {
 | 
						|
    if (!castExprType->isIntegralType(Context) && 
 | 
						|
        castExprType->isArithmeticType()) {
 | 
						|
      Diag(castExpr->getLocStart(),
 | 
						|
           diag::err_cast_pointer_from_non_pointer_int)
 | 
						|
        << castExprType << castExpr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  } else if (!castExpr->getType()->isArithmeticType()) {
 | 
						|
    if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
 | 
						|
      Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
 | 
						|
        << castType << castExpr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().ObjCAutoRefCount) {
 | 
						|
    // Diagnose problems with Objective-C casts involving lifetime qualifiers.
 | 
						|
    CheckObjCARCConversion(SourceRange(CastStartLoc, castExpr->getLocEnd()), 
 | 
						|
                           castType, castExpr, CCK_CStyleCast);
 | 
						|
    
 | 
						|
    if (const PointerType *CastPtr = castType->getAs<PointerType>()) {
 | 
						|
      if (const PointerType *ExprPtr = castExprType->getAs<PointerType>()) {
 | 
						|
        Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
 | 
						|
        Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
 | 
						|
        if (CastPtr->getPointeeType()->isObjCLifetimeType() && 
 | 
						|
            ExprPtr->getPointeeType()->isObjCLifetimeType() &&
 | 
						|
            !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
 | 
						|
          Diag(castExpr->getLocStart(), 
 | 
						|
               diag::err_typecheck_incompatible_ownership)
 | 
						|
            << castExprType << castType << AA_Casting
 | 
						|
            << castExpr->getSourceRange();
 | 
						|
          
 | 
						|
          return ExprError();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } 
 | 
						|
    else if (!CheckObjCARCUnavailableWeakConversion(castType, castExprType)) {
 | 
						|
           Diag(castExpr->getLocStart(), 
 | 
						|
                diag::err_arc_convesion_of_weak_unavailable) << 1
 | 
						|
                << castExprType << castType 
 | 
						|
                << castExpr->getSourceRange();
 | 
						|
          return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  castExprRes = Owned(castExpr);
 | 
						|
  Kind = PrepareScalarCast(*this, castExprRes, castType);
 | 
						|
  if (castExprRes.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  castExpr = castExprRes.take();
 | 
						|
 | 
						|
  if (Kind == CK_BitCast)
 | 
						|
    CheckCastAlign(castExpr, castType, TyR);
 | 
						|
 | 
						|
  return Owned(castExpr);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
 | 
						|
                           CastKind &Kind) {
 | 
						|
  assert(VectorTy->isVectorType() && "Not a vector type!");
 | 
						|
 | 
						|
  if (Ty->isVectorType() || Ty->isIntegerType()) {
 | 
						|
    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
 | 
						|
      return Diag(R.getBegin(),
 | 
						|
                  Ty->isVectorType() ?
 | 
						|
                  diag::err_invalid_conversion_between_vectors :
 | 
						|
                  diag::err_invalid_conversion_between_vector_and_integer)
 | 
						|
        << VectorTy << Ty << R;
 | 
						|
  } else
 | 
						|
    return Diag(R.getBegin(),
 | 
						|
                diag::err_invalid_conversion_between_vector_and_scalar)
 | 
						|
      << VectorTy << Ty << R;
 | 
						|
 | 
						|
  Kind = CK_BitCast;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
 | 
						|
                                    Expr *CastExpr, CastKind &Kind) {
 | 
						|
  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
 | 
						|
 | 
						|
  QualType SrcTy = CastExpr->getType();
 | 
						|
 | 
						|
  // If SrcTy is a VectorType, the total size must match to explicitly cast to
 | 
						|
  // an ExtVectorType.
 | 
						|
  if (SrcTy->isVectorType()) {
 | 
						|
    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
 | 
						|
      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
 | 
						|
        << DestTy << SrcTy << R;
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    Kind = CK_BitCast;
 | 
						|
    return Owned(CastExpr);
 | 
						|
  }
 | 
						|
 | 
						|
  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
 | 
						|
  // conversion will take place first from scalar to elt type, and then
 | 
						|
  // splat from elt type to vector.
 | 
						|
  if (SrcTy->isPointerType())
 | 
						|
    return Diag(R.getBegin(),
 | 
						|
                diag::err_invalid_conversion_between_vector_and_scalar)
 | 
						|
      << DestTy << SrcTy << R;
 | 
						|
 | 
						|
  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
 | 
						|
  ExprResult CastExprRes = Owned(CastExpr);
 | 
						|
  CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
 | 
						|
  if (CastExprRes.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
 | 
						|
 | 
						|
  Kind = CK_VectorSplat;
 | 
						|
  return Owned(CastExpr);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
 | 
						|
                    Declarator &D, ParsedType &Ty,
 | 
						|
                    SourceLocation RParenLoc, Expr *castExpr) {
 | 
						|
  assert(!D.isInvalidType() && (castExpr != 0) &&
 | 
						|
         "ActOnCastExpr(): missing type or expr");
 | 
						|
 | 
						|
  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, castExpr->getType());
 | 
						|
  if (D.isInvalidType())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // Check that there are no default arguments (C++ only).
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType castType = castTInfo->getType();
 | 
						|
  Ty = CreateParsedType(castType, castTInfo);
 | 
						|
 | 
						|
  bool isVectorLiteral = false;
 | 
						|
 | 
						|
  // Check for an altivec or OpenCL literal,
 | 
						|
  // i.e. all the elements are integer constants.
 | 
						|
  ParenExpr *PE = dyn_cast<ParenExpr>(castExpr);
 | 
						|
  ParenListExpr *PLE = dyn_cast<ParenListExpr>(castExpr);
 | 
						|
  if (getLangOptions().AltiVec && castType->isVectorType() && (PE || PLE)) {
 | 
						|
    if (PLE && PLE->getNumExprs() == 0) {
 | 
						|
      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    if (PE || PLE->getNumExprs() == 1) {
 | 
						|
      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
 | 
						|
      if (!E->getType()->isVectorType())
 | 
						|
        isVectorLiteral = true;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      isVectorLiteral = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
 | 
						|
  // then handle it as such.
 | 
						|
  if (isVectorLiteral)
 | 
						|
    return BuildVectorLiteral(LParenLoc, RParenLoc, castExpr, castTInfo);
 | 
						|
 | 
						|
  // If the Expr being casted is a ParenListExpr, handle it specially.
 | 
						|
  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
 | 
						|
  // sequence of BinOp comma operators.
 | 
						|
  if (isa<ParenListExpr>(castExpr)) {
 | 
						|
    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, castExpr);
 | 
						|
    if (Result.isInvalid()) return ExprError();
 | 
						|
    castExpr = Result.take();
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
 | 
						|
                          SourceLocation RParenLoc, Expr *castExpr) {
 | 
						|
  CastKind Kind = CK_Invalid;
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  CXXCastPath BasePath;
 | 
						|
  ExprResult CastResult =
 | 
						|
    CheckCastTypes(LParenLoc, SourceRange(LParenLoc, RParenLoc), Ty->getType(), 
 | 
						|
                   castExpr, Kind, VK, BasePath);
 | 
						|
  if (CastResult.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  castExpr = CastResult.take();
 | 
						|
 | 
						|
  return Owned(CStyleCastExpr::Create(
 | 
						|
    Context, Ty->getType().getNonLValueExprType(Context), VK, Kind, castExpr,
 | 
						|
    &BasePath, Ty, LParenLoc, RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
 | 
						|
                                    SourceLocation RParenLoc, Expr *E,
 | 
						|
                                    TypeSourceInfo *TInfo) {
 | 
						|
  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
 | 
						|
         "Expected paren or paren list expression");
 | 
						|
 | 
						|
  Expr **exprs;
 | 
						|
  unsigned numExprs;
 | 
						|
  Expr *subExpr;
 | 
						|
  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
 | 
						|
    exprs = PE->getExprs();
 | 
						|
    numExprs = PE->getNumExprs();
 | 
						|
  } else {
 | 
						|
    subExpr = cast<ParenExpr>(E)->getSubExpr();
 | 
						|
    exprs = &subExpr;
 | 
						|
    numExprs = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Ty = TInfo->getType();
 | 
						|
  assert(Ty->isVectorType() && "Expected vector type");
 | 
						|
 | 
						|
  SmallVector<Expr *, 8> initExprs;
 | 
						|
  const VectorType *VTy = Ty->getAs<VectorType>();
 | 
						|
  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
 | 
						|
  
 | 
						|
  // '(...)' form of vector initialization in AltiVec: the number of
 | 
						|
  // initializers must be one or must match the size of the vector.
 | 
						|
  // If a single value is specified in the initializer then it will be
 | 
						|
  // replicated to all the components of the vector
 | 
						|
  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
 | 
						|
    // The number of initializers must be one or must match the size of the
 | 
						|
    // vector. If a single value is specified in the initializer then it will
 | 
						|
    // be replicated to all the components of the vector
 | 
						|
    if (numExprs == 1) {
 | 
						|
      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
 | 
						|
      ExprResult Literal = Owned(exprs[0]);
 | 
						|
      Literal = ImpCastExprToType(Literal.take(), ElemTy,
 | 
						|
                                  PrepareScalarCast(*this, Literal, ElemTy));
 | 
						|
      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
 | 
						|
    }
 | 
						|
    else if (numExprs < numElems) {
 | 
						|
      Diag(E->getExprLoc(),
 | 
						|
           diag::err_incorrect_number_of_vector_initializers);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    else
 | 
						|
      for (unsigned i = 0, e = numExprs; i != e; ++i)
 | 
						|
        initExprs.push_back(exprs[i]);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // For OpenCL, when the number of initializers is a single value,
 | 
						|
    // it will be replicated to all components of the vector.
 | 
						|
    if (getLangOptions().OpenCL &&
 | 
						|
        VTy->getVectorKind() == VectorType::GenericVector &&
 | 
						|
        numExprs == 1) {
 | 
						|
        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
 | 
						|
        ExprResult Literal = Owned(exprs[0]);
 | 
						|
        Literal = ImpCastExprToType(Literal.take(), ElemTy,
 | 
						|
                                    PrepareScalarCast(*this, Literal, ElemTy));
 | 
						|
        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = numExprs; i != e; ++i)
 | 
						|
      initExprs.push_back(exprs[i]);
 | 
						|
  }
 | 
						|
  // FIXME: This means that pretty-printing the final AST will produce curly
 | 
						|
  // braces instead of the original commas.
 | 
						|
  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
 | 
						|
                                                   &initExprs[0],
 | 
						|
                                                   initExprs.size(), RParenLoc);
 | 
						|
  initE->setType(Ty);
 | 
						|
  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
 | 
						|
}
 | 
						|
 | 
						|
/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
 | 
						|
/// of comma binary operators.
 | 
						|
ExprResult
 | 
						|
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
 | 
						|
  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
 | 
						|
  if (!E)
 | 
						|
    return Owned(expr);
 | 
						|
 | 
						|
  ExprResult Result(E->getExpr(0));
 | 
						|
 | 
						|
  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
 | 
						|
    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
 | 
						|
                        E->getExpr(i));
 | 
						|
 | 
						|
  if (Result.isInvalid()) return ExprError();
 | 
						|
 | 
						|
  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
 | 
						|
                                                  SourceLocation R,
 | 
						|
                                                  MultiExprArg Val) {
 | 
						|
  unsigned nexprs = Val.size();
 | 
						|
  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
 | 
						|
  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
 | 
						|
  Expr *expr;
 | 
						|
  if (nexprs == 1)
 | 
						|
    expr = new (Context) ParenExpr(L, R, exprs[0]);
 | 
						|
  else
 | 
						|
    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R,
 | 
						|
                                       exprs[nexprs-1]->getType());
 | 
						|
  return Owned(expr);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Emit a specialized diagnostic when one expression is a null pointer
 | 
						|
/// constant and the other is not a pointer.  Returns true if a diagnostic is
 | 
						|
/// emitted.
 | 
						|
bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
 | 
						|
                                      SourceLocation QuestionLoc) {
 | 
						|
  Expr *NullExpr = LHSExpr;
 | 
						|
  Expr *NonPointerExpr = RHSExpr;
 | 
						|
  Expr::NullPointerConstantKind NullKind =
 | 
						|
      NullExpr->isNullPointerConstant(Context,
 | 
						|
                                      Expr::NPC_ValueDependentIsNotNull);
 | 
						|
 | 
						|
  if (NullKind == Expr::NPCK_NotNull) {
 | 
						|
    NullExpr = RHSExpr;
 | 
						|
    NonPointerExpr = LHSExpr;
 | 
						|
    NullKind =
 | 
						|
        NullExpr->isNullPointerConstant(Context,
 | 
						|
                                        Expr::NPC_ValueDependentIsNotNull);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NullKind == Expr::NPCK_NotNull)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (NullKind == Expr::NPCK_ZeroInteger) {
 | 
						|
    // In this case, check to make sure that we got here from a "NULL"
 | 
						|
    // string in the source code.
 | 
						|
    NullExpr = NullExpr->IgnoreParenImpCasts();
 | 
						|
    SourceLocation loc = NullExpr->getExprLoc();
 | 
						|
    if (!findMacroSpelling(loc, "NULL"))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
 | 
						|
  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
 | 
						|
      << NonPointerExpr->getType() << DiagType
 | 
						|
      << NonPointerExpr->getSourceRange();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return false if the condition expression is valid, true otherwise.
 | 
						|
static bool checkCondition(Sema &S, Expr *Cond) {
 | 
						|
  QualType CondTy = Cond->getType();
 | 
						|
 | 
						|
  // C99 6.5.15p2
 | 
						|
  if (CondTy->isScalarType()) return false;
 | 
						|
 | 
						|
  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
 | 
						|
  if (S.getLangOptions().OpenCL && CondTy->isVectorType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Emit the proper error message.
 | 
						|
  S.Diag(Cond->getLocStart(), S.getLangOptions().OpenCL ?
 | 
						|
                              diag::err_typecheck_cond_expect_scalar :
 | 
						|
                              diag::err_typecheck_cond_expect_scalar_or_vector)
 | 
						|
    << CondTy;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return false if the two expressions can be converted to a vector,
 | 
						|
/// true otherwise
 | 
						|
static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
 | 
						|
                                                    ExprResult &RHS,
 | 
						|
                                                    QualType CondTy) {
 | 
						|
  // Both operands should be of scalar type.
 | 
						|
  if (!LHS.get()->getType()->isScalarType()) {
 | 
						|
    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
 | 
						|
      << CondTy;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (!RHS.get()->getType()->isScalarType()) {
 | 
						|
    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
 | 
						|
      << CondTy;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Implicity convert these scalars to the type of the condition.
 | 
						|
  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
 | 
						|
  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Handle when one or both operands are void type.
 | 
						|
static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
 | 
						|
                                         ExprResult &RHS) {
 | 
						|
    Expr *LHSExpr = LHS.get();
 | 
						|
    Expr *RHSExpr = RHS.get();
 | 
						|
 | 
						|
    if (!LHSExpr->getType()->isVoidType())
 | 
						|
      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
 | 
						|
        << RHSExpr->getSourceRange();
 | 
						|
    if (!RHSExpr->getType()->isVoidType())
 | 
						|
      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
 | 
						|
        << LHSExpr->getSourceRange();
 | 
						|
    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
 | 
						|
    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
 | 
						|
    return S.Context.VoidTy;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return false if the NullExpr can be promoted to PointerTy,
 | 
						|
/// true otherwise.
 | 
						|
static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
 | 
						|
                                        QualType PointerTy) {
 | 
						|
  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
 | 
						|
      !NullExpr.get()->isNullPointerConstant(S.Context,
 | 
						|
                                            Expr::NPC_ValueDependentIsNull))
 | 
						|
    return true;
 | 
						|
 | 
						|
  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks compatibility between two pointers and return the resulting
 | 
						|
/// type.
 | 
						|
static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
 | 
						|
                                                     ExprResult &RHS,
 | 
						|
                                                     SourceLocation Loc) {
 | 
						|
  QualType LHSTy = LHS.get()->getType();
 | 
						|
  QualType RHSTy = RHS.get()->getType();
 | 
						|
 | 
						|
  if (S.Context.hasSameType(LHSTy, RHSTy)) {
 | 
						|
    // Two identical pointers types are always compatible.
 | 
						|
    return LHSTy;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType lhptee, rhptee;
 | 
						|
 | 
						|
  // Get the pointee types.
 | 
						|
  if (LHSTy->isBlockPointerType()) {
 | 
						|
    lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
 | 
						|
    rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
 | 
						|
  } else {
 | 
						|
    lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
    rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!S.Context.typesAreCompatible(lhptee.getUnqualifiedType(),
 | 
						|
                                    rhptee.getUnqualifiedType())) {
 | 
						|
    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
 | 
						|
      << LHSTy << RHSTy << LHS.get()->getSourceRange()
 | 
						|
      << RHS.get()->getSourceRange();
 | 
						|
    // In this situation, we assume void* type. No especially good
 | 
						|
    // reason, but this is what gcc does, and we do have to pick
 | 
						|
    // to get a consistent AST.
 | 
						|
    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
 | 
						|
    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
 | 
						|
    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
 | 
						|
    return incompatTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // The pointer types are compatible.
 | 
						|
  // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
 | 
						|
  // differently qualified versions of compatible types, the result type is
 | 
						|
  // a pointer to an appropriately qualified version of the *composite*
 | 
						|
  // type.
 | 
						|
  // FIXME: Need to calculate the composite type.
 | 
						|
  // FIXME: Need to add qualifiers
 | 
						|
 | 
						|
  LHS = S.ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
 | 
						|
  RHS = S.ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | 
						|
  return LHSTy;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return the resulting type when the operands are both block pointers.
 | 
						|
static QualType checkConditionalBlockPointerCompatibility(Sema &S,
 | 
						|
                                                          ExprResult &LHS,
 | 
						|
                                                          ExprResult &RHS,
 | 
						|
                                                          SourceLocation Loc) {
 | 
						|
  QualType LHSTy = LHS.get()->getType();
 | 
						|
  QualType RHSTy = RHS.get()->getType();
 | 
						|
 | 
						|
  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
 | 
						|
    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
 | 
						|
      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
 | 
						|
      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
 | 
						|
      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
 | 
						|
      return destType;
 | 
						|
    }
 | 
						|
    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
 | 
						|
      << LHSTy << RHSTy << LHS.get()->getSourceRange()
 | 
						|
      << RHS.get()->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // We have 2 block pointer types.
 | 
						|
  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return the resulting type when the operands are both pointers.
 | 
						|
static QualType
 | 
						|
checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
 | 
						|
                                            ExprResult &RHS,
 | 
						|
                                            SourceLocation Loc) {
 | 
						|
  // get the pointer types
 | 
						|
  QualType LHSTy = LHS.get()->getType();
 | 
						|
  QualType RHSTy = RHS.get()->getType();
 | 
						|
 | 
						|
  // get the "pointed to" types
 | 
						|
  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
 | 
						|
  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
 | 
						|
  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
 | 
						|
    // Figure out necessary qualifiers (C99 6.5.15p6)
 | 
						|
    QualType destPointee
 | 
						|
      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
 | 
						|
    QualType destType = S.Context.getPointerType(destPointee);
 | 
						|
    // Add qualifiers if necessary.
 | 
						|
    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
 | 
						|
    // Promote to void*.
 | 
						|
    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
 | 
						|
    return destType;
 | 
						|
  }
 | 
						|
  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
 | 
						|
    QualType destPointee
 | 
						|
      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
 | 
						|
    QualType destType = S.Context.getPointerType(destPointee);
 | 
						|
    // Add qualifiers if necessary.
 | 
						|
    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
 | 
						|
    // Promote to void*.
 | 
						|
    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
 | 
						|
    return destType;
 | 
						|
  }
 | 
						|
 | 
						|
  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return false if the first expression is not an integer and the second
 | 
						|
/// expression is not a pointer, true otherwise.
 | 
						|
static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
 | 
						|
                                        Expr* PointerExpr, SourceLocation Loc,
 | 
						|
                                        bool isIntFirstExpr) {
 | 
						|
  if (!PointerExpr->getType()->isPointerType() ||
 | 
						|
      !Int.get()->getType()->isIntegerType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Expr *Expr1 = isIntFirstExpr ? Int.get() : PointerExpr;
 | 
						|
  Expr *Expr2 = isIntFirstExpr ? PointerExpr : Int.get();
 | 
						|
 | 
						|
  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
 | 
						|
    << Expr1->getType() << Expr2->getType()
 | 
						|
    << Expr1->getSourceRange() << Expr2->getSourceRange();
 | 
						|
  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
 | 
						|
                            CK_IntegralToPointer);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
 | 
						|
/// In that case, LHS = cond.
 | 
						|
/// C99 6.5.15
 | 
						|
QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
 | 
						|
                                        ExprResult &RHS, ExprValueKind &VK,
 | 
						|
                                        ExprObjectKind &OK,
 | 
						|
                                        SourceLocation QuestionLoc) {
 | 
						|
 | 
						|
  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
 | 
						|
  if (!LHSResult.isUsable()) return QualType();
 | 
						|
  LHS = move(LHSResult);
 | 
						|
 | 
						|
  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
 | 
						|
  if (!RHSResult.isUsable()) return QualType();
 | 
						|
  RHS = move(RHSResult);
 | 
						|
 | 
						|
  // C++ is sufficiently different to merit its own checker.
 | 
						|
  if (getLangOptions().CPlusPlus)
 | 
						|
    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
 | 
						|
 | 
						|
  VK = VK_RValue;
 | 
						|
  OK = OK_Ordinary;
 | 
						|
 | 
						|
  Cond = UsualUnaryConversions(Cond.take());
 | 
						|
  if (Cond.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  LHS = UsualUnaryConversions(LHS.take());
 | 
						|
  if (LHS.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  RHS = UsualUnaryConversions(RHS.take());
 | 
						|
  if (RHS.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  QualType CondTy = Cond.get()->getType();
 | 
						|
  QualType LHSTy = LHS.get()->getType();
 | 
						|
  QualType RHSTy = RHS.get()->getType();
 | 
						|
 | 
						|
  // first, check the condition.
 | 
						|
  if (checkCondition(*this, Cond.get()))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Now check the two expressions.
 | 
						|
  if (LHSTy->isVectorType() || RHSTy->isVectorType())
 | 
						|
    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
 | 
						|
 | 
						|
  // OpenCL: If the condition is a vector, and both operands are scalar,
 | 
						|
  // attempt to implicity convert them to the vector type to act like the
 | 
						|
  // built in select.
 | 
						|
  if (getLangOptions().OpenCL && CondTy->isVectorType())
 | 
						|
    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
 | 
						|
      return QualType();
 | 
						|
  
 | 
						|
  // If both operands have arithmetic type, do the usual arithmetic conversions
 | 
						|
  // to find a common type: C99 6.5.15p3,5.
 | 
						|
  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
 | 
						|
    UsualArithmeticConversions(LHS, RHS);
 | 
						|
    if (LHS.isInvalid() || RHS.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    return LHS.get()->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  // If both operands are the same structure or union type, the result is that
 | 
						|
  // type.
 | 
						|
  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
 | 
						|
    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
 | 
						|
      if (LHSRT->getDecl() == RHSRT->getDecl())
 | 
						|
        // "If both the operands have structure or union type, the result has
 | 
						|
        // that type."  This implies that CV qualifiers are dropped.
 | 
						|
        return LHSTy.getUnqualifiedType();
 | 
						|
    // FIXME: Type of conditional expression must be complete in C mode.
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.5.15p5: "If both operands have void type, the result has void type."
 | 
						|
  // The following || allows only one side to be void (a GCC-ism).
 | 
						|
  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
 | 
						|
    return checkConditionalVoidType(*this, LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
 | 
						|
  // the type of the other operand."
 | 
						|
  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
 | 
						|
  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
 | 
						|
 | 
						|
  // All objective-c pointer type analysis is done here.
 | 
						|
  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
 | 
						|
                                                        QuestionLoc);
 | 
						|
  if (LHS.isInvalid() || RHS.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  if (!compositeType.isNull())
 | 
						|
    return compositeType;
 | 
						|
 | 
						|
 | 
						|
  // Handle block pointer types.
 | 
						|
  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
 | 
						|
    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
 | 
						|
                                                     QuestionLoc);
 | 
						|
 | 
						|
  // Check constraints for C object pointers types (C99 6.5.15p3,6).
 | 
						|
  if (LHSTy->isPointerType() && RHSTy->isPointerType())
 | 
						|
    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
 | 
						|
                                                       QuestionLoc);
 | 
						|
 | 
						|
  // GCC compatibility: soften pointer/integer mismatch.  Note that
 | 
						|
  // null pointers have been filtered out by this point.
 | 
						|
  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
 | 
						|
      /*isIntFirstExpr=*/true))
 | 
						|
    return RHSTy;
 | 
						|
  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
 | 
						|
      /*isIntFirstExpr=*/false))
 | 
						|
    return LHSTy;
 | 
						|
 | 
						|
  // Emit a better diagnostic if one of the expressions is a null pointer
 | 
						|
  // constant and the other is not a pointer type. In this case, the user most
 | 
						|
  // likely forgot to take the address of the other expression.
 | 
						|
  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Otherwise, the operands are not compatible.
 | 
						|
  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | 
						|
    << LHSTy << RHSTy << LHS.get()->getSourceRange()
 | 
						|
    << RHS.get()->getSourceRange();
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// FindCompositeObjCPointerType - Helper method to find composite type of
 | 
						|
/// two objective-c pointer types of the two input expressions.
 | 
						|
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
 | 
						|
                                            SourceLocation QuestionLoc) {
 | 
						|
  QualType LHSTy = LHS.get()->getType();
 | 
						|
  QualType RHSTy = RHS.get()->getType();
 | 
						|
 | 
						|
  // Handle things like Class and struct objc_class*.  Here we case the result
 | 
						|
  // to the pseudo-builtin, because that will be implicitly cast back to the
 | 
						|
  // redefinition type if an attempt is made to access its fields.
 | 
						|
  if (LHSTy->isObjCClassType() &&
 | 
						|
      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
 | 
						|
    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | 
						|
    return LHSTy;
 | 
						|
  }
 | 
						|
  if (RHSTy->isObjCClassType() &&
 | 
						|
      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
 | 
						|
    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
 | 
						|
    return RHSTy;
 | 
						|
  }
 | 
						|
  // And the same for struct objc_object* / id
 | 
						|
  if (LHSTy->isObjCIdType() &&
 | 
						|
      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
 | 
						|
    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | 
						|
    return LHSTy;
 | 
						|
  }
 | 
						|
  if (RHSTy->isObjCIdType() &&
 | 
						|
      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
 | 
						|
    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
 | 
						|
    return RHSTy;
 | 
						|
  }
 | 
						|
  // And the same for struct objc_selector* / SEL
 | 
						|
  if (Context.isObjCSelType(LHSTy) &&
 | 
						|
      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
 | 
						|
    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
 | 
						|
    return LHSTy;
 | 
						|
  }
 | 
						|
  if (Context.isObjCSelType(RHSTy) &&
 | 
						|
      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
 | 
						|
    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
 | 
						|
    return RHSTy;
 | 
						|
  }
 | 
						|
  // Check constraints for Objective-C object pointers types.
 | 
						|
  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
 | 
						|
 | 
						|
    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
 | 
						|
      // Two identical object pointer types are always compatible.
 | 
						|
      return LHSTy;
 | 
						|
    }
 | 
						|
    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
 | 
						|
    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
 | 
						|
    QualType compositeType = LHSTy;
 | 
						|
 | 
						|
    // If both operands are interfaces and either operand can be
 | 
						|
    // assigned to the other, use that type as the composite
 | 
						|
    // type. This allows
 | 
						|
    //   xxx ? (A*) a : (B*) b
 | 
						|
    // where B is a subclass of A.
 | 
						|
    //
 | 
						|
    // Additionally, as for assignment, if either type is 'id'
 | 
						|
    // allow silent coercion. Finally, if the types are
 | 
						|
    // incompatible then make sure to use 'id' as the composite
 | 
						|
    // type so the result is acceptable for sending messages to.
 | 
						|
 | 
						|
    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
 | 
						|
    // It could return the composite type.
 | 
						|
    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
 | 
						|
      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
 | 
						|
    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
 | 
						|
      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
 | 
						|
    } else if ((LHSTy->isObjCQualifiedIdType() ||
 | 
						|
                RHSTy->isObjCQualifiedIdType()) &&
 | 
						|
               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
 | 
						|
      // Need to handle "id<xx>" explicitly.
 | 
						|
      // GCC allows qualified id and any Objective-C type to devolve to
 | 
						|
      // id. Currently localizing to here until clear this should be
 | 
						|
      // part of ObjCQualifiedIdTypesAreCompatible.
 | 
						|
      compositeType = Context.getObjCIdType();
 | 
						|
    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
 | 
						|
      compositeType = Context.getObjCIdType();
 | 
						|
    } else if (!(compositeType =
 | 
						|
                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
 | 
						|
      ;
 | 
						|
    else {
 | 
						|
      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
 | 
						|
      << LHSTy << RHSTy
 | 
						|
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | 
						|
      QualType incompatTy = Context.getObjCIdType();
 | 
						|
      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
 | 
						|
      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
 | 
						|
      return incompatTy;
 | 
						|
    }
 | 
						|
    // The object pointer types are compatible.
 | 
						|
    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
 | 
						|
    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
 | 
						|
    return compositeType;
 | 
						|
  }
 | 
						|
  // Check Objective-C object pointer types and 'void *'
 | 
						|
  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
 | 
						|
    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
 | 
						|
    QualType destPointee
 | 
						|
    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
 | 
						|
    QualType destType = Context.getPointerType(destPointee);
 | 
						|
    // Add qualifiers if necessary.
 | 
						|
    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
 | 
						|
    // Promote to void*.
 | 
						|
    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
 | 
						|
    return destType;
 | 
						|
  }
 | 
						|
  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
 | 
						|
    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
 | 
						|
    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
 | 
						|
    QualType destPointee
 | 
						|
    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
 | 
						|
    QualType destType = Context.getPointerType(destPointee);
 | 
						|
    // Add qualifiers if necessary.
 | 
						|
    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
 | 
						|
    // Promote to void*.
 | 
						|
    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
 | 
						|
    return destType;
 | 
						|
  }
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// SuggestParentheses - Emit a note with a fixit hint that wraps
 | 
						|
/// ParenRange in parentheses.
 | 
						|
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
 | 
						|
                               const PartialDiagnostic &Note,
 | 
						|
                               SourceRange ParenRange) {
 | 
						|
  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
 | 
						|
  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
 | 
						|
      EndLoc.isValid()) {
 | 
						|
    Self.Diag(Loc, Note)
 | 
						|
      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
 | 
						|
      << FixItHint::CreateInsertion(EndLoc, ")");
 | 
						|
  } else {
 | 
						|
    // We can't display the parentheses, so just show the bare note.
 | 
						|
    Self.Diag(Loc, Note) << ParenRange;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool IsArithmeticOp(BinaryOperatorKind Opc) {
 | 
						|
  return Opc >= BO_Mul && Opc <= BO_Shr;
 | 
						|
}
 | 
						|
 | 
						|
/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
 | 
						|
/// expression, either using a built-in or overloaded operator,
 | 
						|
/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
 | 
						|
/// expression.
 | 
						|
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
 | 
						|
                                   Expr **RHSExprs) {
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
  E = E->IgnoreConversionOperator();
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  // Built-in binary operator.
 | 
						|
  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    if (IsArithmeticOp(OP->getOpcode())) {
 | 
						|
      *Opcode = OP->getOpcode();
 | 
						|
      *RHSExprs = OP->getRHS();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Overloaded operator.
 | 
						|
  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
 | 
						|
    if (Call->getNumArgs() != 2)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Make sure this is really a binary operator that is safe to pass into
 | 
						|
    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
 | 
						|
    OverloadedOperatorKind OO = Call->getOperator();
 | 
						|
    if (OO < OO_Plus || OO > OO_Arrow)
 | 
						|
      return false;
 | 
						|
 | 
						|
    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
 | 
						|
    if (IsArithmeticOp(OpKind)) {
 | 
						|
      *Opcode = OpKind;
 | 
						|
      *RHSExprs = Call->getArg(1);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsLogicOp(BinaryOperatorKind Opc) {
 | 
						|
  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
 | 
						|
}
 | 
						|
 | 
						|
/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
 | 
						|
/// or is a logical expression such as (x==y) which has int type, but is
 | 
						|
/// commonly interpreted as boolean.
 | 
						|
static bool ExprLooksBoolean(Expr *E) {
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  if (E->getType()->isBooleanType())
 | 
						|
    return true;
 | 
						|
  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
 | 
						|
    return IsLogicOp(OP->getOpcode());
 | 
						|
  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
 | 
						|
    return OP->getOpcode() == UO_LNot;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
 | 
						|
/// and binary operator are mixed in a way that suggests the programmer assumed
 | 
						|
/// the conditional operator has higher precedence, for example:
 | 
						|
/// "int x = a + someBinaryCondition ? 1 : 2".
 | 
						|
static void DiagnoseConditionalPrecedence(Sema &Self,
 | 
						|
                                          SourceLocation OpLoc,
 | 
						|
                                          Expr *Condition,
 | 
						|
                                          Expr *LHSExpr,
 | 
						|
                                          Expr *RHSExpr) {
 | 
						|
  BinaryOperatorKind CondOpcode;
 | 
						|
  Expr *CondRHS;
 | 
						|
 | 
						|
  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
 | 
						|
    return;
 | 
						|
  if (!ExprLooksBoolean(CondRHS))
 | 
						|
    return;
 | 
						|
 | 
						|
  // The condition is an arithmetic binary expression, with a right-
 | 
						|
  // hand side that looks boolean, so warn.
 | 
						|
 | 
						|
  Self.Diag(OpLoc, diag::warn_precedence_conditional)
 | 
						|
      << Condition->getSourceRange()
 | 
						|
      << BinaryOperator::getOpcodeStr(CondOpcode);
 | 
						|
 | 
						|
  SuggestParentheses(Self, OpLoc,
 | 
						|
    Self.PDiag(diag::note_precedence_conditional_silence)
 | 
						|
      << BinaryOperator::getOpcodeStr(CondOpcode),
 | 
						|
    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
 | 
						|
 | 
						|
  SuggestParentheses(Self, OpLoc,
 | 
						|
    Self.PDiag(diag::note_precedence_conditional_first),
 | 
						|
    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
 | 
						|
/// in the case of a the GNU conditional expr extension.
 | 
						|
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
 | 
						|
                                    SourceLocation ColonLoc,
 | 
						|
                                    Expr *CondExpr, Expr *LHSExpr,
 | 
						|
                                    Expr *RHSExpr) {
 | 
						|
  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
 | 
						|
  // was the condition.
 | 
						|
  OpaqueValueExpr *opaqueValue = 0;
 | 
						|
  Expr *commonExpr = 0;
 | 
						|
  if (LHSExpr == 0) {
 | 
						|
    commonExpr = CondExpr;
 | 
						|
 | 
						|
    // We usually want to apply unary conversions *before* saving, except
 | 
						|
    // in the special case of a C++ l-value conditional.
 | 
						|
    if (!(getLangOptions().CPlusPlus
 | 
						|
          && !commonExpr->isTypeDependent()
 | 
						|
          && commonExpr->getValueKind() == RHSExpr->getValueKind()
 | 
						|
          && commonExpr->isGLValue()
 | 
						|
          && commonExpr->isOrdinaryOrBitFieldObject()
 | 
						|
          && RHSExpr->isOrdinaryOrBitFieldObject()
 | 
						|
          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
 | 
						|
      ExprResult commonRes = UsualUnaryConversions(commonExpr);
 | 
						|
      if (commonRes.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      commonExpr = commonRes.take();
 | 
						|
    }
 | 
						|
 | 
						|
    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
 | 
						|
                                                commonExpr->getType(),
 | 
						|
                                                commonExpr->getValueKind(),
 | 
						|
                                                commonExpr->getObjectKind());
 | 
						|
    LHSExpr = CondExpr = opaqueValue;
 | 
						|
  }
 | 
						|
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
 | 
						|
  QualType result = CheckConditionalOperands(Cond, LHS, RHS, 
 | 
						|
                                             VK, OK, QuestionLoc);
 | 
						|
  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
 | 
						|
      RHS.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
 | 
						|
                                RHS.get());
 | 
						|
 | 
						|
  if (!commonExpr)
 | 
						|
    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
 | 
						|
                                                   LHS.take(), ColonLoc, 
 | 
						|
                                                   RHS.take(), result, VK, OK));
 | 
						|
 | 
						|
  return Owned(new (Context)
 | 
						|
    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
 | 
						|
                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
 | 
						|
                              OK));
 | 
						|
}
 | 
						|
 | 
						|
// checkPointerTypesForAssignment - This is a very tricky routine (despite
 | 
						|
// being closely modeled after the C99 spec:-). The odd characteristic of this
 | 
						|
// routine is it effectively iqnores the qualifiers on the top level pointee.
 | 
						|
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
 | 
						|
// FIXME: add a couple examples in this comment.
 | 
						|
static Sema::AssignConvertType
 | 
						|
checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
 | 
						|
  assert(lhsType.isCanonical() && "LHS not canonicalized!");
 | 
						|
  assert(rhsType.isCanonical() && "RHS not canonicalized!");
 | 
						|
 | 
						|
  // get the "pointed to" type (ignoring qualifiers at the top level)
 | 
						|
  const Type *lhptee, *rhptee;
 | 
						|
  Qualifiers lhq, rhq;
 | 
						|
  llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
 | 
						|
  llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
 | 
						|
 | 
						|
  Sema::AssignConvertType ConvTy = Sema::Compatible;
 | 
						|
 | 
						|
  // C99 6.5.16.1p1: This following citation is common to constraints
 | 
						|
  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
 | 
						|
  // qualifiers of the type *pointed to* by the right;
 | 
						|
  Qualifiers lq;
 | 
						|
 | 
						|
  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
 | 
						|
  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
 | 
						|
      lhq.compatiblyIncludesObjCLifetime(rhq)) {
 | 
						|
    // Ignore lifetime for further calculation.
 | 
						|
    lhq.removeObjCLifetime();
 | 
						|
    rhq.removeObjCLifetime();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!lhq.compatiblyIncludes(rhq)) {
 | 
						|
    // Treat address-space mismatches as fatal.  TODO: address subspaces
 | 
						|
    if (lhq.getAddressSpace() != rhq.getAddressSpace())
 | 
						|
      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
 | 
						|
 | 
						|
    // It's okay to add or remove GC or lifetime qualifiers when converting to
 | 
						|
    // and from void*.
 | 
						|
    else if (lhq.withoutObjCGCAttr().withoutObjCGLifetime()
 | 
						|
                        .compatiblyIncludes(
 | 
						|
                                rhq.withoutObjCGCAttr().withoutObjCGLifetime())
 | 
						|
             && (lhptee->isVoidType() || rhptee->isVoidType()))
 | 
						|
      ; // keep old
 | 
						|
 | 
						|
    // Treat lifetime mismatches as fatal.
 | 
						|
    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
 | 
						|
      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
 | 
						|
    
 | 
						|
    // For GCC compatibility, other qualifier mismatches are treated
 | 
						|
    // as still compatible in C.
 | 
						|
    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
 | 
						|
  // incomplete type and the other is a pointer to a qualified or unqualified
 | 
						|
  // version of void...
 | 
						|
  if (lhptee->isVoidType()) {
 | 
						|
    if (rhptee->isIncompleteOrObjectType())
 | 
						|
      return ConvTy;
 | 
						|
 | 
						|
    // As an extension, we allow cast to/from void* to function pointer.
 | 
						|
    assert(rhptee->isFunctionType());
 | 
						|
    return Sema::FunctionVoidPointer;
 | 
						|
  }
 | 
						|
 | 
						|
  if (rhptee->isVoidType()) {
 | 
						|
    if (lhptee->isIncompleteOrObjectType())
 | 
						|
      return ConvTy;
 | 
						|
 | 
						|
    // As an extension, we allow cast to/from void* to function pointer.
 | 
						|
    assert(lhptee->isFunctionType());
 | 
						|
    return Sema::FunctionVoidPointer;
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
 | 
						|
  // unqualified versions of compatible types, ...
 | 
						|
  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
 | 
						|
  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
 | 
						|
    // Check if the pointee types are compatible ignoring the sign.
 | 
						|
    // We explicitly check for char so that we catch "char" vs
 | 
						|
    // "unsigned char" on systems where "char" is unsigned.
 | 
						|
    if (lhptee->isCharType())
 | 
						|
      ltrans = S.Context.UnsignedCharTy;
 | 
						|
    else if (lhptee->hasSignedIntegerRepresentation())
 | 
						|
      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
 | 
						|
 | 
						|
    if (rhptee->isCharType())
 | 
						|
      rtrans = S.Context.UnsignedCharTy;
 | 
						|
    else if (rhptee->hasSignedIntegerRepresentation())
 | 
						|
      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
 | 
						|
 | 
						|
    if (ltrans == rtrans) {
 | 
						|
      // Types are compatible ignoring the sign. Qualifier incompatibility
 | 
						|
      // takes priority over sign incompatibility because the sign
 | 
						|
      // warning can be disabled.
 | 
						|
      if (ConvTy != Sema::Compatible)
 | 
						|
        return ConvTy;
 | 
						|
 | 
						|
      return Sema::IncompatiblePointerSign;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are a multi-level pointer, it's possible that our issue is simply
 | 
						|
    // one of qualification - e.g. char ** -> const char ** is not allowed. If
 | 
						|
    // the eventual target type is the same and the pointers have the same
 | 
						|
    // level of indirection, this must be the issue.
 | 
						|
    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
 | 
						|
      do {
 | 
						|
        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
 | 
						|
        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
 | 
						|
      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
 | 
						|
 | 
						|
      if (lhptee == rhptee)
 | 
						|
        return Sema::IncompatibleNestedPointerQualifiers;
 | 
						|
    }
 | 
						|
 | 
						|
    // General pointer incompatibility takes priority over qualifiers.
 | 
						|
    return Sema::IncompatiblePointer;
 | 
						|
  }
 | 
						|
  return ConvTy;
 | 
						|
}
 | 
						|
 | 
						|
/// checkBlockPointerTypesForAssignment - This routine determines whether two
 | 
						|
/// block pointer types are compatible or whether a block and normal pointer
 | 
						|
/// are compatible. It is more restrict than comparing two function pointer
 | 
						|
// types.
 | 
						|
static Sema::AssignConvertType
 | 
						|
checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
 | 
						|
                                    QualType rhsType) {
 | 
						|
  assert(lhsType.isCanonical() && "LHS not canonicalized!");
 | 
						|
  assert(rhsType.isCanonical() && "RHS not canonicalized!");
 | 
						|
 | 
						|
  QualType lhptee, rhptee;
 | 
						|
 | 
						|
  // get the "pointed to" type (ignoring qualifiers at the top level)
 | 
						|
  lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
 | 
						|
  rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
 | 
						|
 | 
						|
  // In C++, the types have to match exactly.
 | 
						|
  if (S.getLangOptions().CPlusPlus)
 | 
						|
    return Sema::IncompatibleBlockPointer;
 | 
						|
 | 
						|
  Sema::AssignConvertType ConvTy = Sema::Compatible;
 | 
						|
 | 
						|
  // For blocks we enforce that qualifiers are identical.
 | 
						|
  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
 | 
						|
    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
 | 
						|
 | 
						|
  if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
 | 
						|
    return Sema::IncompatibleBlockPointer;
 | 
						|
 | 
						|
  return ConvTy;
 | 
						|
}
 | 
						|
 | 
						|
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
 | 
						|
/// for assignment compatibility.
 | 
						|
static Sema::AssignConvertType
 | 
						|
checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType,
 | 
						|
                                   QualType rhsType) {
 | 
						|
  assert(lhsType.isCanonical() && "LHS was not canonicalized!");
 | 
						|
  assert(rhsType.isCanonical() && "RHS was not canonicalized!");
 | 
						|
 | 
						|
  if (lhsType->isObjCBuiltinType()) {
 | 
						|
    // Class is not compatible with ObjC object pointers.
 | 
						|
    if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
 | 
						|
        !rhsType->isObjCQualifiedClassType())
 | 
						|
      return Sema::IncompatiblePointer;
 | 
						|
    return Sema::Compatible;
 | 
						|
  }
 | 
						|
  if (rhsType->isObjCBuiltinType()) {
 | 
						|
    // Class is not compatible with ObjC object pointers.
 | 
						|
    if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
 | 
						|
        !lhsType->isObjCQualifiedClassType())
 | 
						|
      return Sema::IncompatiblePointer;
 | 
						|
    return Sema::Compatible;
 | 
						|
  }
 | 
						|
  QualType lhptee =
 | 
						|
  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
 | 
						|
  QualType rhptee =
 | 
						|
  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
 | 
						|
 | 
						|
  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
 | 
						|
    return Sema::CompatiblePointerDiscardsQualifiers;
 | 
						|
 | 
						|
  if (S.Context.typesAreCompatible(lhsType, rhsType))
 | 
						|
    return Sema::Compatible;
 | 
						|
  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
 | 
						|
    return Sema::IncompatibleObjCQualifiedId;
 | 
						|
  return Sema::IncompatiblePointer;
 | 
						|
}
 | 
						|
 | 
						|
Sema::AssignConvertType
 | 
						|
Sema::CheckAssignmentConstraints(SourceLocation Loc,
 | 
						|
                                 QualType lhsType, QualType rhsType) {
 | 
						|
  // Fake up an opaque expression.  We don't actually care about what
 | 
						|
  // cast operations are required, so if CheckAssignmentConstraints
 | 
						|
  // adds casts to this they'll be wasted, but fortunately that doesn't
 | 
						|
  // usually happen on valid code.
 | 
						|
  OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
 | 
						|
  ExprResult rhsPtr = &rhs;
 | 
						|
  CastKind K = CK_Invalid;
 | 
						|
 | 
						|
  return CheckAssignmentConstraints(lhsType, rhsPtr, K);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
 | 
						|
/// has code to accommodate several GCC extensions when type checking
 | 
						|
/// pointers. Here are some objectionable examples that GCC considers warnings:
 | 
						|
///
 | 
						|
///  int a, *pint;
 | 
						|
///  short *pshort;
 | 
						|
///  struct foo *pfoo;
 | 
						|
///
 | 
						|
///  pint = pshort; // warning: assignment from incompatible pointer type
 | 
						|
///  a = pint; // warning: assignment makes integer from pointer without a cast
 | 
						|
///  pint = a; // warning: assignment makes pointer from integer without a cast
 | 
						|
///  pint = pfoo; // warning: assignment from incompatible pointer type
 | 
						|
///
 | 
						|
/// As a result, the code for dealing with pointers is more complex than the
 | 
						|
/// C99 spec dictates.
 | 
						|
///
 | 
						|
/// Sets 'Kind' for any result kind except Incompatible.
 | 
						|
Sema::AssignConvertType
 | 
						|
Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
 | 
						|
                                 CastKind &Kind) {
 | 
						|
  QualType rhsType = rhs.get()->getType();
 | 
						|
  QualType origLhsType = lhsType;
 | 
						|
 | 
						|
  // Get canonical types.  We're not formatting these types, just comparing
 | 
						|
  // them.
 | 
						|
  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
 | 
						|
  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
 | 
						|
 | 
						|
  // Common case: no conversion required.
 | 
						|
  if (lhsType == rhsType) {
 | 
						|
    Kind = CK_NoOp;
 | 
						|
    return Compatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the left-hand side is a reference type, then we are in a
 | 
						|
  // (rare!) case where we've allowed the use of references in C,
 | 
						|
  // e.g., as a parameter type in a built-in function. In this case,
 | 
						|
  // just make sure that the type referenced is compatible with the
 | 
						|
  // right-hand side type. The caller is responsible for adjusting
 | 
						|
  // lhsType so that the resulting expression does not have reference
 | 
						|
  // type.
 | 
						|
  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
 | 
						|
    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
 | 
						|
      Kind = CK_LValueBitCast;
 | 
						|
      return Compatible;
 | 
						|
    }
 | 
						|
    return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
 | 
						|
  // to the same ExtVector type.
 | 
						|
  if (lhsType->isExtVectorType()) {
 | 
						|
    if (rhsType->isExtVectorType())
 | 
						|
      return Incompatible;
 | 
						|
    if (rhsType->isArithmeticType()) {
 | 
						|
      // CK_VectorSplat does T -> vector T, so first cast to the
 | 
						|
      // element type.
 | 
						|
      QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
 | 
						|
      if (elType != rhsType) {
 | 
						|
        Kind = PrepareScalarCast(*this, rhs, elType);
 | 
						|
        rhs = ImpCastExprToType(rhs.take(), elType, Kind);
 | 
						|
      }
 | 
						|
      Kind = CK_VectorSplat;
 | 
						|
      return Compatible;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Conversions to or from vector type.
 | 
						|
  if (lhsType->isVectorType() || rhsType->isVectorType()) {
 | 
						|
    if (lhsType->isVectorType() && rhsType->isVectorType()) {
 | 
						|
      // Allow assignments of an AltiVec vector type to an equivalent GCC
 | 
						|
      // vector type and vice versa
 | 
						|
      if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
 | 
						|
        Kind = CK_BitCast;
 | 
						|
        return Compatible;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we are allowing lax vector conversions, and LHS and RHS are both
 | 
						|
      // vectors, the total size only needs to be the same. This is a bitcast;
 | 
						|
      // no bits are changed but the result type is different.
 | 
						|
      if (getLangOptions().LaxVectorConversions &&
 | 
						|
          (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
 | 
						|
        Kind = CK_BitCast;
 | 
						|
        return IncompatibleVectors;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // Arithmetic conversions.
 | 
						|
  if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
 | 
						|
      !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
 | 
						|
    Kind = PrepareScalarCast(*this, rhs, lhsType);
 | 
						|
    return Compatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conversions to normal pointers.
 | 
						|
  if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
 | 
						|
    // U* -> T*
 | 
						|
    if (isa<PointerType>(rhsType)) {
 | 
						|
      Kind = CK_BitCast;
 | 
						|
      return checkPointerTypesForAssignment(*this, lhsType, rhsType);
 | 
						|
    }
 | 
						|
 | 
						|
    // int -> T*
 | 
						|
    if (rhsType->isIntegerType()) {
 | 
						|
      Kind = CK_IntegralToPointer; // FIXME: null?
 | 
						|
      return IntToPointer;
 | 
						|
    }
 | 
						|
 | 
						|
    // C pointers are not compatible with ObjC object pointers,
 | 
						|
    // with two exceptions:
 | 
						|
    if (isa<ObjCObjectPointerType>(rhsType)) {
 | 
						|
      //  - conversions to void*
 | 
						|
      if (lhsPointer->getPointeeType()->isVoidType()) {
 | 
						|
        Kind = CK_AnyPointerToObjCPointerCast;
 | 
						|
        return Compatible;
 | 
						|
      }
 | 
						|
 | 
						|
      //  - conversions from 'Class' to the redefinition type
 | 
						|
      if (rhsType->isObjCClassType() &&
 | 
						|
          Context.hasSameType(lhsType, 
 | 
						|
                              Context.getObjCClassRedefinitionType())) {
 | 
						|
        Kind = CK_BitCast;
 | 
						|
        return Compatible;
 | 
						|
      }
 | 
						|
 | 
						|
      Kind = CK_BitCast;
 | 
						|
      return IncompatiblePointer;
 | 
						|
    }
 | 
						|
 | 
						|
    // U^ -> void*
 | 
						|
    if (rhsType->getAs<BlockPointerType>()) {
 | 
						|
      if (lhsPointer->getPointeeType()->isVoidType()) {
 | 
						|
        Kind = CK_BitCast;
 | 
						|
        return Compatible;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conversions to block pointers.
 | 
						|
  if (isa<BlockPointerType>(lhsType)) {
 | 
						|
    // U^ -> T^
 | 
						|
    if (rhsType->isBlockPointerType()) {
 | 
						|
      Kind = CK_AnyPointerToBlockPointerCast;
 | 
						|
      return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
 | 
						|
    }
 | 
						|
 | 
						|
    // int or null -> T^
 | 
						|
    if (rhsType->isIntegerType()) {
 | 
						|
      Kind = CK_IntegralToPointer; // FIXME: null
 | 
						|
      return IntToBlockPointer;
 | 
						|
    }
 | 
						|
 | 
						|
    // id -> T^
 | 
						|
    if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
 | 
						|
      Kind = CK_AnyPointerToBlockPointerCast;
 | 
						|
      return Compatible;
 | 
						|
    }
 | 
						|
 | 
						|
    // void* -> T^
 | 
						|
    if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
 | 
						|
      if (RHSPT->getPointeeType()->isVoidType()) {
 | 
						|
        Kind = CK_AnyPointerToBlockPointerCast;
 | 
						|
        return Compatible;
 | 
						|
      }
 | 
						|
 | 
						|
    return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conversions to Objective-C pointers.
 | 
						|
  if (isa<ObjCObjectPointerType>(lhsType)) {
 | 
						|
    // A* -> B*
 | 
						|
    if (rhsType->isObjCObjectPointerType()) {
 | 
						|
      Kind = CK_BitCast;
 | 
						|
      Sema::AssignConvertType result = 
 | 
						|
        checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
 | 
						|
      if (getLangOptions().ObjCAutoRefCount &&
 | 
						|
          result == Compatible && 
 | 
						|
          !CheckObjCARCUnavailableWeakConversion(origLhsType, rhsType))
 | 
						|
        result = IncompatibleObjCWeakRef;
 | 
						|
      return result;
 | 
						|
    }
 | 
						|
 | 
						|
    // int or null -> A*
 | 
						|
    if (rhsType->isIntegerType()) {
 | 
						|
      Kind = CK_IntegralToPointer; // FIXME: null
 | 
						|
      return IntToPointer;
 | 
						|
    }
 | 
						|
 | 
						|
    // In general, C pointers are not compatible with ObjC object pointers,
 | 
						|
    // with two exceptions:
 | 
						|
    if (isa<PointerType>(rhsType)) {
 | 
						|
      //  - conversions from 'void*'
 | 
						|
      if (rhsType->isVoidPointerType()) {
 | 
						|
        Kind = CK_AnyPointerToObjCPointerCast;
 | 
						|
        return Compatible;
 | 
						|
      }
 | 
						|
 | 
						|
      //  - conversions to 'Class' from its redefinition type
 | 
						|
      if (lhsType->isObjCClassType() &&
 | 
						|
          Context.hasSameType(rhsType, 
 | 
						|
                              Context.getObjCClassRedefinitionType())) {
 | 
						|
        Kind = CK_BitCast;
 | 
						|
        return Compatible;
 | 
						|
      }
 | 
						|
 | 
						|
      Kind = CK_AnyPointerToObjCPointerCast;
 | 
						|
      return IncompatiblePointer;
 | 
						|
    }
 | 
						|
 | 
						|
    // T^ -> A*
 | 
						|
    if (rhsType->isBlockPointerType()) {
 | 
						|
      Kind = CK_AnyPointerToObjCPointerCast;
 | 
						|
      return Compatible;
 | 
						|
    }
 | 
						|
 | 
						|
    return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conversions from pointers that are not covered by the above.
 | 
						|
  if (isa<PointerType>(rhsType)) {
 | 
						|
    // T* -> _Bool
 | 
						|
    if (lhsType == Context.BoolTy) {
 | 
						|
      Kind = CK_PointerToBoolean;
 | 
						|
      return Compatible;
 | 
						|
    }
 | 
						|
 | 
						|
    // T* -> int
 | 
						|
    if (lhsType->isIntegerType()) {
 | 
						|
      Kind = CK_PointerToIntegral;
 | 
						|
      return PointerToInt;
 | 
						|
    }
 | 
						|
 | 
						|
    return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conversions from Objective-C pointers that are not covered by the above.
 | 
						|
  if (isa<ObjCObjectPointerType>(rhsType)) {
 | 
						|
    // T* -> _Bool
 | 
						|
    if (lhsType == Context.BoolTy) {
 | 
						|
      Kind = CK_PointerToBoolean;
 | 
						|
      return Compatible;
 | 
						|
    }
 | 
						|
 | 
						|
    // T* -> int
 | 
						|
    if (lhsType->isIntegerType()) {
 | 
						|
      Kind = CK_PointerToIntegral;
 | 
						|
      return PointerToInt;
 | 
						|
    }
 | 
						|
 | 
						|
    return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // struct A -> struct B
 | 
						|
  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
 | 
						|
    if (Context.typesAreCompatible(lhsType, rhsType)) {
 | 
						|
      Kind = CK_NoOp;
 | 
						|
      return Compatible;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Incompatible;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Constructs a transparent union from an expression that is
 | 
						|
/// used to initialize the transparent union.
 | 
						|
static void ConstructTransparentUnion(Sema &S, ASTContext &C,
 | 
						|
                                      ExprResult &EResult, QualType UnionType,
 | 
						|
                                      FieldDecl *Field) {
 | 
						|
  // Build an initializer list that designates the appropriate member
 | 
						|
  // of the transparent union.
 | 
						|
  Expr *E = EResult.take();
 | 
						|
  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
 | 
						|
                                                   &E, 1,
 | 
						|
                                                   SourceLocation());
 | 
						|
  Initializer->setType(UnionType);
 | 
						|
  Initializer->setInitializedFieldInUnion(Field);
 | 
						|
 | 
						|
  // Build a compound literal constructing a value of the transparent
 | 
						|
  // union type from this initializer list.
 | 
						|
  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
 | 
						|
  EResult = S.Owned(
 | 
						|
    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
 | 
						|
                                VK_RValue, Initializer, false));
 | 
						|
}
 | 
						|
 | 
						|
Sema::AssignConvertType
 | 
						|
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
 | 
						|
                                               ExprResult &rExpr) {
 | 
						|
  QualType FromType = rExpr.get()->getType();
 | 
						|
 | 
						|
  // If the ArgType is a Union type, we want to handle a potential
 | 
						|
  // transparent_union GCC extension.
 | 
						|
  const RecordType *UT = ArgType->getAsUnionType();
 | 
						|
  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | 
						|
    return Incompatible;
 | 
						|
 | 
						|
  // The field to initialize within the transparent union.
 | 
						|
  RecordDecl *UD = UT->getDecl();
 | 
						|
  FieldDecl *InitField = 0;
 | 
						|
  // It's compatible if the expression matches any of the fields.
 | 
						|
  for (RecordDecl::field_iterator it = UD->field_begin(),
 | 
						|
         itend = UD->field_end();
 | 
						|
       it != itend; ++it) {
 | 
						|
    if (it->getType()->isPointerType()) {
 | 
						|
      // If the transparent union contains a pointer type, we allow:
 | 
						|
      // 1) void pointer
 | 
						|
      // 2) null pointer constant
 | 
						|
      if (FromType->isPointerType())
 | 
						|
        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
 | 
						|
          rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
 | 
						|
          InitField = *it;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (rExpr.get()->isNullPointerConstant(Context,
 | 
						|
                                       Expr::NPC_ValueDependentIsNull)) {
 | 
						|
        rExpr = ImpCastExprToType(rExpr.take(), it->getType(),
 | 
						|
                                  CK_NullToPointer);
 | 
						|
        InitField = *it;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    CastKind Kind = CK_Invalid;
 | 
						|
    if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
 | 
						|
          == Compatible) {
 | 
						|
      rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
 | 
						|
      InitField = *it;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!InitField)
 | 
						|
    return Incompatible;
 | 
						|
 | 
						|
  ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
 | 
						|
  return Compatible;
 | 
						|
}
 | 
						|
 | 
						|
Sema::AssignConvertType
 | 
						|
Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    if (!lhsType->isRecordType()) {
 | 
						|
      // C++ 5.17p3: If the left operand is not of class type, the
 | 
						|
      // expression is implicitly converted (C++ 4) to the
 | 
						|
      // cv-unqualified type of the left operand.
 | 
						|
      ExprResult Res = PerformImplicitConversion(rExpr.get(),
 | 
						|
                                                 lhsType.getUnqualifiedType(),
 | 
						|
                                                 AA_Assigning);
 | 
						|
      if (Res.isInvalid())
 | 
						|
        return Incompatible;
 | 
						|
      Sema::AssignConvertType result = Compatible;
 | 
						|
      if (getLangOptions().ObjCAutoRefCount &&
 | 
						|
          !CheckObjCARCUnavailableWeakConversion(lhsType,
 | 
						|
                                                 rExpr.get()->getType()))
 | 
						|
        result = IncompatibleObjCWeakRef;
 | 
						|
      rExpr = move(Res);
 | 
						|
      return result;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Currently, we fall through and treat C++ classes like C
 | 
						|
    // structures.
 | 
						|
  }  
 | 
						|
 | 
						|
  // C99 6.5.16.1p1: the left operand is a pointer and the right is
 | 
						|
  // a null pointer constant.
 | 
						|
  if ((lhsType->isPointerType() ||
 | 
						|
       lhsType->isObjCObjectPointerType() ||
 | 
						|
       lhsType->isBlockPointerType())
 | 
						|
      && rExpr.get()->isNullPointerConstant(Context,
 | 
						|
                                            Expr::NPC_ValueDependentIsNull)) {
 | 
						|
    rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
 | 
						|
    return Compatible;
 | 
						|
  }
 | 
						|
 | 
						|
  // This check seems unnatural, however it is necessary to ensure the proper
 | 
						|
  // conversion of functions/arrays. If the conversion were done for all
 | 
						|
  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
 | 
						|
  // expressions that suppress this implicit conversion (&, sizeof).
 | 
						|
  //
 | 
						|
  // Suppress this for references: C++ 8.5.3p5.
 | 
						|
  if (!lhsType->isReferenceType()) {
 | 
						|
    rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
 | 
						|
    if (rExpr.isInvalid())
 | 
						|
      return Incompatible;
 | 
						|
  }
 | 
						|
 | 
						|
  CastKind Kind = CK_Invalid;
 | 
						|
  Sema::AssignConvertType result =
 | 
						|
    CheckAssignmentConstraints(lhsType, rExpr, Kind);
 | 
						|
 | 
						|
  // C99 6.5.16.1p2: The value of the right operand is converted to the
 | 
						|
  // type of the assignment expression.
 | 
						|
  // CheckAssignmentConstraints allows the left-hand side to be a reference,
 | 
						|
  // so that we can use references in built-in functions even in C.
 | 
						|
  // The getNonReferenceType() call makes sure that the resulting expression
 | 
						|
  // does not have reference type.
 | 
						|
  if (result != Incompatible && rExpr.get()->getType() != lhsType)
 | 
						|
    rExpr = ImpCastExprToType(rExpr.take(),
 | 
						|
                              lhsType.getNonLValueExprType(Context), Kind);
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex,
 | 
						|
                               ExprResult &rex) {
 | 
						|
  Diag(Loc, diag::err_typecheck_invalid_operands)
 | 
						|
    << lex.get()->getType() << rex.get()->getType()
 | 
						|
    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckVectorOperands(ExprResult &lex, ExprResult &rex,
 | 
						|
                                   SourceLocation Loc, bool isCompAssign) {
 | 
						|
  // For conversion purposes, we ignore any qualifiers.
 | 
						|
  // For example, "const float" and "float" are equivalent.
 | 
						|
  QualType lhsType =
 | 
						|
    Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
 | 
						|
  QualType rhsType =
 | 
						|
    Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
 | 
						|
 | 
						|
  // If the vector types are identical, return.
 | 
						|
  if (lhsType == rhsType)
 | 
						|
    return lhsType;
 | 
						|
 | 
						|
  // Handle the case of equivalent AltiVec and GCC vector types
 | 
						|
  if (lhsType->isVectorType() && rhsType->isVectorType() &&
 | 
						|
      Context.areCompatibleVectorTypes(lhsType, rhsType)) {
 | 
						|
    if (lhsType->isExtVectorType()) {
 | 
						|
      rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
 | 
						|
      return lhsType;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isCompAssign)
 | 
						|
      lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
 | 
						|
    return rhsType;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().LaxVectorConversions &&
 | 
						|
      Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) {
 | 
						|
    // If we are allowing lax vector conversions, and LHS and RHS are both
 | 
						|
    // vectors, the total size only needs to be the same. This is a
 | 
						|
    // bitcast; no bits are changed but the result type is different.
 | 
						|
    // FIXME: Should we really be allowing this?
 | 
						|
    rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
 | 
						|
    return lhsType;
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
 | 
						|
  // swap back (so that we don't reverse the inputs to a subtract, for instance.
 | 
						|
  bool swapped = false;
 | 
						|
  if (rhsType->isExtVectorType() && !isCompAssign) {
 | 
						|
    swapped = true;
 | 
						|
    std::swap(rex, lex);
 | 
						|
    std::swap(rhsType, lhsType);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the case of an ext vector and scalar.
 | 
						|
  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
 | 
						|
    QualType EltTy = LV->getElementType();
 | 
						|
    if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
 | 
						|
      int order = Context.getIntegerTypeOrder(EltTy, rhsType);
 | 
						|
      if (order > 0)
 | 
						|
        rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
 | 
						|
      if (order >= 0) {
 | 
						|
        rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
 | 
						|
        if (swapped) std::swap(rex, lex);
 | 
						|
        return lhsType;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
 | 
						|
        rhsType->isRealFloatingType()) {
 | 
						|
      int order = Context.getFloatingTypeOrder(EltTy, rhsType);
 | 
						|
      if (order > 0)
 | 
						|
        rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
 | 
						|
      if (order >= 0) {
 | 
						|
        rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
 | 
						|
        if (swapped) std::swap(rex, lex);
 | 
						|
        return lhsType;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Vectors of different size or scalar and non-ext-vector are errors.
 | 
						|
  if (swapped) std::swap(rex, lex);
 | 
						|
  Diag(Loc, diag::err_typecheck_vector_not_convertable)
 | 
						|
    << lex.get()->getType() << rex.get()->getType()
 | 
						|
    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckMultiplyDivideOperands(ExprResult &lex, ExprResult &rex,
 | 
						|
                                           SourceLocation Loc,
 | 
						|
                                           bool isCompAssign, bool isDiv) {
 | 
						|
  if (lex.get()->getType()->isVectorType() ||
 | 
						|
      rex.get()->getType()->isVectorType())
 | 
						|
    return CheckVectorOperands(lex, rex, Loc, isCompAssign);
 | 
						|
 | 
						|
  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
 | 
						|
  if (lex.isInvalid() || rex.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  if (!lex.get()->getType()->isArithmeticType() ||
 | 
						|
      !rex.get()->getType()->isArithmeticType())
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
 | 
						|
  // Check for division by zero.
 | 
						|
  if (isDiv &&
 | 
						|
      rex.get()->isNullPointerConstant(Context,
 | 
						|
                                       Expr::NPC_ValueDependentIsNotNull))
 | 
						|
    DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
 | 
						|
                                          << rex.get()->getSourceRange());
 | 
						|
 | 
						|
  return compType;
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckRemainderOperands(
 | 
						|
  ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
 | 
						|
  if (lex.get()->getType()->isVectorType() ||
 | 
						|
      rex.get()->getType()->isVectorType()) {
 | 
						|
    if (lex.get()->getType()->hasIntegerRepresentation() && 
 | 
						|
        rex.get()->getType()->hasIntegerRepresentation())
 | 
						|
      return CheckVectorOperands(lex, rex, Loc, isCompAssign);
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
 | 
						|
  if (lex.isInvalid() || rex.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  if (!lex.get()->getType()->isIntegerType() ||
 | 
						|
      !rex.get()->getType()->isIntegerType())
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
 | 
						|
  // Check for remainder by zero.
 | 
						|
  if (rex.get()->isNullPointerConstant(Context,
 | 
						|
                                       Expr::NPC_ValueDependentIsNotNull))
 | 
						|
    DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
 | 
						|
                                 << rex.get()->getSourceRange());
 | 
						|
 | 
						|
  return compType;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose invalid arithmetic on two void pointers.
 | 
						|
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
 | 
						|
                                                Expr *LHS, Expr *RHS) {
 | 
						|
  S.Diag(Loc, S.getLangOptions().CPlusPlus
 | 
						|
                ? diag::err_typecheck_pointer_arith_void_type
 | 
						|
                : diag::ext_gnu_void_ptr)
 | 
						|
    << 1 /* two pointers */ << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose invalid arithmetic on a void pointer.
 | 
						|
static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
 | 
						|
                                            Expr *Pointer) {
 | 
						|
  S.Diag(Loc, S.getLangOptions().CPlusPlus
 | 
						|
                ? diag::err_typecheck_pointer_arith_void_type
 | 
						|
                : diag::ext_gnu_void_ptr)
 | 
						|
    << 0 /* one pointer */ << Pointer->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose invalid arithmetic on two function pointers.
 | 
						|
static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
 | 
						|
                                                    Expr *LHS, Expr *RHS) {
 | 
						|
  assert(LHS->getType()->isAnyPointerType());
 | 
						|
  assert(RHS->getType()->isAnyPointerType());
 | 
						|
  S.Diag(Loc, S.getLangOptions().CPlusPlus
 | 
						|
                ? diag::err_typecheck_pointer_arith_function_type
 | 
						|
                : diag::ext_gnu_ptr_func_arith)
 | 
						|
    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
 | 
						|
    // We only show the second type if it differs from the first.
 | 
						|
    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
 | 
						|
                                                   RHS->getType())
 | 
						|
    << RHS->getType()->getPointeeType()
 | 
						|
    << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose invalid arithmetic on a function pointer.
 | 
						|
static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
 | 
						|
                                                Expr *Pointer) {
 | 
						|
  assert(Pointer->getType()->isAnyPointerType());
 | 
						|
  S.Diag(Loc, S.getLangOptions().CPlusPlus
 | 
						|
                ? diag::err_typecheck_pointer_arith_function_type
 | 
						|
                : diag::ext_gnu_ptr_func_arith)
 | 
						|
    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
 | 
						|
    << 0 /* one pointer, so only one type */
 | 
						|
    << Pointer->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Warn if Operand is incomplete pointer type
 | 
						|
///
 | 
						|
/// \returns True if pointer has incomplete type
 | 
						|
static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
 | 
						|
                                                 Expr *Operand) {
 | 
						|
  if ((Operand->getType()->isPointerType() &&
 | 
						|
       !Operand->getType()->isDependentType()) ||
 | 
						|
      Operand->getType()->isObjCObjectPointerType()) {
 | 
						|
    QualType PointeeTy = Operand->getType()->getPointeeType();
 | 
						|
    if (S.RequireCompleteType(
 | 
						|
          Loc, PointeeTy,
 | 
						|
          S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
 | 
						|
            << PointeeTy << Operand->getSourceRange()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the validity of an arithmetic pointer operand.
 | 
						|
///
 | 
						|
/// If the operand has pointer type, this code will check for pointer types
 | 
						|
/// which are invalid in arithmetic operations. These will be diagnosed
 | 
						|
/// appropriately, including whether or not the use is supported as an
 | 
						|
/// extension.
 | 
						|
///
 | 
						|
/// \returns True when the operand is valid to use (even if as an extension).
 | 
						|
static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
 | 
						|
                                            Expr *Operand) {
 | 
						|
  if (!Operand->getType()->isAnyPointerType()) return true;
 | 
						|
 | 
						|
  QualType PointeeTy = Operand->getType()->getPointeeType();
 | 
						|
  if (PointeeTy->isVoidType()) {
 | 
						|
    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
 | 
						|
    return !S.getLangOptions().CPlusPlus;
 | 
						|
  }
 | 
						|
  if (PointeeTy->isFunctionType()) {
 | 
						|
    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
 | 
						|
    return !S.getLangOptions().CPlusPlus;
 | 
						|
  }
 | 
						|
 | 
						|
  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
 | 
						|
/// operands.
 | 
						|
///
 | 
						|
/// This routine will diagnose any invalid arithmetic on pointer operands much
 | 
						|
/// like \see checkArithmeticOpPointerOperand. However, it has special logic
 | 
						|
/// for emitting a single diagnostic even for operations where both LHS and RHS
 | 
						|
/// are (potentially problematic) pointers.
 | 
						|
///
 | 
						|
/// \returns True when the operand is valid to use (even if as an extension).
 | 
						|
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
 | 
						|
                                                Expr *LHS, Expr *RHS) {
 | 
						|
  bool isLHSPointer = LHS->getType()->isAnyPointerType();
 | 
						|
  bool isRHSPointer = RHS->getType()->isAnyPointerType();
 | 
						|
  if (!isLHSPointer && !isRHSPointer) return true;
 | 
						|
 | 
						|
  QualType LHSPointeeTy, RHSPointeeTy;
 | 
						|
  if (isLHSPointer) LHSPointeeTy = LHS->getType()->getPointeeType();
 | 
						|
  if (isRHSPointer) RHSPointeeTy = RHS->getType()->getPointeeType();
 | 
						|
 | 
						|
  // Check for arithmetic on pointers to incomplete types.
 | 
						|
  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
 | 
						|
  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
 | 
						|
  if (isLHSVoidPtr || isRHSVoidPtr) {
 | 
						|
    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHS);
 | 
						|
    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHS);
 | 
						|
    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHS, RHS);
 | 
						|
 | 
						|
    return !S.getLangOptions().CPlusPlus;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
 | 
						|
  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
 | 
						|
  if (isLHSFuncPtr || isRHSFuncPtr) {
 | 
						|
    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHS);
 | 
						|
    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHS);
 | 
						|
    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS, RHS);
 | 
						|
 | 
						|
    return !S.getLangOptions().CPlusPlus;
 | 
						|
  }
 | 
						|
 | 
						|
  if (checkArithmeticIncompletePointerType(S, Loc, LHS)) return false;
 | 
						|
  if (checkArithmeticIncompletePointerType(S, Loc, RHS)) return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check bad cases where we step over interface counts.
 | 
						|
static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
 | 
						|
                                                   SourceLocation OpLoc,
 | 
						|
                                                   Expr *Op) {
 | 
						|
  assert(Op->getType()->isAnyPointerType());
 | 
						|
  QualType PointeeTy = Op->getType()->getPointeeType();
 | 
						|
  if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
 | 
						|
    return true;
 | 
						|
 | 
						|
  S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
 | 
						|
    << PointeeTy << Op->getSourceRange();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Warn when two pointers are incompatible.
 | 
						|
static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
 | 
						|
                                           Expr *LHS, Expr *RHS) {
 | 
						|
  assert(LHS->getType()->isAnyPointerType());
 | 
						|
  assert(RHS->getType()->isAnyPointerType());
 | 
						|
  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
 | 
						|
    << LHS->getType() << RHS->getType() << LHS->getSourceRange()
 | 
						|
    << RHS->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckAdditionOperands( // C99 6.5.6
 | 
						|
  ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
 | 
						|
  if (lex.get()->getType()->isVectorType() ||
 | 
						|
      rex.get()->getType()->isVectorType()) {
 | 
						|
    QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
 | 
						|
    if (CompLHSTy) *CompLHSTy = compType;
 | 
						|
    return compType;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
 | 
						|
  if (lex.isInvalid() || rex.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // handle the common case first (both operands are arithmetic).
 | 
						|
  if (lex.get()->getType()->isArithmeticType() &&
 | 
						|
      rex.get()->getType()->isArithmeticType()) {
 | 
						|
    if (CompLHSTy) *CompLHSTy = compType;
 | 
						|
    return compType;
 | 
						|
  }
 | 
						|
 | 
						|
  // Put any potential pointer into PExp
 | 
						|
  Expr* PExp = lex.get(), *IExp = rex.get();
 | 
						|
  if (IExp->getType()->isAnyPointerType())
 | 
						|
    std::swap(PExp, IExp);
 | 
						|
 | 
						|
  if (PExp->getType()->isAnyPointerType()) {
 | 
						|
    if (IExp->getType()->isIntegerType()) {
 | 
						|
      if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
 | 
						|
        return QualType();
 | 
						|
 | 
						|
      // Diagnose bad cases where we step over interface counts.
 | 
						|
      if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
 | 
						|
        return QualType();
 | 
						|
 | 
						|
      // Check array bounds for pointer arithemtic
 | 
						|
      CheckArrayAccess(PExp, IExp);
 | 
						|
 | 
						|
      if (CompLHSTy) {
 | 
						|
        QualType LHSTy = Context.isPromotableBitField(lex.get());
 | 
						|
        if (LHSTy.isNull()) {
 | 
						|
          LHSTy = lex.get()->getType();
 | 
						|
          if (LHSTy->isPromotableIntegerType())
 | 
						|
            LHSTy = Context.getPromotedIntegerType(LHSTy);
 | 
						|
        }
 | 
						|
        *CompLHSTy = LHSTy;
 | 
						|
      }
 | 
						|
      return PExp->getType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return InvalidOperands(Loc, lex, rex);
 | 
						|
}
 | 
						|
 | 
						|
// C99 6.5.6
 | 
						|
QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
 | 
						|
                                        SourceLocation Loc,
 | 
						|
                                        QualType* CompLHSTy) {
 | 
						|
  if (lex.get()->getType()->isVectorType() ||
 | 
						|
      rex.get()->getType()->isVectorType()) {
 | 
						|
    QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
 | 
						|
    if (CompLHSTy) *CompLHSTy = compType;
 | 
						|
    return compType;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
 | 
						|
  if (lex.isInvalid() || rex.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Enforce type constraints: C99 6.5.6p3.
 | 
						|
 | 
						|
  // Handle the common case first (both operands are arithmetic).
 | 
						|
  if (lex.get()->getType()->isArithmeticType() &&
 | 
						|
      rex.get()->getType()->isArithmeticType()) {
 | 
						|
    if (CompLHSTy) *CompLHSTy = compType;
 | 
						|
    return compType;
 | 
						|
  }
 | 
						|
 | 
						|
  // Either ptr - int   or   ptr - ptr.
 | 
						|
  if (lex.get()->getType()->isAnyPointerType()) {
 | 
						|
    QualType lpointee = lex.get()->getType()->getPointeeType();
 | 
						|
 | 
						|
    // Diagnose bad cases where we step over interface counts.
 | 
						|
    if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, lex.get()))
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    // The result type of a pointer-int computation is the pointer type.
 | 
						|
    if (rex.get()->getType()->isIntegerType()) {
 | 
						|
      if (!checkArithmeticOpPointerOperand(*this, Loc, lex.get()))
 | 
						|
        return QualType();
 | 
						|
 | 
						|
      Expr *IExpr = rex.get()->IgnoreParenCasts();
 | 
						|
      UnaryOperator negRex(IExpr, UO_Minus, IExpr->getType(), VK_RValue,
 | 
						|
                           OK_Ordinary, IExpr->getExprLoc());
 | 
						|
      // Check array bounds for pointer arithemtic
 | 
						|
      CheckArrayAccess(lex.get()->IgnoreParenCasts(), &negRex);
 | 
						|
 | 
						|
      if (CompLHSTy) *CompLHSTy = lex.get()->getType();
 | 
						|
      return lex.get()->getType();
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle pointer-pointer subtractions.
 | 
						|
    if (const PointerType *RHSPTy
 | 
						|
          = rex.get()->getType()->getAs<PointerType>()) {
 | 
						|
      QualType rpointee = RHSPTy->getPointeeType();
 | 
						|
 | 
						|
      if (getLangOptions().CPlusPlus) {
 | 
						|
        // Pointee types must be the same: C++ [expr.add]
 | 
						|
        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
 | 
						|
          diagnosePointerIncompatibility(*this, Loc, lex.get(), rex.get());
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Pointee types must be compatible C99 6.5.6p3
 | 
						|
        if (!Context.typesAreCompatible(
 | 
						|
                Context.getCanonicalType(lpointee).getUnqualifiedType(),
 | 
						|
                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
 | 
						|
          diagnosePointerIncompatibility(*this, Loc, lex.get(), rex.get());
 | 
						|
          return QualType();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
 | 
						|
                                               lex.get(), rex.get()))
 | 
						|
        return QualType();
 | 
						|
 | 
						|
      if (CompLHSTy) *CompLHSTy = lex.get()->getType();
 | 
						|
      return Context.getPointerDiffType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return InvalidOperands(Loc, lex, rex);
 | 
						|
}
 | 
						|
 | 
						|
static bool isScopedEnumerationType(QualType T) {
 | 
						|
  if (const EnumType *ET = dyn_cast<EnumType>(T))
 | 
						|
    return ET->getDecl()->isScoped();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
 | 
						|
                                   SourceLocation Loc, unsigned Opc,
 | 
						|
                                   QualType LHSTy) {
 | 
						|
  llvm::APSInt Right;
 | 
						|
  // Check right/shifter operand
 | 
						|
  if (rex.get()->isValueDependent() ||
 | 
						|
      !rex.get()->isIntegerConstantExpr(Right, S.Context))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Right.isNegative()) {
 | 
						|
    S.DiagRuntimeBehavior(Loc, rex.get(),
 | 
						|
                          S.PDiag(diag::warn_shift_negative)
 | 
						|
                            << rex.get()->getSourceRange());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  llvm::APInt LeftBits(Right.getBitWidth(),
 | 
						|
                       S.Context.getTypeSize(lex.get()->getType()));
 | 
						|
  if (Right.uge(LeftBits)) {
 | 
						|
    S.DiagRuntimeBehavior(Loc, rex.get(),
 | 
						|
                          S.PDiag(diag::warn_shift_gt_typewidth)
 | 
						|
                            << rex.get()->getSourceRange());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (Opc != BO_Shl)
 | 
						|
    return;
 | 
						|
 | 
						|
  // When left shifting an ICE which is signed, we can check for overflow which
 | 
						|
  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
 | 
						|
  // integers have defined behavior modulo one more than the maximum value
 | 
						|
  // representable in the result type, so never warn for those.
 | 
						|
  llvm::APSInt Left;
 | 
						|
  if (lex.get()->isValueDependent() ||
 | 
						|
      !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
 | 
						|
      LHSTy->hasUnsignedIntegerRepresentation())
 | 
						|
    return;
 | 
						|
  llvm::APInt ResultBits =
 | 
						|
      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
 | 
						|
  if (LeftBits.uge(ResultBits))
 | 
						|
    return;
 | 
						|
  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
 | 
						|
  Result = Result.shl(Right);
 | 
						|
 | 
						|
  // Print the bit representation of the signed integer as an unsigned
 | 
						|
  // hexadecimal number.
 | 
						|
  llvm::SmallString<40> HexResult;
 | 
						|
  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
 | 
						|
 | 
						|
  // If we are only missing a sign bit, this is less likely to result in actual
 | 
						|
  // bugs -- if the result is cast back to an unsigned type, it will have the
 | 
						|
  // expected value. Thus we place this behind a different warning that can be
 | 
						|
  // turned off separately if needed.
 | 
						|
  if (LeftBits == ResultBits - 1) {
 | 
						|
    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
 | 
						|
        << HexResult.str() << LHSTy
 | 
						|
        << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
 | 
						|
    << HexResult.str() << Result.getMinSignedBits() << LHSTy
 | 
						|
    << Left.getBitWidth() << lex.get()->getSourceRange()
 | 
						|
    << rex.get()->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
// C99 6.5.7
 | 
						|
QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex,
 | 
						|
                                  SourceLocation Loc, unsigned Opc,
 | 
						|
                                  bool isCompAssign) {
 | 
						|
  // C99 6.5.7p2: Each of the operands shall have integer type.
 | 
						|
  if (!lex.get()->getType()->hasIntegerRepresentation() || 
 | 
						|
      !rex.get()->getType()->hasIntegerRepresentation())
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
 | 
						|
  // C++0x: Don't allow scoped enums. FIXME: Use something better than
 | 
						|
  // hasIntegerRepresentation() above instead of this.
 | 
						|
  if (isScopedEnumerationType(lex.get()->getType()) ||
 | 
						|
      isScopedEnumerationType(rex.get()->getType())) {
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
  }
 | 
						|
 | 
						|
  // Vector shifts promote their scalar inputs to vector type.
 | 
						|
  if (lex.get()->getType()->isVectorType() ||
 | 
						|
      rex.get()->getType()->isVectorType())
 | 
						|
    return CheckVectorOperands(lex, rex, Loc, isCompAssign);
 | 
						|
 | 
						|
  // Shifts don't perform usual arithmetic conversions, they just do integer
 | 
						|
  // promotions on each operand. C99 6.5.7p3
 | 
						|
 | 
						|
  // For the LHS, do usual unary conversions, but then reset them away
 | 
						|
  // if this is a compound assignment.
 | 
						|
  ExprResult old_lex = lex;
 | 
						|
  lex = UsualUnaryConversions(lex.take());
 | 
						|
  if (lex.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  QualType LHSTy = lex.get()->getType();
 | 
						|
  if (isCompAssign) lex = old_lex;
 | 
						|
 | 
						|
  // The RHS is simpler.
 | 
						|
  rex = UsualUnaryConversions(rex.take());
 | 
						|
  if (rex.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Sanity-check shift operands
 | 
						|
  DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
 | 
						|
 | 
						|
  // "The type of the result is that of the promoted left operand."
 | 
						|
  return LHSTy;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsWithinTemplateSpecialization(Decl *D) {
 | 
						|
  if (DeclContext *DC = D->getDeclContext()) {
 | 
						|
    if (isa<ClassTemplateSpecializationDecl>(DC))
 | 
						|
      return true;
 | 
						|
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
 | 
						|
      return FD->isFunctionTemplateSpecialization();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// If two different enums are compared, raise a warning.
 | 
						|
static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &lex,
 | 
						|
                                ExprResult &rex) {
 | 
						|
  QualType LHSStrippedType = lex.get()->IgnoreParenImpCasts()->getType();
 | 
						|
  QualType RHSStrippedType = rex.get()->IgnoreParenImpCasts()->getType();
 | 
						|
 | 
						|
  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
 | 
						|
  if (!LHSEnumType)
 | 
						|
    return;
 | 
						|
  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
 | 
						|
  if (!RHSEnumType)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Ignore anonymous enums.
 | 
						|
  if (!LHSEnumType->getDecl()->getIdentifier())
 | 
						|
    return;
 | 
						|
  if (!RHSEnumType->getDecl()->getIdentifier())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
 | 
						|
    return;
 | 
						|
 | 
						|
  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
 | 
						|
      << LHSStrippedType << RHSStrippedType
 | 
						|
      << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose bad pointer comparisons.
 | 
						|
static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
 | 
						|
                                              ExprResult &lex, ExprResult &rex,
 | 
						|
                                              bool isError) {
 | 
						|
  S.Diag(Loc, isError ? diag::err_typecheck_comparison_of_distinct_pointers
 | 
						|
                      : diag::ext_typecheck_comparison_of_distinct_pointers)
 | 
						|
    << lex.get()->getType() << rex.get()->getType()
 | 
						|
    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns false if the pointers are converted to a composite type,
 | 
						|
/// true otherwise.
 | 
						|
static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
 | 
						|
                                           ExprResult &lex, ExprResult &rex) {
 | 
						|
  // C++ [expr.rel]p2:
 | 
						|
  //   [...] Pointer conversions (4.10) and qualification
 | 
						|
  //   conversions (4.4) are performed on pointer operands (or on
 | 
						|
  //   a pointer operand and a null pointer constant) to bring
 | 
						|
  //   them to their composite pointer type. [...]
 | 
						|
  //
 | 
						|
  // C++ [expr.eq]p1 uses the same notion for (in)equality
 | 
						|
  // comparisons of pointers.
 | 
						|
 | 
						|
  // C++ [expr.eq]p2:
 | 
						|
  //   In addition, pointers to members can be compared, or a pointer to
 | 
						|
  //   member and a null pointer constant. Pointer to member conversions
 | 
						|
  //   (4.11) and qualification conversions (4.4) are performed to bring
 | 
						|
  //   them to a common type. If one operand is a null pointer constant,
 | 
						|
  //   the common type is the type of the other operand. Otherwise, the
 | 
						|
  //   common type is a pointer to member type similar (4.4) to the type
 | 
						|
  //   of one of the operands, with a cv-qualification signature (4.4)
 | 
						|
  //   that is the union of the cv-qualification signatures of the operand
 | 
						|
  //   types.
 | 
						|
 | 
						|
  QualType lType = lex.get()->getType();
 | 
						|
  QualType rType = rex.get()->getType();
 | 
						|
  assert((lType->isPointerType() && rType->isPointerType()) ||
 | 
						|
         (lType->isMemberPointerType() && rType->isMemberPointerType()));
 | 
						|
 | 
						|
  bool NonStandardCompositeType = false;
 | 
						|
  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
 | 
						|
  QualType T = S.FindCompositePointerType(Loc, lex, rex, BoolPtr);
 | 
						|
  if (T.isNull()) {
 | 
						|
    diagnoseDistinctPointerComparison(S, Loc, lex, rex, /*isError*/true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NonStandardCompositeType)
 | 
						|
    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
 | 
						|
      << lType << rType << T << lex.get()->getSourceRange()
 | 
						|
      << rex.get()->getSourceRange();
 | 
						|
 | 
						|
  lex = S.ImpCastExprToType(lex.take(), T, CK_BitCast);
 | 
						|
  rex = S.ImpCastExprToType(rex.take(), T, CK_BitCast);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
 | 
						|
                                                    ExprResult &lex,
 | 
						|
                                                    ExprResult &rex,
 | 
						|
                                                    bool isError) {
 | 
						|
  S.Diag(Loc,isError ? diag::err_typecheck_comparison_of_fptr_to_void
 | 
						|
                     : diag::ext_typecheck_comparison_of_fptr_to_void)
 | 
						|
    << lex.get()->getType() << rex.get()->getType()
 | 
						|
    << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
// C99 6.5.8, C++ [expr.rel]
 | 
						|
QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex,
 | 
						|
                                    SourceLocation Loc, unsigned OpaqueOpc,
 | 
						|
                                    bool isRelational) {
 | 
						|
  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
 | 
						|
 | 
						|
  // Handle vector comparisons separately.
 | 
						|
  if (lex.get()->getType()->isVectorType() ||
 | 
						|
      rex.get()->getType()->isVectorType())
 | 
						|
    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
 | 
						|
 | 
						|
  QualType lType = lex.get()->getType();
 | 
						|
  QualType rType = rex.get()->getType();
 | 
						|
 | 
						|
  Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
 | 
						|
  Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
 | 
						|
 | 
						|
  checkEnumComparison(*this, Loc, lex, rex);
 | 
						|
 | 
						|
  if (!lType->hasFloatingRepresentation() &&
 | 
						|
      !(lType->isBlockPointerType() && isRelational) &&
 | 
						|
      !lex.get()->getLocStart().isMacroID() &&
 | 
						|
      !rex.get()->getLocStart().isMacroID()) {
 | 
						|
    // For non-floating point types, check for self-comparisons of the form
 | 
						|
    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
 | 
						|
    // often indicate logic errors in the program.
 | 
						|
    //
 | 
						|
    // NOTE: Don't warn about comparison expressions resulting from macro
 | 
						|
    // expansion. Also don't warn about comparisons which are only self
 | 
						|
    // comparisons within a template specialization. The warnings should catch
 | 
						|
    // obvious cases in the definition of the template anyways. The idea is to
 | 
						|
    // warn when the typed comparison operator will always evaluate to the same
 | 
						|
    // result.
 | 
						|
    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
 | 
						|
      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
 | 
						|
        if (DRL->getDecl() == DRR->getDecl() &&
 | 
						|
            !IsWithinTemplateSpecialization(DRL->getDecl())) {
 | 
						|
          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
 | 
						|
                              << 0 // self-
 | 
						|
                              << (Opc == BO_EQ
 | 
						|
                                  || Opc == BO_LE
 | 
						|
                                  || Opc == BO_GE));
 | 
						|
        } else if (lType->isArrayType() && rType->isArrayType() &&
 | 
						|
                   !DRL->getDecl()->getType()->isReferenceType() &&
 | 
						|
                   !DRR->getDecl()->getType()->isReferenceType()) {
 | 
						|
            // what is it always going to eval to?
 | 
						|
            char always_evals_to;
 | 
						|
            switch(Opc) {
 | 
						|
            case BO_EQ: // e.g. array1 == array2
 | 
						|
              always_evals_to = 0; // false
 | 
						|
              break;
 | 
						|
            case BO_NE: // e.g. array1 != array2
 | 
						|
              always_evals_to = 1; // true
 | 
						|
              break;
 | 
						|
            default:
 | 
						|
              // best we can say is 'a constant'
 | 
						|
              always_evals_to = 2; // e.g. array1 <= array2
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
 | 
						|
                                << 1 // array
 | 
						|
                                << always_evals_to);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<CastExpr>(LHSStripped))
 | 
						|
      LHSStripped = LHSStripped->IgnoreParenCasts();
 | 
						|
    if (isa<CastExpr>(RHSStripped))
 | 
						|
      RHSStripped = RHSStripped->IgnoreParenCasts();
 | 
						|
 | 
						|
    // Warn about comparisons against a string constant (unless the other
 | 
						|
    // operand is null), the user probably wants strcmp.
 | 
						|
    Expr *literalString = 0;
 | 
						|
    Expr *literalStringStripped = 0;
 | 
						|
    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
 | 
						|
        !RHSStripped->isNullPointerConstant(Context,
 | 
						|
                                            Expr::NPC_ValueDependentIsNull)) {
 | 
						|
      literalString = lex.get();
 | 
						|
      literalStringStripped = LHSStripped;
 | 
						|
    } else if ((isa<StringLiteral>(RHSStripped) ||
 | 
						|
                isa<ObjCEncodeExpr>(RHSStripped)) &&
 | 
						|
               !LHSStripped->isNullPointerConstant(Context,
 | 
						|
                                            Expr::NPC_ValueDependentIsNull)) {
 | 
						|
      literalString = rex.get();
 | 
						|
      literalStringStripped = RHSStripped;
 | 
						|
    }
 | 
						|
 | 
						|
    if (literalString) {
 | 
						|
      std::string resultComparison;
 | 
						|
      switch (Opc) {
 | 
						|
      case BO_LT: resultComparison = ") < 0"; break;
 | 
						|
      case BO_GT: resultComparison = ") > 0"; break;
 | 
						|
      case BO_LE: resultComparison = ") <= 0"; break;
 | 
						|
      case BO_GE: resultComparison = ") >= 0"; break;
 | 
						|
      case BO_EQ: resultComparison = ") == 0"; break;
 | 
						|
      case BO_NE: resultComparison = ") != 0"; break;
 | 
						|
      default: assert(false && "Invalid comparison operator");
 | 
						|
      }
 | 
						|
 | 
						|
      DiagRuntimeBehavior(Loc, 0,
 | 
						|
        PDiag(diag::warn_stringcompare)
 | 
						|
          << isa<ObjCEncodeExpr>(literalStringStripped)
 | 
						|
          << literalString->getSourceRange());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.5.8p3 / C99 6.5.9p4
 | 
						|
  if (lex.get()->getType()->isArithmeticType() &&
 | 
						|
      rex.get()->getType()->isArithmeticType()) {
 | 
						|
    UsualArithmeticConversions(lex, rex);
 | 
						|
    if (lex.isInvalid() || rex.isInvalid())
 | 
						|
      return QualType();
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    lex = UsualUnaryConversions(lex.take());
 | 
						|
    if (lex.isInvalid())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    rex = UsualUnaryConversions(rex.take());
 | 
						|
    if (rex.isInvalid())
 | 
						|
      return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  lType = lex.get()->getType();
 | 
						|
  rType = rex.get()->getType();
 | 
						|
 | 
						|
  // The result of comparisons is 'bool' in C++, 'int' in C.
 | 
						|
  QualType ResultTy = Context.getLogicalOperationType();
 | 
						|
 | 
						|
  if (isRelational) {
 | 
						|
    if (lType->isRealType() && rType->isRealType())
 | 
						|
      return ResultTy;
 | 
						|
  } else {
 | 
						|
    // Check for comparisons of floating point operands using != and ==.
 | 
						|
    if (lType->hasFloatingRepresentation())
 | 
						|
      CheckFloatComparison(Loc, lex.get(), rex.get());
 | 
						|
 | 
						|
    if (lType->isArithmeticType() && rType->isArithmeticType())
 | 
						|
      return ResultTy;
 | 
						|
  }
 | 
						|
 | 
						|
  bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
 | 
						|
                                              Expr::NPC_ValueDependentIsNull);
 | 
						|
  bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
 | 
						|
                                              Expr::NPC_ValueDependentIsNull);
 | 
						|
 | 
						|
  // All of the following pointer-related warnings are GCC extensions, except
 | 
						|
  // when handling null pointer constants. 
 | 
						|
  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
 | 
						|
    QualType LCanPointeeTy =
 | 
						|
      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
 | 
						|
    QualType RCanPointeeTy =
 | 
						|
      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
 | 
						|
 | 
						|
    if (getLangOptions().CPlusPlus) {
 | 
						|
      if (LCanPointeeTy == RCanPointeeTy)
 | 
						|
        return ResultTy;
 | 
						|
      if (!isRelational &&
 | 
						|
          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
 | 
						|
        // Valid unless comparison between non-null pointer and function pointer
 | 
						|
        // This is a gcc extension compatibility comparison.
 | 
						|
        // In a SFINAE context, we treat this as a hard error to maintain
 | 
						|
        // conformance with the C++ standard.
 | 
						|
        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
 | 
						|
            && !LHSIsNull && !RHSIsNull) {
 | 
						|
          diagnoseFunctionPointerToVoidComparison(
 | 
						|
              *this, Loc, lex, rex, /*isError*/ isSFINAEContext());
 | 
						|
          
 | 
						|
          if (isSFINAEContext())
 | 
						|
            return QualType();
 | 
						|
          
 | 
						|
          rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | 
						|
          return ResultTy;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (convertPointersToCompositeType(*this, Loc, lex, rex))
 | 
						|
        return QualType();
 | 
						|
      else
 | 
						|
        return ResultTy;
 | 
						|
    }
 | 
						|
    // C99 6.5.9p2 and C99 6.5.8p2
 | 
						|
    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
 | 
						|
                                   RCanPointeeTy.getUnqualifiedType())) {
 | 
						|
      // Valid unless a relational comparison of function pointers
 | 
						|
      if (isRelational && LCanPointeeTy->isFunctionType()) {
 | 
						|
        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
 | 
						|
          << lType << rType << lex.get()->getSourceRange()
 | 
						|
          << rex.get()->getSourceRange();
 | 
						|
      }
 | 
						|
    } else if (!isRelational &&
 | 
						|
               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
 | 
						|
      // Valid unless comparison between non-null pointer and function pointer
 | 
						|
      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
 | 
						|
          && !LHSIsNull && !RHSIsNull)
 | 
						|
        diagnoseFunctionPointerToVoidComparison(*this, Loc, lex, rex,
 | 
						|
                                                /*isError*/false);
 | 
						|
    } else {
 | 
						|
      // Invalid
 | 
						|
      diagnoseDistinctPointerComparison(*this, Loc, lex, rex, /*isError*/false);
 | 
						|
    }
 | 
						|
    if (LCanPointeeTy != RCanPointeeTy) {
 | 
						|
      if (LHSIsNull && !RHSIsNull)
 | 
						|
        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | 
						|
      else
 | 
						|
        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | 
						|
    }
 | 
						|
    return ResultTy;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // Comparison of nullptr_t with itself.
 | 
						|
    if (lType->isNullPtrType() && rType->isNullPtrType())
 | 
						|
      return ResultTy;
 | 
						|
    
 | 
						|
    // Comparison of pointers with null pointer constants and equality
 | 
						|
    // comparisons of member pointers to null pointer constants.
 | 
						|
    if (RHSIsNull &&
 | 
						|
        ((lType->isAnyPointerType() || lType->isNullPtrType()) ||
 | 
						|
         (!isRelational && 
 | 
						|
          (lType->isMemberPointerType() || lType->isBlockPointerType())))) {
 | 
						|
      rex = ImpCastExprToType(rex.take(), lType, 
 | 
						|
                        lType->isMemberPointerType()
 | 
						|
                          ? CK_NullToMemberPointer
 | 
						|
                          : CK_NullToPointer);
 | 
						|
      return ResultTy;
 | 
						|
    }
 | 
						|
    if (LHSIsNull &&
 | 
						|
        ((rType->isAnyPointerType() || rType->isNullPtrType()) ||
 | 
						|
         (!isRelational && 
 | 
						|
          (rType->isMemberPointerType() || rType->isBlockPointerType())))) {
 | 
						|
      lex = ImpCastExprToType(lex.take(), rType, 
 | 
						|
                        rType->isMemberPointerType()
 | 
						|
                          ? CK_NullToMemberPointer
 | 
						|
                          : CK_NullToPointer);
 | 
						|
      return ResultTy;
 | 
						|
    }
 | 
						|
 | 
						|
    // Comparison of member pointers.
 | 
						|
    if (!isRelational &&
 | 
						|
        lType->isMemberPointerType() && rType->isMemberPointerType()) {
 | 
						|
      if (convertPointersToCompositeType(*this, Loc, lex, rex))
 | 
						|
        return QualType();
 | 
						|
      else
 | 
						|
        return ResultTy;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle scoped enumeration types specifically, since they don't promote
 | 
						|
    // to integers.
 | 
						|
    if (lex.get()->getType()->isEnumeralType() &&
 | 
						|
        Context.hasSameUnqualifiedType(lex.get()->getType(),
 | 
						|
                                       rex.get()->getType()))
 | 
						|
      return ResultTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle block pointer types.
 | 
						|
  if (!isRelational && lType->isBlockPointerType() &&
 | 
						|
      rType->isBlockPointerType()) {
 | 
						|
    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
 | 
						|
    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
 | 
						|
 | 
						|
    if (!LHSIsNull && !RHSIsNull &&
 | 
						|
        !Context.typesAreCompatible(lpointee, rpointee)) {
 | 
						|
      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
 | 
						|
        << lType << rType << lex.get()->getSourceRange()
 | 
						|
        << rex.get()->getSourceRange();
 | 
						|
    }
 | 
						|
    rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | 
						|
    return ResultTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow block pointers to be compared with null pointer constants.
 | 
						|
  if (!isRelational
 | 
						|
      && ((lType->isBlockPointerType() && rType->isPointerType())
 | 
						|
          || (lType->isPointerType() && rType->isBlockPointerType()))) {
 | 
						|
    if (!LHSIsNull && !RHSIsNull) {
 | 
						|
      if (!((rType->isPointerType() && rType->castAs<PointerType>()
 | 
						|
             ->getPointeeType()->isVoidType())
 | 
						|
            || (lType->isPointerType() && lType->castAs<PointerType>()
 | 
						|
                ->getPointeeType()->isVoidType())))
 | 
						|
        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
 | 
						|
          << lType << rType << lex.get()->getSourceRange()
 | 
						|
          << rex.get()->getSourceRange();
 | 
						|
    }
 | 
						|
    if (LHSIsNull && !RHSIsNull)
 | 
						|
      lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | 
						|
    else
 | 
						|
      rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | 
						|
    return ResultTy;
 | 
						|
  }
 | 
						|
 | 
						|
  if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
 | 
						|
    const PointerType *LPT = lType->getAs<PointerType>();
 | 
						|
    const PointerType *RPT = rType->getAs<PointerType>();
 | 
						|
    if (LPT || RPT) {
 | 
						|
      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
 | 
						|
      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
 | 
						|
 | 
						|
      if (!LPtrToVoid && !RPtrToVoid &&
 | 
						|
          !Context.typesAreCompatible(lType, rType)) {
 | 
						|
        diagnoseDistinctPointerComparison(*this, Loc, lex, rex,
 | 
						|
                                          /*isError*/false);
 | 
						|
      }
 | 
						|
      if (LHSIsNull && !RHSIsNull)
 | 
						|
        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | 
						|
      else
 | 
						|
        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | 
						|
      return ResultTy;
 | 
						|
    }
 | 
						|
    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
 | 
						|
      if (!Context.areComparableObjCPointerTypes(lType, rType))
 | 
						|
        diagnoseDistinctPointerComparison(*this, Loc, lex, rex,
 | 
						|
                                          /*isError*/false);
 | 
						|
      if (LHSIsNull && !RHSIsNull)
 | 
						|
        lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
 | 
						|
      else
 | 
						|
        rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
 | 
						|
      return ResultTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
 | 
						|
      (lType->isIntegerType() && rType->isAnyPointerType())) {
 | 
						|
    unsigned DiagID = 0;
 | 
						|
    bool isError = false;
 | 
						|
    if ((LHSIsNull && lType->isIntegerType()) ||
 | 
						|
        (RHSIsNull && rType->isIntegerType())) {
 | 
						|
      if (isRelational && !getLangOptions().CPlusPlus)
 | 
						|
        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
 | 
						|
    } else if (isRelational && !getLangOptions().CPlusPlus)
 | 
						|
      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
 | 
						|
    else if (getLangOptions().CPlusPlus) {
 | 
						|
      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
 | 
						|
      isError = true;
 | 
						|
    } else
 | 
						|
      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
 | 
						|
 | 
						|
    if (DiagID) {
 | 
						|
      Diag(Loc, DiagID)
 | 
						|
        << lType << rType << lex.get()->getSourceRange()
 | 
						|
        << rex.get()->getSourceRange();
 | 
						|
      if (isError)
 | 
						|
        return QualType();
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (lType->isIntegerType())
 | 
						|
      lex = ImpCastExprToType(lex.take(), rType,
 | 
						|
                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
 | 
						|
    else
 | 
						|
      rex = ImpCastExprToType(rex.take(), lType,
 | 
						|
                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
 | 
						|
    return ResultTy;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle block pointers.
 | 
						|
  if (!isRelational && RHSIsNull
 | 
						|
      && lType->isBlockPointerType() && rType->isIntegerType()) {
 | 
						|
    rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
 | 
						|
    return ResultTy;
 | 
						|
  }
 | 
						|
  if (!isRelational && LHSIsNull
 | 
						|
      && lType->isIntegerType() && rType->isBlockPointerType()) {
 | 
						|
    lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
 | 
						|
    return ResultTy;
 | 
						|
  }
 | 
						|
 | 
						|
  return InvalidOperands(Loc, lex, rex);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
 | 
						|
/// operates on extended vector types.  Instead of producing an IntTy result,
 | 
						|
/// like a scalar comparison, a vector comparison produces a vector of integer
 | 
						|
/// types.
 | 
						|
QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
 | 
						|
                                          SourceLocation Loc,
 | 
						|
                                          bool isRelational) {
 | 
						|
  // Check to make sure we're operating on vectors of the same type and width,
 | 
						|
  // Allowing one side to be a scalar of element type.
 | 
						|
  QualType vType = CheckVectorOperands(lex, rex, Loc, /*isCompAssign*/false);
 | 
						|
  if (vType.isNull())
 | 
						|
    return vType;
 | 
						|
 | 
						|
  QualType lType = lex.get()->getType();
 | 
						|
  QualType rType = rex.get()->getType();
 | 
						|
 | 
						|
  // If AltiVec, the comparison results in a numeric type, i.e.
 | 
						|
  // bool for C++, int for C
 | 
						|
  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
 | 
						|
    return Context.getLogicalOperationType();
 | 
						|
 | 
						|
  // For non-floating point types, check for self-comparisons of the form
 | 
						|
  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
 | 
						|
  // often indicate logic errors in the program.
 | 
						|
  if (!lType->hasFloatingRepresentation()) {
 | 
						|
    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
 | 
						|
      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
 | 
						|
        if (DRL->getDecl() == DRR->getDecl())
 | 
						|
          DiagRuntimeBehavior(Loc, 0,
 | 
						|
                              PDiag(diag::warn_comparison_always)
 | 
						|
                                << 0 // self-
 | 
						|
                                << 2 // "a constant"
 | 
						|
                              );
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for comparisons of floating point operands using != and ==.
 | 
						|
  if (!isRelational && lType->hasFloatingRepresentation()) {
 | 
						|
    assert (rType->hasFloatingRepresentation());
 | 
						|
    CheckFloatComparison(Loc, lex.get(), rex.get());
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the type for the comparison, which is the same as vector type for
 | 
						|
  // integer vectors, or an integer type of identical size and number of
 | 
						|
  // elements for floating point vectors.
 | 
						|
  if (lType->hasIntegerRepresentation())
 | 
						|
    return lType;
 | 
						|
 | 
						|
  const VectorType *VTy = lType->getAs<VectorType>();
 | 
						|
  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
 | 
						|
  if (TypeSize == Context.getTypeSize(Context.IntTy))
 | 
						|
    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
 | 
						|
  if (TypeSize == Context.getTypeSize(Context.LongTy))
 | 
						|
    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
 | 
						|
 | 
						|
  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
 | 
						|
         "Unhandled vector element size in vector compare");
 | 
						|
  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
 | 
						|
}
 | 
						|
 | 
						|
inline QualType Sema::CheckBitwiseOperands(
 | 
						|
  ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
 | 
						|
  if (lex.get()->getType()->isVectorType() ||
 | 
						|
      rex.get()->getType()->isVectorType()) {
 | 
						|
    if (lex.get()->getType()->hasIntegerRepresentation() &&
 | 
						|
        rex.get()->getType()->hasIntegerRepresentation())
 | 
						|
      return CheckVectorOperands(lex, rex, Loc, isCompAssign);
 | 
						|
    
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
  }
 | 
						|
 | 
						|
  ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
 | 
						|
  QualType compType = UsualArithmeticConversions(lexResult, rexResult,
 | 
						|
                                                 isCompAssign);
 | 
						|
  if (lexResult.isInvalid() || rexResult.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  lex = lexResult.take();
 | 
						|
  rex = rexResult.take();
 | 
						|
 | 
						|
  if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
 | 
						|
      rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
 | 
						|
    return compType;
 | 
						|
  return InvalidOperands(Loc, lex, rex);
 | 
						|
}
 | 
						|
 | 
						|
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
 | 
						|
  ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
 | 
						|
  
 | 
						|
  // Diagnose cases where the user write a logical and/or but probably meant a
 | 
						|
  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
 | 
						|
  // is a constant.
 | 
						|
  if (lex.get()->getType()->isIntegerType() &&
 | 
						|
      !lex.get()->getType()->isBooleanType() &&
 | 
						|
      rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
 | 
						|
      // Don't warn in macros or template instantiations.
 | 
						|
      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
 | 
						|
    // If the RHS can be constant folded, and if it constant folds to something
 | 
						|
    // that isn't 0 or 1 (which indicate a potential logical operation that
 | 
						|
    // happened to fold to true/false) then warn.
 | 
						|
    // Parens on the RHS are ignored.
 | 
						|
    Expr::EvalResult Result;
 | 
						|
    if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
 | 
						|
      if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) ||
 | 
						|
          (Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) {
 | 
						|
        Diag(Loc, diag::warn_logical_instead_of_bitwise)
 | 
						|
          << rex.get()->getSourceRange()
 | 
						|
          << (Opc == BO_LAnd ? "&&" : "||");
 | 
						|
        // Suggest replacing the logical operator with the bitwise version
 | 
						|
        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
 | 
						|
            << (Opc == BO_LAnd ? "&" : "|")
 | 
						|
            << FixItHint::CreateReplacement(SourceRange(
 | 
						|
                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
 | 
						|
                                                getLangOptions())),
 | 
						|
                                            Opc == BO_LAnd ? "&" : "|");
 | 
						|
        if (Opc == BO_LAnd)
 | 
						|
          // Suggest replacing "Foo() && kNonZero" with "Foo()"
 | 
						|
          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
 | 
						|
              << FixItHint::CreateRemoval(
 | 
						|
                  SourceRange(
 | 
						|
                      Lexer::getLocForEndOfToken(lex.get()->getLocEnd(),
 | 
						|
                                                 0, getSourceManager(),
 | 
						|
                                                 getLangOptions()),
 | 
						|
                      rex.get()->getLocEnd()));
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!Context.getLangOptions().CPlusPlus) {
 | 
						|
    lex = UsualUnaryConversions(lex.take());
 | 
						|
    if (lex.isInvalid())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    rex = UsualUnaryConversions(rex.take());
 | 
						|
    if (rex.isInvalid())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    if (!lex.get()->getType()->isScalarType() ||
 | 
						|
        !rex.get()->getType()->isScalarType())
 | 
						|
      return InvalidOperands(Loc, lex, rex);
 | 
						|
 | 
						|
    return Context.IntTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // The following is safe because we only use this method for
 | 
						|
  // non-overloadable operands.
 | 
						|
 | 
						|
  // C++ [expr.log.and]p1
 | 
						|
  // C++ [expr.log.or]p1
 | 
						|
  // The operands are both contextually converted to type bool.
 | 
						|
  ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
 | 
						|
  if (lexRes.isInvalid())
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
  lex = move(lexRes);
 | 
						|
 | 
						|
  ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
 | 
						|
  if (rexRes.isInvalid())
 | 
						|
    return InvalidOperands(Loc, lex, rex);
 | 
						|
  rex = move(rexRes);
 | 
						|
 | 
						|
  // C++ [expr.log.and]p2
 | 
						|
  // C++ [expr.log.or]p2
 | 
						|
  // The result is a bool.
 | 
						|
  return Context.BoolTy;
 | 
						|
}
 | 
						|
 | 
						|
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
 | 
						|
/// is a read-only property; return true if so. A readonly property expression
 | 
						|
/// depends on various declarations and thus must be treated specially.
 | 
						|
///
 | 
						|
static bool IsReadonlyProperty(Expr *E, Sema &S) {
 | 
						|
  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
 | 
						|
    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
 | 
						|
    if (PropExpr->isImplicitProperty()) return false;
 | 
						|
 | 
						|
    ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
 | 
						|
    QualType BaseType = PropExpr->isSuperReceiver() ? 
 | 
						|
                            PropExpr->getSuperReceiverType() :  
 | 
						|
                            PropExpr->getBase()->getType();
 | 
						|
      
 | 
						|
    if (const ObjCObjectPointerType *OPT =
 | 
						|
          BaseType->getAsObjCInterfacePointerType())
 | 
						|
      if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
 | 
						|
        if (S.isPropertyReadonly(PDecl, IFace))
 | 
						|
          return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsConstProperty(Expr *E, Sema &S) {
 | 
						|
  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
 | 
						|
    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
 | 
						|
    if (PropExpr->isImplicitProperty()) return false;
 | 
						|
    
 | 
						|
    ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
 | 
						|
    QualType T = PDecl->getType();
 | 
						|
    if (T->isReferenceType())
 | 
						|
      T = T->getAs<ReferenceType>()->getPointeeType();
 | 
						|
    CanQualType CT = S.Context.getCanonicalType(T);
 | 
						|
    return CT.isConstQualified();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool IsReadonlyMessage(Expr *E, Sema &S) {
 | 
						|
  if (E->getStmtClass() != Expr::MemberExprClass) 
 | 
						|
    return false;
 | 
						|
  const MemberExpr *ME = cast<MemberExpr>(E);
 | 
						|
  NamedDecl *Member = ME->getMemberDecl();
 | 
						|
  if (isa<FieldDecl>(Member)) {
 | 
						|
    Expr *Base = ME->getBase()->IgnoreParenImpCasts();
 | 
						|
    if (Base->getStmtClass() != Expr::ObjCMessageExprClass)
 | 
						|
      return false;
 | 
						|
    return cast<ObjCMessageExpr>(Base)->getMethodDecl() != 0;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
 | 
						|
/// emit an error and return true.  If so, return false.
 | 
						|
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
 | 
						|
  SourceLocation OrigLoc = Loc;
 | 
						|
  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
 | 
						|
                                                              &Loc);
 | 
						|
  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
 | 
						|
    IsLV = Expr::MLV_ReadonlyProperty;
 | 
						|
  else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
 | 
						|
    IsLV = Expr::MLV_Valid;
 | 
						|
  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
 | 
						|
    IsLV = Expr::MLV_InvalidMessageExpression;
 | 
						|
  if (IsLV == Expr::MLV_Valid)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Diag = 0;
 | 
						|
  bool NeedType = false;
 | 
						|
  switch (IsLV) { // C99 6.5.16p2
 | 
						|
  case Expr::MLV_ConstQualified:
 | 
						|
    Diag = diag::err_typecheck_assign_const;
 | 
						|
 | 
						|
    // In ARC, use some specialized diagnostics for occasions where we
 | 
						|
    // infer 'const'.  These are always pseudo-strong variables.
 | 
						|
    if (S.getLangOptions().ObjCAutoRefCount) {
 | 
						|
      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
 | 
						|
      if (declRef && isa<VarDecl>(declRef->getDecl())) {
 | 
						|
        VarDecl *var = cast<VarDecl>(declRef->getDecl());
 | 
						|
 | 
						|
        // Use the normal diagnostic if it's pseudo-__strong but the
 | 
						|
        // user actually wrote 'const'.
 | 
						|
        if (var->isARCPseudoStrong() &&
 | 
						|
            (!var->getTypeSourceInfo() ||
 | 
						|
             !var->getTypeSourceInfo()->getType().isConstQualified())) {
 | 
						|
          // There are two pseudo-strong cases:
 | 
						|
          //  - self
 | 
						|
          ObjCMethodDecl *method = S.getCurMethodDecl();
 | 
						|
          if (method && var == method->getSelfDecl())
 | 
						|
            Diag = diag::err_typecheck_arr_assign_self;
 | 
						|
 | 
						|
          //  - fast enumeration variables
 | 
						|
          else
 | 
						|
            Diag = diag::err_typecheck_arr_assign_enumeration;
 | 
						|
 | 
						|
          SourceRange Assign;
 | 
						|
          if (Loc != OrigLoc)
 | 
						|
            Assign = SourceRange(OrigLoc, OrigLoc);
 | 
						|
          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
 | 
						|
          // We need to preserve the AST regardless, so migration tool 
 | 
						|
          // can do its job.
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  case Expr::MLV_ArrayType:
 | 
						|
    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
 | 
						|
    NeedType = true;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_NotObjectType:
 | 
						|
    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
 | 
						|
    NeedType = true;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_LValueCast:
 | 
						|
    Diag = diag::err_typecheck_lvalue_casts_not_supported;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_Valid:
 | 
						|
    llvm_unreachable("did not take early return for MLV_Valid");
 | 
						|
  case Expr::MLV_InvalidExpression:
 | 
						|
  case Expr::MLV_MemberFunction:
 | 
						|
  case Expr::MLV_ClassTemporary:
 | 
						|
    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_IncompleteType:
 | 
						|
  case Expr::MLV_IncompleteVoidType:
 | 
						|
    return S.RequireCompleteType(Loc, E->getType(),
 | 
						|
              S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
 | 
						|
                  << E->getSourceRange());
 | 
						|
  case Expr::MLV_DuplicateVectorComponents:
 | 
						|
    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_NotBlockQualified:
 | 
						|
    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_ReadonlyProperty:
 | 
						|
    Diag = diag::error_readonly_property_assignment;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_NoSetterProperty:
 | 
						|
    Diag = diag::error_nosetter_property_assignment;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_InvalidMessageExpression:
 | 
						|
    Diag = diag::error_readonly_message_assignment;
 | 
						|
    break;
 | 
						|
  case Expr::MLV_SubObjCPropertySetting:
 | 
						|
    Diag = diag::error_no_subobject_property_setting;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  SourceRange Assign;
 | 
						|
  if (Loc != OrigLoc)
 | 
						|
    Assign = SourceRange(OrigLoc, OrigLoc);
 | 
						|
  if (NeedType)
 | 
						|
    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
 | 
						|
  else
 | 
						|
    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// C99 6.5.16.1
 | 
						|
QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
 | 
						|
                                       SourceLocation Loc,
 | 
						|
                                       QualType CompoundType) {
 | 
						|
  // Verify that LHS is a modifiable lvalue, and emit error if not.
 | 
						|
  if (CheckForModifiableLvalue(LHS, Loc, *this))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  QualType LHSType = LHS->getType();
 | 
						|
  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
 | 
						|
                                             CompoundType;
 | 
						|
  AssignConvertType ConvTy;
 | 
						|
  if (CompoundType.isNull()) {
 | 
						|
    QualType LHSTy(LHSType);
 | 
						|
    // Simple assignment "x = y".
 | 
						|
    if (LHS->getObjectKind() == OK_ObjCProperty) {
 | 
						|
      ExprResult LHSResult = Owned(LHS);
 | 
						|
      ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
 | 
						|
      if (LHSResult.isInvalid())
 | 
						|
        return QualType();
 | 
						|
      LHS = LHSResult.take();
 | 
						|
    }
 | 
						|
    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
 | 
						|
    if (RHS.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    // Special case of NSObject attributes on c-style pointer types.
 | 
						|
    if (ConvTy == IncompatiblePointer &&
 | 
						|
        ((Context.isObjCNSObjectType(LHSType) &&
 | 
						|
          RHSType->isObjCObjectPointerType()) ||
 | 
						|
         (Context.isObjCNSObjectType(RHSType) &&
 | 
						|
          LHSType->isObjCObjectPointerType())))
 | 
						|
      ConvTy = Compatible;
 | 
						|
 | 
						|
    if (ConvTy == Compatible &&
 | 
						|
        getLangOptions().ObjCNonFragileABI &&
 | 
						|
        LHSType->isObjCObjectType())
 | 
						|
      Diag(Loc, diag::err_assignment_requires_nonfragile_object)
 | 
						|
        << LHSType;
 | 
						|
 | 
						|
    // If the RHS is a unary plus or minus, check to see if they = and + are
 | 
						|
    // right next to each other.  If so, the user may have typo'd "x =+ 4"
 | 
						|
    // instead of "x += 4".
 | 
						|
    Expr *RHSCheck = RHS.get();
 | 
						|
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
 | 
						|
      RHSCheck = ICE->getSubExpr();
 | 
						|
    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
 | 
						|
      if ((UO->getOpcode() == UO_Plus ||
 | 
						|
           UO->getOpcode() == UO_Minus) &&
 | 
						|
          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
 | 
						|
          // Only if the two operators are exactly adjacent.
 | 
						|
          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
 | 
						|
          // And there is a space or other character before the subexpr of the
 | 
						|
          // unary +/-.  We don't want to warn on "x=-1".
 | 
						|
          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
 | 
						|
          UO->getSubExpr()->getLocStart().isFileID()) {
 | 
						|
        Diag(Loc, diag::warn_not_compound_assign)
 | 
						|
          << (UO->getOpcode() == UO_Plus ? "+" : "-")
 | 
						|
          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConvTy == Compatible) {
 | 
						|
      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
 | 
						|
        checkRetainCycles(LHS, RHS.get());
 | 
						|
      else if (getLangOptions().ObjCAutoRefCount)
 | 
						|
        checkUnsafeExprAssigns(Loc, LHS, RHS.get());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Compound assignment "x += y"
 | 
						|
    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
 | 
						|
  }
 | 
						|
 | 
						|
  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
 | 
						|
                               RHS.get(), AA_Assigning))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  CheckForNullPointerDereference(*this, LHS);
 | 
						|
 | 
						|
  // C99 6.5.16p3: The type of an assignment expression is the type of the
 | 
						|
  // left operand unless the left operand has qualified type, in which case
 | 
						|
  // it is the unqualified version of the type of the left operand.
 | 
						|
  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
 | 
						|
  // is converted to the type of the assignment expression (above).
 | 
						|
  // C++ 5.17p1: the type of the assignment expression is that of its left
 | 
						|
  // operand.
 | 
						|
  return (getLangOptions().CPlusPlus
 | 
						|
          ? LHSType : LHSType.getUnqualifiedType());
 | 
						|
}
 | 
						|
 | 
						|
// C99 6.5.17
 | 
						|
static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
 | 
						|
                                   SourceLocation Loc) {
 | 
						|
  S.DiagnoseUnusedExprResult(LHS.get());
 | 
						|
 | 
						|
  LHS = S.CheckPlaceholderExpr(LHS.take());
 | 
						|
  RHS = S.CheckPlaceholderExpr(RHS.take());
 | 
						|
  if (LHS.isInvalid() || RHS.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
 | 
						|
  // operands, but not unary promotions.
 | 
						|
  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
 | 
						|
 | 
						|
  // So we treat the LHS as a ignored value, and in C++ we allow the
 | 
						|
  // containing site to determine what should be done with the RHS.
 | 
						|
  LHS = S.IgnoredValueConversions(LHS.take());
 | 
						|
  if (LHS.isInvalid())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  if (!S.getLangOptions().CPlusPlus) {
 | 
						|
    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
 | 
						|
    if (RHS.isInvalid())
 | 
						|
      return QualType();
 | 
						|
    if (!RHS.get()->getType()->isVoidType())
 | 
						|
      S.RequireCompleteType(Loc, RHS.get()->getType(),
 | 
						|
                            diag::err_incomplete_type);
 | 
						|
  }
 | 
						|
 | 
						|
  return RHS.get()->getType();
 | 
						|
}
 | 
						|
 | 
						|
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
 | 
						|
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
 | 
						|
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
 | 
						|
                                               ExprValueKind &VK,
 | 
						|
                                               SourceLocation OpLoc,
 | 
						|
                                               bool isInc, bool isPrefix) {
 | 
						|
  if (Op->isTypeDependent())
 | 
						|
    return S.Context.DependentTy;
 | 
						|
 | 
						|
  QualType ResType = Op->getType();
 | 
						|
  assert(!ResType.isNull() && "no type for increment/decrement expression");
 | 
						|
 | 
						|
  if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
 | 
						|
    // Decrement of bool is not allowed.
 | 
						|
    if (!isInc) {
 | 
						|
      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    // Increment of bool sets it to true, but is deprecated.
 | 
						|
    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
 | 
						|
  } else if (ResType->isRealType()) {
 | 
						|
    // OK!
 | 
						|
  } else if (ResType->isAnyPointerType()) {
 | 
						|
    // C99 6.5.2.4p2, 6.5.6p2
 | 
						|
    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    // Diagnose bad cases where we step over interface counts.
 | 
						|
    else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
 | 
						|
      return QualType();
 | 
						|
  } else if (ResType->isAnyComplexType()) {
 | 
						|
    // C99 does not support ++/-- on complex types, we allow as an extension.
 | 
						|
    S.Diag(OpLoc, diag::ext_integer_increment_complex)
 | 
						|
      << ResType << Op->getSourceRange();
 | 
						|
  } else if (ResType->isPlaceholderType()) {
 | 
						|
    ExprResult PR = S.CheckPlaceholderExpr(Op);
 | 
						|
    if (PR.isInvalid()) return QualType();
 | 
						|
    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
 | 
						|
                                          isInc, isPrefix);
 | 
						|
  } else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
 | 
						|
    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
 | 
						|
  } else {
 | 
						|
    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
 | 
						|
      << ResType << int(isInc) << Op->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
  // At this point, we know we have a real, complex or pointer type.
 | 
						|
  // Now make sure the operand is a modifiable lvalue.
 | 
						|
  if (CheckForModifiableLvalue(Op, OpLoc, S))
 | 
						|
    return QualType();
 | 
						|
  // In C++, a prefix increment is the same type as the operand. Otherwise
 | 
						|
  // (in C or with postfix), the increment is the unqualified type of the
 | 
						|
  // operand.
 | 
						|
  if (isPrefix && S.getLangOptions().CPlusPlus) {
 | 
						|
    VK = VK_LValue;
 | 
						|
    return ResType;
 | 
						|
  } else {
 | 
						|
    VK = VK_RValue;
 | 
						|
    return ResType.getUnqualifiedType();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
 | 
						|
  assert(E->getValueKind() == VK_LValue &&
 | 
						|
         E->getObjectKind() == OK_ObjCProperty);
 | 
						|
  const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
 | 
						|
 | 
						|
  QualType T = E->getType();
 | 
						|
  QualType ReceiverType;
 | 
						|
  if (PRE->isObjectReceiver())
 | 
						|
    ReceiverType = PRE->getBase()->getType();
 | 
						|
  else if (PRE->isSuperReceiver())
 | 
						|
    ReceiverType = PRE->getSuperReceiverType();
 | 
						|
  else
 | 
						|
    ReceiverType = Context.getObjCInterfaceType(PRE->getClassReceiver());
 | 
						|
    
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  if (PRE->isImplicitProperty()) {
 | 
						|
    if (ObjCMethodDecl *GetterMethod = 
 | 
						|
          PRE->getImplicitPropertyGetter()) {
 | 
						|
      T = getMessageSendResultType(ReceiverType, GetterMethod, 
 | 
						|
                                   PRE->isClassReceiver(), 
 | 
						|
                                   PRE->isSuperReceiver());
 | 
						|
      VK = Expr::getValueKindForType(GetterMethod->getResultType());
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      Diag(PRE->getLocation(), diag::err_getter_not_found)
 | 
						|
            << PRE->getBase()->getType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty,
 | 
						|
                               E, 0, VK);
 | 
						|
  
 | 
						|
  ExprResult Result = MaybeBindToTemporary(E);
 | 
						|
  if (!Result.isInvalid())
 | 
						|
    E = Result.take();
 | 
						|
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS,
 | 
						|
                                    QualType &LHSTy) {
 | 
						|
  assert(LHS.get()->getValueKind() == VK_LValue &&
 | 
						|
         LHS.get()->getObjectKind() == OK_ObjCProperty);
 | 
						|
  const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
 | 
						|
 | 
						|
  bool Consumed = false;
 | 
						|
 | 
						|
  if (PropRef->isImplicitProperty()) {
 | 
						|
    // If using property-dot syntax notation for assignment, and there is a
 | 
						|
    // setter, RHS expression is being passed to the setter argument. So,
 | 
						|
    // type conversion (and comparison) is RHS to setter's argument type.
 | 
						|
    if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
 | 
						|
      ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
 | 
						|
      LHSTy = (*P)->getType();
 | 
						|
      Consumed = (getLangOptions().ObjCAutoRefCount &&
 | 
						|
                  (*P)->hasAttr<NSConsumedAttr>());
 | 
						|
 | 
						|
    // Otherwise, if the getter returns an l-value, just call that.
 | 
						|
    } else {
 | 
						|
      QualType Result = PropRef->getImplicitPropertyGetter()->getResultType();
 | 
						|
      ExprValueKind VK = Expr::getValueKindForType(Result);
 | 
						|
      if (VK == VK_LValue) {
 | 
						|
        LHS = ImplicitCastExpr::Create(Context, LHS.get()->getType(),
 | 
						|
                                        CK_GetObjCProperty, LHS.take(), 0, VK);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (getLangOptions().ObjCAutoRefCount) {
 | 
						|
    const ObjCMethodDecl *setter
 | 
						|
      = PropRef->getExplicitProperty()->getSetterMethodDecl();
 | 
						|
    if (setter) {
 | 
						|
      ObjCMethodDecl::param_iterator P = setter->param_begin();
 | 
						|
      LHSTy = (*P)->getType();
 | 
						|
      Consumed = (*P)->hasAttr<NSConsumedAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if ((getLangOptions().CPlusPlus && LHSTy->isRecordType()) ||
 | 
						|
      getLangOptions().ObjCAutoRefCount) {
 | 
						|
    InitializedEntity Entity = 
 | 
						|
      InitializedEntity::InitializeParameter(Context, LHSTy, Consumed);
 | 
						|
    ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(), RHS);
 | 
						|
    if (!ArgE.isInvalid()) {
 | 
						|
      RHS = ArgE;
 | 
						|
      if (getLangOptions().ObjCAutoRefCount && !PropRef->isSuperReceiver())
 | 
						|
        checkRetainCycles(const_cast<Expr*>(PropRef->getBase()), RHS.get());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
  
 | 
						|
 | 
						|
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
 | 
						|
/// This routine allows us to typecheck complex/recursive expressions
 | 
						|
/// where the declaration is needed for type checking. We only need to
 | 
						|
/// handle cases when the expression references a function designator
 | 
						|
/// or is an lvalue. Here are some examples:
 | 
						|
///  - &(x) => x
 | 
						|
///  - &*****f => f for f a function designator.
 | 
						|
///  - &s.xx => s
 | 
						|
///  - &s.zz[1].yy -> s, if zz is an array
 | 
						|
///  - *(x + 1) -> x, if x is an array
 | 
						|
///  - &"123"[2] -> 0
 | 
						|
///  - & __real__ x -> x
 | 
						|
static ValueDecl *getPrimaryDecl(Expr *E) {
 | 
						|
  switch (E->getStmtClass()) {
 | 
						|
  case Stmt::DeclRefExprClass:
 | 
						|
    return cast<DeclRefExpr>(E)->getDecl();
 | 
						|
  case Stmt::MemberExprClass:
 | 
						|
    // If this is an arrow operator, the address is an offset from
 | 
						|
    // the base's value, so the object the base refers to is
 | 
						|
    // irrelevant.
 | 
						|
    if (cast<MemberExpr>(E)->isArrow())
 | 
						|
      return 0;
 | 
						|
    // Otherwise, the expression refers to a part of the base
 | 
						|
    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
 | 
						|
  case Stmt::ArraySubscriptExprClass: {
 | 
						|
    // FIXME: This code shouldn't be necessary!  We should catch the implicit
 | 
						|
    // promotion of register arrays earlier.
 | 
						|
    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
 | 
						|
    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
 | 
						|
      if (ICE->getSubExpr()->getType()->isArrayType())
 | 
						|
        return getPrimaryDecl(ICE->getSubExpr());
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  case Stmt::UnaryOperatorClass: {
 | 
						|
    UnaryOperator *UO = cast<UnaryOperator>(E);
 | 
						|
 | 
						|
    switch(UO->getOpcode()) {
 | 
						|
    case UO_Real:
 | 
						|
    case UO_Imag:
 | 
						|
    case UO_Extension:
 | 
						|
      return getPrimaryDecl(UO->getSubExpr());
 | 
						|
    default:
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case Stmt::ParenExprClass:
 | 
						|
    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
 | 
						|
  case Stmt::ImplicitCastExprClass:
 | 
						|
    // If the result of an implicit cast is an l-value, we care about
 | 
						|
    // the sub-expression; otherwise, the result here doesn't matter.
 | 
						|
    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose invalid operand for address of operations.
 | 
						|
///
 | 
						|
/// \param Type The type of operand which cannot have its address taken.
 | 
						|
/// 0:bit-field 1:vector element 2:property expression 3:register variable
 | 
						|
static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
 | 
						|
                                         Expr *E, unsigned Type) {
 | 
						|
  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAddressOfOperand - The operand of & must be either a function
 | 
						|
/// designator or an lvalue designating an object. If it is an lvalue, the
 | 
						|
/// object cannot be declared with storage class register or be a bit field.
 | 
						|
/// Note: The usual conversions are *not* applied to the operand of the &
 | 
						|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
 | 
						|
/// In C++, the operand might be an overloaded function name, in which case
 | 
						|
/// we allow the '&' but retain the overloaded-function type.
 | 
						|
static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
 | 
						|
                                      SourceLocation OpLoc) {
 | 
						|
  if (OrigOp->isTypeDependent())
 | 
						|
    return S.Context.DependentTy;
 | 
						|
  if (OrigOp->getType() == S.Context.OverloadTy)
 | 
						|
    return S.Context.OverloadTy;
 | 
						|
  if (OrigOp->getType() == S.Context.UnknownAnyTy)
 | 
						|
    return S.Context.UnknownAnyTy;
 | 
						|
  if (OrigOp->getType() == S.Context.BoundMemberTy) {
 | 
						|
    S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
 | 
						|
      << OrigOp->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!OrigOp->getType()->isPlaceholderType());
 | 
						|
 | 
						|
  // Make sure to ignore parentheses in subsequent checks
 | 
						|
  Expr *op = OrigOp->IgnoreParens();
 | 
						|
 | 
						|
  if (S.getLangOptions().C99) {
 | 
						|
    // Implement C99-only parts of addressof rules.
 | 
						|
    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
 | 
						|
      if (uOp->getOpcode() == UO_Deref)
 | 
						|
        // Per C99 6.5.3.2, the address of a deref always returns a valid result
 | 
						|
        // (assuming the deref expression is valid).
 | 
						|
        return uOp->getSubExpr()->getType();
 | 
						|
    }
 | 
						|
    // Technically, there should be a check for array subscript
 | 
						|
    // expressions here, but the result of one is always an lvalue anyway.
 | 
						|
  }
 | 
						|
  ValueDecl *dcl = getPrimaryDecl(op);
 | 
						|
  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
 | 
						|
 | 
						|
  if (lval == Expr::LV_ClassTemporary) { 
 | 
						|
    bool sfinae = S.isSFINAEContext();
 | 
						|
    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
 | 
						|
                         : diag::ext_typecheck_addrof_class_temporary)
 | 
						|
      << op->getType() << op->getSourceRange();
 | 
						|
    if (sfinae)
 | 
						|
      return QualType();
 | 
						|
  } else if (isa<ObjCSelectorExpr>(op)) {
 | 
						|
    return S.Context.getPointerType(op->getType());
 | 
						|
  } else if (lval == Expr::LV_MemberFunction) {
 | 
						|
    // If it's an instance method, make a member pointer.
 | 
						|
    // The expression must have exactly the form &A::foo.
 | 
						|
 | 
						|
    // If the underlying expression isn't a decl ref, give up.
 | 
						|
    if (!isa<DeclRefExpr>(op)) {
 | 
						|
      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
 | 
						|
        << OrigOp->getSourceRange();
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
 | 
						|
    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
 | 
						|
 | 
						|
    // The id-expression was parenthesized.
 | 
						|
    if (OrigOp != DRE) {
 | 
						|
      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
 | 
						|
        << OrigOp->getSourceRange();
 | 
						|
 | 
						|
    // The method was named without a qualifier.
 | 
						|
    } else if (!DRE->getQualifier()) {
 | 
						|
      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
 | 
						|
        << op->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    return S.Context.getMemberPointerType(op->getType(),
 | 
						|
              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
 | 
						|
  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
 | 
						|
    // C99 6.5.3.2p1
 | 
						|
    // The operand must be either an l-value or a function designator
 | 
						|
    if (!op->getType()->isFunctionType()) {
 | 
						|
      // FIXME: emit more specific diag...
 | 
						|
      S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
 | 
						|
        << op->getSourceRange();
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
 | 
						|
    // The operand cannot be a bit-field
 | 
						|
    diagnoseAddressOfInvalidType(S, OpLoc, op, /*bit-field*/ 0);
 | 
						|
    return QualType();
 | 
						|
  } else if (op->getObjectKind() == OK_VectorComponent) {
 | 
						|
    // The operand cannot be an element of a vector
 | 
						|
    diagnoseAddressOfInvalidType(S, OpLoc, op, /*vector element*/ 1);
 | 
						|
    return QualType();
 | 
						|
  } else if (op->getObjectKind() == OK_ObjCProperty) {
 | 
						|
    // cannot take address of a property expression.
 | 
						|
    diagnoseAddressOfInvalidType(S, OpLoc, op, /*property expression*/ 2);
 | 
						|
    return QualType();
 | 
						|
  } else if (dcl) { // C99 6.5.3.2p1
 | 
						|
    // We have an lvalue with a decl. Make sure the decl is not declared
 | 
						|
    // with the register storage-class specifier.
 | 
						|
    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
 | 
						|
      // in C++ it is not error to take address of a register
 | 
						|
      // variable (c++03 7.1.1P3)
 | 
						|
      if (vd->getStorageClass() == SC_Register &&
 | 
						|
          !S.getLangOptions().CPlusPlus) {
 | 
						|
        diagnoseAddressOfInvalidType(S, OpLoc, op, /*register variable*/ 3);
 | 
						|
        return QualType();
 | 
						|
      }
 | 
						|
    } else if (isa<FunctionTemplateDecl>(dcl)) {
 | 
						|
      return S.Context.OverloadTy;
 | 
						|
    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
 | 
						|
      // Okay: we can take the address of a field.
 | 
						|
      // Could be a pointer to member, though, if there is an explicit
 | 
						|
      // scope qualifier for the class.
 | 
						|
      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
 | 
						|
        DeclContext *Ctx = dcl->getDeclContext();
 | 
						|
        if (Ctx && Ctx->isRecord()) {
 | 
						|
          if (dcl->getType()->isReferenceType()) {
 | 
						|
            S.Diag(OpLoc,
 | 
						|
                   diag::err_cannot_form_pointer_to_member_of_reference_type)
 | 
						|
              << dcl->getDeclName() << dcl->getType();
 | 
						|
            return QualType();
 | 
						|
          }
 | 
						|
 | 
						|
          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
 | 
						|
            Ctx = Ctx->getParent();
 | 
						|
          return S.Context.getMemberPointerType(op->getType(),
 | 
						|
                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
 | 
						|
      assert(0 && "Unknown/unexpected decl type");
 | 
						|
  }
 | 
						|
 | 
						|
  if (lval == Expr::LV_IncompleteVoidType) {
 | 
						|
    // Taking the address of a void variable is technically illegal, but we
 | 
						|
    // allow it in cases which are otherwise valid.
 | 
						|
    // Example: "extern void x; void* y = &x;".
 | 
						|
    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the operand has type "type", the result has type "pointer to type".
 | 
						|
  if (op->getType()->isObjCObjectType())
 | 
						|
    return S.Context.getObjCObjectPointerType(op->getType());
 | 
						|
  return S.Context.getPointerType(op->getType());
 | 
						|
}
 | 
						|
 | 
						|
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
 | 
						|
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
 | 
						|
                                        SourceLocation OpLoc) {
 | 
						|
  if (Op->isTypeDependent())
 | 
						|
    return S.Context.DependentTy;
 | 
						|
 | 
						|
  ExprResult ConvResult = S.UsualUnaryConversions(Op);
 | 
						|
  if (ConvResult.isInvalid())
 | 
						|
    return QualType();
 | 
						|
  Op = ConvResult.take();
 | 
						|
  QualType OpTy = Op->getType();
 | 
						|
  QualType Result;
 | 
						|
 | 
						|
  if (isa<CXXReinterpretCastExpr>(Op)) {
 | 
						|
    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
 | 
						|
    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
 | 
						|
                                     Op->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that per both C89 and C99, indirection is always legal, even if OpTy
 | 
						|
  // is an incomplete type or void.  It would be possible to warn about
 | 
						|
  // dereferencing a void pointer, but it's completely well-defined, and such a
 | 
						|
  // warning is unlikely to catch any mistakes.
 | 
						|
  if (const PointerType *PT = OpTy->getAs<PointerType>())
 | 
						|
    Result = PT->getPointeeType();
 | 
						|
  else if (const ObjCObjectPointerType *OPT =
 | 
						|
             OpTy->getAs<ObjCObjectPointerType>())
 | 
						|
    Result = OPT->getPointeeType();
 | 
						|
  else {
 | 
						|
    ExprResult PR = S.CheckPlaceholderExpr(Op);
 | 
						|
    if (PR.isInvalid()) return QualType();
 | 
						|
    if (PR.take() != Op)
 | 
						|
      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.isNull()) {
 | 
						|
    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
 | 
						|
      << OpTy << Op->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Dereferences are usually l-values...
 | 
						|
  VK = VK_LValue;
 | 
						|
 | 
						|
  // ...except that certain expressions are never l-values in C.
 | 
						|
  if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType())
 | 
						|
    VK = VK_RValue;
 | 
						|
  
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
 | 
						|
  tok::TokenKind Kind) {
 | 
						|
  BinaryOperatorKind Opc;
 | 
						|
  switch (Kind) {
 | 
						|
  default: assert(0 && "Unknown binop!");
 | 
						|
  case tok::periodstar:           Opc = BO_PtrMemD; break;
 | 
						|
  case tok::arrowstar:            Opc = BO_PtrMemI; break;
 | 
						|
  case tok::star:                 Opc = BO_Mul; break;
 | 
						|
  case tok::slash:                Opc = BO_Div; break;
 | 
						|
  case tok::percent:              Opc = BO_Rem; break;
 | 
						|
  case tok::plus:                 Opc = BO_Add; break;
 | 
						|
  case tok::minus:                Opc = BO_Sub; break;
 | 
						|
  case tok::lessless:             Opc = BO_Shl; break;
 | 
						|
  case tok::greatergreater:       Opc = BO_Shr; break;
 | 
						|
  case tok::lessequal:            Opc = BO_LE; break;
 | 
						|
  case tok::less:                 Opc = BO_LT; break;
 | 
						|
  case tok::greaterequal:         Opc = BO_GE; break;
 | 
						|
  case tok::greater:              Opc = BO_GT; break;
 | 
						|
  case tok::exclaimequal:         Opc = BO_NE; break;
 | 
						|
  case tok::equalequal:           Opc = BO_EQ; break;
 | 
						|
  case tok::amp:                  Opc = BO_And; break;
 | 
						|
  case tok::caret:                Opc = BO_Xor; break;
 | 
						|
  case tok::pipe:                 Opc = BO_Or; break;
 | 
						|
  case tok::ampamp:               Opc = BO_LAnd; break;
 | 
						|
  case tok::pipepipe:             Opc = BO_LOr; break;
 | 
						|
  case tok::equal:                Opc = BO_Assign; break;
 | 
						|
  case tok::starequal:            Opc = BO_MulAssign; break;
 | 
						|
  case tok::slashequal:           Opc = BO_DivAssign; break;
 | 
						|
  case tok::percentequal:         Opc = BO_RemAssign; break;
 | 
						|
  case tok::plusequal:            Opc = BO_AddAssign; break;
 | 
						|
  case tok::minusequal:           Opc = BO_SubAssign; break;
 | 
						|
  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
 | 
						|
  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
 | 
						|
  case tok::ampequal:             Opc = BO_AndAssign; break;
 | 
						|
  case tok::caretequal:           Opc = BO_XorAssign; break;
 | 
						|
  case tok::pipeequal:            Opc = BO_OrAssign; break;
 | 
						|
  case tok::comma:                Opc = BO_Comma; break;
 | 
						|
  }
 | 
						|
  return Opc;
 | 
						|
}
 | 
						|
 | 
						|
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
 | 
						|
  tok::TokenKind Kind) {
 | 
						|
  UnaryOperatorKind Opc;
 | 
						|
  switch (Kind) {
 | 
						|
  default: assert(0 && "Unknown unary op!");
 | 
						|
  case tok::plusplus:     Opc = UO_PreInc; break;
 | 
						|
  case tok::minusminus:   Opc = UO_PreDec; break;
 | 
						|
  case tok::amp:          Opc = UO_AddrOf; break;
 | 
						|
  case tok::star:         Opc = UO_Deref; break;
 | 
						|
  case tok::plus:         Opc = UO_Plus; break;
 | 
						|
  case tok::minus:        Opc = UO_Minus; break;
 | 
						|
  case tok::tilde:        Opc = UO_Not; break;
 | 
						|
  case tok::exclaim:      Opc = UO_LNot; break;
 | 
						|
  case tok::kw___real:    Opc = UO_Real; break;
 | 
						|
  case tok::kw___imag:    Opc = UO_Imag; break;
 | 
						|
  case tok::kw___extension__: Opc = UO_Extension; break;
 | 
						|
  }
 | 
						|
  return Opc;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
 | 
						|
/// This warning is only emitted for builtin assignment operations. It is also
 | 
						|
/// suppressed in the event of macro expansions.
 | 
						|
static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
 | 
						|
                                   SourceLocation OpLoc) {
 | 
						|
  if (!S.ActiveTemplateInstantiations.empty())
 | 
						|
    return;
 | 
						|
  if (OpLoc.isInvalid() || OpLoc.isMacroID())
 | 
						|
    return;
 | 
						|
  lhs = lhs->IgnoreParenImpCasts();
 | 
						|
  rhs = rhs->IgnoreParenImpCasts();
 | 
						|
  const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
 | 
						|
  const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
 | 
						|
  if (!LeftDeclRef || !RightDeclRef ||
 | 
						|
      LeftDeclRef->getLocation().isMacroID() ||
 | 
						|
      RightDeclRef->getLocation().isMacroID())
 | 
						|
    return;
 | 
						|
  const ValueDecl *LeftDecl =
 | 
						|
    cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
 | 
						|
  const ValueDecl *RightDecl =
 | 
						|
    cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
 | 
						|
  if (LeftDecl != RightDecl)
 | 
						|
    return;
 | 
						|
  if (LeftDecl->getType().isVolatileQualified())
 | 
						|
    return;
 | 
						|
  if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
 | 
						|
    if (RefTy->getPointeeType().isVolatileQualified())
 | 
						|
      return;
 | 
						|
 | 
						|
  S.Diag(OpLoc, diag::warn_self_assignment)
 | 
						|
      << LeftDeclRef->getType()
 | 
						|
      << lhs->getSourceRange() << rhs->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
// checkArithmeticNull - Detect when a NULL constant is used improperly in an
 | 
						|
// expression.  These are mainly cases where the null pointer is used as an
 | 
						|
// integer instead of a pointer.
 | 
						|
static void checkArithmeticNull(Sema &S, ExprResult &lex, ExprResult &rex,
 | 
						|
                                SourceLocation Loc, bool isCompare) {
 | 
						|
  // The canonical way to check for a GNU null is with isNullPointerConstant,
 | 
						|
  // but we use a bit of a hack here for speed; this is a relatively
 | 
						|
  // hot path, and isNullPointerConstant is slow.
 | 
						|
  bool LeftNull = isa<GNUNullExpr>(lex.get()->IgnoreParenImpCasts());
 | 
						|
  bool RightNull = isa<GNUNullExpr>(rex.get()->IgnoreParenImpCasts());
 | 
						|
 | 
						|
  // Detect when a NULL constant is used improperly in an expression.  These
 | 
						|
  // are mainly cases where the null pointer is used as an integer instead
 | 
						|
  // of a pointer.
 | 
						|
  if (!LeftNull && !RightNull)
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType LeftType = lex.get()->getType();
 | 
						|
  QualType RightType = rex.get()->getType();
 | 
						|
 | 
						|
  // Avoid analyzing cases where the result will either be invalid (and
 | 
						|
  // diagnosed as such) or entirely valid and not something to warn about.
 | 
						|
  if (LeftType->isBlockPointerType() || LeftType->isMemberPointerType() ||
 | 
						|
      LeftType->isFunctionType() || RightType->isBlockPointerType() ||
 | 
						|
      RightType->isMemberPointerType() || RightType->isFunctionType())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Comparison operations would not make sense with a null pointer no matter
 | 
						|
  // what the other expression is.
 | 
						|
  if (!isCompare) {
 | 
						|
    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
 | 
						|
        << (LeftNull ? lex.get()->getSourceRange() : SourceRange())
 | 
						|
        << (RightNull ? rex.get()->getSourceRange() : SourceRange());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The rest of the operations only make sense with a null pointer
 | 
						|
  // if the other expression is a pointer.
 | 
						|
  if (LeftNull == RightNull || LeftType->isAnyPointerType() ||
 | 
						|
      LeftType->canDecayToPointerType() || RightType->isAnyPointerType() ||
 | 
						|
      RightType->canDecayToPointerType())
 | 
						|
    return;
 | 
						|
 | 
						|
  S.Diag(Loc, diag::warn_null_in_comparison_operation)
 | 
						|
      << LeftNull /* LHS is NULL */
 | 
						|
      << (LeftNull ? rex.get()->getType() : lex.get()->getType())
 | 
						|
      << lex.get()->getSourceRange() << rex.get()->getSourceRange();
 | 
						|
}
 | 
						|
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
 | 
						|
/// operator @p Opc at location @c TokLoc. This routine only supports
 | 
						|
/// built-in operations; ActOnBinOp handles overloaded operators.
 | 
						|
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
 | 
						|
                                    BinaryOperatorKind Opc,
 | 
						|
                                    Expr *lhsExpr, Expr *rhsExpr) {
 | 
						|
  ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
 | 
						|
  QualType ResultTy;     // Result type of the binary operator.
 | 
						|
  // The following two variables are used for compound assignment operators
 | 
						|
  QualType CompLHSTy;    // Type of LHS after promotions for computation
 | 
						|
  QualType CompResultTy; // Type of computation result
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
 | 
						|
  // Check if a 'foo<int>' involved in a binary op, identifies a single 
 | 
						|
  // function unambiguously (i.e. an lvalue ala 13.4)
 | 
						|
  // But since an assignment can trigger target based overload, exclude it in 
 | 
						|
  // our blind search. i.e:
 | 
						|
  // template<class T> void f(); template<class T, class U> void f(U);
 | 
						|
  // f<int> == 0;  // resolve f<int> blindly
 | 
						|
  // void (*p)(int); p = f<int>;  // resolve f<int> using target
 | 
						|
  if (Opc != BO_Assign) { 
 | 
						|
    ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
 | 
						|
    if (!resolvedLHS.isUsable()) return ExprError();
 | 
						|
    lhs = move(resolvedLHS);
 | 
						|
 | 
						|
    ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
 | 
						|
    if (!resolvedRHS.isUsable()) return ExprError();
 | 
						|
    rhs = move(resolvedRHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Opc == BO_Mul || Opc == BO_Div || Opc == BO_Rem || Opc == BO_Add ||
 | 
						|
      Opc == BO_Sub || Opc == BO_Shl || Opc == BO_Shr || Opc == BO_And ||
 | 
						|
      Opc == BO_Xor || Opc == BO_Or || Opc == BO_MulAssign ||
 | 
						|
      Opc == BO_DivAssign || Opc == BO_AddAssign || Opc == BO_SubAssign ||
 | 
						|
      Opc == BO_RemAssign || Opc == BO_ShlAssign || Opc == BO_ShrAssign ||
 | 
						|
      Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign)
 | 
						|
    checkArithmeticNull(*this, lhs, rhs, OpLoc, /*isCompare=*/false);
 | 
						|
  else if (Opc == BO_LE || Opc == BO_LT || Opc == BO_GE || Opc == BO_GT ||
 | 
						|
           Opc == BO_EQ || Opc == BO_NE)
 | 
						|
    checkArithmeticNull(*this, lhs, rhs, OpLoc, /*isCompare=*/true);
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
  case BO_Assign:
 | 
						|
    ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
 | 
						|
    if (getLangOptions().CPlusPlus &&
 | 
						|
        lhs.get()->getObjectKind() != OK_ObjCProperty) {
 | 
						|
      VK = lhs.get()->getValueKind();
 | 
						|
      OK = lhs.get()->getObjectKind();
 | 
						|
    }
 | 
						|
    if (!ResultTy.isNull())
 | 
						|
      DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
 | 
						|
    break;
 | 
						|
  case BO_PtrMemD:
 | 
						|
  case BO_PtrMemI:
 | 
						|
    ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
 | 
						|
                                            Opc == BO_PtrMemI);
 | 
						|
    break;
 | 
						|
  case BO_Mul:
 | 
						|
  case BO_Div:
 | 
						|
    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
 | 
						|
                                           Opc == BO_Div);
 | 
						|
    break;
 | 
						|
  case BO_Rem:
 | 
						|
    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
 | 
						|
    break;
 | 
						|
  case BO_Add:
 | 
						|
    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
 | 
						|
    break;
 | 
						|
  case BO_Sub:
 | 
						|
    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
 | 
						|
    break;
 | 
						|
  case BO_Shl:
 | 
						|
  case BO_Shr:
 | 
						|
    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
 | 
						|
    break;
 | 
						|
  case BO_LE:
 | 
						|
  case BO_LT:
 | 
						|
  case BO_GE:
 | 
						|
  case BO_GT:
 | 
						|
    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
 | 
						|
    break;
 | 
						|
  case BO_EQ:
 | 
						|
  case BO_NE:
 | 
						|
    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
 | 
						|
    break;
 | 
						|
  case BO_And:
 | 
						|
  case BO_Xor:
 | 
						|
  case BO_Or:
 | 
						|
    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
 | 
						|
    break;
 | 
						|
  case BO_LAnd:
 | 
						|
  case BO_LOr:
 | 
						|
    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
 | 
						|
    break;
 | 
						|
  case BO_MulAssign:
 | 
						|
  case BO_DivAssign:
 | 
						|
    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
 | 
						|
                                               Opc == BO_DivAssign);
 | 
						|
    CompLHSTy = CompResultTy;
 | 
						|
    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | 
						|
      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | 
						|
    break;
 | 
						|
  case BO_RemAssign:
 | 
						|
    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
 | 
						|
    CompLHSTy = CompResultTy;
 | 
						|
    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | 
						|
      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | 
						|
    break;
 | 
						|
  case BO_AddAssign:
 | 
						|
    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
 | 
						|
    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | 
						|
      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | 
						|
    break;
 | 
						|
  case BO_SubAssign:
 | 
						|
    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
 | 
						|
    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | 
						|
      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | 
						|
    break;
 | 
						|
  case BO_ShlAssign:
 | 
						|
  case BO_ShrAssign:
 | 
						|
    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
 | 
						|
    CompLHSTy = CompResultTy;
 | 
						|
    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | 
						|
      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | 
						|
    break;
 | 
						|
  case BO_AndAssign:
 | 
						|
  case BO_XorAssign:
 | 
						|
  case BO_OrAssign:
 | 
						|
    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
 | 
						|
    CompLHSTy = CompResultTy;
 | 
						|
    if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
 | 
						|
      ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
 | 
						|
    break;
 | 
						|
  case BO_Comma:
 | 
						|
    ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
 | 
						|
    if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
 | 
						|
      VK = rhs.get()->getValueKind();
 | 
						|
      OK = rhs.get()->getObjectKind();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Check for array bounds violations for both sides of the BinaryOperator
 | 
						|
  CheckArrayAccess(lhs.get());
 | 
						|
  CheckArrayAccess(rhs.get());
 | 
						|
 | 
						|
  if (CompResultTy.isNull())
 | 
						|
    return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
 | 
						|
                                              ResultTy, VK, OK, OpLoc));
 | 
						|
  if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() !=
 | 
						|
      OK_ObjCProperty) {
 | 
						|
    VK = VK_LValue;
 | 
						|
    OK = lhs.get()->getObjectKind();
 | 
						|
  }
 | 
						|
  return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
 | 
						|
                                                    ResultTy, VK, OK, CompLHSTy,
 | 
						|
                                                    CompResultTy, OpLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
 | 
						|
/// operators are mixed in a way that suggests that the programmer forgot that
 | 
						|
/// comparison operators have higher precedence. The most typical example of
 | 
						|
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
 | 
						|
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
 | 
						|
                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
 | 
						|
  typedef BinaryOperator BinOp;
 | 
						|
  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
 | 
						|
                rhsopc = static_cast<BinOp::Opcode>(-1);
 | 
						|
  if (BinOp *BO = dyn_cast<BinOp>(lhs))
 | 
						|
    lhsopc = BO->getOpcode();
 | 
						|
  if (BinOp *BO = dyn_cast<BinOp>(rhs))
 | 
						|
    rhsopc = BO->getOpcode();
 | 
						|
 | 
						|
  // Subs are not binary operators.
 | 
						|
  if (lhsopc == -1 && rhsopc == -1)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Bitwise operations are sometimes used as eager logical ops.
 | 
						|
  // Don't diagnose this.
 | 
						|
  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
 | 
						|
      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
 | 
						|
    return;
 | 
						|
 | 
						|
  bool isLeftComp = BinOp::isComparisonOp(lhsopc);
 | 
						|
  bool isRightComp = BinOp::isComparisonOp(rhsopc);
 | 
						|
  if (!isLeftComp && !isRightComp) return;
 | 
						|
 | 
						|
  SourceRange DiagRange = isLeftComp ? SourceRange(lhs->getLocStart(), OpLoc)
 | 
						|
                                     : SourceRange(OpLoc, rhs->getLocEnd());
 | 
						|
  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(lhsopc)
 | 
						|
                                 : BinOp::getOpcodeStr(rhsopc);
 | 
						|
  SourceRange ParensRange = isLeftComp ?
 | 
						|
      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(),
 | 
						|
                  rhs->getLocEnd())
 | 
						|
    : SourceRange(lhs->getLocStart(),
 | 
						|
                  cast<BinOp>(rhs)->getLHS()->getLocStart());
 | 
						|
 | 
						|
  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
 | 
						|
    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
 | 
						|
  SuggestParentheses(Self, OpLoc,
 | 
						|
    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
 | 
						|
    rhs->getSourceRange());
 | 
						|
  SuggestParentheses(Self, OpLoc,
 | 
						|
    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
 | 
						|
    ParensRange);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief It accepts a '&' expr that is inside a '|' one.
 | 
						|
/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
 | 
						|
/// in parentheses.
 | 
						|
static void
 | 
						|
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
 | 
						|
                                       BinaryOperator *Bop) {
 | 
						|
  assert(Bop->getOpcode() == BO_And);
 | 
						|
  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
 | 
						|
      << Bop->getSourceRange() << OpLoc;
 | 
						|
  SuggestParentheses(Self, Bop->getOperatorLoc(),
 | 
						|
    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
 | 
						|
    Bop->getSourceRange());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief It accepts a '&&' expr that is inside a '||' one.
 | 
						|
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
 | 
						|
/// in parentheses.
 | 
						|
static void
 | 
						|
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
 | 
						|
                                       BinaryOperator *Bop) {
 | 
						|
  assert(Bop->getOpcode() == BO_LAnd);
 | 
						|
  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
 | 
						|
      << Bop->getSourceRange() << OpLoc;
 | 
						|
  SuggestParentheses(Self, Bop->getOperatorLoc(),
 | 
						|
    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
 | 
						|
    Bop->getSourceRange());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns true if the given expression can be evaluated as a constant
 | 
						|
/// 'true'.
 | 
						|
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
 | 
						|
  bool Res;
 | 
						|
  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns true if the given expression can be evaluated as a constant
 | 
						|
/// 'false'.
 | 
						|
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
 | 
						|
  bool Res;
 | 
						|
  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for '&&' in the left hand of a '||' expr.
 | 
						|
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
 | 
						|
                                             Expr *OrLHS, Expr *OrRHS) {
 | 
						|
  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
 | 
						|
    if (Bop->getOpcode() == BO_LAnd) {
 | 
						|
      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
 | 
						|
      if (EvaluatesAsFalse(S, OrRHS))
 | 
						|
        return;
 | 
						|
      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
 | 
						|
      if (!EvaluatesAsTrue(S, Bop->getLHS()))
 | 
						|
        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
 | 
						|
    } else if (Bop->getOpcode() == BO_LOr) {
 | 
						|
      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
 | 
						|
        // If it's "a || b && 1 || c" we didn't warn earlier for
 | 
						|
        // "a || b && 1", but warn now.
 | 
						|
        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
 | 
						|
          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for '&&' in the right hand of a '||' expr.
 | 
						|
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
 | 
						|
                                             Expr *OrLHS, Expr *OrRHS) {
 | 
						|
  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
 | 
						|
    if (Bop->getOpcode() == BO_LAnd) {
 | 
						|
      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
 | 
						|
      if (EvaluatesAsFalse(S, OrLHS))
 | 
						|
        return;
 | 
						|
      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
 | 
						|
      if (!EvaluatesAsTrue(S, Bop->getRHS()))
 | 
						|
        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for '&' in the left or right hand of a '|' expr.
 | 
						|
static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
 | 
						|
                                             Expr *OrArg) {
 | 
						|
  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
 | 
						|
    if (Bop->getOpcode() == BO_And)
 | 
						|
      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
 | 
						|
/// precedence.
 | 
						|
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
 | 
						|
                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
 | 
						|
  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
 | 
						|
  if (BinaryOperator::isBitwiseOp(Opc))
 | 
						|
    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
 | 
						|
 | 
						|
  // Diagnose "arg1 & arg2 | arg3"
 | 
						|
  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
 | 
						|
    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, lhs);
 | 
						|
    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
 | 
						|
  // We don't warn for 'assert(a || b && "bad")' since this is safe.
 | 
						|
  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
 | 
						|
    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
 | 
						|
    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Binary Operators.  'Tok' is the token for the operator.
 | 
						|
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
 | 
						|
                            tok::TokenKind Kind,
 | 
						|
                            Expr *lhs, Expr *rhs) {
 | 
						|
  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
 | 
						|
  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
 | 
						|
  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
 | 
						|
 | 
						|
  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
 | 
						|
  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
 | 
						|
 | 
						|
  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
 | 
						|
                            BinaryOperatorKind Opc,
 | 
						|
                            Expr *lhs, Expr *rhs) {
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    bool UseBuiltinOperator;
 | 
						|
 | 
						|
    if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
 | 
						|
      UseBuiltinOperator = false;
 | 
						|
    } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
 | 
						|
      UseBuiltinOperator = true;
 | 
						|
    } else {
 | 
						|
      UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
 | 
						|
                           !rhs->getType()->isOverloadableType();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!UseBuiltinOperator) {
 | 
						|
      // Find all of the overloaded operators visible from this
 | 
						|
      // point. We perform both an operator-name lookup from the local
 | 
						|
      // scope and an argument-dependent lookup based on the types of
 | 
						|
      // the arguments.
 | 
						|
      UnresolvedSet<16> Functions;
 | 
						|
      OverloadedOperatorKind OverOp
 | 
						|
        = BinaryOperator::getOverloadedOperator(Opc);
 | 
						|
      if (S && OverOp != OO_None)
 | 
						|
        LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
 | 
						|
                                     Functions);
 | 
						|
 | 
						|
      // Build the (potentially-overloaded, potentially-dependent)
 | 
						|
      // binary operation.
 | 
						|
      return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a built-in binary operation.
 | 
						|
  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
 | 
						|
                                      UnaryOperatorKind Opc,
 | 
						|
                                      Expr *InputExpr) {
 | 
						|
  ExprResult Input = Owned(InputExpr);
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
  QualType resultType;
 | 
						|
  switch (Opc) {
 | 
						|
  case UO_PreInc:
 | 
						|
  case UO_PreDec:
 | 
						|
  case UO_PostInc:
 | 
						|
  case UO_PostDec:
 | 
						|
    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
 | 
						|
                                                Opc == UO_PreInc ||
 | 
						|
                                                Opc == UO_PostInc,
 | 
						|
                                                Opc == UO_PreInc ||
 | 
						|
                                                Opc == UO_PreDec);
 | 
						|
    break;
 | 
						|
  case UO_AddrOf:
 | 
						|
    resultType = CheckAddressOfOperand(*this, Input.get(), OpLoc);
 | 
						|
    break;
 | 
						|
  case UO_Deref: {
 | 
						|
    ExprResult resolved = CheckPlaceholderExpr(Input.get());
 | 
						|
    if (!resolved.isUsable()) return ExprError();
 | 
						|
    Input = move(resolved);
 | 
						|
    Input = DefaultFunctionArrayLvalueConversion(Input.take());
 | 
						|
    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case UO_Plus:
 | 
						|
  case UO_Minus:
 | 
						|
    Input = UsualUnaryConversions(Input.take());
 | 
						|
    if (Input.isInvalid()) return ExprError();
 | 
						|
    resultType = Input.get()->getType();
 | 
						|
    if (resultType->isDependentType())
 | 
						|
      break;
 | 
						|
    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
 | 
						|
        resultType->isVectorType()) 
 | 
						|
      break;
 | 
						|
    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
 | 
						|
             resultType->isEnumeralType())
 | 
						|
      break;
 | 
						|
    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
 | 
						|
             Opc == UO_Plus &&
 | 
						|
             resultType->isPointerType())
 | 
						|
      break;
 | 
						|
    else if (resultType->isPlaceholderType()) {
 | 
						|
      Input = CheckPlaceholderExpr(Input.take());
 | 
						|
      if (Input.isInvalid()) return ExprError();
 | 
						|
      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
 | 
						|
    }
 | 
						|
 | 
						|
    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
 | 
						|
      << resultType << Input.get()->getSourceRange());
 | 
						|
 | 
						|
  case UO_Not: // bitwise complement
 | 
						|
    Input = UsualUnaryConversions(Input.take());
 | 
						|
    if (Input.isInvalid()) return ExprError();
 | 
						|
    resultType = Input.get()->getType();
 | 
						|
    if (resultType->isDependentType())
 | 
						|
      break;
 | 
						|
    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
 | 
						|
    if (resultType->isComplexType() || resultType->isComplexIntegerType())
 | 
						|
      // C99 does not support '~' for complex conjugation.
 | 
						|
      Diag(OpLoc, diag::ext_integer_complement_complex)
 | 
						|
        << resultType << Input.get()->getSourceRange();
 | 
						|
    else if (resultType->hasIntegerRepresentation())
 | 
						|
      break;
 | 
						|
    else if (resultType->isPlaceholderType()) {
 | 
						|
      Input = CheckPlaceholderExpr(Input.take());
 | 
						|
      if (Input.isInvalid()) return ExprError();
 | 
						|
      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
 | 
						|
    } else {
 | 
						|
      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
 | 
						|
        << resultType << Input.get()->getSourceRange());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case UO_LNot: // logical negation
 | 
						|
    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
 | 
						|
    Input = DefaultFunctionArrayLvalueConversion(Input.take());
 | 
						|
    if (Input.isInvalid()) return ExprError();
 | 
						|
    resultType = Input.get()->getType();
 | 
						|
    if (resultType->isDependentType())
 | 
						|
      break;
 | 
						|
    if (resultType->isScalarType()) {
 | 
						|
      // C99 6.5.3.3p1: ok, fallthrough;
 | 
						|
      if (Context.getLangOptions().CPlusPlus) {
 | 
						|
        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
 | 
						|
        // operand contextually converted to bool.
 | 
						|
        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
 | 
						|
                                  ScalarTypeToBooleanCastKind(resultType));
 | 
						|
      }
 | 
						|
    } else if (resultType->isPlaceholderType()) {
 | 
						|
      Input = CheckPlaceholderExpr(Input.take());
 | 
						|
      if (Input.isInvalid()) return ExprError();
 | 
						|
      return CreateBuiltinUnaryOp(OpLoc, Opc, Input.take());
 | 
						|
    } else {
 | 
						|
      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
 | 
						|
        << resultType << Input.get()->getSourceRange());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // LNot always has type int. C99 6.5.3.3p5.
 | 
						|
    // In C++, it's bool. C++ 5.3.1p8
 | 
						|
    resultType = Context.getLogicalOperationType();
 | 
						|
    break;
 | 
						|
  case UO_Real:
 | 
						|
  case UO_Imag:
 | 
						|
    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
 | 
						|
    // _Real and _Imag map ordinary l-values into ordinary l-values.
 | 
						|
    if (Input.isInvalid()) return ExprError();
 | 
						|
    if (Input.get()->getValueKind() != VK_RValue &&
 | 
						|
        Input.get()->getObjectKind() == OK_Ordinary)
 | 
						|
      VK = Input.get()->getValueKind();
 | 
						|
    break;
 | 
						|
  case UO_Extension:
 | 
						|
    resultType = Input.get()->getType();
 | 
						|
    VK = Input.get()->getValueKind();
 | 
						|
    OK = Input.get()->getObjectKind();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (resultType.isNull() || Input.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // Check for array bounds violations in the operand of the UnaryOperator,
 | 
						|
  // except for the '*' and '&' operators that have to be handled specially
 | 
						|
  // by CheckArrayAccess (as there are special cases like &array[arraysize]
 | 
						|
  // that are explicitly defined as valid by the standard).
 | 
						|
  if (Opc != UO_AddrOf && Opc != UO_Deref)
 | 
						|
    CheckArrayAccess(Input.get());
 | 
						|
 | 
						|
  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
 | 
						|
                                           VK, OK, OpLoc));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
 | 
						|
                              UnaryOperatorKind Opc,
 | 
						|
                              Expr *Input) {
 | 
						|
  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
 | 
						|
      UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
 | 
						|
    // Find all of the overloaded operators visible from this
 | 
						|
    // point. We perform both an operator-name lookup from the local
 | 
						|
    // scope and an argument-dependent lookup based on the types of
 | 
						|
    // the arguments.
 | 
						|
    UnresolvedSet<16> Functions;
 | 
						|
    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
 | 
						|
    if (S && OverOp != OO_None)
 | 
						|
      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
 | 
						|
                                   Functions);
 | 
						|
 | 
						|
    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
 | 
						|
  }
 | 
						|
 | 
						|
  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
 | 
						|
}
 | 
						|
 | 
						|
// Unary Operators.  'Tok' is the token for the operator.
 | 
						|
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
 | 
						|
                              tok::TokenKind Op, Expr *Input) {
 | 
						|
  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
 | 
						|
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
 | 
						|
                                LabelDecl *TheDecl) {
 | 
						|
  TheDecl->setUsed();
 | 
						|
  // Create the AST node.  The address of a label always has type 'void*'.
 | 
						|
  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
 | 
						|
                                       Context.getPointerType(Context.VoidTy)));
 | 
						|
}
 | 
						|
 | 
						|
/// Given the last statement in a statement-expression, check whether
 | 
						|
/// the result is a producing expression (like a call to an
 | 
						|
/// ns_returns_retained function) and, if so, rebuild it to hoist the
 | 
						|
/// release out of the full-expression.  Otherwise, return null.
 | 
						|
/// Cannot fail.
 | 
						|
static Expr *maybeRebuildARCConsumingStmt(Stmt *s) {
 | 
						|
  // Should always be wrapped with one of these.
 | 
						|
  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(s);
 | 
						|
  if (!cleanups) return 0;
 | 
						|
 | 
						|
  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
 | 
						|
  if (!cast || cast->getCastKind() != CK_ObjCConsumeObject)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Splice out the cast.  This shouldn't modify any interesting
 | 
						|
  // features of the statement.
 | 
						|
  Expr *producer = cast->getSubExpr();
 | 
						|
  assert(producer->getType() == cast->getType());
 | 
						|
  assert(producer->getValueKind() == cast->getValueKind());
 | 
						|
  cleanups->setSubExpr(producer);
 | 
						|
  return cleanups;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
 | 
						|
                    SourceLocation RPLoc) { // "({..})"
 | 
						|
  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
 | 
						|
  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
 | 
						|
 | 
						|
  bool isFileScope
 | 
						|
    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
 | 
						|
  if (isFileScope)
 | 
						|
    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
 | 
						|
 | 
						|
  // FIXME: there are a variety of strange constraints to enforce here, for
 | 
						|
  // example, it is not possible to goto into a stmt expression apparently.
 | 
						|
  // More semantic analysis is needed.
 | 
						|
 | 
						|
  // If there are sub stmts in the compound stmt, take the type of the last one
 | 
						|
  // as the type of the stmtexpr.
 | 
						|
  QualType Ty = Context.VoidTy;
 | 
						|
  bool StmtExprMayBindToTemp = false;
 | 
						|
  if (!Compound->body_empty()) {
 | 
						|
    Stmt *LastStmt = Compound->body_back();
 | 
						|
    LabelStmt *LastLabelStmt = 0;
 | 
						|
    // If LastStmt is a label, skip down through into the body.
 | 
						|
    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
 | 
						|
      LastLabelStmt = Label;
 | 
						|
      LastStmt = Label->getSubStmt();
 | 
						|
    }
 | 
						|
 | 
						|
    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
 | 
						|
      // Do function/array conversion on the last expression, but not
 | 
						|
      // lvalue-to-rvalue.  However, initialize an unqualified type.
 | 
						|
      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
 | 
						|
      if (LastExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
      Ty = LastExpr.get()->getType().getUnqualifiedType();
 | 
						|
 | 
						|
      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
 | 
						|
        // In ARC, if the final expression ends in a consume, splice
 | 
						|
        // the consume out and bind it later.  In the alternate case
 | 
						|
        // (when dealing with a retainable type), the result
 | 
						|
        // initialization will create a produce.  In both cases the
 | 
						|
        // result will be +1, and we'll need to balance that out with
 | 
						|
        // a bind.
 | 
						|
        if (Expr *rebuiltLastStmt
 | 
						|
              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
 | 
						|
          LastExpr = rebuiltLastStmt;
 | 
						|
        } else {
 | 
						|
          LastExpr = PerformCopyInitialization(
 | 
						|
                            InitializedEntity::InitializeResult(LPLoc, 
 | 
						|
                                                                Ty,
 | 
						|
                                                                false),
 | 
						|
                                                   SourceLocation(),
 | 
						|
                                               LastExpr);
 | 
						|
        }
 | 
						|
 | 
						|
        if (LastExpr.isInvalid())
 | 
						|
          return ExprError();
 | 
						|
        if (LastExpr.get() != 0) {
 | 
						|
          if (!LastLabelStmt)
 | 
						|
            Compound->setLastStmt(LastExpr.take());
 | 
						|
          else
 | 
						|
            LastLabelStmt->setSubStmt(LastExpr.take());
 | 
						|
          StmtExprMayBindToTemp = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Check that expression type is complete/non-abstract; statement
 | 
						|
  // expressions are not lvalues.
 | 
						|
  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
 | 
						|
  if (StmtExprMayBindToTemp)
 | 
						|
    return MaybeBindToTemporary(ResStmtExpr);
 | 
						|
  return Owned(ResStmtExpr);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
 | 
						|
                                      TypeSourceInfo *TInfo,
 | 
						|
                                      OffsetOfComponent *CompPtr,
 | 
						|
                                      unsigned NumComponents,
 | 
						|
                                      SourceLocation RParenLoc) {
 | 
						|
  QualType ArgTy = TInfo->getType();
 | 
						|
  bool Dependent = ArgTy->isDependentType();
 | 
						|
  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
 | 
						|
  
 | 
						|
  // We must have at least one component that refers to the type, and the first
 | 
						|
  // one is known to be a field designator.  Verify that the ArgTy represents
 | 
						|
  // a struct/union/class.
 | 
						|
  if (!Dependent && !ArgTy->isRecordType())
 | 
						|
    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type) 
 | 
						|
                       << ArgTy << TypeRange);
 | 
						|
  
 | 
						|
  // Type must be complete per C99 7.17p3 because a declaring a variable
 | 
						|
  // with an incomplete type would be ill-formed.
 | 
						|
  if (!Dependent 
 | 
						|
      && RequireCompleteType(BuiltinLoc, ArgTy,
 | 
						|
                             PDiag(diag::err_offsetof_incomplete_type)
 | 
						|
                               << TypeRange))
 | 
						|
    return ExprError();
 | 
						|
  
 | 
						|
  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
 | 
						|
  // GCC extension, diagnose them.
 | 
						|
  // FIXME: This diagnostic isn't actually visible because the location is in
 | 
						|
  // a system header!
 | 
						|
  if (NumComponents != 1)
 | 
						|
    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
 | 
						|
      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
 | 
						|
  
 | 
						|
  bool DidWarnAboutNonPOD = false;
 | 
						|
  QualType CurrentType = ArgTy;
 | 
						|
  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
 | 
						|
  SmallVector<OffsetOfNode, 4> Comps;
 | 
						|
  SmallVector<Expr*, 4> Exprs;
 | 
						|
  for (unsigned i = 0; i != NumComponents; ++i) {
 | 
						|
    const OffsetOfComponent &OC = CompPtr[i];
 | 
						|
    if (OC.isBrackets) {
 | 
						|
      // Offset of an array sub-field.  TODO: Should we allow vector elements?
 | 
						|
      if (!CurrentType->isDependentType()) {
 | 
						|
        const ArrayType *AT = Context.getAsArrayType(CurrentType);
 | 
						|
        if(!AT)
 | 
						|
          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
 | 
						|
                           << CurrentType);
 | 
						|
        CurrentType = AT->getElementType();
 | 
						|
      } else
 | 
						|
        CurrentType = Context.DependentTy;
 | 
						|
      
 | 
						|
      // The expression must be an integral expression.
 | 
						|
      // FIXME: An integral constant expression?
 | 
						|
      Expr *Idx = static_cast<Expr*>(OC.U.E);
 | 
						|
      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
 | 
						|
          !Idx->getType()->isIntegerType())
 | 
						|
        return ExprError(Diag(Idx->getLocStart(),
 | 
						|
                              diag::err_typecheck_subscript_not_integer)
 | 
						|
                         << Idx->getSourceRange());
 | 
						|
      
 | 
						|
      // Record this array index.
 | 
						|
      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
 | 
						|
      Exprs.push_back(Idx);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Offset of a field.
 | 
						|
    if (CurrentType->isDependentType()) {
 | 
						|
      // We have the offset of a field, but we can't look into the dependent
 | 
						|
      // type. Just record the identifier of the field.
 | 
						|
      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
 | 
						|
      CurrentType = Context.DependentTy;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We need to have a complete type to look into.
 | 
						|
    if (RequireCompleteType(OC.LocStart, CurrentType,
 | 
						|
                            diag::err_offsetof_incomplete_type))
 | 
						|
      return ExprError();
 | 
						|
    
 | 
						|
    // Look for the designated field.
 | 
						|
    const RecordType *RC = CurrentType->getAs<RecordType>();
 | 
						|
    if (!RC) 
 | 
						|
      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
 | 
						|
                       << CurrentType);
 | 
						|
    RecordDecl *RD = RC->getDecl();
 | 
						|
    
 | 
						|
    // C++ [lib.support.types]p5:
 | 
						|
    //   The macro offsetof accepts a restricted set of type arguments in this
 | 
						|
    //   International Standard. type shall be a POD structure or a POD union
 | 
						|
    //   (clause 9).
 | 
						|
    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
      if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
 | 
						|
          DiagRuntimeBehavior(BuiltinLoc, 0,
 | 
						|
                              PDiag(diag::warn_offsetof_non_pod_type)
 | 
						|
                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
 | 
						|
                              << CurrentType))
 | 
						|
        DidWarnAboutNonPOD = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Look for the field.
 | 
						|
    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
 | 
						|
    LookupQualifiedName(R, RD);
 | 
						|
    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
 | 
						|
    IndirectFieldDecl *IndirectMemberDecl = 0;
 | 
						|
    if (!MemberDecl) {
 | 
						|
      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
 | 
						|
        MemberDecl = IndirectMemberDecl->getAnonField();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!MemberDecl)
 | 
						|
      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
 | 
						|
                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, 
 | 
						|
                                                              OC.LocEnd));
 | 
						|
    
 | 
						|
    // C99 7.17p3:
 | 
						|
    //   (If the specified member is a bit-field, the behavior is undefined.)
 | 
						|
    //
 | 
						|
    // We diagnose this as an error.
 | 
						|
    if (MemberDecl->getBitWidth()) {
 | 
						|
      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
 | 
						|
        << MemberDecl->getDeclName()
 | 
						|
        << SourceRange(BuiltinLoc, RParenLoc);
 | 
						|
      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    RecordDecl *Parent = MemberDecl->getParent();
 | 
						|
    if (IndirectMemberDecl)
 | 
						|
      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
 | 
						|
 | 
						|
    // If the member was found in a base class, introduce OffsetOfNodes for
 | 
						|
    // the base class indirections.
 | 
						|
    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | 
						|
                       /*DetectVirtual=*/false);
 | 
						|
    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
 | 
						|
      CXXBasePath &Path = Paths.front();
 | 
						|
      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
 | 
						|
           B != BEnd; ++B)
 | 
						|
        Comps.push_back(OffsetOfNode(B->Base));
 | 
						|
    }
 | 
						|
 | 
						|
    if (IndirectMemberDecl) {
 | 
						|
      for (IndirectFieldDecl::chain_iterator FI =
 | 
						|
           IndirectMemberDecl->chain_begin(),
 | 
						|
           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
 | 
						|
        assert(isa<FieldDecl>(*FI));
 | 
						|
        Comps.push_back(OffsetOfNode(OC.LocStart,
 | 
						|
                                     cast<FieldDecl>(*FI), OC.LocEnd));
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
 | 
						|
 | 
						|
    CurrentType = MemberDecl->getType().getNonReferenceType(); 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, 
 | 
						|
                                    TInfo, Comps.data(), Comps.size(),
 | 
						|
                                    Exprs.data(), Exprs.size(), RParenLoc));  
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
 | 
						|
                                      SourceLocation BuiltinLoc,
 | 
						|
                                      SourceLocation TypeLoc,
 | 
						|
                                      ParsedType argty,
 | 
						|
                                      OffsetOfComponent *CompPtr,
 | 
						|
                                      unsigned NumComponents,
 | 
						|
                                      SourceLocation RPLoc) {
 | 
						|
  
 | 
						|
  TypeSourceInfo *ArgTInfo;
 | 
						|
  QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
 | 
						|
  if (ArgTy.isNull())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (!ArgTInfo)
 | 
						|
    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
 | 
						|
 | 
						|
  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents, 
 | 
						|
                              RPLoc);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
 | 
						|
                                 Expr *CondExpr,
 | 
						|
                                 Expr *LHSExpr, Expr *RHSExpr,
 | 
						|
                                 SourceLocation RPLoc) {
 | 
						|
  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
 | 
						|
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
  ExprObjectKind OK = OK_Ordinary;
 | 
						|
  QualType resType;
 | 
						|
  bool ValueDependent = false;
 | 
						|
  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
 | 
						|
    resType = Context.DependentTy;
 | 
						|
    ValueDependent = true;
 | 
						|
  } else {
 | 
						|
    // The conditional expression is required to be a constant expression.
 | 
						|
    llvm::APSInt condEval(32);
 | 
						|
    SourceLocation ExpLoc;
 | 
						|
    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
 | 
						|
      return ExprError(Diag(ExpLoc,
 | 
						|
                       diag::err_typecheck_choose_expr_requires_constant)
 | 
						|
        << CondExpr->getSourceRange());
 | 
						|
 | 
						|
    // If the condition is > zero, then the AST type is the same as the LSHExpr.
 | 
						|
    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
 | 
						|
 | 
						|
    resType = ActiveExpr->getType();
 | 
						|
    ValueDependent = ActiveExpr->isValueDependent();
 | 
						|
    VK = ActiveExpr->getValueKind();
 | 
						|
    OK = ActiveExpr->getObjectKind();
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
 | 
						|
                                        resType, VK, OK, RPLoc,
 | 
						|
                                        resType->isDependentType(),
 | 
						|
                                        ValueDependent));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Clang Extensions.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ActOnBlockStart - This callback is invoked when a block literal is started.
 | 
						|
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
 | 
						|
  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
 | 
						|
  PushBlockScope(BlockScope, Block);
 | 
						|
  CurContext->addDecl(Block);
 | 
						|
  if (BlockScope)
 | 
						|
    PushDeclContext(BlockScope, Block);
 | 
						|
  else
 | 
						|
    CurContext = Block;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
 | 
						|
  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
 | 
						|
  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
 | 
						|
  BlockScopeInfo *CurBlock = getCurBlock();
 | 
						|
 | 
						|
  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
 | 
						|
  QualType T = Sig->getType();
 | 
						|
 | 
						|
  // GetTypeForDeclarator always produces a function type for a block
 | 
						|
  // literal signature.  Furthermore, it is always a FunctionProtoType
 | 
						|
  // unless the function was written with a typedef.
 | 
						|
  assert(T->isFunctionType() &&
 | 
						|
         "GetTypeForDeclarator made a non-function block signature");
 | 
						|
 | 
						|
  // Look for an explicit signature in that function type.
 | 
						|
  FunctionProtoTypeLoc ExplicitSignature;
 | 
						|
 | 
						|
  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
 | 
						|
  if (isa<FunctionProtoTypeLoc>(tmp)) {
 | 
						|
    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
 | 
						|
 | 
						|
    // Check whether that explicit signature was synthesized by
 | 
						|
    // GetTypeForDeclarator.  If so, don't save that as part of the
 | 
						|
    // written signature.
 | 
						|
    if (ExplicitSignature.getLocalRangeBegin() ==
 | 
						|
        ExplicitSignature.getLocalRangeEnd()) {
 | 
						|
      // This would be much cheaper if we stored TypeLocs instead of
 | 
						|
      // TypeSourceInfos.
 | 
						|
      TypeLoc Result = ExplicitSignature.getResultLoc();
 | 
						|
      unsigned Size = Result.getFullDataSize();
 | 
						|
      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
 | 
						|
      Sig->getTypeLoc().initializeFullCopy(Result, Size);
 | 
						|
 | 
						|
      ExplicitSignature = FunctionProtoTypeLoc();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  CurBlock->TheDecl->setSignatureAsWritten(Sig);
 | 
						|
  CurBlock->FunctionType = T;
 | 
						|
 | 
						|
  const FunctionType *Fn = T->getAs<FunctionType>();
 | 
						|
  QualType RetTy = Fn->getResultType();
 | 
						|
  bool isVariadic =
 | 
						|
    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
 | 
						|
 | 
						|
  CurBlock->TheDecl->setIsVariadic(isVariadic);
 | 
						|
 | 
						|
  // Don't allow returning a objc interface by value.
 | 
						|
  if (RetTy->isObjCObjectType()) {
 | 
						|
    Diag(ParamInfo.getSourceRange().getBegin(),
 | 
						|
         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Context.DependentTy is used as a placeholder for a missing block
 | 
						|
  // return type.  TODO:  what should we do with declarators like:
 | 
						|
  //   ^ * { ... }
 | 
						|
  // If the answer is "apply template argument deduction"....
 | 
						|
  if (RetTy != Context.DependentTy)
 | 
						|
    CurBlock->ReturnType = RetTy;
 | 
						|
 | 
						|
  // Push block parameters from the declarator if we had them.
 | 
						|
  SmallVector<ParmVarDecl*, 8> Params;
 | 
						|
  if (ExplicitSignature) {
 | 
						|
    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
 | 
						|
      ParmVarDecl *Param = ExplicitSignature.getArg(I);
 | 
						|
      if (Param->getIdentifier() == 0 &&
 | 
						|
          !Param->isImplicit() &&
 | 
						|
          !Param->isInvalidDecl() &&
 | 
						|
          !getLangOptions().CPlusPlus)
 | 
						|
        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
 | 
						|
      Params.push_back(Param);
 | 
						|
    }
 | 
						|
 | 
						|
  // Fake up parameter variables if we have a typedef, like
 | 
						|
  //   ^ fntype { ... }
 | 
						|
  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
 | 
						|
    for (FunctionProtoType::arg_type_iterator
 | 
						|
           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
 | 
						|
      ParmVarDecl *Param =
 | 
						|
        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
 | 
						|
                                   ParamInfo.getSourceRange().getBegin(),
 | 
						|
                                   *I);
 | 
						|
      Params.push_back(Param);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the parameters on the block decl.
 | 
						|
  if (!Params.empty()) {
 | 
						|
    CurBlock->TheDecl->setParams(Params.data(), Params.size());
 | 
						|
    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
 | 
						|
                             CurBlock->TheDecl->param_end(),
 | 
						|
                             /*CheckParameterNames=*/false);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finally we can process decl attributes.
 | 
						|
  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
 | 
						|
 | 
						|
  if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
 | 
						|
    Diag(ParamInfo.getAttributes()->getLoc(),
 | 
						|
         diag::warn_attribute_sentinel_not_variadic) << 1;
 | 
						|
    // FIXME: remove the attribute.
 | 
						|
  }
 | 
						|
 | 
						|
  // Put the parameter variables in scope.  We can bail out immediately
 | 
						|
  // if we don't have any.
 | 
						|
  if (Params.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
 | 
						|
         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
 | 
						|
    (*AI)->setOwningFunction(CurBlock->TheDecl);
 | 
						|
 | 
						|
    // If this has an identifier, add it to the scope stack.
 | 
						|
    if ((*AI)->getIdentifier()) {
 | 
						|
      CheckShadow(CurBlock->TheScope, *AI);
 | 
						|
 | 
						|
      PushOnScopeChains(*AI, CurBlock->TheScope);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnBlockError - If there is an error parsing a block, this callback
 | 
						|
/// is invoked to pop the information about the block from the action impl.
 | 
						|
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
 | 
						|
  // Pop off CurBlock, handle nested blocks.
 | 
						|
  PopDeclContext();
 | 
						|
  PopFunctionOrBlockScope();
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
 | 
						|
/// literal was successfully completed.  ^(int x){...}
 | 
						|
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
 | 
						|
                                    Stmt *Body, Scope *CurScope) {
 | 
						|
  // If blocks are disabled, emit an error.
 | 
						|
  if (!LangOpts.Blocks)
 | 
						|
    Diag(CaretLoc, diag::err_blocks_disable);
 | 
						|
 | 
						|
  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
 | 
						|
  
 | 
						|
  PopDeclContext();
 | 
						|
 | 
						|
  QualType RetTy = Context.VoidTy;
 | 
						|
  if (!BSI->ReturnType.isNull())
 | 
						|
    RetTy = BSI->ReturnType;
 | 
						|
 | 
						|
  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
 | 
						|
  QualType BlockTy;
 | 
						|
 | 
						|
  // Set the captured variables on the block.
 | 
						|
  BSI->TheDecl->setCaptures(Context, BSI->Captures.begin(), BSI->Captures.end(),
 | 
						|
                            BSI->CapturesCXXThis);
 | 
						|
 | 
						|
  // If the user wrote a function type in some form, try to use that.
 | 
						|
  if (!BSI->FunctionType.isNull()) {
 | 
						|
    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
 | 
						|
 | 
						|
    FunctionType::ExtInfo Ext = FTy->getExtInfo();
 | 
						|
    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
 | 
						|
    
 | 
						|
    // Turn protoless block types into nullary block types.
 | 
						|
    if (isa<FunctionNoProtoType>(FTy)) {
 | 
						|
      FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
      EPI.ExtInfo = Ext;
 | 
						|
      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
 | 
						|
 | 
						|
    // Otherwise, if we don't need to change anything about the function type,
 | 
						|
    // preserve its sugar structure.
 | 
						|
    } else if (FTy->getResultType() == RetTy &&
 | 
						|
               (!NoReturn || FTy->getNoReturnAttr())) {
 | 
						|
      BlockTy = BSI->FunctionType;
 | 
						|
 | 
						|
    // Otherwise, make the minimal modifications to the function type.
 | 
						|
    } else {
 | 
						|
      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
 | 
						|
      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | 
						|
      EPI.TypeQuals = 0; // FIXME: silently?
 | 
						|
      EPI.ExtInfo = Ext;
 | 
						|
      BlockTy = Context.getFunctionType(RetTy,
 | 
						|
                                        FPT->arg_type_begin(),
 | 
						|
                                        FPT->getNumArgs(),
 | 
						|
                                        EPI);
 | 
						|
    }
 | 
						|
 | 
						|
  // If we don't have a function type, just build one from nothing.
 | 
						|
  } else {
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
 | 
						|
    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
 | 
						|
                           BSI->TheDecl->param_end());
 | 
						|
  BlockTy = Context.getBlockPointerType(BlockTy);
 | 
						|
 | 
						|
  // If needed, diagnose invalid gotos and switches in the block.
 | 
						|
  if (getCurFunction()->NeedsScopeChecking() &&
 | 
						|
      !hasAnyUnrecoverableErrorsInThisFunction())
 | 
						|
    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
 | 
						|
 | 
						|
  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
 | 
						|
 | 
						|
  for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
 | 
						|
       ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
 | 
						|
    const VarDecl *variable = ci->getVariable();
 | 
						|
    QualType T = variable->getType();
 | 
						|
    QualType::DestructionKind destructKind = T.isDestructedType();
 | 
						|
    if (destructKind != QualType::DK_none)
 | 
						|
      getCurFunction()->setHasBranchProtectedScope();
 | 
						|
  }
 | 
						|
 | 
						|
  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
 | 
						|
  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
 | 
						|
  PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
 | 
						|
 | 
						|
  return Owned(Result);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
 | 
						|
                                        Expr *expr, ParsedType type,
 | 
						|
                                        SourceLocation RPLoc) {
 | 
						|
  TypeSourceInfo *TInfo;
 | 
						|
  GetTypeFromParser(type, &TInfo);
 | 
						|
  return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
 | 
						|
                                Expr *E, TypeSourceInfo *TInfo,
 | 
						|
                                SourceLocation RPLoc) {
 | 
						|
  Expr *OrigExpr = E;
 | 
						|
 | 
						|
  // Get the va_list type
 | 
						|
  QualType VaListType = Context.getBuiltinVaListType();
 | 
						|
  if (VaListType->isArrayType()) {
 | 
						|
    // Deal with implicit array decay; for example, on x86-64,
 | 
						|
    // va_list is an array, but it's supposed to decay to
 | 
						|
    // a pointer for va_arg.
 | 
						|
    VaListType = Context.getArrayDecayedType(VaListType);
 | 
						|
    // Make sure the input expression also decays appropriately.
 | 
						|
    ExprResult Result = UsualUnaryConversions(E);
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    E = Result.take();
 | 
						|
  } else {
 | 
						|
    // Otherwise, the va_list argument must be an l-value because
 | 
						|
    // it is modified by va_arg.
 | 
						|
    if (!E->isTypeDependent() &&
 | 
						|
        CheckForModifiableLvalue(E, BuiltinLoc, *this))
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!E->isTypeDependent() &&
 | 
						|
      !Context.hasSameType(VaListType, E->getType())) {
 | 
						|
    return ExprError(Diag(E->getLocStart(),
 | 
						|
                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
 | 
						|
      << OrigExpr->getType() << E->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  if (!TInfo->getType()->isDependentType()) {
 | 
						|
    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
 | 
						|
          PDiag(diag::err_second_parameter_to_va_arg_incomplete)
 | 
						|
          << TInfo->getTypeLoc().getSourceRange()))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
 | 
						|
          TInfo->getType(),
 | 
						|
          PDiag(diag::err_second_parameter_to_va_arg_abstract)
 | 
						|
          << TInfo->getTypeLoc().getSourceRange()))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (!TInfo->getType().isPODType(Context)) {
 | 
						|
      Diag(TInfo->getTypeLoc().getBeginLoc(),
 | 
						|
           TInfo->getType()->isObjCLifetimeType()
 | 
						|
             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
 | 
						|
             : diag::warn_second_parameter_to_va_arg_not_pod)
 | 
						|
        << TInfo->getType()
 | 
						|
        << TInfo->getTypeLoc().getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for va_arg where arguments of the given type will be promoted
 | 
						|
    // (i.e. this va_arg is guaranteed to have undefined behavior).
 | 
						|
    QualType PromoteType;
 | 
						|
    if (TInfo->getType()->isPromotableIntegerType()) {
 | 
						|
      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
 | 
						|
      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
 | 
						|
        PromoteType = QualType();
 | 
						|
    }
 | 
						|
    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
 | 
						|
      PromoteType = Context.DoubleTy;
 | 
						|
    if (!PromoteType.isNull())
 | 
						|
      Diag(TInfo->getTypeLoc().getBeginLoc(),
 | 
						|
          diag::warn_second_parameter_to_va_arg_never_compatible)
 | 
						|
        << TInfo->getType()
 | 
						|
        << PromoteType
 | 
						|
        << TInfo->getTypeLoc().getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = TInfo->getType().getNonLValueExprType(Context);
 | 
						|
  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
 | 
						|
  // The type of __null will be int or long, depending on the size of
 | 
						|
  // pointers on the target.
 | 
						|
  QualType Ty;
 | 
						|
  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
 | 
						|
  if (pw == Context.getTargetInfo().getIntWidth())
 | 
						|
    Ty = Context.IntTy;
 | 
						|
  else if (pw == Context.getTargetInfo().getLongWidth())
 | 
						|
    Ty = Context.LongTy;
 | 
						|
  else if (pw == Context.getTargetInfo().getLongLongWidth())
 | 
						|
    Ty = Context.LongLongTy;
 | 
						|
  else {
 | 
						|
    assert(!"I don't know size of pointer!");
 | 
						|
    Ty = Context.IntTy;
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
 | 
						|
}
 | 
						|
 | 
						|
static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
 | 
						|
                                           Expr *SrcExpr, FixItHint &Hint) {
 | 
						|
  if (!SemaRef.getLangOptions().ObjC1)
 | 
						|
    return;
 | 
						|
 | 
						|
  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
 | 
						|
  if (!PT)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if the destination is of type 'id'.
 | 
						|
  if (!PT->isObjCIdType()) {
 | 
						|
    // Check if the destination is the 'NSString' interface.
 | 
						|
    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
 | 
						|
    if (!ID || !ID->getIdentifier()->isStr("NSString"))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Strip off any parens and casts.
 | 
						|
  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
 | 
						|
  if (!SL || !SL->isAscii())
 | 
						|
    return;
 | 
						|
 | 
						|
  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
 | 
						|
                                    SourceLocation Loc,
 | 
						|
                                    QualType DstType, QualType SrcType,
 | 
						|
                                    Expr *SrcExpr, AssignmentAction Action,
 | 
						|
                                    bool *Complained) {
 | 
						|
  if (Complained)
 | 
						|
    *Complained = false;
 | 
						|
 | 
						|
  // Decode the result (notice that AST's are still created for extensions).
 | 
						|
  bool CheckInferredResultType = false;
 | 
						|
  bool isInvalid = false;
 | 
						|
  unsigned DiagKind;
 | 
						|
  FixItHint Hint;
 | 
						|
  ConversionFixItGenerator ConvHints;
 | 
						|
  bool MayHaveConvFixit = false;
 | 
						|
 | 
						|
  switch (ConvTy) {
 | 
						|
  default: assert(0 && "Unknown conversion type");
 | 
						|
  case Compatible: return false;
 | 
						|
  case PointerToInt:
 | 
						|
    DiagKind = diag::ext_typecheck_convert_pointer_int;
 | 
						|
    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
 | 
						|
    MayHaveConvFixit = true;
 | 
						|
    break;
 | 
						|
  case IntToPointer:
 | 
						|
    DiagKind = diag::ext_typecheck_convert_int_pointer;
 | 
						|
    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
 | 
						|
    MayHaveConvFixit = true;
 | 
						|
    break;
 | 
						|
  case IncompatiblePointer:
 | 
						|
    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
 | 
						|
    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
 | 
						|
    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
 | 
						|
      SrcType->isObjCObjectPointerType();
 | 
						|
    if (Hint.isNull() && !CheckInferredResultType) {
 | 
						|
      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
 | 
						|
    }
 | 
						|
    MayHaveConvFixit = true;
 | 
						|
    break;
 | 
						|
  case IncompatiblePointerSign:
 | 
						|
    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
 | 
						|
    break;
 | 
						|
  case FunctionVoidPointer:
 | 
						|
    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
 | 
						|
    break;
 | 
						|
  case IncompatiblePointerDiscardsQualifiers: {
 | 
						|
    // Perform array-to-pointer decay if necessary.
 | 
						|
    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
 | 
						|
 | 
						|
    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
 | 
						|
    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
 | 
						|
    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
 | 
						|
      DiagKind = diag::err_typecheck_incompatible_address_space;
 | 
						|
      break;
 | 
						|
 | 
						|
 | 
						|
    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
 | 
						|
      DiagKind = diag::err_typecheck_incompatible_ownership;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    llvm_unreachable("unknown error case for discarding qualifiers!");
 | 
						|
    // fallthrough
 | 
						|
  }
 | 
						|
  case CompatiblePointerDiscardsQualifiers:
 | 
						|
    // If the qualifiers lost were because we were applying the
 | 
						|
    // (deprecated) C++ conversion from a string literal to a char*
 | 
						|
    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
 | 
						|
    // Ideally, this check would be performed in
 | 
						|
    // checkPointerTypesForAssignment. However, that would require a
 | 
						|
    // bit of refactoring (so that the second argument is an
 | 
						|
    // expression, rather than a type), which should be done as part
 | 
						|
    // of a larger effort to fix checkPointerTypesForAssignment for
 | 
						|
    // C++ semantics.
 | 
						|
    if (getLangOptions().CPlusPlus &&
 | 
						|
        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
 | 
						|
      return false;
 | 
						|
    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
 | 
						|
    break;
 | 
						|
  case IncompatibleNestedPointerQualifiers:
 | 
						|
    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
 | 
						|
    break;
 | 
						|
  case IntToBlockPointer:
 | 
						|
    DiagKind = diag::err_int_to_block_pointer;
 | 
						|
    break;
 | 
						|
  case IncompatibleBlockPointer:
 | 
						|
    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
 | 
						|
    break;
 | 
						|
  case IncompatibleObjCQualifiedId:
 | 
						|
    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
 | 
						|
    // it can give a more specific diagnostic.
 | 
						|
    DiagKind = diag::warn_incompatible_qualified_id;
 | 
						|
    break;
 | 
						|
  case IncompatibleVectors:
 | 
						|
    DiagKind = diag::warn_incompatible_vectors;
 | 
						|
    break;
 | 
						|
  case IncompatibleObjCWeakRef:
 | 
						|
    DiagKind = diag::err_arc_weak_unavailable_assign;
 | 
						|
    break;
 | 
						|
  case Incompatible:
 | 
						|
    DiagKind = diag::err_typecheck_convert_incompatible;
 | 
						|
    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
 | 
						|
    MayHaveConvFixit = true;
 | 
						|
    isInvalid = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType FirstType, SecondType;
 | 
						|
  switch (Action) {
 | 
						|
  case AA_Assigning:
 | 
						|
  case AA_Initializing:
 | 
						|
    // The destination type comes first.
 | 
						|
    FirstType = DstType;
 | 
						|
    SecondType = SrcType;
 | 
						|
    break;
 | 
						|
 | 
						|
  case AA_Returning:
 | 
						|
  case AA_Passing:
 | 
						|
  case AA_Converting:
 | 
						|
  case AA_Sending:
 | 
						|
  case AA_Casting:
 | 
						|
    // The source type comes first.
 | 
						|
    FirstType = SrcType;
 | 
						|
    SecondType = DstType;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  PartialDiagnostic FDiag = PDiag(DiagKind);
 | 
						|
  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
 | 
						|
 | 
						|
  // If we can fix the conversion, suggest the FixIts.
 | 
						|
  assert(ConvHints.isNull() || Hint.isNull());
 | 
						|
  if (!ConvHints.isNull()) {
 | 
						|
    for (llvm::SmallVector<FixItHint, 1>::iterator
 | 
						|
        HI = ConvHints.Hints.begin(), HE = ConvHints.Hints.end();
 | 
						|
        HI != HE; ++HI)
 | 
						|
      FDiag << *HI;
 | 
						|
  } else {
 | 
						|
    FDiag << Hint;
 | 
						|
  }
 | 
						|
  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
 | 
						|
 | 
						|
  Diag(Loc, FDiag);
 | 
						|
 | 
						|
  if (CheckInferredResultType)
 | 
						|
    EmitRelatedResultTypeNote(SrcExpr);
 | 
						|
  
 | 
						|
  if (Complained)
 | 
						|
    *Complained = true;
 | 
						|
  return isInvalid;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
 | 
						|
  llvm::APSInt ICEResult;
 | 
						|
  if (E->isIntegerConstantExpr(ICEResult, Context)) {
 | 
						|
    if (Result)
 | 
						|
      *Result = ICEResult;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Expr::EvalResult EvalResult;
 | 
						|
 | 
						|
  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
 | 
						|
      EvalResult.HasSideEffects) {
 | 
						|
    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
 | 
						|
 | 
						|
    if (EvalResult.Diag) {
 | 
						|
      // We only show the note if it's not the usual "invalid subexpression"
 | 
						|
      // or if it's actually in a subexpression.
 | 
						|
      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
 | 
						|
          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
 | 
						|
        Diag(EvalResult.DiagLoc, EvalResult.Diag);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
 | 
						|
    E->getSourceRange();
 | 
						|
 | 
						|
  if (EvalResult.Diag &&
 | 
						|
      Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
 | 
						|
          != Diagnostic::Ignored)
 | 
						|
    Diag(EvalResult.DiagLoc, EvalResult.Diag);
 | 
						|
 | 
						|
  if (Result)
 | 
						|
    *Result = EvalResult.Val.getInt();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
 | 
						|
  ExprEvalContexts.push_back(
 | 
						|
             ExpressionEvaluationContextRecord(NewContext,
 | 
						|
                                               ExprTemporaries.size(),
 | 
						|
                                               ExprNeedsCleanups));
 | 
						|
  ExprNeedsCleanups = false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::PopExpressionEvaluationContext() {
 | 
						|
  // Pop the current expression evaluation context off the stack.
 | 
						|
  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
 | 
						|
  ExprEvalContexts.pop_back();
 | 
						|
 | 
						|
  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
 | 
						|
    if (Rec.PotentiallyReferenced) {
 | 
						|
      // Mark any remaining declarations in the current position of the stack
 | 
						|
      // as "referenced". If they were not meant to be referenced, semantic
 | 
						|
      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
 | 
						|
      for (PotentiallyReferencedDecls::iterator
 | 
						|
             I = Rec.PotentiallyReferenced->begin(),
 | 
						|
             IEnd = Rec.PotentiallyReferenced->end();
 | 
						|
           I != IEnd; ++I)
 | 
						|
        MarkDeclarationReferenced(I->first, I->second);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Rec.PotentiallyDiagnosed) {
 | 
						|
      // Emit any pending diagnostics.
 | 
						|
      for (PotentiallyEmittedDiagnostics::iterator
 | 
						|
                I = Rec.PotentiallyDiagnosed->begin(),
 | 
						|
             IEnd = Rec.PotentiallyDiagnosed->end();
 | 
						|
           I != IEnd; ++I)
 | 
						|
        Diag(I->first, I->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When are coming out of an unevaluated context, clear out any
 | 
						|
  // temporaries that we may have created as part of the evaluation of
 | 
						|
  // the expression in that context: they aren't relevant because they
 | 
						|
  // will never be constructed.
 | 
						|
  if (Rec.Context == Unevaluated) {
 | 
						|
    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
 | 
						|
                          ExprTemporaries.end());
 | 
						|
    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
 | 
						|
 | 
						|
  // Otherwise, merge the contexts together.
 | 
						|
  } else {
 | 
						|
    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
 | 
						|
  }
 | 
						|
 | 
						|
  // Destroy the popped expression evaluation record.
 | 
						|
  Rec.Destroy();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiscardCleanupsInEvaluationContext() {
 | 
						|
  ExprTemporaries.erase(
 | 
						|
              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
 | 
						|
              ExprTemporaries.end());
 | 
						|
  ExprNeedsCleanups = false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Note that the given declaration was referenced in the source code.
 | 
						|
///
 | 
						|
/// This routine should be invoke whenever a given declaration is referenced
 | 
						|
/// in the source code, and where that reference occurred. If this declaration
 | 
						|
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
 | 
						|
/// C99 6.9p3), then the declaration will be marked as used.
 | 
						|
///
 | 
						|
/// \param Loc the location where the declaration was referenced.
 | 
						|
///
 | 
						|
/// \param D the declaration that has been referenced by the source code.
 | 
						|
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
 | 
						|
  assert(D && "No declaration?");
 | 
						|
 | 
						|
  D->setReferenced();
 | 
						|
 | 
						|
  if (D->isUsed(false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Mark a parameter or variable declaration "used", regardless of whether
 | 
						|
  // we're in a template or not. The reason for this is that unevaluated
 | 
						|
  // expressions (e.g. (void)sizeof()) constitute a use for warning purposes
 | 
						|
  // (-Wunused-variables and -Wunused-parameters)
 | 
						|
  if (isa<ParmVarDecl>(D) ||
 | 
						|
      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
 | 
						|
    D->setUsed();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do not mark anything as "used" within a dependent context; wait for
 | 
						|
  // an instantiation.
 | 
						|
  if (CurContext->isDependentContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (ExprEvalContexts.back().Context) {
 | 
						|
    case Unevaluated:
 | 
						|
      // We are in an expression that is not potentially evaluated; do nothing.
 | 
						|
      return;
 | 
						|
 | 
						|
    case PotentiallyEvaluated:
 | 
						|
      // We are in a potentially-evaluated expression, so this declaration is
 | 
						|
      // "used"; handle this below.
 | 
						|
      break;
 | 
						|
 | 
						|
    case PotentiallyPotentiallyEvaluated:
 | 
						|
      // We are in an expression that may be potentially evaluated; queue this
 | 
						|
      // declaration reference until we know whether the expression is
 | 
						|
      // potentially evaluated.
 | 
						|
      ExprEvalContexts.back().addReferencedDecl(Loc, D);
 | 
						|
      return;
 | 
						|
      
 | 
						|
    case PotentiallyEvaluatedIfUsed:
 | 
						|
      // Referenced declarations will only be used if the construct in the
 | 
						|
      // containing expression is used.
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that this declaration has been used.
 | 
						|
  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | 
						|
    if (Constructor->isDefaulted()) {
 | 
						|
      if (Constructor->isDefaultConstructor()) {
 | 
						|
        if (Constructor->isTrivial())
 | 
						|
          return;
 | 
						|
        if (!Constructor->isUsed(false))
 | 
						|
          DefineImplicitDefaultConstructor(Loc, Constructor);
 | 
						|
      } else if (Constructor->isCopyConstructor()) {
 | 
						|
        if (!Constructor->isUsed(false))
 | 
						|
          DefineImplicitCopyConstructor(Loc, Constructor);
 | 
						|
      } else if (Constructor->isMoveConstructor()) {
 | 
						|
        if (!Constructor->isUsed(false))
 | 
						|
          DefineImplicitMoveConstructor(Loc, Constructor);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MarkVTableUsed(Loc, Constructor->getParent());
 | 
						|
  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
 | 
						|
    if (Destructor->isDefaulted() && !Destructor->isUsed(false))
 | 
						|
      DefineImplicitDestructor(Loc, Destructor);
 | 
						|
    if (Destructor->isVirtual())
 | 
						|
      MarkVTableUsed(Loc, Destructor->getParent());
 | 
						|
  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
    if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
 | 
						|
        MethodDecl->getOverloadedOperator() == OO_Equal) {
 | 
						|
      if (!MethodDecl->isUsed(false)) {
 | 
						|
        if (MethodDecl->isCopyAssignmentOperator())
 | 
						|
          DefineImplicitCopyAssignment(Loc, MethodDecl);
 | 
						|
        else
 | 
						|
          DefineImplicitMoveAssignment(Loc, MethodDecl);
 | 
						|
      }
 | 
						|
    } else if (MethodDecl->isVirtual())
 | 
						|
      MarkVTableUsed(Loc, MethodDecl->getParent());
 | 
						|
  }
 | 
						|
  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    // Recursive functions should be marked when used from another function.
 | 
						|
    if (CurContext == Function) return;
 | 
						|
 | 
						|
    // Implicit instantiation of function templates and member functions of
 | 
						|
    // class templates.
 | 
						|
    if (Function->isImplicitlyInstantiable()) {
 | 
						|
      bool AlreadyInstantiated = false;
 | 
						|
      if (FunctionTemplateSpecializationInfo *SpecInfo
 | 
						|
                                = Function->getTemplateSpecializationInfo()) {
 | 
						|
        if (SpecInfo->getPointOfInstantiation().isInvalid())
 | 
						|
          SpecInfo->setPointOfInstantiation(Loc);
 | 
						|
        else if (SpecInfo->getTemplateSpecializationKind()
 | 
						|
                   == TSK_ImplicitInstantiation)
 | 
						|
          AlreadyInstantiated = true;
 | 
						|
      } else if (MemberSpecializationInfo *MSInfo
 | 
						|
                                  = Function->getMemberSpecializationInfo()) {
 | 
						|
        if (MSInfo->getPointOfInstantiation().isInvalid())
 | 
						|
          MSInfo->setPointOfInstantiation(Loc);
 | 
						|
        else if (MSInfo->getTemplateSpecializationKind()
 | 
						|
                   == TSK_ImplicitInstantiation)
 | 
						|
          AlreadyInstantiated = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!AlreadyInstantiated) {
 | 
						|
        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
 | 
						|
            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
 | 
						|
          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
 | 
						|
                                                                      Loc));
 | 
						|
        else
 | 
						|
          PendingInstantiations.push_back(std::make_pair(Function, Loc));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Walk redefinitions, as some of them may be instantiable.
 | 
						|
      for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
 | 
						|
           e(Function->redecls_end()); i != e; ++i) {
 | 
						|
        if (!i->isUsed(false) && i->isImplicitlyInstantiable())
 | 
						|
          MarkDeclarationReferenced(Loc, *i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Keep track of used but undefined functions.
 | 
						|
    if (!Function->isPure() && !Function->hasBody() &&
 | 
						|
        Function->getLinkage() != ExternalLinkage) {
 | 
						|
      SourceLocation &old = UndefinedInternals[Function->getCanonicalDecl()];
 | 
						|
      if (old.isInvalid()) old = Loc;
 | 
						|
    }
 | 
						|
 | 
						|
    Function->setUsed(true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | 
						|
    // Implicit instantiation of static data members of class templates.
 | 
						|
    if (Var->isStaticDataMember() &&
 | 
						|
        Var->getInstantiatedFromStaticDataMember()) {
 | 
						|
      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
 | 
						|
      assert(MSInfo && "Missing member specialization information?");
 | 
						|
      if (MSInfo->getPointOfInstantiation().isInvalid() &&
 | 
						|
          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
 | 
						|
        MSInfo->setPointOfInstantiation(Loc);
 | 
						|
        // This is a modification of an existing AST node. Notify listeners.
 | 
						|
        if (ASTMutationListener *L = getASTMutationListener())
 | 
						|
          L->StaticDataMemberInstantiated(Var);
 | 
						|
        PendingInstantiations.push_back(std::make_pair(Var, Loc));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Keep track of used but undefined variables.  We make a hole in
 | 
						|
    // the warning for static const data members with in-line
 | 
						|
    // initializers.
 | 
						|
    if (Var->hasDefinition() == VarDecl::DeclarationOnly
 | 
						|
        && Var->getLinkage() != ExternalLinkage
 | 
						|
        && !(Var->isStaticDataMember() && Var->hasInit())) {
 | 
						|
      SourceLocation &old = UndefinedInternals[Var->getCanonicalDecl()];
 | 
						|
      if (old.isInvalid()) old = Loc;
 | 
						|
    }
 | 
						|
 | 
						|
    D->setUsed(true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Mark all of the declarations referenced
 | 
						|
  // FIXME: Not fully implemented yet! We need to have a better understanding
 | 
						|
  // of when we're entering
 | 
						|
  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
 | 
						|
    Sema &S;
 | 
						|
    SourceLocation Loc;
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
 | 
						|
 | 
						|
    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
 | 
						|
 | 
						|
    bool TraverseTemplateArgument(const TemplateArgument &Arg);
 | 
						|
    bool TraverseRecordType(RecordType *T);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
bool MarkReferencedDecls::TraverseTemplateArgument(
 | 
						|
  const TemplateArgument &Arg) {
 | 
						|
  if (Arg.getKind() == TemplateArgument::Declaration) {
 | 
						|
    S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  return Inherited::TraverseTemplateArgument(Arg);
 | 
						|
}
 | 
						|
 | 
						|
bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
 | 
						|
  if (ClassTemplateSpecializationDecl *Spec
 | 
						|
                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
 | 
						|
    const TemplateArgumentList &Args = Spec->getTemplateArgs();
 | 
						|
    return TraverseTemplateArguments(Args.data(), Args.size());
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
 | 
						|
  MarkReferencedDecls Marker(*this, Loc);
 | 
						|
  Marker.TraverseType(Context.getCanonicalType(T));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief Helper class that marks all of the declarations referenced by
 | 
						|
  /// potentially-evaluated subexpressions as "referenced".
 | 
						|
  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
 | 
						|
    Sema &S;
 | 
						|
    
 | 
						|
  public:
 | 
						|
    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
 | 
						|
    
 | 
						|
    explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
 | 
						|
    
 | 
						|
    void VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
 | 
						|
    }
 | 
						|
    
 | 
						|
    void VisitMemberExpr(MemberExpr *E) {
 | 
						|
      S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
 | 
						|
      Inherited::VisitMemberExpr(E);
 | 
						|
    }
 | 
						|
    
 | 
						|
    void VisitCXXNewExpr(CXXNewExpr *E) {
 | 
						|
      if (E->getConstructor())
 | 
						|
        S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
 | 
						|
      if (E->getOperatorNew())
 | 
						|
        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
 | 
						|
      if (E->getOperatorDelete())
 | 
						|
        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
 | 
						|
      Inherited::VisitCXXNewExpr(E);
 | 
						|
    }
 | 
						|
    
 | 
						|
    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
 | 
						|
      if (E->getOperatorDelete())
 | 
						|
        S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
 | 
						|
      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
 | 
						|
      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
 | 
						|
        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
 | 
						|
        S.MarkDeclarationReferenced(E->getLocStart(), 
 | 
						|
                                    S.LookupDestructor(Record));
 | 
						|
      }
 | 
						|
      
 | 
						|
      Inherited::VisitCXXDeleteExpr(E);
 | 
						|
    }
 | 
						|
    
 | 
						|
    void VisitCXXConstructExpr(CXXConstructExpr *E) {
 | 
						|
      S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
 | 
						|
      Inherited::VisitCXXConstructExpr(E);
 | 
						|
    }
 | 
						|
    
 | 
						|
    void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
 | 
						|
      S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
 | 
						|
    }
 | 
						|
    
 | 
						|
    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
 | 
						|
      Visit(E->getExpr());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Mark any declarations that appear within this expression or any
 | 
						|
/// potentially-evaluated subexpressions as "referenced".
 | 
						|
void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
 | 
						|
  EvaluatedExprMarker(*this).Visit(E);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Emit a diagnostic that describes an effect on the run-time behavior
 | 
						|
/// of the program being compiled.
 | 
						|
///
 | 
						|
/// This routine emits the given diagnostic when the code currently being
 | 
						|
/// type-checked is "potentially evaluated", meaning that there is a
 | 
						|
/// possibility that the code will actually be executable. Code in sizeof()
 | 
						|
/// expressions, code used only during overload resolution, etc., are not
 | 
						|
/// potentially evaluated. This routine will suppress such diagnostics or,
 | 
						|
/// in the absolutely nutty case of potentially potentially evaluated
 | 
						|
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
 | 
						|
/// later.
 | 
						|
///
 | 
						|
/// This routine should be used for all diagnostics that describe the run-time
 | 
						|
/// behavior of a program, such as passing a non-POD value through an ellipsis.
 | 
						|
/// Failure to do so will likely result in spurious diagnostics or failures
 | 
						|
/// during overload resolution or within sizeof/alignof/typeof/typeid.
 | 
						|
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
 | 
						|
                               const PartialDiagnostic &PD) {
 | 
						|
  switch (ExprEvalContexts.back().Context) {
 | 
						|
  case Unevaluated:
 | 
						|
    // The argument will never be evaluated, so don't complain.
 | 
						|
    break;
 | 
						|
 | 
						|
  case PotentiallyEvaluated:
 | 
						|
  case PotentiallyEvaluatedIfUsed:
 | 
						|
    if (stmt && getCurFunctionOrMethodDecl()) {
 | 
						|
      FunctionScopes.back()->PossiblyUnreachableDiags.
 | 
						|
        push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
 | 
						|
    }
 | 
						|
    else
 | 
						|
      Diag(Loc, PD);
 | 
						|
      
 | 
						|
    return true;
 | 
						|
 | 
						|
  case PotentiallyPotentiallyEvaluated:
 | 
						|
    ExprEvalContexts.back().addDiagnostic(Loc, PD);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
 | 
						|
                               CallExpr *CE, FunctionDecl *FD) {
 | 
						|
  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  PartialDiagnostic Note =
 | 
						|
    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
 | 
						|
    << FD->getDeclName() : PDiag();
 | 
						|
  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
 | 
						|
 | 
						|
  if (RequireCompleteType(Loc, ReturnType,
 | 
						|
                          FD ?
 | 
						|
                          PDiag(diag::err_call_function_incomplete_return)
 | 
						|
                            << CE->getSourceRange() << FD->getDeclName() :
 | 
						|
                          PDiag(diag::err_call_incomplete_return)
 | 
						|
                            << CE->getSourceRange(),
 | 
						|
                          std::make_pair(NoteLoc, Note)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
 | 
						|
// will prevent this condition from triggering, which is what we want.
 | 
						|
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
 | 
						|
  SourceLocation Loc;
 | 
						|
 | 
						|
  unsigned diagnostic = diag::warn_condition_is_assignment;
 | 
						|
  bool IsOrAssign = false;
 | 
						|
 | 
						|
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
 | 
						|
      return;
 | 
						|
 | 
						|
    IsOrAssign = Op->getOpcode() == BO_OrAssign;
 | 
						|
 | 
						|
    // Greylist some idioms by putting them into a warning subcategory.
 | 
						|
    if (ObjCMessageExpr *ME
 | 
						|
          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
 | 
						|
      Selector Sel = ME->getSelector();
 | 
						|
 | 
						|
      // self = [<foo> init...]
 | 
						|
      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
 | 
						|
        diagnostic = diag::warn_condition_is_idiomatic_assignment;
 | 
						|
 | 
						|
      // <foo> = [<bar> nextObject]
 | 
						|
      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
 | 
						|
        diagnostic = diag::warn_condition_is_idiomatic_assignment;
 | 
						|
    }
 | 
						|
 | 
						|
    Loc = Op->getOperatorLoc();
 | 
						|
  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
 | 
						|
    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
 | 
						|
      return;
 | 
						|
 | 
						|
    IsOrAssign = Op->getOperator() == OO_PipeEqual;
 | 
						|
    Loc = Op->getOperatorLoc();
 | 
						|
  } else {
 | 
						|
    // Not an assignment.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(Loc, diagnostic) << E->getSourceRange();
 | 
						|
 | 
						|
  SourceLocation Open = E->getSourceRange().getBegin();
 | 
						|
  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
 | 
						|
  Diag(Loc, diag::note_condition_assign_silence)
 | 
						|
        << FixItHint::CreateInsertion(Open, "(")
 | 
						|
        << FixItHint::CreateInsertion(Close, ")");
 | 
						|
 | 
						|
  if (IsOrAssign)
 | 
						|
    Diag(Loc, diag::note_condition_or_assign_to_comparison)
 | 
						|
      << FixItHint::CreateReplacement(Loc, "!=");
 | 
						|
  else
 | 
						|
    Diag(Loc, diag::note_condition_assign_to_comparison)
 | 
						|
      << FixItHint::CreateReplacement(Loc, "==");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Redundant parentheses over an equality comparison can indicate
 | 
						|
/// that the user intended an assignment used as condition.
 | 
						|
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
 | 
						|
  // Don't warn if the parens came from a macro.
 | 
						|
  SourceLocation parenLoc = parenE->getLocStart();
 | 
						|
  if (parenLoc.isInvalid() || parenLoc.isMacroID())
 | 
						|
    return;
 | 
						|
  // Don't warn for dependent expressions.
 | 
						|
  if (parenE->isTypeDependent())
 | 
						|
    return;
 | 
						|
 | 
						|
  Expr *E = parenE->IgnoreParens();
 | 
						|
 | 
						|
  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
 | 
						|
    if (opE->getOpcode() == BO_EQ &&
 | 
						|
        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
 | 
						|
                                                           == Expr::MLV_Valid) {
 | 
						|
      SourceLocation Loc = opE->getOperatorLoc();
 | 
						|
      
 | 
						|
      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
 | 
						|
      Diag(Loc, diag::note_equality_comparison_silence)
 | 
						|
        << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
 | 
						|
        << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
 | 
						|
      Diag(Loc, diag::note_equality_comparison_to_assign)
 | 
						|
        << FixItHint::CreateReplacement(Loc, "=");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
 | 
						|
  DiagnoseAssignmentAsCondition(E);
 | 
						|
  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
 | 
						|
    DiagnoseEqualityWithExtraParens(parenE);
 | 
						|
 | 
						|
  ExprResult result = CheckPlaceholderExpr(E);
 | 
						|
  if (result.isInvalid()) return ExprError();
 | 
						|
  E = result.take();
 | 
						|
 | 
						|
  if (!E->isTypeDependent()) {
 | 
						|
    if (getLangOptions().CPlusPlus)
 | 
						|
      return CheckCXXBooleanCondition(E); // C++ 6.4p4
 | 
						|
 | 
						|
    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
 | 
						|
    if (ERes.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    E = ERes.take();
 | 
						|
 | 
						|
    QualType T = E->getType();
 | 
						|
    if (!T->isScalarType()) { // C99 6.8.4.1p1
 | 
						|
      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
 | 
						|
        << T << E->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
 | 
						|
                                       Expr *Sub) {
 | 
						|
  if (!Sub)
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  return CheckBooleanCondition(Sub, Loc);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// A visitor for rebuilding a call to an __unknown_any expression
 | 
						|
  /// to have an appropriate type.
 | 
						|
  struct RebuildUnknownAnyFunction
 | 
						|
    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
 | 
						|
 | 
						|
    Sema &S;
 | 
						|
 | 
						|
    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
 | 
						|
 | 
						|
    ExprResult VisitStmt(Stmt *S) {
 | 
						|
      llvm_unreachable("unexpected statement!");
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitExpr(Expr *expr) {
 | 
						|
      S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
 | 
						|
        << expr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Rebuild an expression which simply semantically wraps another
 | 
						|
    /// expression which it shares the type and value kind of.
 | 
						|
    template <class T> ExprResult rebuildSugarExpr(T *expr) {
 | 
						|
      ExprResult subResult = Visit(expr->getSubExpr());
 | 
						|
      if (subResult.isInvalid()) return ExprError();
 | 
						|
 | 
						|
      Expr *subExpr = subResult.take();
 | 
						|
      expr->setSubExpr(subExpr);
 | 
						|
      expr->setType(subExpr->getType());
 | 
						|
      expr->setValueKind(subExpr->getValueKind());
 | 
						|
      assert(expr->getObjectKind() == OK_Ordinary);
 | 
						|
      return expr;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitParenExpr(ParenExpr *paren) {
 | 
						|
      return rebuildSugarExpr(paren);
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitUnaryExtension(UnaryOperator *op) {
 | 
						|
      return rebuildSugarExpr(op);
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
 | 
						|
      ExprResult subResult = Visit(op->getSubExpr());
 | 
						|
      if (subResult.isInvalid()) return ExprError();
 | 
						|
 | 
						|
      Expr *subExpr = subResult.take();
 | 
						|
      op->setSubExpr(subExpr);
 | 
						|
      op->setType(S.Context.getPointerType(subExpr->getType()));
 | 
						|
      assert(op->getValueKind() == VK_RValue);
 | 
						|
      assert(op->getObjectKind() == OK_Ordinary);
 | 
						|
      return op;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
 | 
						|
      if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
 | 
						|
 | 
						|
      expr->setType(decl->getType());
 | 
						|
 | 
						|
      assert(expr->getValueKind() == VK_RValue);
 | 
						|
      if (S.getLangOptions().CPlusPlus &&
 | 
						|
          !(isa<CXXMethodDecl>(decl) &&
 | 
						|
            cast<CXXMethodDecl>(decl)->isInstance()))
 | 
						|
        expr->setValueKind(VK_LValue);
 | 
						|
 | 
						|
      return expr;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitMemberExpr(MemberExpr *mem) {
 | 
						|
      return resolveDecl(mem, mem->getMemberDecl());
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
 | 
						|
      return resolveDecl(ref, ref->getDecl());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// Given a function expression of unknown-any type, try to rebuild it
 | 
						|
/// to have a function type.
 | 
						|
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
 | 
						|
  ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
 | 
						|
  if (result.isInvalid()) return ExprError();
 | 
						|
  return S.DefaultFunctionArrayConversion(result.take());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// A visitor for rebuilding an expression of type __unknown_anytype
 | 
						|
  /// into one which resolves the type directly on the referring
 | 
						|
  /// expression.  Strict preservation of the original source
 | 
						|
  /// structure is not a goal.
 | 
						|
  struct RebuildUnknownAnyExpr
 | 
						|
    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
 | 
						|
 | 
						|
    Sema &S;
 | 
						|
 | 
						|
    /// The current destination type.
 | 
						|
    QualType DestType;
 | 
						|
 | 
						|
    RebuildUnknownAnyExpr(Sema &S, QualType castType)
 | 
						|
      : S(S), DestType(castType) {}
 | 
						|
 | 
						|
    ExprResult VisitStmt(Stmt *S) {
 | 
						|
      llvm_unreachable("unexpected statement!");
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitExpr(Expr *expr) {
 | 
						|
      S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
 | 
						|
        << expr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitCallExpr(CallExpr *call);
 | 
						|
    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
 | 
						|
 | 
						|
    /// Rebuild an expression which simply semantically wraps another
 | 
						|
    /// expression which it shares the type and value kind of.
 | 
						|
    template <class T> ExprResult rebuildSugarExpr(T *expr) {
 | 
						|
      ExprResult subResult = Visit(expr->getSubExpr());
 | 
						|
      if (subResult.isInvalid()) return ExprError();
 | 
						|
      Expr *subExpr = subResult.take();
 | 
						|
      expr->setSubExpr(subExpr);
 | 
						|
      expr->setType(subExpr->getType());
 | 
						|
      expr->setValueKind(subExpr->getValueKind());
 | 
						|
      assert(expr->getObjectKind() == OK_Ordinary);
 | 
						|
      return expr;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitParenExpr(ParenExpr *paren) {
 | 
						|
      return rebuildSugarExpr(paren);
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitUnaryExtension(UnaryOperator *op) {
 | 
						|
      return rebuildSugarExpr(op);
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
 | 
						|
      const PointerType *ptr = DestType->getAs<PointerType>();
 | 
						|
      if (!ptr) {
 | 
						|
        S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
 | 
						|
          << op->getSourceRange();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
      assert(op->getValueKind() == VK_RValue);
 | 
						|
      assert(op->getObjectKind() == OK_Ordinary);
 | 
						|
      op->setType(DestType);
 | 
						|
 | 
						|
      // Build the sub-expression as if it were an object of the pointee type.
 | 
						|
      DestType = ptr->getPointeeType();
 | 
						|
      ExprResult subResult = Visit(op->getSubExpr());
 | 
						|
      if (subResult.isInvalid()) return ExprError();
 | 
						|
      op->setSubExpr(subResult.take());
 | 
						|
      return op;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
 | 
						|
 | 
						|
    ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
 | 
						|
 | 
						|
    ExprResult VisitMemberExpr(MemberExpr *mem) {
 | 
						|
      return resolveDecl(mem, mem->getMemberDecl());
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
 | 
						|
      return resolveDecl(ref, ref->getDecl());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// Rebuilds a call expression which yielded __unknown_anytype.
 | 
						|
ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
 | 
						|
  Expr *callee = call->getCallee();
 | 
						|
 | 
						|
  enum FnKind {
 | 
						|
    FK_MemberFunction,
 | 
						|
    FK_FunctionPointer,
 | 
						|
    FK_BlockPointer
 | 
						|
  };
 | 
						|
 | 
						|
  FnKind kind;
 | 
						|
  QualType type = callee->getType();
 | 
						|
  if (type == S.Context.BoundMemberTy) {
 | 
						|
    assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));    
 | 
						|
    kind = FK_MemberFunction;
 | 
						|
    type = Expr::findBoundMemberType(callee);
 | 
						|
  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
 | 
						|
    type = ptr->getPointeeType();
 | 
						|
    kind = FK_FunctionPointer;
 | 
						|
  } else {
 | 
						|
    type = type->castAs<BlockPointerType>()->getPointeeType();
 | 
						|
    kind = FK_BlockPointer;
 | 
						|
  }
 | 
						|
  const FunctionType *fnType = type->castAs<FunctionType>();
 | 
						|
 | 
						|
  // Verify that this is a legal result type of a function.
 | 
						|
  if (DestType->isArrayType() || DestType->isFunctionType()) {
 | 
						|
    unsigned diagID = diag::err_func_returning_array_function;
 | 
						|
    if (kind == FK_BlockPointer)
 | 
						|
      diagID = diag::err_block_returning_array_function;
 | 
						|
 | 
						|
    S.Diag(call->getExprLoc(), diagID)
 | 
						|
      << DestType->isFunctionType() << DestType;
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, go ahead and set DestType as the call's result.
 | 
						|
  call->setType(DestType.getNonLValueExprType(S.Context));
 | 
						|
  call->setValueKind(Expr::getValueKindForType(DestType));
 | 
						|
  assert(call->getObjectKind() == OK_Ordinary);
 | 
						|
 | 
						|
  // Rebuild the function type, replacing the result type with DestType.
 | 
						|
  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
 | 
						|
    DestType = S.Context.getFunctionType(DestType,
 | 
						|
                                         proto->arg_type_begin(),
 | 
						|
                                         proto->getNumArgs(),
 | 
						|
                                         proto->getExtProtoInfo());
 | 
						|
  else
 | 
						|
    DestType = S.Context.getFunctionNoProtoType(DestType,
 | 
						|
                                                fnType->getExtInfo());
 | 
						|
 | 
						|
  // Rebuild the appropriate pointer-to-function type.
 | 
						|
  switch (kind) {
 | 
						|
  case FK_MemberFunction:
 | 
						|
    // Nothing to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_FunctionPointer:
 | 
						|
    DestType = S.Context.getPointerType(DestType);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FK_BlockPointer:
 | 
						|
    DestType = S.Context.getBlockPointerType(DestType);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, we can recurse.
 | 
						|
  ExprResult calleeResult = Visit(callee);
 | 
						|
  if (!calleeResult.isUsable()) return ExprError();
 | 
						|
  call->setCallee(calleeResult.take());
 | 
						|
 | 
						|
  // Bind a temporary if necessary.
 | 
						|
  return S.MaybeBindToTemporary(call);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
 | 
						|
  // Verify that this is a legal result type of a call.
 | 
						|
  if (DestType->isArrayType() || DestType->isFunctionType()) {
 | 
						|
    S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
 | 
						|
      << DestType->isFunctionType() << DestType;
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite the method result type if available.
 | 
						|
  if (ObjCMethodDecl *method = msg->getMethodDecl()) {
 | 
						|
    assert(method->getResultType() == S.Context.UnknownAnyTy);
 | 
						|
    method->setResultType(DestType);
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the type of the message.
 | 
						|
  msg->setType(DestType.getNonReferenceType());
 | 
						|
  msg->setValueKind(Expr::getValueKindForType(DestType));
 | 
						|
 | 
						|
  return S.MaybeBindToTemporary(msg);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
 | 
						|
  // The only case we should ever see here is a function-to-pointer decay.
 | 
						|
  assert(ice->getCastKind() == CK_FunctionToPointerDecay);
 | 
						|
  assert(ice->getValueKind() == VK_RValue);
 | 
						|
  assert(ice->getObjectKind() == OK_Ordinary);
 | 
						|
 | 
						|
  ice->setType(DestType);
 | 
						|
 | 
						|
  // Rebuild the sub-expression as the pointee (function) type.
 | 
						|
  DestType = DestType->castAs<PointerType>()->getPointeeType();
 | 
						|
 | 
						|
  ExprResult result = Visit(ice->getSubExpr());
 | 
						|
  if (!result.isUsable()) return ExprError();
 | 
						|
 | 
						|
  ice->setSubExpr(result.take());
 | 
						|
  return S.Owned(ice);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
 | 
						|
  ExprValueKind valueKind = VK_LValue;
 | 
						|
  QualType type = DestType;
 | 
						|
 | 
						|
  // We know how to make this work for certain kinds of decls:
 | 
						|
 | 
						|
  //  - functions
 | 
						|
  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
 | 
						|
    if (const PointerType *ptr = type->getAs<PointerType>()) {
 | 
						|
      DestType = ptr->getPointeeType();
 | 
						|
      ExprResult result = resolveDecl(expr, decl);
 | 
						|
      if (result.isInvalid()) return ExprError();
 | 
						|
      return S.ImpCastExprToType(result.take(), type,
 | 
						|
                                 CK_FunctionToPointerDecay, VK_RValue);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!type->isFunctionType()) {
 | 
						|
      S.Diag(expr->getExprLoc(), diag::err_unknown_any_function)
 | 
						|
        << decl << expr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
 | 
						|
      if (method->isInstance()) {
 | 
						|
        valueKind = VK_RValue;
 | 
						|
        type = S.Context.BoundMemberTy;
 | 
						|
      }
 | 
						|
 | 
						|
    // Function references aren't l-values in C.
 | 
						|
    if (!S.getLangOptions().CPlusPlus)
 | 
						|
      valueKind = VK_RValue;
 | 
						|
 | 
						|
  //  - variables
 | 
						|
  } else if (isa<VarDecl>(decl)) {
 | 
						|
    if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
 | 
						|
      type = refTy->getPointeeType();
 | 
						|
    } else if (type->isFunctionType()) {
 | 
						|
      S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
 | 
						|
        << decl << expr->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
  //  - nothing else
 | 
						|
  } else {
 | 
						|
    S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
 | 
						|
      << decl << expr->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  decl->setType(DestType);
 | 
						|
  expr->setType(type);
 | 
						|
  expr->setValueKind(valueKind);
 | 
						|
  return S.Owned(expr);
 | 
						|
}
 | 
						|
 | 
						|
/// Check a cast of an unknown-any type.  We intentionally only
 | 
						|
/// trigger this for C-style casts.
 | 
						|
ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
 | 
						|
                                     Expr *castExpr, CastKind &castKind,
 | 
						|
                                     ExprValueKind &VK, CXXCastPath &path) {
 | 
						|
  // Rewrite the casted expression from scratch.
 | 
						|
  ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
 | 
						|
  if (!result.isUsable()) return ExprError();
 | 
						|
 | 
						|
  castExpr = result.take();
 | 
						|
  VK = castExpr->getValueKind();
 | 
						|
  castKind = CK_NoOp;
 | 
						|
 | 
						|
  return castExpr;
 | 
						|
}
 | 
						|
 | 
						|
static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
 | 
						|
  Expr *orig = e;
 | 
						|
  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
 | 
						|
  while (true) {
 | 
						|
    e = e->IgnoreParenImpCasts();
 | 
						|
    if (CallExpr *call = dyn_cast<CallExpr>(e)) {
 | 
						|
      e = call->getCallee();
 | 
						|
      diagID = diag::err_uncasted_call_of_unknown_any;
 | 
						|
    } else {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SourceLocation loc;
 | 
						|
  NamedDecl *d;
 | 
						|
  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
 | 
						|
    loc = ref->getLocation();
 | 
						|
    d = ref->getDecl();
 | 
						|
  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
 | 
						|
    loc = mem->getMemberLoc();
 | 
						|
    d = mem->getMemberDecl();
 | 
						|
  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
 | 
						|
    diagID = diag::err_uncasted_call_of_unknown_any;
 | 
						|
    loc = msg->getSelectorLoc();
 | 
						|
    d = msg->getMethodDecl();
 | 
						|
    if (!d) {
 | 
						|
      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
 | 
						|
        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
 | 
						|
        << orig->getSourceRange();
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
 | 
						|
      << e->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(loc, diagID) << d << orig->getSourceRange();
 | 
						|
 | 
						|
  // Never recoverable.
 | 
						|
  return ExprError();
 | 
						|
}
 | 
						|
 | 
						|
/// Check for operands with placeholder types and complain if found.
 | 
						|
/// Returns true if there was an error and no recovery was possible.
 | 
						|
ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
 | 
						|
  // Placeholder types are always *exactly* the appropriate builtin type.
 | 
						|
  QualType type = E->getType();
 | 
						|
 | 
						|
  // Overloaded expressions.
 | 
						|
  if (type == Context.OverloadTy)
 | 
						|
    return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
 | 
						|
                                                           E->getSourceRange(),
 | 
						|
                                                             QualType(),
 | 
						|
                                                   diag::err_ovl_unresolvable);
 | 
						|
 | 
						|
  // Bound member functions.
 | 
						|
  if (type == Context.BoundMemberTy) {
 | 
						|
    Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
 | 
						|
      << E->getSourceRange();
 | 
						|
    return ExprError();
 | 
						|
  }    
 | 
						|
 | 
						|
  // Expressions of unknown type.
 | 
						|
  if (type == Context.UnknownAnyTy)
 | 
						|
    return diagnoseUnknownAnyExpr(*this, E);
 | 
						|
 | 
						|
  assert(!type->isPlaceholderType());
 | 
						|
  return Owned(E);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckCaseExpression(Expr *expr) {
 | 
						|
  if (expr->isTypeDependent())
 | 
						|
    return true;
 | 
						|
  if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
 | 
						|
    return expr->getType()->isIntegralOrEnumerationType();
 | 
						|
  return false;
 | 
						|
}
 |