forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1379 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LiveInterval analysis pass which is used
 | 
						|
// by the Linear Scan Register allocator. This pass linearizes the
 | 
						|
// basic blocks of the function in DFS order and uses the
 | 
						|
// LiveVariables pass to conservatively compute live intervals for
 | 
						|
// each virtual and physical register.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "LiveRangeCalc.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/VirtRegMap.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/BlockFrequency.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <limits>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
char LiveIntervals::ID = 0;
 | 
						|
char &llvm::LiveIntervalsID = LiveIntervals::ID;
 | 
						|
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
 | 
						|
                "Live Interval Analysis", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
 | 
						|
                "Live Interval Analysis", false, false)
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool> EnablePrecomputePhysRegs(
 | 
						|
  "precompute-phys-liveness", cl::Hidden,
 | 
						|
  cl::desc("Eagerly compute live intervals for all physreg units."));
 | 
						|
#else
 | 
						|
static bool EnablePrecomputePhysRegs = false;
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
static cl::opt<bool> EnableSubRegLiveness(
 | 
						|
  "enable-subreg-liveness", cl::Hidden, cl::init(true),
 | 
						|
  cl::desc("Enable subregister liveness tracking."));
 | 
						|
 | 
						|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addPreserved<AliasAnalysis>();
 | 
						|
  // LiveVariables isn't really required by this analysis, it is only required
 | 
						|
  // here to make sure it is live during TwoAddressInstructionPass and
 | 
						|
  // PHIElimination. This is temporary.
 | 
						|
  AU.addRequired<LiveVariables>();
 | 
						|
  AU.addPreserved<LiveVariables>();
 | 
						|
  AU.addPreservedID(MachineLoopInfoID);
 | 
						|
  AU.addRequiredTransitiveID(MachineDominatorsID);
 | 
						|
  AU.addPreservedID(MachineDominatorsID);
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addRequiredTransitive<SlotIndexes>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
 | 
						|
  DomTree(nullptr), LRCalc(nullptr) {
 | 
						|
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
LiveIntervals::~LiveIntervals() {
 | 
						|
  delete LRCalc;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::releaseMemory() {
 | 
						|
  // Free the live intervals themselves.
 | 
						|
  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
 | 
						|
    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
 | 
						|
  VirtRegIntervals.clear();
 | 
						|
  RegMaskSlots.clear();
 | 
						|
  RegMaskBits.clear();
 | 
						|
  RegMaskBlocks.clear();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
 | 
						|
    delete RegUnitRanges[i];
 | 
						|
  RegUnitRanges.clear();
 | 
						|
 | 
						|
  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
 | 
						|
  VNInfoAllocator.Reset();
 | 
						|
}
 | 
						|
 | 
						|
/// runOnMachineFunction - calculates LiveIntervals
 | 
						|
///
 | 
						|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  MF = &fn;
 | 
						|
  MRI = &MF->getRegInfo();
 | 
						|
  TRI = MF->getSubtarget().getRegisterInfo();
 | 
						|
  TII = MF->getSubtarget().getInstrInfo();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  Indexes = &getAnalysis<SlotIndexes>();
 | 
						|
  DomTree = &getAnalysis<MachineDominatorTree>();
 | 
						|
 | 
						|
  if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
 | 
						|
    MRI->enableSubRegLiveness(true);
 | 
						|
 | 
						|
  if (!LRCalc)
 | 
						|
    LRCalc = new LiveRangeCalc();
 | 
						|
 | 
						|
  // Allocate space for all virtual registers.
 | 
						|
  VirtRegIntervals.resize(MRI->getNumVirtRegs());
 | 
						|
 | 
						|
  computeVirtRegs();
 | 
						|
  computeRegMasks();
 | 
						|
  computeLiveInRegUnits();
 | 
						|
 | 
						|
  if (EnablePrecomputePhysRegs) {
 | 
						|
    // For stress testing, precompute live ranges of all physical register
 | 
						|
    // units, including reserved registers.
 | 
						|
    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
 | 
						|
      getRegUnit(i);
 | 
						|
  }
 | 
						|
  DEBUG(dump());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Implement the dump method.
 | 
						|
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
 | 
						|
  OS << "********** INTERVALS **********\n";
 | 
						|
 | 
						|
  // Dump the regunits.
 | 
						|
  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
 | 
						|
    if (LiveRange *LR = RegUnitRanges[i])
 | 
						|
      OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
 | 
						|
 | 
						|
  // Dump the virtregs.
 | 
						|
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    if (hasInterval(Reg))
 | 
						|
      OS << getInterval(Reg) << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "RegMasks:";
 | 
						|
  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
 | 
						|
    OS << ' ' << RegMaskSlots[i];
 | 
						|
  OS << '\n';
 | 
						|
 | 
						|
  printInstrs(OS);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::printInstrs(raw_ostream &OS) const {
 | 
						|
  OS << "********** MACHINEINSTRS **********\n";
 | 
						|
  MF->print(OS, Indexes);
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void LiveIntervals::dumpInstrs() const {
 | 
						|
  printInstrs(dbgs());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
 | 
						|
  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
 | 
						|
                  llvm::huge_valf : 0.0F;
 | 
						|
  return new LiveInterval(reg, Weight);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// computeVirtRegInterval - Compute the live interval of a virtual register,
 | 
						|
/// based on defs and uses.
 | 
						|
void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
 | 
						|
  assert(LRCalc && "LRCalc not initialized.");
 | 
						|
  assert(LI.empty() && "Should only compute empty intervals.");
 | 
						|
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | 
						|
  LRCalc->calculate(LI);
 | 
						|
  computeDeadValues(LI, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::computeVirtRegs() {
 | 
						|
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    if (MRI->reg_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
    createAndComputeVirtRegInterval(Reg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::computeRegMasks() {
 | 
						|
  RegMaskBlocks.resize(MF->getNumBlockIDs());
 | 
						|
 | 
						|
  // Find all instructions with regmask operands.
 | 
						|
  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
 | 
						|
       MBBI != E; ++MBBI) {
 | 
						|
    MachineBasicBlock *MBB = MBBI;
 | 
						|
    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
 | 
						|
    RMB.first = RegMaskSlots.size();
 | 
						|
    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
 | 
						|
         MI != ME; ++MI)
 | 
						|
      for (MIOperands MO(MI); MO.isValid(); ++MO) {
 | 
						|
        if (!MO->isRegMask())
 | 
						|
          continue;
 | 
						|
          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
 | 
						|
          RegMaskBits.push_back(MO->getRegMask());
 | 
						|
      }
 | 
						|
    // Compute the number of register mask instructions in this block.
 | 
						|
    RMB.second = RegMaskSlots.size() - RMB.first;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           Register Unit Liveness
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Fixed interference typically comes from ABI boundaries: Function arguments
 | 
						|
// and return values are passed in fixed registers, and so are exception
 | 
						|
// pointers entering landing pads. Certain instructions require values to be
 | 
						|
// present in specific registers. That is also represented through fixed
 | 
						|
// interference.
 | 
						|
//
 | 
						|
 | 
						|
/// computeRegUnitInterval - Compute the live range of a register unit, based
 | 
						|
/// on the uses and defs of aliasing registers.  The range should be empty,
 | 
						|
/// or contain only dead phi-defs from ABI blocks.
 | 
						|
void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
 | 
						|
  assert(LRCalc && "LRCalc not initialized.");
 | 
						|
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | 
						|
 | 
						|
  // The physregs aliasing Unit are the roots and their super-registers.
 | 
						|
  // Create all values as dead defs before extending to uses. Note that roots
 | 
						|
  // may share super-registers. That's OK because createDeadDefs() is
 | 
						|
  // idempotent. It is very rare for a register unit to have multiple roots, so
 | 
						|
  // uniquing super-registers is probably not worthwhile.
 | 
						|
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
 | 
						|
    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
 | 
						|
         Supers.isValid(); ++Supers) {
 | 
						|
      if (!MRI->reg_empty(*Supers))
 | 
						|
        LRCalc->createDeadDefs(LR, *Supers);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now extend LR to reach all uses.
 | 
						|
  // Ignore uses of reserved registers. We only track defs of those.
 | 
						|
  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
 | 
						|
    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
 | 
						|
         Supers.isValid(); ++Supers) {
 | 
						|
      unsigned Reg = *Supers;
 | 
						|
      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
 | 
						|
        LRCalc->extendToUses(LR, Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// computeLiveInRegUnits - Precompute the live ranges of any register units
 | 
						|
/// that are live-in to an ABI block somewhere. Register values can appear
 | 
						|
/// without a corresponding def when entering the entry block or a landing pad.
 | 
						|
///
 | 
						|
void LiveIntervals::computeLiveInRegUnits() {
 | 
						|
  RegUnitRanges.resize(TRI->getNumRegUnits());
 | 
						|
  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
 | 
						|
 | 
						|
  // Keep track of the live range sets allocated.
 | 
						|
  SmallVector<unsigned, 8> NewRanges;
 | 
						|
 | 
						|
  // Check all basic blocks for live-ins.
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    const MachineBasicBlock *MBB = MFI;
 | 
						|
 | 
						|
    // We only care about ABI blocks: Entry + landing pads.
 | 
						|
    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Create phi-defs at Begin for all live-in registers.
 | 
						|
    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
 | 
						|
    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
 | 
						|
    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
 | 
						|
         LIE = MBB->livein_end(); LII != LIE; ++LII) {
 | 
						|
      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
 | 
						|
        unsigned Unit = *Units;
 | 
						|
        LiveRange *LR = RegUnitRanges[Unit];
 | 
						|
        if (!LR) {
 | 
						|
          LR = RegUnitRanges[Unit] = new LiveRange();
 | 
						|
          NewRanges.push_back(Unit);
 | 
						|
        }
 | 
						|
        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
 | 
						|
        (void)VNI;
 | 
						|
        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << '\n');
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
 | 
						|
 | 
						|
  // Compute the 'normal' part of the ranges.
 | 
						|
  for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
 | 
						|
    unsigned Unit = NewRanges[i];
 | 
						|
    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void createSegmentsForValues(LiveRange &LR,
 | 
						|
      iterator_range<LiveInterval::vni_iterator> VNIs) {
 | 
						|
  for (auto VNI : VNIs) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    SlotIndex Def = VNI->def;
 | 
						|
    LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
 | 
						|
 | 
						|
static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
 | 
						|
                                 ShrinkToUsesWorkList &WorkList,
 | 
						|
                                 const LiveRange &OldRange) {
 | 
						|
  // Keep track of the PHIs that are in use.
 | 
						|
  SmallPtrSet<VNInfo*, 8> UsedPHIs;
 | 
						|
  // Blocks that have already been added to WorkList as live-out.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
 | 
						|
 | 
						|
  // Extend intervals to reach all uses in WorkList.
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SlotIndex Idx = WorkList.back().first;
 | 
						|
    VNInfo *VNI = WorkList.back().second;
 | 
						|
    WorkList.pop_back();
 | 
						|
    const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
 | 
						|
    SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
 | 
						|
 | 
						|
    // Extend the live range for VNI to be live at Idx.
 | 
						|
    if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
 | 
						|
      assert(ExtVNI == VNI && "Unexpected existing value number");
 | 
						|
      (void)ExtVNI;
 | 
						|
      // Is this a PHIDef we haven't seen before?
 | 
						|
      if (!VNI->isPHIDef() || VNI->def != BlockStart ||
 | 
						|
          !UsedPHIs.insert(VNI).second)
 | 
						|
        continue;
 | 
						|
      // The PHI is live, make sure the predecessors are live-out.
 | 
						|
      for (auto &Pred : MBB->predecessors()) {
 | 
						|
        if (!LiveOut.insert(Pred).second)
 | 
						|
          continue;
 | 
						|
        SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
 | 
						|
        // A predecessor is not required to have a live-out value for a PHI.
 | 
						|
        if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
 | 
						|
          WorkList.push_back(std::make_pair(Stop, PVNI));
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // VNI is live-in to MBB.
 | 
						|
    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
 | 
						|
    LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
 | 
						|
 | 
						|
    // Make sure VNI is live-out from the predecessors.
 | 
						|
    for (auto &Pred : MBB->predecessors()) {
 | 
						|
      if (!LiveOut.insert(Pred).second)
 | 
						|
        continue;
 | 
						|
      SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
 | 
						|
      assert(OldRange.getVNInfoBefore(Stop) == VNI &&
 | 
						|
             "Wrong value out of predecessor");
 | 
						|
      WorkList.push_back(std::make_pair(Stop, VNI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// shrinkToUses - After removing some uses of a register, shrink its live
 | 
						|
/// range to just the remaining uses. This method does not compute reaching
 | 
						|
/// defs for new uses, and it doesn't remove dead defs.
 | 
						|
bool LiveIntervals::shrinkToUses(LiveInterval *li,
 | 
						|
                                 SmallVectorImpl<MachineInstr*> *dead) {
 | 
						|
  DEBUG(dbgs() << "Shrink: " << *li << '\n');
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
 | 
						|
         && "Can only shrink virtual registers");
 | 
						|
 | 
						|
  // Shrink subregister live ranges.
 | 
						|
  for (LiveInterval::SubRange &S : li->subranges()) {
 | 
						|
    shrinkToUses(S, li->reg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Find all the values used, including PHI kills.
 | 
						|
  ShrinkToUsesWorkList WorkList;
 | 
						|
 | 
						|
  // Visit all instructions reading li->reg.
 | 
						|
  for (MachineRegisterInfo::reg_instr_iterator
 | 
						|
       I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
 | 
						|
       I != E; ) {
 | 
						|
    MachineInstr *UseMI = &*(I++);
 | 
						|
    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
 | 
						|
      continue;
 | 
						|
    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
 | 
						|
    LiveQueryResult LRQ = li->Query(Idx);
 | 
						|
    VNInfo *VNI = LRQ.valueIn();
 | 
						|
    if (!VNI) {
 | 
						|
      // This shouldn't happen: readsVirtualRegister returns true, but there is
 | 
						|
      // no live value. It is likely caused by a target getting <undef> flags
 | 
						|
      // wrong.
 | 
						|
      DEBUG(dbgs() << Idx << '\t' << *UseMI
 | 
						|
                   << "Warning: Instr claims to read non-existent value in "
 | 
						|
                    << *li << '\n');
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Special case: An early-clobber tied operand reads and writes the
 | 
						|
    // register one slot early.
 | 
						|
    if (VNInfo *DefVNI = LRQ.valueDefined())
 | 
						|
      Idx = DefVNI->def;
 | 
						|
 | 
						|
    WorkList.push_back(std::make_pair(Idx, VNI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create new live ranges with only minimal live segments per def.
 | 
						|
  LiveRange NewLR;
 | 
						|
  createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
 | 
						|
  extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
 | 
						|
 | 
						|
  // Move the trimmed segments back.
 | 
						|
  li->segments.swap(NewLR.segments);
 | 
						|
 | 
						|
  // Handle dead values.
 | 
						|
  bool CanSeparate = computeDeadValues(*li, dead);
 | 
						|
  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
 | 
						|
  return CanSeparate;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveIntervals::computeDeadValues(LiveInterval &LI,
 | 
						|
                                      SmallVectorImpl<MachineInstr*> *dead) {
 | 
						|
  bool PHIRemoved = false;
 | 
						|
  for (auto VNI : LI.valnos) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    LiveRange::iterator I = LI.FindSegmentContaining(VNI->def);
 | 
						|
    assert(I != LI.end() && "Missing segment for VNI");
 | 
						|
    if (I->end != VNI->def.getDeadSlot())
 | 
						|
      continue;
 | 
						|
    if (VNI->isPHIDef()) {
 | 
						|
      // This is a dead PHI. Remove it.
 | 
						|
      VNI->markUnused();
 | 
						|
      LI.removeSegment(I);
 | 
						|
      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
 | 
						|
      PHIRemoved = true;
 | 
						|
    } else {
 | 
						|
      // This is a dead def. Make sure the instruction knows.
 | 
						|
      MachineInstr *MI = getInstructionFromIndex(VNI->def);
 | 
						|
      assert(MI && "No instruction defining live value");
 | 
						|
      MI->addRegisterDead(LI.reg, TRI);
 | 
						|
      if (dead && MI->allDefsAreDead()) {
 | 
						|
        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
 | 
						|
        dead->push_back(MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return PHIRemoved;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
 | 
						|
{
 | 
						|
  DEBUG(dbgs() << "Shrink: " << SR << '\n');
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(Reg)
 | 
						|
         && "Can only shrink virtual registers");
 | 
						|
  // Find all the values used, including PHI kills.
 | 
						|
  ShrinkToUsesWorkList WorkList;
 | 
						|
 | 
						|
  // Visit all instructions reading Reg.
 | 
						|
  SlotIndex LastIdx;
 | 
						|
  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
 | 
						|
    MachineInstr *UseMI = MO.getParent();
 | 
						|
    if (UseMI->isDebugValue())
 | 
						|
      continue;
 | 
						|
    // Maybe the operand is for a subregister we don't care about.
 | 
						|
    unsigned SubReg = MO.getSubReg();
 | 
						|
    if (SubReg != 0) {
 | 
						|
      unsigned SubRegMask = TRI->getSubRegIndexLaneMask(SubReg);
 | 
						|
      if ((SubRegMask & SR.LaneMask) == 0)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    // We only need to visit each instruction once.
 | 
						|
    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
 | 
						|
    if (Idx == LastIdx)
 | 
						|
      continue;
 | 
						|
    LastIdx = Idx;
 | 
						|
 | 
						|
    LiveQueryResult LRQ = SR.Query(Idx);
 | 
						|
    VNInfo *VNI = LRQ.valueIn();
 | 
						|
    // For Subranges it is possible that only undef values are left in that
 | 
						|
    // part of the subregister, so there is no real liverange at the use
 | 
						|
    if (!VNI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Special case: An early-clobber tied operand reads and writes the
 | 
						|
    // register one slot early.
 | 
						|
    if (VNInfo *DefVNI = LRQ.valueDefined())
 | 
						|
      Idx = DefVNI->def;
 | 
						|
 | 
						|
    WorkList.push_back(std::make_pair(Idx, VNI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a new live ranges with only minimal live segments per def.
 | 
						|
  LiveRange NewLR;
 | 
						|
  createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
 | 
						|
  extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
 | 
						|
 | 
						|
  // Move the trimmed ranges back.
 | 
						|
  SR.segments.swap(NewLR.segments);
 | 
						|
 | 
						|
  // Remove dead PHI value numbers
 | 
						|
  for (auto VNI : SR.valnos) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
 | 
						|
    assert(Segment != nullptr && "Missing segment for VNI");
 | 
						|
    if (Segment->end != VNI->def.getDeadSlot())
 | 
						|
      continue;
 | 
						|
    if (VNI->isPHIDef()) {
 | 
						|
      // This is a dead PHI. Remove it.
 | 
						|
      VNI->markUnused();
 | 
						|
      SR.removeSegment(*Segment);
 | 
						|
      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Shrunk: " << SR << '\n');
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::extendToIndices(LiveRange &LR,
 | 
						|
                                    ArrayRef<SlotIndex> Indices) {
 | 
						|
  assert(LRCalc && "LRCalc not initialized.");
 | 
						|
  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | 
						|
  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | 
						|
    LRCalc->extend(LR, Indices[i]);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
 | 
						|
                               SmallVectorImpl<SlotIndex> *EndPoints) {
 | 
						|
  LiveQueryResult LRQ = LR.Query(Kill);
 | 
						|
  VNInfo *VNI = LRQ.valueOutOrDead();
 | 
						|
  if (!VNI)
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
 | 
						|
  SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
 | 
						|
 | 
						|
  // If VNI isn't live out from KillMBB, the value is trivially pruned.
 | 
						|
  if (LRQ.endPoint() < MBBEnd) {
 | 
						|
    LR.removeSegment(Kill, LRQ.endPoint());
 | 
						|
    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // VNI is live out of KillMBB.
 | 
						|
  LR.removeSegment(Kill, MBBEnd);
 | 
						|
  if (EndPoints) EndPoints->push_back(MBBEnd);
 | 
						|
 | 
						|
  // Find all blocks that are reachable from KillMBB without leaving VNI's live
 | 
						|
  // range. It is possible that KillMBB itself is reachable, so start a DFS
 | 
						|
  // from each successor.
 | 
						|
  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
 | 
						|
  VisitedTy Visited;
 | 
						|
  for (MachineBasicBlock::succ_iterator
 | 
						|
       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
 | 
						|
       SuccI != SuccE; ++SuccI) {
 | 
						|
    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
 | 
						|
         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
 | 
						|
         I != E;) {
 | 
						|
      MachineBasicBlock *MBB = *I;
 | 
						|
 | 
						|
      // Check if VNI is live in to MBB.
 | 
						|
      SlotIndex MBBStart, MBBEnd;
 | 
						|
      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
 | 
						|
      LiveQueryResult LRQ = LR.Query(MBBStart);
 | 
						|
      if (LRQ.valueIn() != VNI) {
 | 
						|
        // This block isn't part of the VNI segment. Prune the search.
 | 
						|
        I.skipChildren();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Prune the search if VNI is killed in MBB.
 | 
						|
      if (LRQ.endPoint() < MBBEnd) {
 | 
						|
        LR.removeSegment(MBBStart, LRQ.endPoint());
 | 
						|
        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
 | 
						|
        I.skipChildren();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // VNI is live through MBB.
 | 
						|
      LR.removeSegment(MBBStart, MBBEnd);
 | 
						|
      if (EndPoints) EndPoints->push_back(MBBEnd);
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::pruneValue(LiveInterval &LI, SlotIndex Kill,
 | 
						|
                               SmallVectorImpl<SlotIndex> *EndPoints) {
 | 
						|
  pruneValue((LiveRange&)LI, Kill, EndPoints);
 | 
						|
 | 
						|
  for (LiveInterval::SubRange &SR : LI.subranges()) {
 | 
						|
    pruneValue(SR, Kill, nullptr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Register allocator hooks.
 | 
						|
//
 | 
						|
 | 
						|
void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
 | 
						|
  // Keep track of regunit ranges.
 | 
						|
  SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
 | 
						|
  // Keep track of subregister ranges.
 | 
						|
  SmallVector<std::pair<const LiveInterval::SubRange*,
 | 
						|
                        LiveRange::const_iterator>, 4> SRs;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    if (MRI->reg_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
    const LiveInterval &LI = getInterval(Reg);
 | 
						|
    if (LI.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Find the regunit intervals for the assigned register. They may overlap
 | 
						|
    // the virtual register live range, cancelling any kills.
 | 
						|
    RU.clear();
 | 
						|
    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
 | 
						|
         ++Units) {
 | 
						|
      const LiveRange &RURange = getRegUnit(*Units);
 | 
						|
      if (RURange.empty())
 | 
						|
        continue;
 | 
						|
      RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
 | 
						|
    }
 | 
						|
 | 
						|
    if (MRI->tracksSubRegLiveness()) {
 | 
						|
      SRs.clear();
 | 
						|
      for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | 
						|
        SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Every instruction that kills Reg corresponds to a segment range end
 | 
						|
    // point.
 | 
						|
    for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
 | 
						|
         ++RI) {
 | 
						|
      // A block index indicates an MBB edge.
 | 
						|
      if (RI->end.isBlock())
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = getInstructionFromIndex(RI->end);
 | 
						|
      if (!MI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Check if any of the regunits are live beyond the end of RI. That could
 | 
						|
      // happen when a physreg is defined as a copy of a virtreg:
 | 
						|
      //
 | 
						|
      //   %EAX = COPY %vreg5
 | 
						|
      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
 | 
						|
      //   BAR %EAX<kill>
 | 
						|
      //
 | 
						|
      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
 | 
						|
      for (auto &RUP : RU) {
 | 
						|
        const LiveRange &RURange = *RUP.first;
 | 
						|
        LiveRange::const_iterator &I = RUP.second;
 | 
						|
        if (I == RURange.end())
 | 
						|
          continue;
 | 
						|
        I = RURange.advanceTo(I, RI->end);
 | 
						|
        if (I == RURange.end() || I->start >= RI->end)
 | 
						|
          continue;
 | 
						|
        // I is overlapping RI.
 | 
						|
        goto CancelKill;
 | 
						|
      }
 | 
						|
 | 
						|
      if (MRI->tracksSubRegLiveness()) {
 | 
						|
        // When reading a partial undefined value we must not add a kill flag.
 | 
						|
        // The regalloc might have used the undef lane for something else.
 | 
						|
        // Example:
 | 
						|
        //     %vreg1 = ...              ; R32: %vreg1
 | 
						|
        //     %vreg2:high16 = ...       ; R64: %vreg2
 | 
						|
        //        = read %vreg2<kill>    ; R64: %vreg2
 | 
						|
        //        = read %vreg1          ; R32: %vreg1
 | 
						|
        // The <kill> flag is correct for %vreg2, but the register allocator may
 | 
						|
        // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
 | 
						|
        // are actually never written by %vreg2. After assignment the <kill>
 | 
						|
        // flag at the read instruction is invalid.
 | 
						|
        unsigned DefinedLanesMask;
 | 
						|
        if (!SRs.empty()) {
 | 
						|
          // Compute a mask of lanes that are defined.
 | 
						|
          DefinedLanesMask = 0;
 | 
						|
          for (auto &SRP : SRs) {
 | 
						|
            const LiveInterval::SubRange &SR = *SRP.first;
 | 
						|
            LiveRange::const_iterator &I = SRP.second;
 | 
						|
            if (I == SR.end())
 | 
						|
              continue;
 | 
						|
            I = SR.advanceTo(I, RI->end);
 | 
						|
            if (I == SR.end() || I->start >= RI->end)
 | 
						|
              continue;
 | 
						|
            // I is overlapping RI
 | 
						|
            DefinedLanesMask |= SR.LaneMask;
 | 
						|
          }
 | 
						|
        } else
 | 
						|
          DefinedLanesMask = ~0u;
 | 
						|
 | 
						|
        bool IsFullWrite = false;
 | 
						|
        for (const MachineOperand &MO : MI->operands()) {
 | 
						|
          if (!MO.isReg() || MO.getReg() != Reg)
 | 
						|
            continue;
 | 
						|
          if (MO.isUse()) {
 | 
						|
            // Reading any undefined lanes?
 | 
						|
            unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
 | 
						|
            if ((UseMask & ~DefinedLanesMask) != 0)
 | 
						|
              goto CancelKill;
 | 
						|
          } else if (MO.getSubReg() == 0) {
 | 
						|
            // Writing to the full register?
 | 
						|
            assert(MO.isDef());
 | 
						|
            IsFullWrite = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If an instruction writes to a subregister, a new segment starts in
 | 
						|
        // the LiveInterval. But as this is only overriding part of the register
 | 
						|
        // adding kill-flags is not correct here after registers have been
 | 
						|
        // assigned.
 | 
						|
        if (!IsFullWrite) {
 | 
						|
          // Next segment has to be adjacent in the subregister write case.
 | 
						|
          LiveRange::const_iterator N = std::next(RI);
 | 
						|
          if (N != LI.end() && N->start == RI->end)
 | 
						|
            goto CancelKill;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      MI->addRegisterKilled(Reg, nullptr);
 | 
						|
      continue;
 | 
						|
CancelKill:
 | 
						|
      MI->clearRegisterKills(Reg, nullptr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock*
 | 
						|
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
 | 
						|
  // A local live range must be fully contained inside the block, meaning it is
 | 
						|
  // defined and killed at instructions, not at block boundaries. It is not
 | 
						|
  // live in or or out of any block.
 | 
						|
  //
 | 
						|
  // It is technically possible to have a PHI-defined live range identical to a
 | 
						|
  // single block, but we are going to return false in that case.
 | 
						|
 | 
						|
  SlotIndex Start = LI.beginIndex();
 | 
						|
  if (Start.isBlock())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  SlotIndex Stop = LI.endIndex();
 | 
						|
  if (Stop.isBlock())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // getMBBFromIndex doesn't need to search the MBB table when both indexes
 | 
						|
  // belong to proper instructions.
 | 
						|
  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
 | 
						|
  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
 | 
						|
  return MBB1 == MBB2 ? MBB1 : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
 | 
						|
  for (const VNInfo *PHI : LI.valnos) {
 | 
						|
    if (PHI->isUnused() || !PHI->isPHIDef())
 | 
						|
      continue;
 | 
						|
    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
 | 
						|
    // Conservatively return true instead of scanning huge predecessor lists.
 | 
						|
    if (PHIMBB->pred_size() > 100)
 | 
						|
      return true;
 | 
						|
    for (MachineBasicBlock::const_pred_iterator
 | 
						|
         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
 | 
						|
      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
float
 | 
						|
LiveIntervals::getSpillWeight(bool isDef, bool isUse,
 | 
						|
                              const MachineBlockFrequencyInfo *MBFI,
 | 
						|
                              const MachineInstr *MI) {
 | 
						|
  BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
 | 
						|
  const float Scale = 1.0f / MBFI->getEntryFreq();
 | 
						|
  return (isDef + isUse) * (Freq.getFrequency() * Scale);
 | 
						|
}
 | 
						|
 | 
						|
LiveRange::Segment
 | 
						|
LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
 | 
						|
  LiveInterval& Interval = createEmptyInterval(reg);
 | 
						|
  VNInfo* VN = Interval.getNextValue(
 | 
						|
    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | 
						|
    getVNInfoAllocator());
 | 
						|
  LiveRange::Segment S(
 | 
						|
     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | 
						|
     getMBBEndIdx(startInst->getParent()), VN);
 | 
						|
  Interval.addSegment(S);
 | 
						|
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          Register mask functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
 | 
						|
                                             BitVector &UsableRegs) {
 | 
						|
  if (LI.empty())
 | 
						|
    return false;
 | 
						|
  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
 | 
						|
 | 
						|
  // Use a smaller arrays for local live ranges.
 | 
						|
  ArrayRef<SlotIndex> Slots;
 | 
						|
  ArrayRef<const uint32_t*> Bits;
 | 
						|
  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
 | 
						|
    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
 | 
						|
    Bits = getRegMaskBitsInBlock(MBB->getNumber());
 | 
						|
  } else {
 | 
						|
    Slots = getRegMaskSlots();
 | 
						|
    Bits = getRegMaskBits();
 | 
						|
  }
 | 
						|
 | 
						|
  // We are going to enumerate all the register mask slots contained in LI.
 | 
						|
  // Start with a binary search of RegMaskSlots to find a starting point.
 | 
						|
  ArrayRef<SlotIndex>::iterator SlotI =
 | 
						|
    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
 | 
						|
  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
 | 
						|
 | 
						|
  // No slots in range, LI begins after the last call.
 | 
						|
  if (SlotI == SlotE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Found = false;
 | 
						|
  for (;;) {
 | 
						|
    assert(*SlotI >= LiveI->start);
 | 
						|
    // Loop over all slots overlapping this segment.
 | 
						|
    while (*SlotI < LiveI->end) {
 | 
						|
      // *SlotI overlaps LI. Collect mask bits.
 | 
						|
      if (!Found) {
 | 
						|
        // This is the first overlap. Initialize UsableRegs to all ones.
 | 
						|
        UsableRegs.clear();
 | 
						|
        UsableRegs.resize(TRI->getNumRegs(), true);
 | 
						|
        Found = true;
 | 
						|
      }
 | 
						|
      // Remove usable registers clobbered by this mask.
 | 
						|
      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
 | 
						|
      if (++SlotI == SlotE)
 | 
						|
        return Found;
 | 
						|
    }
 | 
						|
    // *SlotI is beyond the current LI segment.
 | 
						|
    LiveI = LI.advanceTo(LiveI, *SlotI);
 | 
						|
    if (LiveI == LiveE)
 | 
						|
      return Found;
 | 
						|
    // Advance SlotI until it overlaps.
 | 
						|
    while (*SlotI < LiveI->start)
 | 
						|
      if (++SlotI == SlotE)
 | 
						|
        return Found;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         IntervalUpdate class.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
 | 
						|
class LiveIntervals::HMEditor {
 | 
						|
private:
 | 
						|
  LiveIntervals& LIS;
 | 
						|
  const MachineRegisterInfo& MRI;
 | 
						|
  const TargetRegisterInfo& TRI;
 | 
						|
  SlotIndex OldIdx;
 | 
						|
  SlotIndex NewIdx;
 | 
						|
  SmallPtrSet<LiveRange*, 8> Updated;
 | 
						|
  bool UpdateFlags;
 | 
						|
 | 
						|
public:
 | 
						|
  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
 | 
						|
           const TargetRegisterInfo& TRI,
 | 
						|
           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
 | 
						|
    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
 | 
						|
      UpdateFlags(UpdateFlags) {}
 | 
						|
 | 
						|
  // FIXME: UpdateFlags is a workaround that creates live intervals for all
 | 
						|
  // physregs, even those that aren't needed for regalloc, in order to update
 | 
						|
  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
 | 
						|
  // flags, and postRA passes will use a live register utility instead.
 | 
						|
  LiveRange *getRegUnitLI(unsigned Unit) {
 | 
						|
    if (UpdateFlags)
 | 
						|
      return &LIS.getRegUnit(Unit);
 | 
						|
    return LIS.getCachedRegUnit(Unit);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Update all live ranges touched by MI, assuming a move from OldIdx to
 | 
						|
  /// NewIdx.
 | 
						|
  void updateAllRanges(MachineInstr *MI) {
 | 
						|
    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
 | 
						|
    bool hasRegMask = false;
 | 
						|
    for (MIOperands MO(MI); MO.isValid(); ++MO) {
 | 
						|
      if (MO->isRegMask())
 | 
						|
        hasRegMask = true;
 | 
						|
      if (!MO->isReg())
 | 
						|
        continue;
 | 
						|
      // Aggressively clear all kill flags.
 | 
						|
      // They are reinserted by VirtRegRewriter.
 | 
						|
      if (MO->isUse())
 | 
						|
        MO->setIsKill(false);
 | 
						|
 | 
						|
      unsigned Reg = MO->getReg();
 | 
						|
      if (!Reg)
 | 
						|
        continue;
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
        if (LI.hasSubRanges()) {
 | 
						|
          unsigned SubReg = MO->getSubReg();
 | 
						|
          unsigned LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
 | 
						|
          for (LiveInterval::SubRange &S : LI.subranges()) {
 | 
						|
            if ((S.LaneMask & LaneMask) == 0)
 | 
						|
              continue;
 | 
						|
            updateRange(S, Reg, S.LaneMask);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        updateRange(LI, Reg, 0);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // For physregs, only update the regunits that actually have a
 | 
						|
      // precomputed live range.
 | 
						|
      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
 | 
						|
        if (LiveRange *LR = getRegUnitLI(*Units))
 | 
						|
          updateRange(*LR, *Units, 0);
 | 
						|
    }
 | 
						|
    if (hasRegMask)
 | 
						|
      updateRegMaskSlots();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// Update a single live range, assuming an instruction has been moved from
 | 
						|
  /// OldIdx to NewIdx.
 | 
						|
  void updateRange(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
 | 
						|
    if (!Updated.insert(&LR).second)
 | 
						|
      return;
 | 
						|
    DEBUG({
 | 
						|
      dbgs() << "     ";
 | 
						|
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
        dbgs() << PrintReg(Reg);
 | 
						|
        if (LaneMask != 0)
 | 
						|
          dbgs() << format(" L%04X", LaneMask);
 | 
						|
      } else {
 | 
						|
        dbgs() << PrintRegUnit(Reg, &TRI);
 | 
						|
      }
 | 
						|
      dbgs() << ":\t" << LR << '\n';
 | 
						|
    });
 | 
						|
    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
 | 
						|
      handleMoveDown(LR);
 | 
						|
    else
 | 
						|
      handleMoveUp(LR, Reg, LaneMask);
 | 
						|
    DEBUG(dbgs() << "        -->\t" << LR << '\n');
 | 
						|
    LR.verify();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Update LR to reflect an instruction has been moved downwards from OldIdx
 | 
						|
  /// to NewIdx.
 | 
						|
  ///
 | 
						|
  /// 1. Live def at OldIdx:
 | 
						|
  ///    Move def to NewIdx, assert endpoint after NewIdx.
 | 
						|
  ///
 | 
						|
  /// 2. Live def at OldIdx, killed at NewIdx:
 | 
						|
  ///    Change to dead def at NewIdx.
 | 
						|
  ///    (Happens when bundling def+kill together).
 | 
						|
  ///
 | 
						|
  /// 3. Dead def at OldIdx:
 | 
						|
  ///    Move def to NewIdx, possibly across another live value.
 | 
						|
  ///
 | 
						|
  /// 4. Def at OldIdx AND at NewIdx:
 | 
						|
  ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
 | 
						|
  ///    (Happens when bundling multiple defs together).
 | 
						|
  ///
 | 
						|
  /// 5. Value read at OldIdx, killed before NewIdx:
 | 
						|
  ///    Extend kill to NewIdx.
 | 
						|
  ///
 | 
						|
  void handleMoveDown(LiveRange &LR) {
 | 
						|
    // First look for a kill at OldIdx.
 | 
						|
    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
 | 
						|
    LiveRange::iterator E = LR.end();
 | 
						|
    // Is LR even live at OldIdx?
 | 
						|
    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Handle a live-in value.
 | 
						|
    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
 | 
						|
      bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
 | 
						|
      // If the live-in value already extends to NewIdx, there is nothing to do.
 | 
						|
      if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
 | 
						|
        return;
 | 
						|
      // Aggressively remove all kill flags from the old kill point.
 | 
						|
      // Kill flags shouldn't be used while live intervals exist, they will be
 | 
						|
      // reinserted by VirtRegRewriter.
 | 
						|
      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
 | 
						|
        for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
 | 
						|
          if (MO->isReg() && MO->isUse())
 | 
						|
            MO->setIsKill(false);
 | 
						|
      // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
 | 
						|
      // overlapping ranges. Case 5 above.
 | 
						|
      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
 | 
						|
      // If this was a kill, there may also be a def. Otherwise we're done.
 | 
						|
      if (!isKill)
 | 
						|
        return;
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for a def at OldIdx.
 | 
						|
    if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
 | 
						|
      return;
 | 
						|
    // We have a def at OldIdx.
 | 
						|
    VNInfo *DefVNI = I->valno;
 | 
						|
    assert(DefVNI->def == I->start && "Inconsistent def");
 | 
						|
    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
 | 
						|
    // If the defined value extends beyond NewIdx, just move the def down.
 | 
						|
    // This is case 1 above.
 | 
						|
    if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
 | 
						|
      I->start = DefVNI->def;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // The remaining possibilities are now:
 | 
						|
    // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
 | 
						|
    // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
 | 
						|
    // In either case, it is possible that there is an existing def at NewIdx.
 | 
						|
    assert((I->end == OldIdx.getDeadSlot() ||
 | 
						|
            SlotIndex::isSameInstr(I->end, NewIdx)) &&
 | 
						|
            "Cannot move def below kill");
 | 
						|
    LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
 | 
						|
    if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
 | 
						|
      // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
 | 
						|
      // coalesced into that value.
 | 
						|
      assert(NewI->valno != DefVNI && "Multiple defs of value?");
 | 
						|
      LR.removeValNo(DefVNI);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
 | 
						|
    // If the def at OldIdx was dead, we allow it to be moved across other LR
 | 
						|
    // values. The new range should be placed immediately before NewI, move any
 | 
						|
    // intermediate ranges up.
 | 
						|
    assert(NewI != I && "Inconsistent iterators");
 | 
						|
    std::copy(std::next(I), NewI, I);
 | 
						|
    *std::prev(NewI)
 | 
						|
      = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Update LR to reflect an instruction has been moved upwards from OldIdx
 | 
						|
  /// to NewIdx.
 | 
						|
  ///
 | 
						|
  /// 1. Live def at OldIdx:
 | 
						|
  ///    Hoist def to NewIdx.
 | 
						|
  ///
 | 
						|
  /// 2. Dead def at OldIdx:
 | 
						|
  ///    Hoist def+end to NewIdx, possibly move across other values.
 | 
						|
  ///
 | 
						|
  /// 3. Dead def at OldIdx AND existing def at NewIdx:
 | 
						|
  ///    Remove value defined at OldIdx, coalescing it with existing value.
 | 
						|
  ///
 | 
						|
  /// 4. Live def at OldIdx AND existing def at NewIdx:
 | 
						|
  ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
 | 
						|
  ///    (Happens when bundling multiple defs together).
 | 
						|
  ///
 | 
						|
  /// 5. Value killed at OldIdx:
 | 
						|
  ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
 | 
						|
  ///    OldIdx.
 | 
						|
  ///
 | 
						|
  void handleMoveUp(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
 | 
						|
    // First look for a kill at OldIdx.
 | 
						|
    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
 | 
						|
    LiveRange::iterator E = LR.end();
 | 
						|
    // Is LR even live at OldIdx?
 | 
						|
    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Handle a live-in value.
 | 
						|
    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
 | 
						|
      // If the live-in value isn't killed here, there is nothing to do.
 | 
						|
      if (!SlotIndex::isSameInstr(OldIdx, I->end))
 | 
						|
        return;
 | 
						|
      // Adjust I->end to end at NewIdx. If we are hoisting a kill above
 | 
						|
      // another use, we need to search for that use. Case 5 above.
 | 
						|
      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
 | 
						|
      ++I;
 | 
						|
      // If OldIdx also defines a value, there couldn't have been another use.
 | 
						|
      if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
 | 
						|
        // No def, search for the new kill.
 | 
						|
        // This can never be an early clobber kill since there is no def.
 | 
						|
        std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now deal with the def at OldIdx.
 | 
						|
    assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
 | 
						|
    VNInfo *DefVNI = I->valno;
 | 
						|
    assert(DefVNI->def == I->start && "Inconsistent def");
 | 
						|
    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
 | 
						|
 | 
						|
    // Check for an existing def at NewIdx.
 | 
						|
    LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
 | 
						|
    if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
 | 
						|
      assert(NewI->valno != DefVNI && "Same value defined more than once?");
 | 
						|
      // There is an existing def at NewIdx.
 | 
						|
      if (I->end.isDead()) {
 | 
						|
        // Case 3: Remove the dead def at OldIdx.
 | 
						|
        LR.removeValNo(DefVNI);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      // Case 4: Replace def at NewIdx with live def at OldIdx.
 | 
						|
      I->start = DefVNI->def;
 | 
						|
      LR.removeValNo(NewI->valno);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // There is no existing def at NewIdx. Hoist DefVNI.
 | 
						|
    if (!I->end.isDead()) {
 | 
						|
      // Leave the end point of a live def.
 | 
						|
      I->start = DefVNI->def;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // DefVNI is a dead def. It may have been moved across other values in LR,
 | 
						|
    // so move I up to NewI. Slide [NewI;I) down one position.
 | 
						|
    std::copy_backward(NewI, I, std::next(I));
 | 
						|
    *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
 | 
						|
  }
 | 
						|
 | 
						|
  void updateRegMaskSlots() {
 | 
						|
    SmallVectorImpl<SlotIndex>::iterator RI =
 | 
						|
      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
 | 
						|
                       OldIdx);
 | 
						|
    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
 | 
						|
           "No RegMask at OldIdx.");
 | 
						|
    *RI = NewIdx.getRegSlot();
 | 
						|
    assert((RI == LIS.RegMaskSlots.begin() ||
 | 
						|
            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
 | 
						|
           "Cannot move regmask instruction above another call");
 | 
						|
    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
 | 
						|
            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
 | 
						|
           "Cannot move regmask instruction below another call");
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the last use of reg between NewIdx and OldIdx.
 | 
						|
  SlotIndex findLastUseBefore(unsigned Reg, unsigned LaneMask) {
 | 
						|
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
      SlotIndex LastUse = NewIdx;
 | 
						|
      for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
 | 
						|
        unsigned SubReg = MO.getSubReg();
 | 
						|
        if (SubReg != 0 && LaneMask != 0
 | 
						|
            && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
 | 
						|
          continue;
 | 
						|
 | 
						|
        const MachineInstr *MI = MO.getParent();
 | 
						|
        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
 | 
						|
        if (InstSlot > LastUse && InstSlot < OldIdx)
 | 
						|
          LastUse = InstSlot;
 | 
						|
      }
 | 
						|
      return LastUse;
 | 
						|
    }
 | 
						|
 | 
						|
    // This is a regunit interval, so scanning the use list could be very
 | 
						|
    // expensive. Scan upwards from OldIdx instead.
 | 
						|
    assert(NewIdx < OldIdx && "Expected upwards move");
 | 
						|
    SlotIndexes *Indexes = LIS.getSlotIndexes();
 | 
						|
    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
 | 
						|
 | 
						|
    // OldIdx may not correspond to an instruction any longer, so set MII to
 | 
						|
    // point to the next instruction after OldIdx, or MBB->end().
 | 
						|
    MachineBasicBlock::iterator MII = MBB->end();
 | 
						|
    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
 | 
						|
                           Indexes->getNextNonNullIndex(OldIdx)))
 | 
						|
      if (MI->getParent() == MBB)
 | 
						|
        MII = MI;
 | 
						|
 | 
						|
    MachineBasicBlock::iterator Begin = MBB->begin();
 | 
						|
    while (MII != Begin) {
 | 
						|
      if ((--MII)->isDebugValue())
 | 
						|
        continue;
 | 
						|
      SlotIndex Idx = Indexes->getInstructionIndex(MII);
 | 
						|
 | 
						|
      // Stop searching when NewIdx is reached.
 | 
						|
      if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
 | 
						|
        return NewIdx;
 | 
						|
 | 
						|
      // Check if MII uses Reg.
 | 
						|
      for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
 | 
						|
        if (MO->isReg() &&
 | 
						|
            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
 | 
						|
            TRI.hasRegUnit(MO->getReg(), Reg))
 | 
						|
          return Idx;
 | 
						|
    }
 | 
						|
    // Didn't reach NewIdx. It must be the first instruction in the block.
 | 
						|
    return NewIdx;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
 | 
						|
  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
 | 
						|
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
 | 
						|
  Indexes->removeMachineInstrFromMaps(MI);
 | 
						|
  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
 | 
						|
  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
 | 
						|
         OldIndex < getMBBEndIdx(MI->getParent()) &&
 | 
						|
         "Cannot handle moves across basic block boundaries.");
 | 
						|
 | 
						|
  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
 | 
						|
  HME.updateAllRanges(MI);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
 | 
						|
                                         MachineInstr* BundleStart,
 | 
						|
                                         bool UpdateFlags) {
 | 
						|
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
 | 
						|
  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
 | 
						|
  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
 | 
						|
  HME.updateAllRanges(MI);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
 | 
						|
                                        const MachineBasicBlock::iterator End,
 | 
						|
                                        const SlotIndex endIdx,
 | 
						|
                                        LiveRange &LR, const unsigned Reg,
 | 
						|
                                        const unsigned LaneMask) {
 | 
						|
  LiveInterval::iterator LII = LR.find(endIdx);
 | 
						|
  SlotIndex lastUseIdx;
 | 
						|
  if (LII != LR.end() && LII->start < endIdx)
 | 
						|
    lastUseIdx = LII->end;
 | 
						|
  else
 | 
						|
    --LII;
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = End; I != Begin;) {
 | 
						|
    --I;
 | 
						|
    MachineInstr *MI = I;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SlotIndex instrIdx = getInstructionIndex(MI);
 | 
						|
    bool isStartValid = getInstructionFromIndex(LII->start);
 | 
						|
    bool isEndValid = getInstructionFromIndex(LII->end);
 | 
						|
 | 
						|
    // FIXME: This doesn't currently handle early-clobber or multiple removed
 | 
						|
    // defs inside of the region to repair.
 | 
						|
    for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | 
						|
         OE = MI->operands_end(); OI != OE; ++OI) {
 | 
						|
      const MachineOperand &MO = *OI;
 | 
						|
      if (!MO.isReg() || MO.getReg() != Reg)
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned SubReg = MO.getSubReg();
 | 
						|
      unsigned Mask = TRI->getSubRegIndexLaneMask(SubReg);
 | 
						|
      if ((Mask & LaneMask) == 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (MO.isDef()) {
 | 
						|
        if (!isStartValid) {
 | 
						|
          if (LII->end.isDead()) {
 | 
						|
            SlotIndex prevStart;
 | 
						|
            if (LII != LR.begin())
 | 
						|
              prevStart = std::prev(LII)->start;
 | 
						|
 | 
						|
            // FIXME: This could be more efficient if there was a
 | 
						|
            // removeSegment method that returned an iterator.
 | 
						|
            LR.removeSegment(*LII, true);
 | 
						|
            if (prevStart.isValid())
 | 
						|
              LII = LR.find(prevStart);
 | 
						|
            else
 | 
						|
              LII = LR.begin();
 | 
						|
          } else {
 | 
						|
            LII->start = instrIdx.getRegSlot();
 | 
						|
            LII->valno->def = instrIdx.getRegSlot();
 | 
						|
            if (MO.getSubReg() && !MO.isUndef())
 | 
						|
              lastUseIdx = instrIdx.getRegSlot();
 | 
						|
            else
 | 
						|
              lastUseIdx = SlotIndex();
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!lastUseIdx.isValid()) {
 | 
						|
          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
 | 
						|
          LiveRange::Segment S(instrIdx.getRegSlot(),
 | 
						|
                               instrIdx.getDeadSlot(), VNI);
 | 
						|
          LII = LR.addSegment(S);
 | 
						|
        } else if (LII->start != instrIdx.getRegSlot()) {
 | 
						|
          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
 | 
						|
          LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
 | 
						|
          LII = LR.addSegment(S);
 | 
						|
        }
 | 
						|
 | 
						|
        if (MO.getSubReg() && !MO.isUndef())
 | 
						|
          lastUseIdx = instrIdx.getRegSlot();
 | 
						|
        else
 | 
						|
          lastUseIdx = SlotIndex();
 | 
						|
      } else if (MO.isUse()) {
 | 
						|
        // FIXME: This should probably be handled outside of this branch,
 | 
						|
        // either as part of the def case (for defs inside of the region) or
 | 
						|
        // after the loop over the region.
 | 
						|
        if (!isEndValid && !LII->end.isBlock())
 | 
						|
          LII->end = instrIdx.getRegSlot();
 | 
						|
        if (!lastUseIdx.isValid())
 | 
						|
          lastUseIdx = instrIdx.getRegSlot();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator Begin,
 | 
						|
                                      MachineBasicBlock::iterator End,
 | 
						|
                                      ArrayRef<unsigned> OrigRegs) {
 | 
						|
  // Find anchor points, which are at the beginning/end of blocks or at
 | 
						|
  // instructions that already have indexes.
 | 
						|
  while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
 | 
						|
    --Begin;
 | 
						|
  while (End != MBB->end() && !Indexes->hasIndex(End))
 | 
						|
    ++End;
 | 
						|
 | 
						|
  SlotIndex endIdx;
 | 
						|
  if (End == MBB->end())
 | 
						|
    endIdx = getMBBEndIdx(MBB).getPrevSlot();
 | 
						|
  else
 | 
						|
    endIdx = getInstructionIndex(End);
 | 
						|
 | 
						|
  Indexes->repairIndexesInRange(MBB, Begin, End);
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = End; I != Begin;) {
 | 
						|
    --I;
 | 
						|
    MachineInstr *MI = I;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
    for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
 | 
						|
         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
 | 
						|
      if (MOI->isReg() &&
 | 
						|
          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
 | 
						|
          !hasInterval(MOI->getReg())) {
 | 
						|
        createAndComputeVirtRegInterval(MOI->getReg());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = OrigRegs[i];
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    LiveInterval &LI = getInterval(Reg);
 | 
						|
    // FIXME: Should we support undefs that gain defs?
 | 
						|
    if (!LI.hasAtLeastOneValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (LiveInterval::SubRange &S : LI.subranges()) {
 | 
						|
      repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
 | 
						|
    }
 | 
						|
    repairOldRegInRange(Begin, End, endIdx, LI, Reg);
 | 
						|
  }
 | 
						|
}
 |