forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			847 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			847 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This family of functions perform manipulations on basic blocks, and
 | 
						|
// instructions contained within basic blocks.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// DeleteDeadBlock - Delete the specified block, which must have no
 | 
						|
/// predecessors.
 | 
						|
void llvm::DeleteDeadBlock(BasicBlock *BB) {
 | 
						|
  assert((pred_begin(BB) == pred_end(BB) ||
 | 
						|
         // Can delete self loop.
 | 
						|
         BB->getSinglePredecessor() == BB) && "Block is not dead!");
 | 
						|
  TerminatorInst *BBTerm = BB->getTerminator();
 | 
						|
 | 
						|
  // Loop through all of our successors and make sure they know that one
 | 
						|
  // of their predecessors is going away.
 | 
						|
  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
 | 
						|
    BBTerm->getSuccessor(i)->removePredecessor(BB);
 | 
						|
 | 
						|
  // Zap all the instructions in the block.
 | 
						|
  while (!BB->empty()) {
 | 
						|
    Instruction &I = BB->back();
 | 
						|
    // If this instruction is used, replace uses with an arbitrary value.
 | 
						|
    // Because control flow can't get here, we don't care what we replace the
 | 
						|
    // value with.  Note that since this block is unreachable, and all values
 | 
						|
    // contained within it must dominate their uses, that all uses will
 | 
						|
    // eventually be removed (they are themselves dead).
 | 
						|
    if (!I.use_empty())
 | 
						|
      I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | 
						|
    BB->getInstList().pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // Zap the block!
 | 
						|
  BB->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
 | 
						|
/// any single-entry PHI nodes in it, fold them away.  This handles the case
 | 
						|
/// when all entries to the PHI nodes in a block are guaranteed equal, such as
 | 
						|
/// when the block has exactly one predecessor.
 | 
						|
void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
 | 
						|
  if (!isa<PHINode>(BB->begin())) return;
 | 
						|
 | 
						|
  AliasAnalysis *AA = nullptr;
 | 
						|
  MemoryDependenceAnalysis *MemDep = nullptr;
 | 
						|
  if (P) {
 | 
						|
    AA = P->getAnalysisIfAvailable<AliasAnalysis>();
 | 
						|
    MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
 | 
						|
  }
 | 
						|
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    if (PN->getIncomingValue(0) != PN)
 | 
						|
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | 
						|
    else
 | 
						|
      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
 | 
						|
 | 
						|
    if (MemDep)
 | 
						|
      MemDep->removeInstruction(PN);  // Memdep updates AA itself.
 | 
						|
    else if (AA && isa<PointerType>(PN->getType()))
 | 
						|
      AA->deleteValue(PN);
 | 
						|
 | 
						|
    PN->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
 | 
						|
/// is dead. Also recursively delete any operands that become dead as
 | 
						|
/// a result. This includes tracing the def-use list from the PHI to see if
 | 
						|
/// it is ultimately unused or if it reaches an unused cycle.
 | 
						|
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
 | 
						|
  // Recursively deleting a PHI may cause multiple PHIs to be deleted
 | 
						|
  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
 | 
						|
  SmallVector<WeakVH, 8> PHIs;
 | 
						|
  for (BasicBlock::iterator I = BB->begin();
 | 
						|
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | 
						|
    PHIs.push_back(PN);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | 
						|
    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
 | 
						|
      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
 | 
						|
/// if possible.  The return value indicates success or failure.
 | 
						|
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
 | 
						|
  // Don't merge away blocks who have their address taken.
 | 
						|
  if (BB->hasAddressTaken()) return false;
 | 
						|
 | 
						|
  // Can't merge if there are multiple predecessors, or no predecessors.
 | 
						|
  BasicBlock *PredBB = BB->getUniquePredecessor();
 | 
						|
  if (!PredBB) return false;
 | 
						|
 | 
						|
  // Don't break self-loops.
 | 
						|
  if (PredBB == BB) return false;
 | 
						|
  // Don't break invokes.
 | 
						|
  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
 | 
						|
 | 
						|
  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
 | 
						|
  BasicBlock *OnlySucc = BB;
 | 
						|
  for (; SI != SE; ++SI)
 | 
						|
    if (*SI != OnlySucc) {
 | 
						|
      OnlySucc = nullptr;     // There are multiple distinct successors!
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Can't merge if there are multiple successors.
 | 
						|
  if (!OnlySucc) return false;
 | 
						|
 | 
						|
  // Can't merge if there is PHI loop.
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        if (PN->getIncomingValue(i) == PN)
 | 
						|
          return false;
 | 
						|
    } else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Begin by getting rid of unneeded PHIs.
 | 
						|
  if (isa<PHINode>(BB->front()))
 | 
						|
    FoldSingleEntryPHINodes(BB, P);
 | 
						|
 | 
						|
  // Delete the unconditional branch from the predecessor...
 | 
						|
  PredBB->getInstList().pop_back();
 | 
						|
 | 
						|
  // Make all PHI nodes that referred to BB now refer to Pred as their
 | 
						|
  // source...
 | 
						|
  BB->replaceAllUsesWith(PredBB);
 | 
						|
 | 
						|
  // Move all definitions in the successor to the predecessor...
 | 
						|
  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
 | 
						|
 | 
						|
  // Inherit predecessors name if it exists.
 | 
						|
  if (!PredBB->hasName())
 | 
						|
    PredBB->takeName(BB);
 | 
						|
 | 
						|
  // Finally, erase the old block and update dominator info.
 | 
						|
  if (P) {
 | 
						|
    if (DominatorTreeWrapperPass *DTWP =
 | 
						|
            P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
 | 
						|
      DominatorTree &DT = DTWP->getDomTree();
 | 
						|
      if (DomTreeNode *DTN = DT.getNode(BB)) {
 | 
						|
        DomTreeNode *PredDTN = DT.getNode(PredBB);
 | 
						|
        SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
 | 
						|
        for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
 | 
						|
             DE = Children.end(); DI != DE; ++DI)
 | 
						|
          DT.changeImmediateDominator(*DI, PredDTN);
 | 
						|
 | 
						|
        DT.eraseNode(BB);
 | 
						|
      }
 | 
						|
 | 
						|
      if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
 | 
						|
        LI->removeBlock(BB);
 | 
						|
 | 
						|
      if (MemoryDependenceAnalysis *MD =
 | 
						|
            P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
 | 
						|
        MD->invalidateCachedPredecessors();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  BB->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
 | 
						|
/// with a value, then remove and delete the original instruction.
 | 
						|
///
 | 
						|
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
 | 
						|
                                BasicBlock::iterator &BI, Value *V) {
 | 
						|
  Instruction &I = *BI;
 | 
						|
  // Replaces all of the uses of the instruction with uses of the value
 | 
						|
  I.replaceAllUsesWith(V);
 | 
						|
 | 
						|
  // Make sure to propagate a name if there is one already.
 | 
						|
  if (I.hasName() && !V->hasName())
 | 
						|
    V->takeName(&I);
 | 
						|
 | 
						|
  // Delete the unnecessary instruction now...
 | 
						|
  BI = BIL.erase(BI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ReplaceInstWithInst - Replace the instruction specified by BI with the
 | 
						|
/// instruction specified by I.  The original instruction is deleted and BI is
 | 
						|
/// updated to point to the new instruction.
 | 
						|
///
 | 
						|
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
 | 
						|
                               BasicBlock::iterator &BI, Instruction *I) {
 | 
						|
  assert(I->getParent() == nullptr &&
 | 
						|
         "ReplaceInstWithInst: Instruction already inserted into basic block!");
 | 
						|
 | 
						|
  // Insert the new instruction into the basic block...
 | 
						|
  BasicBlock::iterator New = BIL.insert(BI, I);
 | 
						|
 | 
						|
  // Replace all uses of the old instruction, and delete it.
 | 
						|
  ReplaceInstWithValue(BIL, BI, I);
 | 
						|
 | 
						|
  // Move BI back to point to the newly inserted instruction
 | 
						|
  BI = New;
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceInstWithInst - Replace the instruction specified by From with the
 | 
						|
/// instruction specified by To.
 | 
						|
///
 | 
						|
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
 | 
						|
  BasicBlock::iterator BI(From);
 | 
						|
  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
 | 
						|
}
 | 
						|
 | 
						|
/// SplitEdge -  Split the edge connecting specified block. Pass P must
 | 
						|
/// not be NULL.
 | 
						|
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
 | 
						|
  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
 | 
						|
 | 
						|
  // If this is a critical edge, let SplitCriticalEdge do it.
 | 
						|
  TerminatorInst *LatchTerm = BB->getTerminator();
 | 
						|
  if (SplitCriticalEdge(LatchTerm, SuccNum, P))
 | 
						|
    return LatchTerm->getSuccessor(SuccNum);
 | 
						|
 | 
						|
  // If the edge isn't critical, then BB has a single successor or Succ has a
 | 
						|
  // single pred.  Split the block.
 | 
						|
  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
 | 
						|
    // If the successor only has a single pred, split the top of the successor
 | 
						|
    // block.
 | 
						|
    assert(SP == BB && "CFG broken");
 | 
						|
    SP = nullptr;
 | 
						|
    return SplitBlock(Succ, Succ->begin(), P);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if BB has a single successor, split it at the bottom of the
 | 
						|
  // block.
 | 
						|
  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
         "Should have a single succ!");
 | 
						|
  return SplitBlock(BB, BB->getTerminator(), P);
 | 
						|
}
 | 
						|
 | 
						|
/// SplitBlock - Split the specified block at the specified instruction - every
 | 
						|
/// thing before SplitPt stays in Old and everything starting with SplitPt moves
 | 
						|
/// to a new block.  The two blocks are joined by an unconditional branch and
 | 
						|
/// the loop info is updated.
 | 
						|
///
 | 
						|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
 | 
						|
  BasicBlock::iterator SplitIt = SplitPt;
 | 
						|
  while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
 | 
						|
    ++SplitIt;
 | 
						|
  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
 | 
						|
 | 
						|
  // The new block lives in whichever loop the old one did. This preserves
 | 
						|
  // LCSSA as well, because we force the split point to be after any PHI nodes.
 | 
						|
  if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
 | 
						|
    if (Loop *L = LI->getLoopFor(Old))
 | 
						|
      L->addBasicBlockToLoop(New, LI->getBase());
 | 
						|
 | 
						|
  if (DominatorTreeWrapperPass *DTWP =
 | 
						|
          P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
 | 
						|
    DominatorTree &DT = DTWP->getDomTree();
 | 
						|
    // Old dominates New. New node dominates all other nodes dominated by Old.
 | 
						|
    if (DomTreeNode *OldNode = DT.getNode(Old)) {
 | 
						|
      std::vector<DomTreeNode *> Children;
 | 
						|
      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
 | 
						|
           I != E; ++I)
 | 
						|
        Children.push_back(*I);
 | 
						|
 | 
						|
      DomTreeNode *NewNode = DT.addNewBlock(New, Old);
 | 
						|
      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
 | 
						|
             E = Children.end(); I != E; ++I)
 | 
						|
        DT.changeImmediateDominator(*I, NewNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
 | 
						|
/// analysis information.
 | 
						|
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
 | 
						|
                                      ArrayRef<BasicBlock *> Preds,
 | 
						|
                                      Pass *P, bool &HasLoopExit) {
 | 
						|
  if (!P) return;
 | 
						|
 | 
						|
  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
 | 
						|
  Loop *L = LI ? LI->getLoopFor(OldBB) : nullptr;
 | 
						|
 | 
						|
  // If we need to preserve loop analyses, collect some information about how
 | 
						|
  // this split will affect loops.
 | 
						|
  bool IsLoopEntry = !!L;
 | 
						|
  bool SplitMakesNewLoopHeader = false;
 | 
						|
  if (LI) {
 | 
						|
    bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
 | 
						|
    for (ArrayRef<BasicBlock*>::iterator
 | 
						|
           i = Preds.begin(), e = Preds.end(); i != e; ++i) {
 | 
						|
      BasicBlock *Pred = *i;
 | 
						|
 | 
						|
      // If we need to preserve LCSSA, determine if any of the preds is a loop
 | 
						|
      // exit.
 | 
						|
      if (PreserveLCSSA)
 | 
						|
        if (Loop *PL = LI->getLoopFor(Pred))
 | 
						|
          if (!PL->contains(OldBB))
 | 
						|
            HasLoopExit = true;
 | 
						|
 | 
						|
      // If we need to preserve LoopInfo, note whether any of the preds crosses
 | 
						|
      // an interesting loop boundary.
 | 
						|
      if (!L) continue;
 | 
						|
      if (L->contains(Pred))
 | 
						|
        IsLoopEntry = false;
 | 
						|
      else
 | 
						|
        SplitMakesNewLoopHeader = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update dominator tree if available.
 | 
						|
  if (DominatorTreeWrapperPass *DTWP =
 | 
						|
          P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
 | 
						|
    DTWP->getDomTree().splitBlock(NewBB);
 | 
						|
 | 
						|
  if (!L) return;
 | 
						|
 | 
						|
  if (IsLoopEntry) {
 | 
						|
    // Add the new block to the nearest enclosing loop (and not an adjacent
 | 
						|
    // loop). To find this, examine each of the predecessors and determine which
 | 
						|
    // loops enclose them, and select the most-nested loop which contains the
 | 
						|
    // loop containing the block being split.
 | 
						|
    Loop *InnermostPredLoop = nullptr;
 | 
						|
    for (ArrayRef<BasicBlock*>::iterator
 | 
						|
           i = Preds.begin(), e = Preds.end(); i != e; ++i) {
 | 
						|
      BasicBlock *Pred = *i;
 | 
						|
      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
 | 
						|
        // Seek a loop which actually contains the block being split (to avoid
 | 
						|
        // adjacent loops).
 | 
						|
        while (PredLoop && !PredLoop->contains(OldBB))
 | 
						|
          PredLoop = PredLoop->getParentLoop();
 | 
						|
 | 
						|
        // Select the most-nested of these loops which contains the block.
 | 
						|
        if (PredLoop && PredLoop->contains(OldBB) &&
 | 
						|
            (!InnermostPredLoop ||
 | 
						|
             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
 | 
						|
          InnermostPredLoop = PredLoop;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (InnermostPredLoop)
 | 
						|
      InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
  } else {
 | 
						|
    L->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
    if (SplitMakesNewLoopHeader)
 | 
						|
      L->moveToHeader(NewBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
 | 
						|
/// from NewBB. This also updates AliasAnalysis, if available.
 | 
						|
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
 | 
						|
                           ArrayRef<BasicBlock*> Preds, BranchInst *BI,
 | 
						|
                           Pass *P, bool HasLoopExit) {
 | 
						|
  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
 | 
						|
  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : nullptr;
 | 
						|
  SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
 | 
						|
  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
 | 
						|
    PHINode *PN = cast<PHINode>(I++);
 | 
						|
 | 
						|
    // Check to see if all of the values coming in are the same.  If so, we
 | 
						|
    // don't need to create a new PHI node, unless it's needed for LCSSA.
 | 
						|
    Value *InVal = nullptr;
 | 
						|
    if (!HasLoopExit) {
 | 
						|
      InVal = PN->getIncomingValueForBlock(Preds[0]);
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        if (!PredSet.count(PN->getIncomingBlock(i)))
 | 
						|
          continue;
 | 
						|
        if (!InVal)
 | 
						|
          InVal = PN->getIncomingValue(i);
 | 
						|
        else if (InVal != PN->getIncomingValue(i)) {
 | 
						|
          InVal = nullptr;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (InVal) {
 | 
						|
      // If all incoming values for the new PHI would be the same, just don't
 | 
						|
      // make a new PHI.  Instead, just remove the incoming values from the old
 | 
						|
      // PHI.
 | 
						|
 | 
						|
      // NOTE! This loop walks backwards for a reason! First off, this minimizes
 | 
						|
      // the cost of removal if we end up removing a large number of values, and
 | 
						|
      // second off, this ensures that the indices for the incoming values
 | 
						|
      // aren't invalidated when we remove one.
 | 
						|
      for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
 | 
						|
        if (PredSet.count(PN->getIncomingBlock(i)))
 | 
						|
          PN->removeIncomingValue(i, false);
 | 
						|
 | 
						|
      // Add an incoming value to the PHI node in the loop for the preheader
 | 
						|
      // edge.
 | 
						|
      PN->addIncoming(InVal, NewBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the values coming into the block are not the same, we need a new
 | 
						|
    // PHI.
 | 
						|
    // Create the new PHI node, insert it into NewBB at the end of the block
 | 
						|
    PHINode *NewPHI =
 | 
						|
        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
 | 
						|
    if (AA)
 | 
						|
      AA->copyValue(PN, NewPHI);
 | 
						|
 | 
						|
    // NOTE! This loop walks backwards for a reason! First off, this minimizes
 | 
						|
    // the cost of removal if we end up removing a large number of values, and
 | 
						|
    // second off, this ensures that the indices for the incoming values aren't
 | 
						|
    // invalidated when we remove one.
 | 
						|
    for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
 | 
						|
      BasicBlock *IncomingBB = PN->getIncomingBlock(i);
 | 
						|
      if (PredSet.count(IncomingBB)) {
 | 
						|
        Value *V = PN->removeIncomingValue(i, false);
 | 
						|
        NewPHI->addIncoming(V, IncomingBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    PN->addIncoming(NewPHI, NewBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// SplitBlockPredecessors - This method transforms BB by introducing a new
 | 
						|
/// basic block into the function, and moving some of the predecessors of BB to
 | 
						|
/// be predecessors of the new block.  The new predecessors are indicated by the
 | 
						|
/// Preds array, which has NumPreds elements in it.  The new block is given a
 | 
						|
/// suffix of 'Suffix'.
 | 
						|
///
 | 
						|
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
 | 
						|
/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
 | 
						|
/// preserve LoopSimplify (because it's complicated to handle the case where one
 | 
						|
/// of the edges being split is an exit of a loop with other exits).
 | 
						|
///
 | 
						|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
 | 
						|
                                         ArrayRef<BasicBlock*> Preds,
 | 
						|
                                         const char *Suffix, Pass *P) {
 | 
						|
  // Create new basic block, insert right before the original block.
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
 | 
						|
                                         BB->getParent(), BB);
 | 
						|
 | 
						|
  // The new block unconditionally branches to the old block.
 | 
						|
  BranchInst *BI = BranchInst::Create(BB, NewBB);
 | 
						|
 | 
						|
  // Move the edges from Preds to point to NewBB instead of BB.
 | 
						|
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | 
						|
    // This is slightly more strict than necessary; the minimum requirement
 | 
						|
    // is that there be no more than one indirectbr branching to BB. And
 | 
						|
    // all BlockAddress uses would need to be updated.
 | 
						|
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | 
						|
           "Cannot split an edge from an IndirectBrInst");
 | 
						|
    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
 | 
						|
  // node becomes an incoming value for BB's phi node.  However, if the Preds
 | 
						|
  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
 | 
						|
  // account for the newly created predecessor.
 | 
						|
  if (Preds.size() == 0) {
 | 
						|
    // Insert dummy values as the incoming value.
 | 
						|
    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
 | 
						|
      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
 | 
						|
    return NewBB;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | 
						|
  bool HasLoopExit = false;
 | 
						|
  UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
 | 
						|
 | 
						|
  // Update the PHI nodes in BB with the values coming from NewBB.
 | 
						|
  UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
/// SplitLandingPadPredecessors - This method transforms the landing pad,
 | 
						|
/// OrigBB, by introducing two new basic blocks into the function. One of those
 | 
						|
/// new basic blocks gets the predecessors listed in Preds. The other basic
 | 
						|
/// block gets the remaining predecessors of OrigBB. The landingpad instruction
 | 
						|
/// OrigBB is clone into both of the new basic blocks. The new blocks are given
 | 
						|
/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
 | 
						|
///
 | 
						|
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
 | 
						|
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
 | 
						|
/// it does not preserve LoopSimplify (because it's complicated to handle the
 | 
						|
/// case where one of the edges being split is an exit of a loop with other
 | 
						|
/// exits).
 | 
						|
///
 | 
						|
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
 | 
						|
                                       ArrayRef<BasicBlock*> Preds,
 | 
						|
                                       const char *Suffix1, const char *Suffix2,
 | 
						|
                                       Pass *P,
 | 
						|
                                       SmallVectorImpl<BasicBlock*> &NewBBs) {
 | 
						|
  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
 | 
						|
 | 
						|
  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
 | 
						|
  // it right before the original block.
 | 
						|
  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
 | 
						|
                                          OrigBB->getName() + Suffix1,
 | 
						|
                                          OrigBB->getParent(), OrigBB);
 | 
						|
  NewBBs.push_back(NewBB1);
 | 
						|
 | 
						|
  // The new block unconditionally branches to the old block.
 | 
						|
  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
 | 
						|
 | 
						|
  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
 | 
						|
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | 
						|
    // This is slightly more strict than necessary; the minimum requirement
 | 
						|
    // is that there be no more than one indirectbr branching to BB. And
 | 
						|
    // all BlockAddress uses would need to be updated.
 | 
						|
    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
 | 
						|
           "Cannot split an edge from an IndirectBrInst");
 | 
						|
    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | 
						|
  bool HasLoopExit = false;
 | 
						|
  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
 | 
						|
 | 
						|
  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
 | 
						|
  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
 | 
						|
 | 
						|
  // Move the remaining edges from OrigBB to point to NewBB2.
 | 
						|
  SmallVector<BasicBlock*, 8> NewBB2Preds;
 | 
						|
  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
 | 
						|
       i != e; ) {
 | 
						|
    BasicBlock *Pred = *i++;
 | 
						|
    if (Pred == NewBB1) continue;
 | 
						|
    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
 | 
						|
           "Cannot split an edge from an IndirectBrInst");
 | 
						|
    NewBB2Preds.push_back(Pred);
 | 
						|
    e = pred_end(OrigBB);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *NewBB2 = nullptr;
 | 
						|
  if (!NewBB2Preds.empty()) {
 | 
						|
    // Create another basic block for the rest of OrigBB's predecessors.
 | 
						|
    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
 | 
						|
                                OrigBB->getName() + Suffix2,
 | 
						|
                                OrigBB->getParent(), OrigBB);
 | 
						|
    NewBBs.push_back(NewBB2);
 | 
						|
 | 
						|
    // The new block unconditionally branches to the old block.
 | 
						|
    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
 | 
						|
 | 
						|
    // Move the remaining edges from OrigBB to point to NewBB2.
 | 
						|
    for (SmallVectorImpl<BasicBlock*>::iterator
 | 
						|
           i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
 | 
						|
      (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
 | 
						|
 | 
						|
    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
 | 
						|
    HasLoopExit = false;
 | 
						|
    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
 | 
						|
 | 
						|
    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
 | 
						|
    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
 | 
						|
  }
 | 
						|
 | 
						|
  LandingPadInst *LPad = OrigBB->getLandingPadInst();
 | 
						|
  Instruction *Clone1 = LPad->clone();
 | 
						|
  Clone1->setName(Twine("lpad") + Suffix1);
 | 
						|
  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
 | 
						|
 | 
						|
  if (NewBB2) {
 | 
						|
    Instruction *Clone2 = LPad->clone();
 | 
						|
    Clone2->setName(Twine("lpad") + Suffix2);
 | 
						|
    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
 | 
						|
 | 
						|
    // Create a PHI node for the two cloned landingpad instructions.
 | 
						|
    PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
 | 
						|
    PN->addIncoming(Clone1, NewBB1);
 | 
						|
    PN->addIncoming(Clone2, NewBB2);
 | 
						|
    LPad->replaceAllUsesWith(PN);
 | 
						|
    LPad->eraseFromParent();
 | 
						|
  } else {
 | 
						|
    // There is no second clone. Just replace the landing pad with the first
 | 
						|
    // clone.
 | 
						|
    LPad->replaceAllUsesWith(Clone1);
 | 
						|
    LPad->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FoldReturnIntoUncondBranch - This method duplicates the specified return
 | 
						|
/// instruction into a predecessor which ends in an unconditional branch. If
 | 
						|
/// the return instruction returns a value defined by a PHI, propagate the
 | 
						|
/// right value into the return. It returns the new return instruction in the
 | 
						|
/// predecessor.
 | 
						|
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
 | 
						|
                                             BasicBlock *Pred) {
 | 
						|
  Instruction *UncondBranch = Pred->getTerminator();
 | 
						|
  // Clone the return and add it to the end of the predecessor.
 | 
						|
  Instruction *NewRet = RI->clone();
 | 
						|
  Pred->getInstList().push_back(NewRet);
 | 
						|
 | 
						|
  // If the return instruction returns a value, and if the value was a
 | 
						|
  // PHI node in "BB", propagate the right value into the return.
 | 
						|
  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    Value *V = *i;
 | 
						|
    Instruction *NewBC = nullptr;
 | 
						|
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
 | 
						|
      // Return value might be bitcasted. Clone and insert it before the
 | 
						|
      // return instruction.
 | 
						|
      V = BCI->getOperand(0);
 | 
						|
      NewBC = BCI->clone();
 | 
						|
      Pred->getInstList().insert(NewRet, NewBC);
 | 
						|
      *i = NewBC;
 | 
						|
    }
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
      if (PN->getParent() == BB) {
 | 
						|
        if (NewBC)
 | 
						|
          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
 | 
						|
        else
 | 
						|
          *i = PN->getIncomingValueForBlock(Pred);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Update any PHI nodes in the returning block to realize that we no
 | 
						|
  // longer branch to them.
 | 
						|
  BB->removePredecessor(Pred);
 | 
						|
  UncondBranch->eraseFromParent();
 | 
						|
  return cast<ReturnInst>(NewRet);
 | 
						|
}
 | 
						|
 | 
						|
/// SplitBlockAndInsertIfThen - Split the containing block at the
 | 
						|
/// specified instruction - everything before and including SplitBefore stays
 | 
						|
/// in the old basic block, and everything after SplitBefore is moved to a
 | 
						|
/// new block. The two blocks are connected by a conditional branch
 | 
						|
/// (with value of Cmp being the condition).
 | 
						|
/// Before:
 | 
						|
///   Head
 | 
						|
///   SplitBefore
 | 
						|
///   Tail
 | 
						|
/// After:
 | 
						|
///   Head
 | 
						|
///   if (Cond)
 | 
						|
///     ThenBlock
 | 
						|
///   SplitBefore
 | 
						|
///   Tail
 | 
						|
///
 | 
						|
/// If Unreachable is true, then ThenBlock ends with
 | 
						|
/// UnreachableInst, otherwise it branches to Tail.
 | 
						|
/// Returns the NewBasicBlock's terminator.
 | 
						|
 | 
						|
TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
 | 
						|
                                                Instruction *SplitBefore,
 | 
						|
                                                bool Unreachable,
 | 
						|
                                                MDNode *BranchWeights,
 | 
						|
                                                DominatorTree *DT) {
 | 
						|
  BasicBlock *Head = SplitBefore->getParent();
 | 
						|
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
 | 
						|
  TerminatorInst *HeadOldTerm = Head->getTerminator();
 | 
						|
  LLVMContext &C = Head->getContext();
 | 
						|
  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | 
						|
  TerminatorInst *CheckTerm;
 | 
						|
  if (Unreachable)
 | 
						|
    CheckTerm = new UnreachableInst(C, ThenBlock);
 | 
						|
  else
 | 
						|
    CheckTerm = BranchInst::Create(Tail, ThenBlock);
 | 
						|
  CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  BranchInst *HeadNewTerm =
 | 
						|
    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
 | 
						|
  HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
 | 
						|
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
 | 
						|
 | 
						|
  if (DT) {
 | 
						|
    if (DomTreeNode *OldNode = DT->getNode(Head)) {
 | 
						|
      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
 | 
						|
 | 
						|
      DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
 | 
						|
      for (auto Child : Children)
 | 
						|
        DT->changeImmediateDominator(Child, NewNode);
 | 
						|
 | 
						|
      // Head dominates ThenBlock.
 | 
						|
      DT->addNewBlock(ThenBlock, Head);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return CheckTerm;
 | 
						|
}
 | 
						|
 | 
						|
/// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
 | 
						|
/// but also creates the ElseBlock.
 | 
						|
/// Before:
 | 
						|
///   Head
 | 
						|
///   SplitBefore
 | 
						|
///   Tail
 | 
						|
/// After:
 | 
						|
///   Head
 | 
						|
///   if (Cond)
 | 
						|
///     ThenBlock
 | 
						|
///   else
 | 
						|
///     ElseBlock
 | 
						|
///   SplitBefore
 | 
						|
///   Tail
 | 
						|
void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
 | 
						|
                                         TerminatorInst **ThenTerm,
 | 
						|
                                         TerminatorInst **ElseTerm,
 | 
						|
                                         MDNode *BranchWeights) {
 | 
						|
  BasicBlock *Head = SplitBefore->getParent();
 | 
						|
  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
 | 
						|
  TerminatorInst *HeadOldTerm = Head->getTerminator();
 | 
						|
  LLVMContext &C = Head->getContext();
 | 
						|
  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | 
						|
  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
 | 
						|
  *ThenTerm = BranchInst::Create(Tail, ThenBlock);
 | 
						|
  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  *ElseTerm = BranchInst::Create(Tail, ElseBlock);
 | 
						|
  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  BranchInst *HeadNewTerm =
 | 
						|
    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
 | 
						|
  HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
 | 
						|
  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
 | 
						|
  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetIfCondition - Given a basic block (BB) with two predecessors,
 | 
						|
/// check to see if the merge at this block is due
 | 
						|
/// to an "if condition".  If so, return the boolean condition that determines
 | 
						|
/// which entry into BB will be taken.  Also, return by references the block
 | 
						|
/// that will be entered from if the condition is true, and the block that will
 | 
						|
/// be entered if the condition is false.
 | 
						|
///
 | 
						|
/// This does no checking to see if the true/false blocks have large or unsavory
 | 
						|
/// instructions in them.
 | 
						|
Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
 | 
						|
                             BasicBlock *&IfFalse) {
 | 
						|
  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
 | 
						|
  BasicBlock *Pred1 = nullptr;
 | 
						|
  BasicBlock *Pred2 = nullptr;
 | 
						|
 | 
						|
  if (SomePHI) {
 | 
						|
    if (SomePHI->getNumIncomingValues() != 2)
 | 
						|
      return nullptr;
 | 
						|
    Pred1 = SomePHI->getIncomingBlock(0);
 | 
						|
    Pred2 = SomePHI->getIncomingBlock(1);
 | 
						|
  } else {
 | 
						|
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
    if (PI == PE) // No predecessor
 | 
						|
      return nullptr;
 | 
						|
    Pred1 = *PI++;
 | 
						|
    if (PI == PE) // Only one predecessor
 | 
						|
      return nullptr;
 | 
						|
    Pred2 = *PI++;
 | 
						|
    if (PI != PE) // More than two predecessors
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // We can only handle branches.  Other control flow will be lowered to
 | 
						|
  // branches if possible anyway.
 | 
						|
  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
 | 
						|
  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
 | 
						|
  if (!Pred1Br || !Pred2Br)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | 
						|
  // either are.
 | 
						|
  if (Pred2Br->isConditional()) {
 | 
						|
    // If both branches are conditional, we don't have an "if statement".  In
 | 
						|
    // reality, we could transform this case, but since the condition will be
 | 
						|
    // required anyway, we stand no chance of eliminating it, so the xform is
 | 
						|
    // probably not profitable.
 | 
						|
    if (Pred1Br->isConditional())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    std::swap(Pred1, Pred2);
 | 
						|
    std::swap(Pred1Br, Pred2Br);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pred1Br->isConditional()) {
 | 
						|
    // The only thing we have to watch out for here is to make sure that Pred2
 | 
						|
    // doesn't have incoming edges from other blocks.  If it does, the condition
 | 
						|
    // doesn't dominate BB.
 | 
						|
    if (!Pred2->getSinglePredecessor())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If we found a conditional branch predecessor, make sure that it branches
 | 
						|
    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | 
						|
    if (Pred1Br->getSuccessor(0) == BB &&
 | 
						|
        Pred1Br->getSuccessor(1) == Pred2) {
 | 
						|
      IfTrue = Pred1;
 | 
						|
      IfFalse = Pred2;
 | 
						|
    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | 
						|
               Pred1Br->getSuccessor(1) == BB) {
 | 
						|
      IfTrue = Pred2;
 | 
						|
      IfFalse = Pred1;
 | 
						|
    } else {
 | 
						|
      // We know that one arm of the conditional goes to BB, so the other must
 | 
						|
      // go somewhere unrelated, and this must not be an "if statement".
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return Pred1Br->getCondition();
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, if we got here, both predecessors end with an unconditional branch to
 | 
						|
  // BB.  Don't panic!  If both blocks only have a single (identical)
 | 
						|
  // predecessor, and THAT is a conditional branch, then we're all ok!
 | 
						|
  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
 | 
						|
  if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Otherwise, if this is a conditional branch, then we can use it!
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
 | 
						|
  if (!BI) return nullptr;
 | 
						|
 | 
						|
  assert(BI->isConditional() && "Two successors but not conditional?");
 | 
						|
  if (BI->getSuccessor(0) == Pred1) {
 | 
						|
    IfTrue = Pred1;
 | 
						|
    IfFalse = Pred2;
 | 
						|
  } else {
 | 
						|
    IfTrue = Pred2;
 | 
						|
    IfFalse = Pred1;
 | 
						|
  }
 | 
						|
  return BI->getCondition();
 | 
						|
}
 |