forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1526 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1526 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This coordinates the per-module state used while generating code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "CGDebugInfo.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CGCall.h"
 | 
						|
#include "CGObjCRuntime.h"
 | 
						|
#include "Mangle.h"
 | 
						|
#include "clang/Frontend/CompileOptions.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/Basic/Diagnostic.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Basic/ConvertUTF.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
 | 
						|
CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
 | 
						|
                             llvm::Module &M, const llvm::TargetData &TD,
 | 
						|
                             Diagnostic &diags)
 | 
						|
  : BlockModule(C, M, TD, Types, *this), Context(C),
 | 
						|
    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
 | 
						|
    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
 | 
						|
    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
 | 
						|
 | 
						|
  if (!Features.ObjC1)
 | 
						|
    Runtime = 0;
 | 
						|
  else if (!Features.NeXTRuntime)
 | 
						|
    Runtime = CreateGNUObjCRuntime(*this);
 | 
						|
  else if (Features.ObjCNonFragileABI)
 | 
						|
    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
 | 
						|
  else
 | 
						|
    Runtime = CreateMacObjCRuntime(*this);
 | 
						|
 | 
						|
  // If debug info generation is enabled, create the CGDebugInfo object.
 | 
						|
  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
 | 
						|
}
 | 
						|
 | 
						|
CodeGenModule::~CodeGenModule() {
 | 
						|
  delete Runtime;
 | 
						|
  delete DebugInfo;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::Release() {
 | 
						|
  EmitDeferred();
 | 
						|
  if (Runtime)
 | 
						|
    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
 | 
						|
      AddGlobalCtor(ObjCInitFunction);
 | 
						|
  EmitCtorList(GlobalCtors, "llvm.global_ctors");
 | 
						|
  EmitCtorList(GlobalDtors, "llvm.global_dtors");
 | 
						|
  EmitAnnotations();
 | 
						|
  EmitLLVMUsed();
 | 
						|
}
 | 
						|
 | 
						|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
 | 
						|
/// specified stmt yet.
 | 
						|
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
 | 
						|
                                     bool OmitOnError) {
 | 
						|
  if (OmitOnError && getDiags().hasErrorOccurred())
 | 
						|
    return;
 | 
						|
  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 
 | 
						|
                                               "cannot compile this %0 yet");
 | 
						|
  std::string Msg = Type;
 | 
						|
  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
 | 
						|
    << Msg << S->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
 | 
						|
/// specified decl yet.
 | 
						|
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
 | 
						|
                                     bool OmitOnError) {
 | 
						|
  if (OmitOnError && getDiags().hasErrorOccurred())
 | 
						|
    return;
 | 
						|
  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 
 | 
						|
                                               "cannot compile this %0 yet");
 | 
						|
  std::string Msg = Type;
 | 
						|
  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
 | 
						|
}
 | 
						|
 | 
						|
LangOptions::VisibilityMode 
 | 
						|
CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | 
						|
    if (VD->getStorageClass() == VarDecl::PrivateExtern)
 | 
						|
      return LangOptions::Hidden;
 | 
						|
 | 
						|
  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
 | 
						|
    switch (attr->getVisibility()) {
 | 
						|
    default: assert(0 && "Unknown visibility!");
 | 
						|
    case VisibilityAttr::DefaultVisibility: 
 | 
						|
      return LangOptions::Default;
 | 
						|
    case VisibilityAttr::HiddenVisibility:
 | 
						|
      return LangOptions::Hidden;
 | 
						|
    case VisibilityAttr::ProtectedVisibility:
 | 
						|
      return LangOptions::Protected;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return getLangOptions().getVisibilityMode();
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 
 | 
						|
                                        const Decl *D) const {
 | 
						|
  // Internal definitions always have default visibility.
 | 
						|
  if (GV->hasLocalLinkage()) {
 | 
						|
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (getDeclVisibilityMode(D)) {
 | 
						|
  default: assert(0 && "Unknown visibility!");
 | 
						|
  case LangOptions::Default:
 | 
						|
    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
 | 
						|
  case LangOptions::Hidden:
 | 
						|
    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
 | 
						|
  case LangOptions::Protected:
 | 
						|
    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
 | 
						|
  const NamedDecl *ND = GD.getDecl();
 | 
						|
  
 | 
						|
  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
 | 
						|
    return getMangledCXXCtorName(D, GD.getCtorType());
 | 
						|
  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
 | 
						|
    return getMangledCXXDtorName(D, GD.getDtorType());
 | 
						|
  
 | 
						|
  return getMangledName(ND);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieves the mangled name for the given declaration.
 | 
						|
///
 | 
						|
/// If the given declaration requires a mangled name, returns an
 | 
						|
/// const char* containing the mangled name.  Otherwise, returns
 | 
						|
/// the unmangled name.
 | 
						|
///
 | 
						|
const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
 | 
						|
  // In C, functions with no attributes never need to be mangled. Fastpath them.
 | 
						|
  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
 | 
						|
    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
 | 
						|
    return ND->getNameAsCString();
 | 
						|
  }
 | 
						|
    
 | 
						|
  llvm::SmallString<256> Name;
 | 
						|
  llvm::raw_svector_ostream Out(Name);
 | 
						|
  if (!mangleName(ND, Context, Out)) {
 | 
						|
    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
 | 
						|
    return ND->getNameAsCString();
 | 
						|
  }
 | 
						|
 | 
						|
  Name += '\0';
 | 
						|
  return UniqueMangledName(Name.begin(), Name.end());
 | 
						|
}
 | 
						|
 | 
						|
const char *CodeGenModule::UniqueMangledName(const char *NameStart,
 | 
						|
                                             const char *NameEnd) {
 | 
						|
  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
 | 
						|
  
 | 
						|
  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
 | 
						|
}
 | 
						|
 | 
						|
/// AddGlobalCtor - Add a function to the list that will be called before
 | 
						|
/// main() runs.
 | 
						|
void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
 | 
						|
  // FIXME: Type coercion of void()* types.
 | 
						|
  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
 | 
						|
}
 | 
						|
 | 
						|
/// AddGlobalDtor - Add a function to the list that will be called
 | 
						|
/// when the module is unloaded.
 | 
						|
void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
 | 
						|
  // FIXME: Type coercion of void()* types.
 | 
						|
  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
 | 
						|
  // Ctor function type is void()*.
 | 
						|
  llvm::FunctionType* CtorFTy =
 | 
						|
    llvm::FunctionType::get(llvm::Type::VoidTy, 
 | 
						|
                            std::vector<const llvm::Type*>(),
 | 
						|
                            false);
 | 
						|
  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
 | 
						|
 | 
						|
  // Get the type of a ctor entry, { i32, void ()* }.
 | 
						|
  llvm::StructType* CtorStructTy = 
 | 
						|
    llvm::StructType::get(llvm::Type::Int32Ty, 
 | 
						|
                          llvm::PointerType::getUnqual(CtorFTy), NULL);
 | 
						|
 | 
						|
  // Construct the constructor and destructor arrays.
 | 
						|
  std::vector<llvm::Constant*> Ctors;
 | 
						|
  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
 | 
						|
    std::vector<llvm::Constant*> S;
 | 
						|
    S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
 | 
						|
    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
 | 
						|
    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Ctors.empty()) {
 | 
						|
    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
 | 
						|
    new llvm::GlobalVariable(AT, false,
 | 
						|
                             llvm::GlobalValue::AppendingLinkage,
 | 
						|
                             llvm::ConstantArray::get(AT, Ctors),
 | 
						|
                             GlobalName, 
 | 
						|
                             &TheModule);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitAnnotations() {
 | 
						|
  if (Annotations.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create a new global variable for the ConstantStruct in the Module.
 | 
						|
  llvm::Constant *Array =
 | 
						|
  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
 | 
						|
                                                Annotations.size()),
 | 
						|
                           Annotations);
 | 
						|
  llvm::GlobalValue *gv = 
 | 
						|
  new llvm::GlobalVariable(Array->getType(), false,  
 | 
						|
                           llvm::GlobalValue::AppendingLinkage, Array, 
 | 
						|
                           "llvm.global.annotations", &TheModule);
 | 
						|
  gv->setSection("llvm.metadata");
 | 
						|
}
 | 
						|
 | 
						|
static CodeGenModule::GVALinkage
 | 
						|
GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
 | 
						|
  // "static" functions get internal linkage.
 | 
						|
  if (FD->getStorageClass() == FunctionDecl::Static)
 | 
						|
    return CodeGenModule::GVA_Internal;
 | 
						|
 | 
						|
  if (!FD->isInline())
 | 
						|
    return CodeGenModule::GVA_StrongExternal;
 | 
						|
  
 | 
						|
  // If the inline function explicitly has the GNU inline attribute on it, or if
 | 
						|
  // this is C89 mode, we use to GNU semantics.
 | 
						|
  if (!Features.C99 && !Features.CPlusPlus) {
 | 
						|
    // extern inline in GNU mode is like C99 inline.
 | 
						|
    if (FD->getStorageClass() == FunctionDecl::Extern)
 | 
						|
      return CodeGenModule::GVA_C99Inline;
 | 
						|
    // Normal inline is a strong symbol.
 | 
						|
    return CodeGenModule::GVA_StrongExternal;
 | 
						|
  } else if (FD->hasActiveGNUInlineAttribute()) {
 | 
						|
    // GCC in C99 mode seems to use a different decision-making
 | 
						|
    // process for extern inline, which factors in previous
 | 
						|
    // declarations.
 | 
						|
    if (FD->isExternGNUInline())
 | 
						|
      return CodeGenModule::GVA_C99Inline;
 | 
						|
    // Normal inline is a strong symbol.
 | 
						|
    return CodeGenModule::GVA_StrongExternal;
 | 
						|
  }
 | 
						|
 | 
						|
  // The definition of inline changes based on the language.  Note that we
 | 
						|
  // have already handled "static inline" above, with the GVA_Internal case.
 | 
						|
  if (Features.CPlusPlus)  // inline and extern inline.
 | 
						|
    return CodeGenModule::GVA_CXXInline;
 | 
						|
  
 | 
						|
  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
 | 
						|
  if (FD->isC99InlineDefinition())
 | 
						|
    return CodeGenModule::GVA_C99Inline;
 | 
						|
 | 
						|
  return CodeGenModule::GVA_StrongExternal;
 | 
						|
}
 | 
						|
 | 
						|
/// SetFunctionDefinitionAttributes - Set attributes for a global.
 | 
						|
///
 | 
						|
/// FIXME: This is currently only done for aliases and functions, but
 | 
						|
/// not for variables (these details are set in
 | 
						|
/// EmitGlobalVarDefinition for variables).
 | 
						|
void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
 | 
						|
                                                    llvm::GlobalValue *GV) {
 | 
						|
  GVALinkage Linkage = GetLinkageForFunction(D, Features);
 | 
						|
 | 
						|
  if (Linkage == GVA_Internal) {
 | 
						|
    GV->setLinkage(llvm::Function::InternalLinkage);
 | 
						|
  } else if (D->hasAttr<DLLExportAttr>()) {
 | 
						|
    GV->setLinkage(llvm::Function::DLLExportLinkage);
 | 
						|
  } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
 | 
						|
    GV->setLinkage(llvm::Function::WeakAnyLinkage);
 | 
						|
  } else if (Linkage == GVA_C99Inline) {
 | 
						|
    // In C99 mode, 'inline' functions are guaranteed to have a strong
 | 
						|
    // definition somewhere else, so we can use available_externally linkage.
 | 
						|
    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
 | 
						|
  } else if (Linkage == GVA_CXXInline) {
 | 
						|
    // In C++, the compiler has to emit a definition in every translation unit
 | 
						|
    // that references the function.  We should use linkonce_odr because
 | 
						|
    // a) if all references in this translation unit are optimized away, we
 | 
						|
    // don't need to codegen it.  b) if the function persists, it needs to be
 | 
						|
    // merged with other definitions. c) C++ has the ODR, so we know the
 | 
						|
    // definition is dependable.
 | 
						|
    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
 | 
						|
  } else {
 | 
						|
    assert(Linkage == GVA_StrongExternal);
 | 
						|
    // Otherwise, we have strong external linkage.
 | 
						|
    GV->setLinkage(llvm::Function::ExternalLinkage);
 | 
						|
  }
 | 
						|
 | 
						|
  SetCommonAttributes(D, GV);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
 | 
						|
                                              const CGFunctionInfo &Info, 
 | 
						|
                                              llvm::Function *F) {
 | 
						|
  AttributeListType AttributeList;
 | 
						|
  ConstructAttributeList(Info, D, AttributeList);
 | 
						|
 | 
						|
  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
 | 
						|
                                        AttributeList.size()));
 | 
						|
 | 
						|
  // Set the appropriate calling convention for the Function.
 | 
						|
  if (D->hasAttr<FastCallAttr>())
 | 
						|
    F->setCallingConv(llvm::CallingConv::X86_FastCall);
 | 
						|
 | 
						|
  if (D->hasAttr<StdCallAttr>())
 | 
						|
    F->setCallingConv(llvm::CallingConv::X86_StdCall);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
 | 
						|
                                                           llvm::Function *F) {
 | 
						|
  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
 | 
						|
    F->addFnAttr(llvm::Attribute::NoUnwind);  
 | 
						|
 | 
						|
  if (D->hasAttr<AlwaysInlineAttr>())
 | 
						|
    F->addFnAttr(llvm::Attribute::AlwaysInline);
 | 
						|
  
 | 
						|
  if (D->hasAttr<NoinlineAttr>())
 | 
						|
    F->addFnAttr(llvm::Attribute::NoInline);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetCommonAttributes(const Decl *D, 
 | 
						|
                                        llvm::GlobalValue *GV) {
 | 
						|
  setGlobalVisibility(GV, D);
 | 
						|
 | 
						|
  if (D->hasAttr<UsedAttr>())
 | 
						|
    AddUsedGlobal(GV);
 | 
						|
 | 
						|
  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
 | 
						|
    GV->setSection(SA->getName());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
 | 
						|
                                                  llvm::Function *F,
 | 
						|
                                                  const CGFunctionInfo &FI) {
 | 
						|
  SetLLVMFunctionAttributes(D, FI, F);
 | 
						|
  SetLLVMFunctionAttributesForDefinition(D, F);
 | 
						|
 | 
						|
  F->setLinkage(llvm::Function::InternalLinkage);
 | 
						|
 | 
						|
  SetCommonAttributes(D, F);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
 | 
						|
                                          llvm::Function *F) {
 | 
						|
  SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
 | 
						|
  
 | 
						|
  // Only a few attributes are set on declarations; these may later be
 | 
						|
  // overridden by a definition.
 | 
						|
  
 | 
						|
  if (FD->hasAttr<DLLImportAttr>()) {
 | 
						|
    F->setLinkage(llvm::Function::DLLImportLinkage);
 | 
						|
  } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
 | 
						|
    // "extern_weak" is overloaded in LLVM; we probably should have
 | 
						|
    // separate linkage types for this. 
 | 
						|
    F->setLinkage(llvm::Function::ExternalWeakLinkage);
 | 
						|
  } else {
 | 
						|
    F->setLinkage(llvm::Function::ExternalLinkage); 
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
 | 
						|
    F->setSection(SA->getName());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
 | 
						|
  assert(!GV->isDeclaration() && 
 | 
						|
         "Only globals with definition can force usage.");
 | 
						|
  LLVMUsed.push_back(GV);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitLLVMUsed() {
 | 
						|
  // Don't create llvm.used if there is no need.
 | 
						|
  if (LLVMUsed.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
 | 
						|
  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
 | 
						|
  
 | 
						|
  // Convert LLVMUsed to what ConstantArray needs.
 | 
						|
  std::vector<llvm::Constant*> UsedArray;
 | 
						|
  UsedArray.resize(LLVMUsed.size());
 | 
						|
  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
 | 
						|
    UsedArray[i] = 
 | 
						|
     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm::GlobalVariable *GV = 
 | 
						|
    new llvm::GlobalVariable(ATy, false, 
 | 
						|
                             llvm::GlobalValue::AppendingLinkage,
 | 
						|
                             llvm::ConstantArray::get(ATy, UsedArray),
 | 
						|
                             "llvm.used", &getModule());
 | 
						|
 | 
						|
  GV->setSection("llvm.metadata");
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitDeferred() {
 | 
						|
  // Emit code for any potentially referenced deferred decls.  Since a
 | 
						|
  // previously unused static decl may become used during the generation of code
 | 
						|
  // for a static function, iterate until no  changes are made.
 | 
						|
  while (!DeferredDeclsToEmit.empty()) {
 | 
						|
    GlobalDecl D = DeferredDeclsToEmit.back();
 | 
						|
    DeferredDeclsToEmit.pop_back();
 | 
						|
 | 
						|
    // The mangled name for the decl must have been emitted in GlobalDeclMap.
 | 
						|
    // Look it up to see if it was defined with a stronger definition (e.g. an
 | 
						|
    // extern inline function with a strong function redefinition).  If so,
 | 
						|
    // just ignore the deferred decl.
 | 
						|
    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
 | 
						|
    assert(CGRef && "Deferred decl wasn't referenced?");
 | 
						|
    
 | 
						|
    if (!CGRef->isDeclaration())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Otherwise, emit the definition and move on to the next one.
 | 
						|
    EmitGlobalDefinition(D);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 
 | 
						|
/// annotation information for a given GlobalValue.  The annotation struct is
 | 
						|
/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the 
 | 
						|
/// GlobalValue being annotated.  The second field is the constant string 
 | 
						|
/// created from the AnnotateAttr's annotation.  The third field is a constant 
 | 
						|
/// string containing the name of the translation unit.  The fourth field is
 | 
						|
/// the line number in the file of the annotated value declaration.
 | 
						|
///
 | 
						|
/// FIXME: this does not unique the annotation string constants, as llvm-gcc
 | 
						|
///        appears to.
 | 
						|
///
 | 
						|
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 
 | 
						|
                                                const AnnotateAttr *AA,
 | 
						|
                                                unsigned LineNo) {
 | 
						|
  llvm::Module *M = &getModule();
 | 
						|
 | 
						|
  // get [N x i8] constants for the annotation string, and the filename string
 | 
						|
  // which are the 2nd and 3rd elements of the global annotation structure.
 | 
						|
  const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
 | 
						|
  llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
 | 
						|
  llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
 | 
						|
                                                  true);
 | 
						|
 | 
						|
  // Get the two global values corresponding to the ConstantArrays we just
 | 
						|
  // created to hold the bytes of the strings.
 | 
						|
  const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
 | 
						|
  llvm::GlobalValue *annoGV = 
 | 
						|
  new llvm::GlobalVariable(anno->getType(), false,
 | 
						|
                           llvm::GlobalValue::InternalLinkage, anno,
 | 
						|
                           GV->getName() + StringPrefix, M);
 | 
						|
  // translation unit name string, emitted into the llvm.metadata section.
 | 
						|
  llvm::GlobalValue *unitGV =
 | 
						|
  new llvm::GlobalVariable(unit->getType(), false,
 | 
						|
                           llvm::GlobalValue::InternalLinkage, unit, 
 | 
						|
                           StringPrefix, M);
 | 
						|
 | 
						|
  // Create the ConstantStruct for the global annotation.
 | 
						|
  llvm::Constant *Fields[4] = {
 | 
						|
    llvm::ConstantExpr::getBitCast(GV, SBP),
 | 
						|
    llvm::ConstantExpr::getBitCast(annoGV, SBP),
 | 
						|
    llvm::ConstantExpr::getBitCast(unitGV, SBP),
 | 
						|
    llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
 | 
						|
  };
 | 
						|
  return llvm::ConstantStruct::get(Fields, 4, false);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
 | 
						|
  // Never defer when EmitAllDecls is specified or the decl has
 | 
						|
  // attribute used.
 | 
						|
  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
 | 
						|
    // Constructors and destructors should never be deferred.
 | 
						|
    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
 | 
						|
      return false;
 | 
						|
 | 
						|
    GVALinkage Linkage = GetLinkageForFunction(FD, Features);
 | 
						|
    
 | 
						|
    // static, static inline, always_inline, and extern inline functions can
 | 
						|
    // always be deferred.  Normal inline functions can be deferred in C99/C++.
 | 
						|
    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
 | 
						|
        Linkage == GVA_CXXInline)
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  const VarDecl *VD = cast<VarDecl>(Global);
 | 
						|
  assert(VD->isFileVarDecl() && "Invalid decl");
 | 
						|
 | 
						|
  return VD->getStorageClass() == VarDecl::Static;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobal(const GlobalDecl &GD) {
 | 
						|
  const ValueDecl *Global = GD.getDecl();
 | 
						|
  
 | 
						|
  // If this is an alias definition (which otherwise looks like a declaration)
 | 
						|
  // emit it now.
 | 
						|
  if (Global->hasAttr<AliasAttr>())
 | 
						|
    return EmitAliasDefinition(Global);
 | 
						|
 | 
						|
  // Ignore declarations, they will be emitted on their first use.
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
 | 
						|
    // Forward declarations are emitted lazily on first use.
 | 
						|
    if (!FD->isThisDeclarationADefinition())
 | 
						|
      return;
 | 
						|
  } else {
 | 
						|
    const VarDecl *VD = cast<VarDecl>(Global);
 | 
						|
    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
 | 
						|
 | 
						|
    // In C++, if this is marked "extern", defer code generation.
 | 
						|
    if (getLangOptions().CPlusPlus && 
 | 
						|
        VD->getStorageClass() == VarDecl::Extern && !VD->getInit())
 | 
						|
      return;
 | 
						|
 | 
						|
    // In C, if this isn't a definition, defer code generation.
 | 
						|
    if (!getLangOptions().CPlusPlus && !VD->getInit())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Defer code generation when possible if this is a static definition, inline
 | 
						|
  // function etc.  These we only want to emit if they are used.
 | 
						|
  if (MayDeferGeneration(Global)) {
 | 
						|
    // If the value has already been used, add it directly to the
 | 
						|
    // DeferredDeclsToEmit list.
 | 
						|
    const char *MangledName = getMangledName(GD);
 | 
						|
    if (GlobalDeclMap.count(MangledName))
 | 
						|
      DeferredDeclsToEmit.push_back(GD);
 | 
						|
    else {
 | 
						|
      // Otherwise, remember that we saw a deferred decl with this name.  The
 | 
						|
      // first use of the mangled name will cause it to move into
 | 
						|
      // DeferredDeclsToEmit.
 | 
						|
      DeferredDecls[MangledName] = GD;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise emit the definition.
 | 
						|
  EmitGlobalDefinition(GD);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobalDefinition(const GlobalDecl &GD) {
 | 
						|
  const ValueDecl *D = GD.getDecl();
 | 
						|
  
 | 
						|
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
 | 
						|
    EmitCXXConstructor(CD, GD.getCtorType());
 | 
						|
  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    EmitGlobalFunctionDefinition(FD);
 | 
						|
  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | 
						|
    EmitGlobalVarDefinition(VD);
 | 
						|
  else {
 | 
						|
    assert(0 && "Invalid argument to EmitGlobalDefinition()");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
 | 
						|
/// module, create and return an llvm Function with the specified type. If there
 | 
						|
/// is something in the module with the specified name, return it potentially
 | 
						|
/// bitcasted to the right type.
 | 
						|
///
 | 
						|
/// If D is non-null, it specifies a decl that correspond to this.  This is used
 | 
						|
/// to set the attributes on the function when it is first created.
 | 
						|
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
 | 
						|
                                                       const llvm::Type *Ty,
 | 
						|
                                                       const FunctionDecl *D) {
 | 
						|
  // Lookup the entry, lazily creating it if necessary.
 | 
						|
  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
 | 
						|
  if (Entry) {
 | 
						|
    if (Entry->getType()->getElementType() == Ty)
 | 
						|
      return Entry;
 | 
						|
    
 | 
						|
    // Make sure the result is of the correct type.
 | 
						|
    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
 | 
						|
    return llvm::ConstantExpr::getBitCast(Entry, PTy);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // This is the first use or definition of a mangled name.  If there is a
 | 
						|
  // deferred decl with this name, remember that we need to emit it at the end
 | 
						|
  // of the file.
 | 
						|
  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 
 | 
						|
    DeferredDecls.find(MangledName);
 | 
						|
  if (DDI != DeferredDecls.end()) {
 | 
						|
    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
 | 
						|
    // list, and remove it from DeferredDecls (since we don't need it anymore).
 | 
						|
    DeferredDeclsToEmit.push_back(DDI->second);
 | 
						|
    DeferredDecls.erase(DDI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // This function doesn't have a complete type (for example, the return
 | 
						|
  // type is an incomplete struct). Use a fake type instead, and make
 | 
						|
  // sure not to try to set attributes.
 | 
						|
  bool ShouldSetAttributes = true;
 | 
						|
  if (!isa<llvm::FunctionType>(Ty)) {
 | 
						|
    Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
 | 
						|
                                 std::vector<const llvm::Type*>(), false);
 | 
						|
    ShouldSetAttributes = false;
 | 
						|
  }
 | 
						|
  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 
 | 
						|
                                             llvm::Function::ExternalLinkage,
 | 
						|
                                             "", &getModule());
 | 
						|
  F->setName(MangledName);
 | 
						|
  if (D && ShouldSetAttributes)
 | 
						|
    SetFunctionAttributes(D, F);
 | 
						|
  Entry = F;
 | 
						|
  return F;
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfFunction - Return the address of the given function.  If Ty is
 | 
						|
/// non-null, then this function will use the specified type if it has to
 | 
						|
/// create it (this occurs when we see a definition of the function).
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
 | 
						|
                                                 const llvm::Type *Ty) {
 | 
						|
  // If there was no specific requested type, just convert it now.
 | 
						|
  if (!Ty)
 | 
						|
    Ty = getTypes().ConvertType(D->getType());
 | 
						|
  return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRuntimeFunction - Create a new runtime function with the specified
 | 
						|
/// type and name.
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
 | 
						|
                                     const char *Name) {
 | 
						|
  // Convert Name to be a uniqued string from the IdentifierInfo table.
 | 
						|
  Name = getContext().Idents.get(Name).getName();
 | 
						|
  return GetOrCreateLLVMFunction(Name, FTy, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
 | 
						|
/// create and return an llvm GlobalVariable with the specified type.  If there
 | 
						|
/// is something in the module with the specified name, return it potentially
 | 
						|
/// bitcasted to the right type.
 | 
						|
///
 | 
						|
/// If D is non-null, it specifies a decl that correspond to this.  This is used
 | 
						|
/// to set the attributes on the global when it is first created.
 | 
						|
llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
 | 
						|
                                                     const llvm::PointerType*Ty,
 | 
						|
                                                     const VarDecl *D) {
 | 
						|
  // Lookup the entry, lazily creating it if necessary.
 | 
						|
  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
 | 
						|
  if (Entry) {
 | 
						|
    if (Entry->getType() == Ty)
 | 
						|
      return Entry;
 | 
						|
        
 | 
						|
    // Make sure the result is of the correct type.
 | 
						|
    return llvm::ConstantExpr::getBitCast(Entry, Ty);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // This is the first use or definition of a mangled name.  If there is a
 | 
						|
  // deferred decl with this name, remember that we need to emit it at the end
 | 
						|
  // of the file.
 | 
						|
  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 
 | 
						|
    DeferredDecls.find(MangledName);
 | 
						|
  if (DDI != DeferredDecls.end()) {
 | 
						|
    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
 | 
						|
    // list, and remove it from DeferredDecls (since we don't need it anymore).
 | 
						|
    DeferredDeclsToEmit.push_back(DDI->second);
 | 
						|
    DeferredDecls.erase(DDI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm::GlobalVariable *GV = 
 | 
						|
    new llvm::GlobalVariable(Ty->getElementType(), false, 
 | 
						|
                             llvm::GlobalValue::ExternalLinkage,
 | 
						|
                             0, "", &getModule(), 
 | 
						|
                             false, Ty->getAddressSpace());
 | 
						|
  GV->setName(MangledName);
 | 
						|
 | 
						|
  // Handle things which are present even on external declarations.
 | 
						|
  if (D) {
 | 
						|
    // FIXME: This code is overly simple and should be merged with
 | 
						|
    // other global handling.
 | 
						|
    GV->setConstant(D->getType().isConstant(Context));
 | 
						|
 | 
						|
    // FIXME: Merge with other attribute handling code.
 | 
						|
    if (D->getStorageClass() == VarDecl::PrivateExtern)
 | 
						|
      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
 | 
						|
 | 
						|
    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
 | 
						|
      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
 | 
						|
 | 
						|
    GV->setThreadLocal(D->isThreadSpecified());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Entry = GV;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
 | 
						|
/// given global variable.  If Ty is non-null and if the global doesn't exist,
 | 
						|
/// then it will be greated with the specified type instead of whatever the
 | 
						|
/// normal requested type would be.
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
 | 
						|
                                                  const llvm::Type *Ty) {
 | 
						|
  assert(D->hasGlobalStorage() && "Not a global variable");
 | 
						|
  QualType ASTTy = D->getType();
 | 
						|
  if (Ty == 0)
 | 
						|
    Ty = getTypes().ConvertTypeForMem(ASTTy);
 | 
						|
  
 | 
						|
  const llvm::PointerType *PTy = 
 | 
						|
    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
 | 
						|
  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRuntimeVariable - Create a new runtime global variable with the
 | 
						|
/// specified type and name.
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
 | 
						|
                                     const char *Name) {
 | 
						|
  // Convert Name to be a uniqued string from the IdentifierInfo table.
 | 
						|
  Name = getContext().Idents.get(Name).getName();
 | 
						|
  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
 | 
						|
  assert(!D->getInit() && "Cannot emit definite definitions here!");
 | 
						|
 | 
						|
  if (MayDeferGeneration(D)) {
 | 
						|
    // If we have not seen a reference to this variable yet, place it
 | 
						|
    // into the deferred declarations table to be emitted if needed
 | 
						|
    // later.
 | 
						|
    const char *MangledName = getMangledName(D);
 | 
						|
    if (GlobalDeclMap.count(MangledName) == 0) {
 | 
						|
      DeferredDecls[MangledName] = GlobalDecl(D);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The tentative definition is the only definition.
 | 
						|
  EmitGlobalVarDefinition(D);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
 | 
						|
  llvm::Constant *Init = 0;
 | 
						|
  QualType ASTTy = D->getType();
 | 
						|
  
 | 
						|
  if (D->getInit() == 0) {
 | 
						|
    // This is a tentative definition; tentative definitions are
 | 
						|
    // implicitly initialized with { 0 }.
 | 
						|
    //
 | 
						|
    // Note that tentative definitions are only emitted at the end of
 | 
						|
    // a translation unit, so they should never have incomplete
 | 
						|
    // type. In addition, EmitTentativeDefinition makes sure that we
 | 
						|
    // never attempt to emit a tentative definition if a real one
 | 
						|
    // exists. A use may still exists, however, so we still may need
 | 
						|
    // to do a RAUW.
 | 
						|
    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
 | 
						|
    Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
 | 
						|
  } else {
 | 
						|
    Init = EmitConstantExpr(D->getInit(), D->getType());
 | 
						|
    if (!Init) {
 | 
						|
      ErrorUnsupported(D, "static initializer");
 | 
						|
      QualType T = D->getInit()->getType();
 | 
						|
      Init = llvm::UndefValue::get(getTypes().ConvertType(T));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const llvm::Type* InitType = Init->getType();
 | 
						|
  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
 | 
						|
  
 | 
						|
  // Strip off a bitcast if we got one back.
 | 
						|
  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
 | 
						|
    assert(CE->getOpcode() == llvm::Instruction::BitCast);
 | 
						|
    Entry = CE->getOperand(0);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Entry is now either a Function or GlobalVariable.
 | 
						|
  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
 | 
						|
  
 | 
						|
  // We have a definition after a declaration with the wrong type.
 | 
						|
  // We must make a new GlobalVariable* and update everything that used OldGV
 | 
						|
  // (a declaration or tentative definition) with the new GlobalVariable*
 | 
						|
  // (which will be a definition).
 | 
						|
  //
 | 
						|
  // This happens if there is a prototype for a global (e.g.
 | 
						|
  // "extern int x[];") and then a definition of a different type (e.g.
 | 
						|
  // "int x[10];"). This also happens when an initializer has a different type
 | 
						|
  // from the type of the global (this happens with unions).
 | 
						|
  if (GV == 0 ||
 | 
						|
      GV->getType()->getElementType() != InitType ||
 | 
						|
      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
 | 
						|
    
 | 
						|
    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
 | 
						|
    GlobalDeclMap.erase(getMangledName(D));
 | 
						|
 | 
						|
    // Make a new global with the correct type, this is now guaranteed to work.
 | 
						|
    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
 | 
						|
    GV->takeName(cast<llvm::GlobalValue>(Entry));
 | 
						|
 | 
						|
    // Replace all uses of the old global with the new global
 | 
						|
    llvm::Constant *NewPtrForOldDecl = 
 | 
						|
        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
 | 
						|
    Entry->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
 | 
						|
    // Erase the old global, since it is no longer used.
 | 
						|
    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
 | 
						|
    SourceManager &SM = Context.getSourceManager();
 | 
						|
    AddAnnotation(EmitAnnotateAttr(GV, AA,
 | 
						|
                              SM.getInstantiationLineNumber(D->getLocation())));
 | 
						|
  }
 | 
						|
 | 
						|
  GV->setInitializer(Init);
 | 
						|
  GV->setConstant(D->getType().isConstant(Context));
 | 
						|
  GV->setAlignment(getContext().getDeclAlignInBytes(D));
 | 
						|
 | 
						|
  // Set the llvm linkage type as appropriate.
 | 
						|
  if (D->getStorageClass() == VarDecl::Static)
 | 
						|
    GV->setLinkage(llvm::Function::InternalLinkage);
 | 
						|
  else if (D->hasAttr<DLLImportAttr>())
 | 
						|
    GV->setLinkage(llvm::Function::DLLImportLinkage);
 | 
						|
  else if (D->hasAttr<DLLExportAttr>())
 | 
						|
    GV->setLinkage(llvm::Function::DLLExportLinkage);
 | 
						|
  else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
 | 
						|
    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
 | 
						|
  else if (!CompileOpts.NoCommon &&
 | 
						|
           (!D->hasExternalStorage() && !D->getInit()))
 | 
						|
    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
 | 
						|
  else
 | 
						|
    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
 | 
						|
 | 
						|
  SetCommonAttributes(D, GV);
 | 
						|
 | 
						|
  // Emit global variable debug information.
 | 
						|
  if (CGDebugInfo *DI = getDebugInfo()) {
 | 
						|
    DI->setLocation(D->getLocation());
 | 
						|
    DI->EmitGlobalVariable(GV, D);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
 | 
						|
/// implement a function with no prototype, e.g. "int foo() {}".  If there are
 | 
						|
/// existing call uses of the old function in the module, this adjusts them to
 | 
						|
/// call the new function directly.
 | 
						|
///
 | 
						|
/// This is not just a cleanup: the always_inline pass requires direct calls to
 | 
						|
/// functions to be able to inline them.  If there is a bitcast in the way, it
 | 
						|
/// won't inline them.  Instcombine normally deletes these calls, but it isn't
 | 
						|
/// run at -O0.
 | 
						|
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
 | 
						|
                                                      llvm::Function *NewFn) {
 | 
						|
  // If we're redefining a global as a function, don't transform it.
 | 
						|
  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
 | 
						|
  if (OldFn == 0) return;
 | 
						|
  
 | 
						|
  const llvm::Type *NewRetTy = NewFn->getReturnType();
 | 
						|
  llvm::SmallVector<llvm::Value*, 4> ArgList;
 | 
						|
 | 
						|
  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
 | 
						|
       UI != E; ) {
 | 
						|
    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
 | 
						|
    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
 | 
						|
    if (!CI) continue;
 | 
						|
    
 | 
						|
    // If the return types don't match exactly, and if the call isn't dead, then
 | 
						|
    // we can't transform this call.
 | 
						|
    if (CI->getType() != NewRetTy && !CI->use_empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the function was passed too few arguments, don't transform.  If extra
 | 
						|
    // arguments were passed, we silently drop them.  If any of the types
 | 
						|
    // mismatch, we don't transform.
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    bool DontTransform = false;
 | 
						|
    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
 | 
						|
         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
 | 
						|
      if (CI->getNumOperands()-1 == ArgNo ||
 | 
						|
          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
 | 
						|
        DontTransform = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (DontTransform)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Okay, we can transform this.  Create the new call instruction and copy
 | 
						|
    // over the required information.
 | 
						|
    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
 | 
						|
    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
 | 
						|
                                                     ArgList.end(), "", CI);
 | 
						|
    ArgList.clear();
 | 
						|
    if (NewCall->getType() != llvm::Type::VoidTy)
 | 
						|
      NewCall->takeName(CI);
 | 
						|
    NewCall->setCallingConv(CI->getCallingConv());
 | 
						|
    NewCall->setAttributes(CI->getAttributes());
 | 
						|
 | 
						|
    // Finally, remove the old call, replacing any uses with the new one.
 | 
						|
    if (!CI->use_empty())
 | 
						|
      CI->replaceAllUsesWith(NewCall);
 | 
						|
    CI->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
 | 
						|
  const llvm::FunctionType *Ty;
 | 
						|
 | 
						|
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
 | 
						|
    
 | 
						|
    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
 | 
						|
  } else {
 | 
						|
    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
 | 
						|
    
 | 
						|
    // As a special case, make sure that definitions of K&R function
 | 
						|
    // "type foo()" aren't declared as varargs (which forces the backend
 | 
						|
    // to do unnecessary work).
 | 
						|
    if (D->getType()->isFunctionNoProtoType()) {
 | 
						|
      assert(Ty->isVarArg() && "Didn't lower type as expected");
 | 
						|
      // Due to stret, the lowered function could have arguments. 
 | 
						|
      // Just create the same type as was lowered by ConvertType 
 | 
						|
      // but strip off the varargs bit.
 | 
						|
      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
 | 
						|
      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get or create the prototype for the function.
 | 
						|
  llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
 | 
						|
  
 | 
						|
  // Strip off a bitcast if we got one back.
 | 
						|
  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
 | 
						|
    assert(CE->getOpcode() == llvm::Instruction::BitCast);
 | 
						|
    Entry = CE->getOperand(0);
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
 | 
						|
    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
 | 
						|
    
 | 
						|
    // If the types mismatch then we have to rewrite the definition.
 | 
						|
    assert(OldFn->isDeclaration() &&
 | 
						|
           "Shouldn't replace non-declaration");
 | 
						|
 | 
						|
    // F is the Function* for the one with the wrong type, we must make a new
 | 
						|
    // Function* and update everything that used F (a declaration) with the new
 | 
						|
    // Function* (which will be a definition).
 | 
						|
    //
 | 
						|
    // This happens if there is a prototype for a function
 | 
						|
    // (e.g. "int f()") and then a definition of a different type
 | 
						|
    // (e.g. "int f(int x)").  Start by making a new function of the
 | 
						|
    // correct type, RAUW, then steal the name.
 | 
						|
    GlobalDeclMap.erase(getMangledName(D));
 | 
						|
    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
 | 
						|
    NewFn->takeName(OldFn);
 | 
						|
    
 | 
						|
    // If this is an implementation of a function without a prototype, try to
 | 
						|
    // replace any existing uses of the function (which may be calls) with uses
 | 
						|
    // of the new function
 | 
						|
    if (D->getType()->isFunctionNoProtoType()) {
 | 
						|
      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
 | 
						|
      OldFn->removeDeadConstantUsers();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Replace uses of F with the Function we will endow with a body.
 | 
						|
    if (!Entry->use_empty()) {
 | 
						|
      llvm::Constant *NewPtrForOldDecl = 
 | 
						|
        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
 | 
						|
      Entry->replaceAllUsesWith(NewPtrForOldDecl);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Ok, delete the old function now, which is dead.
 | 
						|
    OldFn->eraseFromParent();
 | 
						|
    
 | 
						|
    Entry = NewFn;
 | 
						|
  }
 | 
						|
  
 | 
						|
  llvm::Function *Fn = cast<llvm::Function>(Entry);
 | 
						|
 | 
						|
  CodeGenFunction(*this).GenerateCode(D, Fn);
 | 
						|
 | 
						|
  SetFunctionDefinitionAttributes(D, Fn);
 | 
						|
  SetLLVMFunctionAttributesForDefinition(D, Fn);
 | 
						|
  
 | 
						|
  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
 | 
						|
    AddGlobalCtor(Fn, CA->getPriority());
 | 
						|
  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
 | 
						|
    AddGlobalDtor(Fn, DA->getPriority());
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
 | 
						|
  const AliasAttr *AA = D->getAttr<AliasAttr>();
 | 
						|
  assert(AA && "Not an alias?");
 | 
						|
 | 
						|
  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
 | 
						|
  
 | 
						|
  // Unique the name through the identifier table.
 | 
						|
  const char *AliaseeName = AA->getAliasee().c_str();
 | 
						|
  AliaseeName = getContext().Idents.get(AliaseeName).getName();
 | 
						|
 | 
						|
  // Create a reference to the named value.  This ensures that it is emitted
 | 
						|
  // if a deferred decl.
 | 
						|
  llvm::Constant *Aliasee;
 | 
						|
  if (isa<llvm::FunctionType>(DeclTy))
 | 
						|
    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
 | 
						|
  else
 | 
						|
    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
 | 
						|
                                    llvm::PointerType::getUnqual(DeclTy), 0);
 | 
						|
 | 
						|
  // Create the new alias itself, but don't set a name yet.
 | 
						|
  llvm::GlobalValue *GA = 
 | 
						|
    new llvm::GlobalAlias(Aliasee->getType(),
 | 
						|
                          llvm::Function::ExternalLinkage,
 | 
						|
                          "", Aliasee, &getModule());
 | 
						|
  
 | 
						|
  // See if there is already something with the alias' name in the module.
 | 
						|
  const char *MangledName = getMangledName(D);
 | 
						|
  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
 | 
						|
  
 | 
						|
  if (Entry && !Entry->isDeclaration()) {
 | 
						|
    // If there is a definition in the module, then it wins over the alias.
 | 
						|
    // This is dubious, but allow it to be safe.  Just ignore the alias.
 | 
						|
    GA->eraseFromParent();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Entry) {
 | 
						|
    // If there is a declaration in the module, then we had an extern followed
 | 
						|
    // by the alias, as in:
 | 
						|
    //   extern int test6();
 | 
						|
    //   ...
 | 
						|
    //   int test6() __attribute__((alias("test7")));
 | 
						|
    //
 | 
						|
    // Remove it and replace uses of it with the alias.
 | 
						|
    
 | 
						|
    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
 | 
						|
                                                          Entry->getType()));
 | 
						|
    Entry->eraseFromParent();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now we know that there is no conflict, set the name.
 | 
						|
  Entry = GA;
 | 
						|
  GA->setName(MangledName);
 | 
						|
 | 
						|
  // Set attributes which are particular to an alias; this is a
 | 
						|
  // specialization of the attributes which may be set on a global
 | 
						|
  // variable/function.
 | 
						|
  if (D->hasAttr<DLLExportAttr>()) {
 | 
						|
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
      // The dllexport attribute is ignored for undefined symbols.
 | 
						|
      if (FD->getBody(getContext()))
 | 
						|
        GA->setLinkage(llvm::Function::DLLExportLinkage);
 | 
						|
    } else {
 | 
						|
      GA->setLinkage(llvm::Function::DLLExportLinkage);
 | 
						|
    }
 | 
						|
  } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
 | 
						|
    GA->setLinkage(llvm::Function::WeakAnyLinkage);
 | 
						|
  }
 | 
						|
 | 
						|
  SetCommonAttributes(D, GA);
 | 
						|
}
 | 
						|
 | 
						|
/// getBuiltinLibFunction - Given a builtin id for a function like
 | 
						|
/// "__builtin_fabsf", return a Function* for "fabsf".
 | 
						|
llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
 | 
						|
  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
 | 
						|
          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 
 | 
						|
         "isn't a lib fn");
 | 
						|
  
 | 
						|
  // Get the name, skip over the __builtin_ prefix (if necessary).
 | 
						|
  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
 | 
						|
  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
 | 
						|
    Name += 10;
 | 
						|
  
 | 
						|
  // Get the type for the builtin.
 | 
						|
  Builtin::Context::GetBuiltinTypeError Error;
 | 
						|
  QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
 | 
						|
  assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
 | 
						|
 | 
						|
  const llvm::FunctionType *Ty = 
 | 
						|
    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
 | 
						|
 | 
						|
  // Unique the name through the identifier table.
 | 
						|
  Name = getContext().Idents.get(Name).getName();
 | 
						|
  // FIXME: param attributes for sext/zext etc.
 | 
						|
  return GetOrCreateLLVMFunction(Name, Ty, 0);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
 | 
						|
                                            unsigned NumTys) {
 | 
						|
  return llvm::Intrinsic::getDeclaration(&getModule(),
 | 
						|
                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Function *CodeGenModule::getMemCpyFn() {
 | 
						|
  if (MemCpyFn) return MemCpyFn;
 | 
						|
  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
 | 
						|
  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Function *CodeGenModule::getMemMoveFn() {
 | 
						|
  if (MemMoveFn) return MemMoveFn;
 | 
						|
  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
 | 
						|
  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Function *CodeGenModule::getMemSetFn() {
 | 
						|
  if (MemSetFn) return MemSetFn;
 | 
						|
  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
 | 
						|
  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void appendFieldAndPadding(CodeGenModule &CGM,
 | 
						|
                                  std::vector<llvm::Constant*>& Fields,
 | 
						|
                                  FieldDecl *FieldD, FieldDecl *NextFieldD,
 | 
						|
                                  llvm::Constant* Field,
 | 
						|
                                  RecordDecl* RD, const llvm::StructType *STy) {
 | 
						|
  // Append the field.
 | 
						|
  Fields.push_back(Field);
 | 
						|
  
 | 
						|
  int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
 | 
						|
  
 | 
						|
  int NextStructFieldNo;
 | 
						|
  if (!NextFieldD) {
 | 
						|
    NextStructFieldNo = STy->getNumElements();
 | 
						|
  } else {
 | 
						|
    NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Append padding
 | 
						|
  for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
 | 
						|
    llvm::Constant *C = 
 | 
						|
      llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
 | 
						|
    
 | 
						|
    Fields.push_back(C);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *CodeGenModule::
 | 
						|
GetAddrOfConstantCFString(const StringLiteral *Literal) {
 | 
						|
  std::string str;
 | 
						|
  unsigned StringLength = 0;
 | 
						|
  
 | 
						|
  bool isUTF16 = false;
 | 
						|
  if (Literal->containsNonAsciiOrNull()) {
 | 
						|
    // Convert from UTF-8 to UTF-16.
 | 
						|
    llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
 | 
						|
    const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
 | 
						|
    UTF16 *ToPtr = &ToBuf[0];
 | 
						|
        
 | 
						|
    ConversionResult Result;
 | 
						|
    Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
 | 
						|
                                &ToPtr, ToPtr+Literal->getByteLength(),
 | 
						|
                                strictConversion);
 | 
						|
    if (Result == conversionOK) {
 | 
						|
      // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
 | 
						|
      // without doing more surgery to this routine. Since we aren't explicitly
 | 
						|
      // checking for endianness here, it's also a bug (when generating code for
 | 
						|
      // a target that doesn't match the host endianness). Modeling this as an
 | 
						|
      // i16 array is likely the cleanest solution.
 | 
						|
      StringLength = ToPtr-&ToBuf[0];
 | 
						|
      str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
 | 
						|
      isUTF16 = true;
 | 
						|
    } else if (Result == sourceIllegal) {
 | 
						|
      // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
 | 
						|
      str.assign(Literal->getStrData(), Literal->getByteLength());
 | 
						|
      StringLength = str.length();
 | 
						|
    } else
 | 
						|
      assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    str.assign(Literal->getStrData(), Literal->getByteLength());
 | 
						|
    StringLength = str.length();
 | 
						|
  }
 | 
						|
  llvm::StringMapEntry<llvm::Constant *> &Entry = 
 | 
						|
    CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
 | 
						|
  
 | 
						|
  if (llvm::Constant *C = Entry.getValue())
 | 
						|
    return C;
 | 
						|
  
 | 
						|
  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
 | 
						|
  llvm::Constant *Zeros[] = { Zero, Zero };
 | 
						|
  
 | 
						|
  if (!CFConstantStringClassRef) {
 | 
						|
    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
 | 
						|
    Ty = llvm::ArrayType::get(Ty, 0);
 | 
						|
 | 
						|
    // FIXME: This is fairly broken if
 | 
						|
    // __CFConstantStringClassReference is already defined, in that it
 | 
						|
    // will get renamed and the user will most likely see an opaque
 | 
						|
    // error message. This is a general issue with relying on
 | 
						|
    // particular names.
 | 
						|
    llvm::GlobalVariable *GV = 
 | 
						|
      new llvm::GlobalVariable(Ty, false,
 | 
						|
                               llvm::GlobalVariable::ExternalLinkage, 0, 
 | 
						|
                               "__CFConstantStringClassReference", 
 | 
						|
                               &getModule());
 | 
						|
    
 | 
						|
    // Decay array -> ptr
 | 
						|
    CFConstantStringClassRef =
 | 
						|
      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
 | 
						|
  }
 | 
						|
  
 | 
						|
  QualType CFTy = getContext().getCFConstantStringType();
 | 
						|
  RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
 | 
						|
 | 
						|
  const llvm::StructType *STy = 
 | 
						|
    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
 | 
						|
 | 
						|
  std::vector<llvm::Constant*> Fields;
 | 
						|
  RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
 | 
						|
 | 
						|
  // Class pointer.
 | 
						|
  FieldDecl *CurField = *Field++;
 | 
						|
  FieldDecl *NextField = *Field++;
 | 
						|
  appendFieldAndPadding(*this, Fields, CurField, NextField,
 | 
						|
                        CFConstantStringClassRef, CFRD, STy);
 | 
						|
  
 | 
						|
  // Flags.
 | 
						|
  CurField = NextField;
 | 
						|
  NextField = *Field++;
 | 
						|
  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
 | 
						|
  appendFieldAndPadding(*this, Fields, CurField, NextField,
 | 
						|
                        isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
 | 
						|
                                : llvm::ConstantInt::get(Ty, 0x07C8), 
 | 
						|
                        CFRD, STy);
 | 
						|
    
 | 
						|
  // String pointer.
 | 
						|
  CurField = NextField;
 | 
						|
  NextField = *Field++;
 | 
						|
  llvm::Constant *C = llvm::ConstantArray::get(str);
 | 
						|
 | 
						|
  const char *Sect, *Prefix;
 | 
						|
  bool isConstant;
 | 
						|
  if (isUTF16) {
 | 
						|
    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
 | 
						|
    Sect = getContext().Target.getUnicodeStringSection();
 | 
						|
    // FIXME: Why does GCC not set constant here?
 | 
						|
    isConstant = false;
 | 
						|
  } else {
 | 
						|
    Prefix = getContext().Target.getStringSymbolPrefix(true);
 | 
						|
    Sect = getContext().Target.getCFStringDataSection();
 | 
						|
    // FIXME: -fwritable-strings should probably affect this, but we
 | 
						|
    // are following gcc here.
 | 
						|
    isConstant = true;
 | 
						|
  }
 | 
						|
  llvm::GlobalVariable *GV = 
 | 
						|
    new llvm::GlobalVariable(C->getType(), isConstant, 
 | 
						|
                             llvm::GlobalValue::InternalLinkage,
 | 
						|
                             C, Prefix, &getModule());
 | 
						|
  if (Sect)
 | 
						|
    GV->setSection(Sect);
 | 
						|
  if (isUTF16) {
 | 
						|
    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
 | 
						|
    GV->setAlignment(Align); 
 | 
						|
  }
 | 
						|
  appendFieldAndPadding(*this, Fields, CurField, NextField,
 | 
						|
                        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
 | 
						|
                        CFRD, STy);
 | 
						|
  
 | 
						|
  // String length.
 | 
						|
  CurField = NextField;
 | 
						|
  NextField = 0;
 | 
						|
  Ty = getTypes().ConvertType(getContext().LongTy);
 | 
						|
  appendFieldAndPadding(*this, Fields, CurField, NextField,
 | 
						|
                        llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
 | 
						|
  
 | 
						|
  // The struct.
 | 
						|
  C = llvm::ConstantStruct::get(STy, Fields);
 | 
						|
  GV = new llvm::GlobalVariable(C->getType(), true, 
 | 
						|
                                llvm::GlobalVariable::InternalLinkage, C, 
 | 
						|
                                getContext().Target.getCFStringSymbolPrefix(), 
 | 
						|
                                &getModule());
 | 
						|
  if (const char *Sect = getContext().Target.getCFStringSection())
 | 
						|
    GV->setSection(Sect);
 | 
						|
  Entry.setValue(GV);
 | 
						|
  
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// GetStringForStringLiteral - Return the appropriate bytes for a
 | 
						|
/// string literal, properly padded to match the literal type.
 | 
						|
std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
 | 
						|
  const char *StrData = E->getStrData();
 | 
						|
  unsigned Len = E->getByteLength();
 | 
						|
 | 
						|
  const ConstantArrayType *CAT =
 | 
						|
    getContext().getAsConstantArrayType(E->getType());
 | 
						|
  assert(CAT && "String isn't pointer or array!");
 | 
						|
  
 | 
						|
  // Resize the string to the right size.
 | 
						|
  std::string Str(StrData, StrData+Len);
 | 
						|
  uint64_t RealLen = CAT->getSize().getZExtValue();
 | 
						|
  
 | 
						|
  if (E->isWide())
 | 
						|
    RealLen *= getContext().Target.getWCharWidth()/8;
 | 
						|
  
 | 
						|
  Str.resize(RealLen, '\0');
 | 
						|
  
 | 
						|
  return Str;
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
 | 
						|
/// constant array for the given string literal.
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
 | 
						|
  // FIXME: This can be more efficient.
 | 
						|
  return GetAddrOfConstantString(GetStringForStringLiteral(S));
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
 | 
						|
/// array for the given ObjCEncodeExpr node.
 | 
						|
llvm::Constant *
 | 
						|
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
 | 
						|
  std::string Str;
 | 
						|
  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
 | 
						|
 | 
						|
  return GetAddrOfConstantCString(Str);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GenerateWritableString -- Creates storage for a string literal.
 | 
						|
static llvm::Constant *GenerateStringLiteral(const std::string &str, 
 | 
						|
                                             bool constant,
 | 
						|
                                             CodeGenModule &CGM,
 | 
						|
                                             const char *GlobalName) {
 | 
						|
  // Create Constant for this string literal. Don't add a '\0'.
 | 
						|
  llvm::Constant *C = llvm::ConstantArray::get(str, false);
 | 
						|
  
 | 
						|
  // Create a global variable for this string
 | 
						|
  return new llvm::GlobalVariable(C->getType(), constant, 
 | 
						|
                                  llvm::GlobalValue::InternalLinkage,
 | 
						|
                                  C, GlobalName, &CGM.getModule());
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfConstantString - Returns a pointer to a character array
 | 
						|
/// containing the literal. This contents are exactly that of the
 | 
						|
/// given string, i.e. it will not be null terminated automatically;
 | 
						|
/// see GetAddrOfConstantCString. Note that whether the result is
 | 
						|
/// actually a pointer to an LLVM constant depends on
 | 
						|
/// Feature.WriteableStrings.
 | 
						|
///
 | 
						|
/// The result has pointer to array type.
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
 | 
						|
                                                       const char *GlobalName) {
 | 
						|
  bool IsConstant = !Features.WritableStrings;
 | 
						|
 | 
						|
  // Get the default prefix if a name wasn't specified.
 | 
						|
  if (!GlobalName)
 | 
						|
    GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
 | 
						|
 | 
						|
  // Don't share any string literals if strings aren't constant.
 | 
						|
  if (!IsConstant)
 | 
						|
    return GenerateStringLiteral(str, false, *this, GlobalName);
 | 
						|
  
 | 
						|
  llvm::StringMapEntry<llvm::Constant *> &Entry = 
 | 
						|
  ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
 | 
						|
 | 
						|
  if (Entry.getValue())
 | 
						|
    return Entry.getValue();
 | 
						|
 | 
						|
  // Create a global variable for this.
 | 
						|
  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
 | 
						|
  Entry.setValue(C);
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
/// GetAddrOfConstantCString - Returns a pointer to a character
 | 
						|
/// array containing the literal and a terminating '\-'
 | 
						|
/// character. The result has pointer to array type.
 | 
						|
llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
 | 
						|
                                                        const char *GlobalName){
 | 
						|
  return GetAddrOfConstantString(str + '\0', GlobalName);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitObjCPropertyImplementations - Emit information for synthesized
 | 
						|
/// properties for an implementation.
 | 
						|
void CodeGenModule::EmitObjCPropertyImplementations(const 
 | 
						|
                                                    ObjCImplementationDecl *D) {
 | 
						|
  for (ObjCImplementationDecl::propimpl_iterator 
 | 
						|
         i = D->propimpl_begin(getContext()),
 | 
						|
         e = D->propimpl_end(getContext()); i != e; ++i) {
 | 
						|
    ObjCPropertyImplDecl *PID = *i;
 | 
						|
    
 | 
						|
    // Dynamic is just for type-checking.
 | 
						|
    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
 | 
						|
      ObjCPropertyDecl *PD = PID->getPropertyDecl();
 | 
						|
 | 
						|
      // Determine which methods need to be implemented, some may have
 | 
						|
      // been overridden. Note that ::isSynthesized is not the method
 | 
						|
      // we want, that just indicates if the decl came from a
 | 
						|
      // property. What we want to know is if the method is defined in
 | 
						|
      // this implementation.
 | 
						|
      if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
 | 
						|
        CodeGenFunction(*this).GenerateObjCGetter(
 | 
						|
                                 const_cast<ObjCImplementationDecl *>(D), PID);
 | 
						|
      if (!PD->isReadOnly() &&
 | 
						|
          !D->getInstanceMethod(getContext(), PD->getSetterName()))
 | 
						|
        CodeGenFunction(*this).GenerateObjCSetter(
 | 
						|
                                 const_cast<ObjCImplementationDecl *>(D), PID);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitNamespace - Emit all declarations in a namespace.
 | 
						|
void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
 | 
						|
  for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
 | 
						|
         E = ND->decls_end(getContext());
 | 
						|
       I != E; ++I)
 | 
						|
    EmitTopLevelDecl(*I);
 | 
						|
}
 | 
						|
 | 
						|
// EmitLinkageSpec - Emit all declarations in a linkage spec.
 | 
						|
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
 | 
						|
  if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
 | 
						|
    ErrorUnsupported(LSD, "linkage spec");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
 | 
						|
         E = LSD->decls_end(getContext());
 | 
						|
       I != E; ++I)
 | 
						|
    EmitTopLevelDecl(*I);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTopLevelDecl - Emit code for a single top level declaration.
 | 
						|
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
 | 
						|
  // If an error has occurred, stop code generation, but continue
 | 
						|
  // parsing and semantic analysis (to ensure all warnings and errors
 | 
						|
  // are emitted).
 | 
						|
  if (Diags.hasErrorOccurred())
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (D->getKind()) {
 | 
						|
  case Decl::CXXMethod:
 | 
						|
  case Decl::Function:
 | 
						|
  case Decl::Var:
 | 
						|
    EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
 | 
						|
    break;
 | 
						|
 | 
						|
  // C++ Decls
 | 
						|
  case Decl::Namespace:
 | 
						|
    EmitNamespace(cast<NamespaceDecl>(D));
 | 
						|
    break;
 | 
						|
  case Decl::CXXConstructor:
 | 
						|
    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
 | 
						|
    break;
 | 
						|
  case Decl::CXXDestructor:
 | 
						|
    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
 | 
						|
    break;
 | 
						|
        
 | 
						|
  // Objective-C Decls
 | 
						|
    
 | 
						|
  // Forward declarations, no (immediate) code generation.
 | 
						|
  case Decl::ObjCClass:
 | 
						|
  case Decl::ObjCForwardProtocol:
 | 
						|
  case Decl::ObjCCategory:
 | 
						|
  case Decl::ObjCInterface:
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::ObjCProtocol:
 | 
						|
    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::ObjCCategoryImpl:
 | 
						|
    // Categories have properties but don't support synthesize so we
 | 
						|
    // can ignore them here.
 | 
						|
    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::ObjCImplementation: {
 | 
						|
    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
 | 
						|
    EmitObjCPropertyImplementations(OMD);
 | 
						|
    Runtime->GenerateClass(OMD);
 | 
						|
    break;
 | 
						|
  } 
 | 
						|
  case Decl::ObjCMethod: {
 | 
						|
    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
 | 
						|
    // If this is not a prototype, emit the body.
 | 
						|
    if (OMD->getBody(getContext()))
 | 
						|
      CodeGenFunction(*this).GenerateObjCMethod(OMD);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Decl::ObjCCompatibleAlias: 
 | 
						|
    // compatibility-alias is a directive and has no code gen.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::LinkageSpec:
 | 
						|
    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Decl::FileScopeAsm: {
 | 
						|
    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
 | 
						|
    std::string AsmString(AD->getAsmString()->getStrData(),
 | 
						|
                          AD->getAsmString()->getByteLength());
 | 
						|
    
 | 
						|
    const std::string &S = getModule().getModuleInlineAsm();
 | 
						|
    if (S.empty())
 | 
						|
      getModule().setModuleInlineAsm(AsmString);
 | 
						|
    else
 | 
						|
      getModule().setModuleInlineAsm(S + '\n' + AsmString);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
   
 | 
						|
  default: 
 | 
						|
    // Make sure we handled everything we should, every other kind is
 | 
						|
    // a non-top-level decl.  FIXME: Would be nice to have an
 | 
						|
    // isTopLevelDeclKind function. Need to recode Decl::Kind to do
 | 
						|
    // that easily.
 | 
						|
    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
 | 
						|
  }
 | 
						|
}
 |