forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2830 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2830 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a class to represent arbitrary precision floating
 | 
						|
// point values and provide a variety of arithmetic operations on them.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <cstring>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
 | 
						|
 | 
						|
/* Assumed in hexadecimal significand parsing, and conversion to
 | 
						|
   hexadecimal strings.  */
 | 
						|
#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
 | 
						|
COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  /* Represents floating point arithmetic semantics.  */
 | 
						|
  struct fltSemantics {
 | 
						|
    /* The largest E such that 2^E is representable; this matches the
 | 
						|
       definition of IEEE 754.  */
 | 
						|
    exponent_t maxExponent;
 | 
						|
 | 
						|
    /* The smallest E such that 2^E is a normalized number; this
 | 
						|
       matches the definition of IEEE 754.  */
 | 
						|
    exponent_t minExponent;
 | 
						|
 | 
						|
    /* Number of bits in the significand.  This includes the integer
 | 
						|
       bit.  */
 | 
						|
    unsigned int precision;
 | 
						|
 | 
						|
    /* True if arithmetic is supported.  */
 | 
						|
    unsigned int arithmeticOK;
 | 
						|
  };
 | 
						|
 | 
						|
  const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
 | 
						|
  const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
 | 
						|
  const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
 | 
						|
  const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
 | 
						|
  const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
 | 
						|
 | 
						|
  // The PowerPC format consists of two doubles.  It does not map cleanly
 | 
						|
  // onto the usual format above.  For now only storage of constants of
 | 
						|
  // this type is supported, no arithmetic.
 | 
						|
  const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
 | 
						|
 | 
						|
  /* A tight upper bound on number of parts required to hold the value
 | 
						|
     pow(5, power) is
 | 
						|
 | 
						|
       power * 815 / (351 * integerPartWidth) + 1
 | 
						|
       
 | 
						|
     However, whilst the result may require only this many parts,
 | 
						|
     because we are multiplying two values to get it, the
 | 
						|
     multiplication may require an extra part with the excess part
 | 
						|
     being zero (consider the trivial case of 1 * 1, tcFullMultiply
 | 
						|
     requires two parts to hold the single-part result).  So we add an
 | 
						|
     extra one to guarantee enough space whilst multiplying.  */
 | 
						|
  const unsigned int maxExponent = 16383;
 | 
						|
  const unsigned int maxPrecision = 113;
 | 
						|
  const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
 | 
						|
  const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
 | 
						|
                                                / (351 * integerPartWidth));
 | 
						|
}
 | 
						|
 | 
						|
/* Put a bunch of private, handy routines in an anonymous namespace.  */
 | 
						|
namespace {
 | 
						|
 | 
						|
  static inline unsigned int
 | 
						|
  partCountForBits(unsigned int bits)
 | 
						|
  {
 | 
						|
    return ((bits) + integerPartWidth - 1) / integerPartWidth;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Returns 0U-9U.  Return values >= 10U are not digits.  */
 | 
						|
  static inline unsigned int
 | 
						|
  decDigitValue(unsigned int c)
 | 
						|
  {
 | 
						|
    return c - '0';
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned int
 | 
						|
  hexDigitValue(unsigned int c)
 | 
						|
  {
 | 
						|
    unsigned int r;
 | 
						|
 | 
						|
    r = c - '0';
 | 
						|
    if(r <= 9)
 | 
						|
      return r;
 | 
						|
 | 
						|
    r = c - 'A';
 | 
						|
    if(r <= 5)
 | 
						|
      return r + 10;
 | 
						|
 | 
						|
    r = c - 'a';
 | 
						|
    if(r <= 5)
 | 
						|
      return r + 10;
 | 
						|
 | 
						|
    return -1U;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline void
 | 
						|
  assertArithmeticOK(const llvm::fltSemantics &semantics) {
 | 
						|
    assert(semantics.arithmeticOK
 | 
						|
           && "Compile-time arithmetic does not support these semantics");
 | 
						|
  }
 | 
						|
 | 
						|
  /* Return the value of a decimal exponent of the form
 | 
						|
     [+-]ddddddd.
 | 
						|
 | 
						|
     If the exponent overflows, returns a large exponent with the
 | 
						|
     appropriate sign.  */
 | 
						|
  static int
 | 
						|
  readExponent(const char *p)
 | 
						|
  {
 | 
						|
    bool isNegative;
 | 
						|
    unsigned int absExponent;
 | 
						|
    const unsigned int overlargeExponent = 24000;  /* FIXME.  */
 | 
						|
 | 
						|
    isNegative = (*p == '-');
 | 
						|
    if (*p == '-' || *p == '+')
 | 
						|
      p++;
 | 
						|
 | 
						|
    absExponent = decDigitValue(*p++);
 | 
						|
    assert (absExponent < 10U);
 | 
						|
 | 
						|
    for (;;) {
 | 
						|
      unsigned int value;
 | 
						|
 | 
						|
      value = decDigitValue(*p);
 | 
						|
      if (value >= 10U)
 | 
						|
        break;
 | 
						|
 | 
						|
      p++;
 | 
						|
      value += absExponent * 10;
 | 
						|
      if (absExponent >= overlargeExponent) {
 | 
						|
        absExponent = overlargeExponent;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      absExponent = value;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isNegative)
 | 
						|
      return -(int) absExponent;
 | 
						|
    else
 | 
						|
      return (int) absExponent;
 | 
						|
  }
 | 
						|
 | 
						|
  /* This is ugly and needs cleaning up, but I don't immediately see
 | 
						|
     how whilst remaining safe.  */
 | 
						|
  static int
 | 
						|
  totalExponent(const char *p, int exponentAdjustment)
 | 
						|
  {
 | 
						|
    int unsignedExponent;
 | 
						|
    bool negative, overflow;
 | 
						|
    int exponent;
 | 
						|
 | 
						|
    /* Move past the exponent letter and sign to the digits.  */
 | 
						|
    p++;
 | 
						|
    negative = *p == '-';
 | 
						|
    if(*p == '-' || *p == '+')
 | 
						|
      p++;
 | 
						|
 | 
						|
    unsignedExponent = 0;
 | 
						|
    overflow = false;
 | 
						|
    for(;;) {
 | 
						|
      unsigned int value;
 | 
						|
 | 
						|
      value = decDigitValue(*p);
 | 
						|
      if(value >= 10U)
 | 
						|
        break;
 | 
						|
 | 
						|
      p++;
 | 
						|
      unsignedExponent = unsignedExponent * 10 + value;
 | 
						|
      if(unsignedExponent > 65535)
 | 
						|
        overflow = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
 | 
						|
      overflow = true;
 | 
						|
 | 
						|
    if(!overflow) {
 | 
						|
      exponent = unsignedExponent;
 | 
						|
      if(negative)
 | 
						|
        exponent = -exponent;
 | 
						|
      exponent += exponentAdjustment;
 | 
						|
      if(exponent > 65535 || exponent < -65536)
 | 
						|
        overflow = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if(overflow)
 | 
						|
      exponent = negative ? -65536: 65535;
 | 
						|
 | 
						|
    return exponent;
 | 
						|
  }
 | 
						|
 | 
						|
  static const char *
 | 
						|
  skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
 | 
						|
  {
 | 
						|
    *dot = 0;
 | 
						|
    while(*p == '0')
 | 
						|
      p++;
 | 
						|
 | 
						|
    if(*p == '.') {
 | 
						|
      *dot = p++;
 | 
						|
      while(*p == '0')
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
 | 
						|
    return p;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Given a normal decimal floating point number of the form
 | 
						|
 | 
						|
       dddd.dddd[eE][+-]ddd
 | 
						|
 | 
						|
     where the decimal point and exponent are optional, fill out the
 | 
						|
     structure D.  Exponent is appropriate if the significand is
 | 
						|
     treated as an integer, and normalizedExponent if the significand
 | 
						|
     is taken to have the decimal point after a single leading
 | 
						|
     non-zero digit.
 | 
						|
 | 
						|
     If the value is zero, V->firstSigDigit points to a non-digit, and
 | 
						|
     the return exponent is zero.
 | 
						|
  */
 | 
						|
  struct decimalInfo {
 | 
						|
    const char *firstSigDigit;
 | 
						|
    const char *lastSigDigit;
 | 
						|
    int exponent;
 | 
						|
    int normalizedExponent;
 | 
						|
  };
 | 
						|
 | 
						|
  static void
 | 
						|
  interpretDecimal(const char *p, decimalInfo *D)
 | 
						|
  {
 | 
						|
    const char *dot;
 | 
						|
 | 
						|
    p = skipLeadingZeroesAndAnyDot (p, &dot);
 | 
						|
 | 
						|
    D->firstSigDigit = p;
 | 
						|
    D->exponent = 0;
 | 
						|
    D->normalizedExponent = 0;
 | 
						|
 | 
						|
    for (;;) {
 | 
						|
      if (*p == '.') {
 | 
						|
        assert(dot == 0);
 | 
						|
        dot = p++;
 | 
						|
      }
 | 
						|
      if (decDigitValue(*p) >= 10U)
 | 
						|
        break;
 | 
						|
      p++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If number is all zerooes accept any exponent.  */
 | 
						|
    if (p != D->firstSigDigit) {
 | 
						|
      if (*p == 'e' || *p == 'E')
 | 
						|
        D->exponent = readExponent(p + 1);
 | 
						|
 | 
						|
      /* Implied decimal point?  */
 | 
						|
      if (!dot)
 | 
						|
        dot = p;
 | 
						|
 | 
						|
      /* Drop insignificant trailing zeroes.  */
 | 
						|
      do
 | 
						|
        do
 | 
						|
          p--;
 | 
						|
        while (*p == '0');
 | 
						|
      while (*p == '.');
 | 
						|
 | 
						|
      /* Adjust the exponents for any decimal point.  */
 | 
						|
      D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
 | 
						|
      D->normalizedExponent = (D->exponent +
 | 
						|
                static_cast<exponent_t>((p - D->firstSigDigit)
 | 
						|
                                        - (dot > D->firstSigDigit && dot < p)));
 | 
						|
    }
 | 
						|
 | 
						|
    D->lastSigDigit = p;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Return the trailing fraction of a hexadecimal number.
 | 
						|
     DIGITVALUE is the first hex digit of the fraction, P points to
 | 
						|
     the next digit.  */
 | 
						|
  static lostFraction
 | 
						|
  trailingHexadecimalFraction(const char *p, unsigned int digitValue)
 | 
						|
  {
 | 
						|
    unsigned int hexDigit;
 | 
						|
 | 
						|
    /* If the first trailing digit isn't 0 or 8 we can work out the
 | 
						|
       fraction immediately.  */
 | 
						|
    if(digitValue > 8)
 | 
						|
      return lfMoreThanHalf;
 | 
						|
    else if(digitValue < 8 && digitValue > 0)
 | 
						|
      return lfLessThanHalf;
 | 
						|
 | 
						|
    /* Otherwise we need to find the first non-zero digit.  */
 | 
						|
    while(*p == '0')
 | 
						|
      p++;
 | 
						|
 | 
						|
    hexDigit = hexDigitValue(*p);
 | 
						|
 | 
						|
    /* If we ran off the end it is exactly zero or one-half, otherwise
 | 
						|
       a little more.  */
 | 
						|
    if(hexDigit == -1U)
 | 
						|
      return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
 | 
						|
    else
 | 
						|
      return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Return the fraction lost were a bignum truncated losing the least
 | 
						|
     significant BITS bits.  */
 | 
						|
  static lostFraction
 | 
						|
  lostFractionThroughTruncation(const integerPart *parts,
 | 
						|
                                unsigned int partCount,
 | 
						|
                                unsigned int bits)
 | 
						|
  {
 | 
						|
    unsigned int lsb;
 | 
						|
 | 
						|
    lsb = APInt::tcLSB(parts, partCount);
 | 
						|
 | 
						|
    /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
 | 
						|
    if(bits <= lsb)
 | 
						|
      return lfExactlyZero;
 | 
						|
    if(bits == lsb + 1)
 | 
						|
      return lfExactlyHalf;
 | 
						|
    if(bits <= partCount * integerPartWidth
 | 
						|
       && APInt::tcExtractBit(parts, bits - 1))
 | 
						|
      return lfMoreThanHalf;
 | 
						|
 | 
						|
    return lfLessThanHalf;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Shift DST right BITS bits noting lost fraction.  */
 | 
						|
  static lostFraction
 | 
						|
  shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
 | 
						|
  {
 | 
						|
    lostFraction lost_fraction;
 | 
						|
 | 
						|
    lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
 | 
						|
 | 
						|
    APInt::tcShiftRight(dst, parts, bits);
 | 
						|
 | 
						|
    return lost_fraction;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Combine the effect of two lost fractions.  */
 | 
						|
  static lostFraction
 | 
						|
  combineLostFractions(lostFraction moreSignificant,
 | 
						|
                       lostFraction lessSignificant)
 | 
						|
  {
 | 
						|
    if(lessSignificant != lfExactlyZero) {
 | 
						|
      if(moreSignificant == lfExactlyZero)
 | 
						|
        moreSignificant = lfLessThanHalf;
 | 
						|
      else if(moreSignificant == lfExactlyHalf)
 | 
						|
        moreSignificant = lfMoreThanHalf;
 | 
						|
    }
 | 
						|
 | 
						|
    return moreSignificant;
 | 
						|
  }
 | 
						|
 | 
						|
  /* The error from the true value, in half-ulps, on multiplying two
 | 
						|
     floating point numbers, which differ from the value they
 | 
						|
     approximate by at most HUE1 and HUE2 half-ulps, is strictly less
 | 
						|
     than the returned value.
 | 
						|
 | 
						|
     See "How to Read Floating Point Numbers Accurately" by William D
 | 
						|
     Clinger.  */
 | 
						|
  static unsigned int
 | 
						|
  HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
 | 
						|
  {
 | 
						|
    assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
 | 
						|
 | 
						|
    if (HUerr1 + HUerr2 == 0)
 | 
						|
      return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
 | 
						|
    else
 | 
						|
      return inexactMultiply + 2 * (HUerr1 + HUerr2);
 | 
						|
  }
 | 
						|
 | 
						|
  /* The number of ulps from the boundary (zero, or half if ISNEAREST)
 | 
						|
     when the least significant BITS are truncated.  BITS cannot be
 | 
						|
     zero.  */
 | 
						|
  static integerPart
 | 
						|
  ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
 | 
						|
  {
 | 
						|
    unsigned int count, partBits;
 | 
						|
    integerPart part, boundary;
 | 
						|
 | 
						|
    assert (bits != 0);
 | 
						|
 | 
						|
    bits--;
 | 
						|
    count = bits / integerPartWidth;
 | 
						|
    partBits = bits % integerPartWidth + 1;
 | 
						|
 | 
						|
    part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
 | 
						|
 | 
						|
    if (isNearest)
 | 
						|
      boundary = (integerPart) 1 << (partBits - 1);
 | 
						|
    else
 | 
						|
      boundary = 0;
 | 
						|
 | 
						|
    if (count == 0) {
 | 
						|
      if (part - boundary <= boundary - part)
 | 
						|
        return part - boundary;
 | 
						|
      else
 | 
						|
        return boundary - part;
 | 
						|
    }
 | 
						|
 | 
						|
    if (part == boundary) {
 | 
						|
      while (--count)
 | 
						|
        if (parts[count])
 | 
						|
          return ~(integerPart) 0; /* A lot.  */
 | 
						|
 | 
						|
      return parts[0];
 | 
						|
    } else if (part == boundary - 1) {
 | 
						|
      while (--count)
 | 
						|
        if (~parts[count])
 | 
						|
          return ~(integerPart) 0; /* A lot.  */
 | 
						|
 | 
						|
      return -parts[0];
 | 
						|
    }
 | 
						|
 | 
						|
    return ~(integerPart) 0; /* A lot.  */
 | 
						|
  }
 | 
						|
 | 
						|
  /* Place pow(5, power) in DST, and return the number of parts used.
 | 
						|
     DST must be at least one part larger than size of the answer.  */
 | 
						|
  static unsigned int
 | 
						|
  powerOf5(integerPart *dst, unsigned int power)
 | 
						|
  {
 | 
						|
    static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
 | 
						|
                                                    15625, 78125 };
 | 
						|
    static integerPart pow5s[maxPowerOfFiveParts * 2 + 5] = { 78125 * 5 };
 | 
						|
    static unsigned int partsCount[16] = { 1 };
 | 
						|
 | 
						|
    integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
 | 
						|
    unsigned int result;
 | 
						|
 | 
						|
    assert(power <= maxExponent);
 | 
						|
 | 
						|
    p1 = dst;
 | 
						|
    p2 = scratch;
 | 
						|
 | 
						|
    *p1 = firstEightPowers[power & 7];
 | 
						|
    power >>= 3;
 | 
						|
 | 
						|
    result = 1;
 | 
						|
    pow5 = pow5s;
 | 
						|
 | 
						|
    for (unsigned int n = 0; power; power >>= 1, n++) {
 | 
						|
      unsigned int pc;
 | 
						|
 | 
						|
      pc = partsCount[n];
 | 
						|
 | 
						|
      /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
 | 
						|
      if (pc == 0) {
 | 
						|
        pc = partsCount[n - 1];
 | 
						|
        APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
 | 
						|
        pc *= 2;
 | 
						|
        if (pow5[pc - 1] == 0)
 | 
						|
          pc--;
 | 
						|
        partsCount[n] = pc;
 | 
						|
      }
 | 
						|
 | 
						|
      if (power & 1) {
 | 
						|
        integerPart *tmp;
 | 
						|
 | 
						|
        APInt::tcFullMultiply(p2, p1, pow5, result, pc);
 | 
						|
        result += pc;
 | 
						|
        if (p2[result - 1] == 0)
 | 
						|
          result--;
 | 
						|
 | 
						|
        /* Now result is in p1 with partsCount parts and p2 is scratch
 | 
						|
           space.  */
 | 
						|
        tmp = p1, p1 = p2, p2 = tmp;
 | 
						|
      }
 | 
						|
 | 
						|
      pow5 += pc;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p1 != dst)
 | 
						|
      APInt::tcAssign(dst, p1, result);
 | 
						|
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Zero at the end to avoid modular arithmetic when adding one; used
 | 
						|
     when rounding up during hexadecimal output.  */
 | 
						|
  static const char hexDigitsLower[] = "0123456789abcdef0";
 | 
						|
  static const char hexDigitsUpper[] = "0123456789ABCDEF0";
 | 
						|
  static const char infinityL[] = "infinity";
 | 
						|
  static const char infinityU[] = "INFINITY";
 | 
						|
  static const char NaNL[] = "nan";
 | 
						|
  static const char NaNU[] = "NAN";
 | 
						|
 | 
						|
  /* Write out an integerPart in hexadecimal, starting with the most
 | 
						|
     significant nibble.  Write out exactly COUNT hexdigits, return
 | 
						|
     COUNT.  */
 | 
						|
  static unsigned int
 | 
						|
  partAsHex (char *dst, integerPart part, unsigned int count,
 | 
						|
             const char *hexDigitChars)
 | 
						|
  {
 | 
						|
    unsigned int result = count;
 | 
						|
 | 
						|
    assert (count != 0 && count <= integerPartWidth / 4);
 | 
						|
 | 
						|
    part >>= (integerPartWidth - 4 * count);
 | 
						|
    while (count--) {
 | 
						|
      dst[count] = hexDigitChars[part & 0xf];
 | 
						|
      part >>= 4;
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Write out an unsigned decimal integer.  */
 | 
						|
  static char *
 | 
						|
  writeUnsignedDecimal (char *dst, unsigned int n)
 | 
						|
  {
 | 
						|
    char buff[40], *p;
 | 
						|
 | 
						|
    p = buff;
 | 
						|
    do
 | 
						|
      *p++ = '0' + n % 10;
 | 
						|
    while (n /= 10);
 | 
						|
 | 
						|
    do
 | 
						|
      *dst++ = *--p;
 | 
						|
    while (p != buff);
 | 
						|
 | 
						|
    return dst;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Write out a signed decimal integer.  */
 | 
						|
  static char *
 | 
						|
  writeSignedDecimal (char *dst, int value)
 | 
						|
  {
 | 
						|
    if (value < 0) {
 | 
						|
      *dst++ = '-';
 | 
						|
      dst = writeUnsignedDecimal(dst, -(unsigned) value);
 | 
						|
    } else
 | 
						|
      dst = writeUnsignedDecimal(dst, value);
 | 
						|
 | 
						|
    return dst;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Constructors.  */
 | 
						|
void
 | 
						|
APFloat::initialize(const fltSemantics *ourSemantics)
 | 
						|
{
 | 
						|
  unsigned int count;
 | 
						|
 | 
						|
  semantics = ourSemantics;
 | 
						|
  count = partCount();
 | 
						|
  if(count > 1)
 | 
						|
    significand.parts = new integerPart[count];
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::freeSignificand()
 | 
						|
{
 | 
						|
  if(partCount() > 1)
 | 
						|
    delete [] significand.parts;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::assign(const APFloat &rhs)
 | 
						|
{
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  sign = rhs.sign;
 | 
						|
  category = rhs.category;
 | 
						|
  exponent = rhs.exponent;
 | 
						|
  sign2 = rhs.sign2;
 | 
						|
  exponent2 = rhs.exponent2;
 | 
						|
  if(category == fcNormal || category == fcNaN)
 | 
						|
    copySignificand(rhs);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::copySignificand(const APFloat &rhs)
 | 
						|
{
 | 
						|
  assert(category == fcNormal || category == fcNaN);
 | 
						|
  assert(rhs.partCount() >= partCount());
 | 
						|
 | 
						|
  APInt::tcAssign(significandParts(), rhs.significandParts(),
 | 
						|
                  partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Make this number a NaN, with an arbitrary but deterministic value
 | 
						|
   for the significand.  */
 | 
						|
void
 | 
						|
APFloat::makeNaN(void)
 | 
						|
{
 | 
						|
  category = fcNaN;
 | 
						|
  APInt::tcSet(significandParts(), ~0U, partCount());
 | 
						|
}
 | 
						|
 | 
						|
APFloat &
 | 
						|
APFloat::operator=(const APFloat &rhs)
 | 
						|
{
 | 
						|
  if(this != &rhs) {
 | 
						|
    if(semantics != rhs.semantics) {
 | 
						|
      freeSignificand();
 | 
						|
      initialize(rhs.semantics);
 | 
						|
    }
 | 
						|
    assign(rhs);
 | 
						|
  }
 | 
						|
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
APFloat::bitwiseIsEqual(const APFloat &rhs) const {
 | 
						|
  if (this == &rhs)
 | 
						|
    return true;
 | 
						|
  if (semantics != rhs.semantics ||
 | 
						|
      category != rhs.category ||
 | 
						|
      sign != rhs.sign)
 | 
						|
    return false;
 | 
						|
  if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
 | 
						|
      sign2 != rhs.sign2)
 | 
						|
    return false;
 | 
						|
  if (category==fcZero || category==fcInfinity)
 | 
						|
    return true;
 | 
						|
  else if (category==fcNormal && exponent!=rhs.exponent)
 | 
						|
    return false;
 | 
						|
  else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
 | 
						|
           exponent2!=rhs.exponent2)
 | 
						|
    return false;
 | 
						|
  else {
 | 
						|
    int i= partCount();
 | 
						|
    const integerPart* p=significandParts();
 | 
						|
    const integerPart* q=rhs.significandParts();
 | 
						|
    for (; i>0; i--, p++, q++) {
 | 
						|
      if (*p != *q)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
 | 
						|
{
 | 
						|
  assertArithmeticOK(ourSemantics);
 | 
						|
  initialize(&ourSemantics);
 | 
						|
  sign = 0;
 | 
						|
  zeroSignificand();
 | 
						|
  exponent = ourSemantics.precision - 1;
 | 
						|
  significandParts()[0] = value;
 | 
						|
  normalize(rmNearestTiesToEven, lfExactlyZero);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(const fltSemantics &ourSemantics,
 | 
						|
                 fltCategory ourCategory, bool negative)
 | 
						|
{
 | 
						|
  assertArithmeticOK(ourSemantics);
 | 
						|
  initialize(&ourSemantics);
 | 
						|
  category = ourCategory;
 | 
						|
  sign = negative;
 | 
						|
  if(category == fcNormal)
 | 
						|
    category = fcZero;
 | 
						|
  else if (ourCategory == fcNaN)
 | 
						|
    makeNaN();
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
 | 
						|
{
 | 
						|
  assertArithmeticOK(ourSemantics);
 | 
						|
  initialize(&ourSemantics);
 | 
						|
  convertFromString(text, rmNearestTiesToEven);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(const APFloat &rhs)
 | 
						|
{
 | 
						|
  initialize(rhs.semantics);
 | 
						|
  assign(rhs);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::~APFloat()
 | 
						|
{
 | 
						|
  freeSignificand();
 | 
						|
}
 | 
						|
 | 
						|
// Profile - This method 'profiles' an APFloat for use with FoldingSet.
 | 
						|
void APFloat::Profile(FoldingSetNodeID& ID) const {
 | 
						|
  ID.Add(convertToAPInt());
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
APFloat::partCount() const
 | 
						|
{
 | 
						|
  return partCountForBits(semantics->precision + 1);
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
APFloat::semanticsPrecision(const fltSemantics &semantics)
 | 
						|
{
 | 
						|
  return semantics.precision;
 | 
						|
}
 | 
						|
 | 
						|
const integerPart *
 | 
						|
APFloat::significandParts() const
 | 
						|
{
 | 
						|
  return const_cast<APFloat *>(this)->significandParts();
 | 
						|
}
 | 
						|
 | 
						|
integerPart *
 | 
						|
APFloat::significandParts()
 | 
						|
{
 | 
						|
  assert(category == fcNormal || category == fcNaN);
 | 
						|
 | 
						|
  if(partCount() > 1)
 | 
						|
    return significand.parts;
 | 
						|
  else
 | 
						|
    return &significand.part;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::zeroSignificand()
 | 
						|
{
 | 
						|
  category = fcNormal;
 | 
						|
  APInt::tcSet(significandParts(), 0, partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Increment an fcNormal floating point number's significand.  */
 | 
						|
void
 | 
						|
APFloat::incrementSignificand()
 | 
						|
{
 | 
						|
  integerPart carry;
 | 
						|
 | 
						|
  carry = APInt::tcIncrement(significandParts(), partCount());
 | 
						|
 | 
						|
  /* Our callers should never cause us to overflow.  */
 | 
						|
  assert(carry == 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Add the significand of the RHS.  Returns the carry flag.  */
 | 
						|
integerPart
 | 
						|
APFloat::addSignificand(const APFloat &rhs)
 | 
						|
{
 | 
						|
  integerPart *parts;
 | 
						|
 | 
						|
  parts = significandParts();
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
  assert(exponent == rhs.exponent);
 | 
						|
 | 
						|
  return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Subtract the significand of the RHS with a borrow flag.  Returns
 | 
						|
   the borrow flag.  */
 | 
						|
integerPart
 | 
						|
APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
 | 
						|
{
 | 
						|
  integerPart *parts;
 | 
						|
 | 
						|
  parts = significandParts();
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
  assert(exponent == rhs.exponent);
 | 
						|
 | 
						|
  return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
 | 
						|
                           partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
 | 
						|
   on to the full-precision result of the multiplication.  Returns the
 | 
						|
   lost fraction.  */
 | 
						|
lostFraction
 | 
						|
APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
 | 
						|
{
 | 
						|
  unsigned int omsb;        // One, not zero, based MSB.
 | 
						|
  unsigned int partsCount, newPartsCount, precision;
 | 
						|
  integerPart *lhsSignificand;
 | 
						|
  integerPart scratch[4];
 | 
						|
  integerPart *fullSignificand;
 | 
						|
  lostFraction lost_fraction;
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  precision = semantics->precision;
 | 
						|
  newPartsCount = partCountForBits(precision * 2);
 | 
						|
 | 
						|
  if(newPartsCount > 4)
 | 
						|
    fullSignificand = new integerPart[newPartsCount];
 | 
						|
  else
 | 
						|
    fullSignificand = scratch;
 | 
						|
 | 
						|
  lhsSignificand = significandParts();
 | 
						|
  partsCount = partCount();
 | 
						|
 | 
						|
  APInt::tcFullMultiply(fullSignificand, lhsSignificand,
 | 
						|
                        rhs.significandParts(), partsCount, partsCount);
 | 
						|
 | 
						|
  lost_fraction = lfExactlyZero;
 | 
						|
  omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | 
						|
  exponent += rhs.exponent;
 | 
						|
 | 
						|
  if(addend) {
 | 
						|
    Significand savedSignificand = significand;
 | 
						|
    const fltSemantics *savedSemantics = semantics;
 | 
						|
    fltSemantics extendedSemantics;
 | 
						|
    opStatus status;
 | 
						|
    unsigned int extendedPrecision;
 | 
						|
 | 
						|
    /* Normalize our MSB.  */
 | 
						|
    extendedPrecision = precision + precision - 1;
 | 
						|
    if(omsb != extendedPrecision)
 | 
						|
      {
 | 
						|
        APInt::tcShiftLeft(fullSignificand, newPartsCount,
 | 
						|
                           extendedPrecision - omsb);
 | 
						|
        exponent -= extendedPrecision - omsb;
 | 
						|
      }
 | 
						|
 | 
						|
    /* Create new semantics.  */
 | 
						|
    extendedSemantics = *semantics;
 | 
						|
    extendedSemantics.precision = extendedPrecision;
 | 
						|
 | 
						|
    if(newPartsCount == 1)
 | 
						|
      significand.part = fullSignificand[0];
 | 
						|
    else
 | 
						|
      significand.parts = fullSignificand;
 | 
						|
    semantics = &extendedSemantics;
 | 
						|
 | 
						|
    APFloat extendedAddend(*addend);
 | 
						|
    status = extendedAddend.convert(extendedSemantics, rmTowardZero);
 | 
						|
    assert(status == opOK);
 | 
						|
    lost_fraction = addOrSubtractSignificand(extendedAddend, false);
 | 
						|
 | 
						|
    /* Restore our state.  */
 | 
						|
    if(newPartsCount == 1)
 | 
						|
      fullSignificand[0] = significand.part;
 | 
						|
    significand = savedSignificand;
 | 
						|
    semantics = savedSemantics;
 | 
						|
 | 
						|
    omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  exponent -= (precision - 1);
 | 
						|
 | 
						|
  if(omsb > precision) {
 | 
						|
    unsigned int bits, significantParts;
 | 
						|
    lostFraction lf;
 | 
						|
 | 
						|
    bits = omsb - precision;
 | 
						|
    significantParts = partCountForBits(omsb);
 | 
						|
    lf = shiftRight(fullSignificand, significantParts, bits);
 | 
						|
    lost_fraction = combineLostFractions(lf, lost_fraction);
 | 
						|
    exponent += bits;
 | 
						|
  }
 | 
						|
 | 
						|
  APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
 | 
						|
 | 
						|
  if(newPartsCount > 4)
 | 
						|
    delete [] fullSignificand;
 | 
						|
 | 
						|
  return lost_fraction;
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the significands of LHS and RHS to DST.  */
 | 
						|
lostFraction
 | 
						|
APFloat::divideSignificand(const APFloat &rhs)
 | 
						|
{
 | 
						|
  unsigned int bit, i, partsCount;
 | 
						|
  const integerPart *rhsSignificand;
 | 
						|
  integerPart *lhsSignificand, *dividend, *divisor;
 | 
						|
  integerPart scratch[4];
 | 
						|
  lostFraction lost_fraction;
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  lhsSignificand = significandParts();
 | 
						|
  rhsSignificand = rhs.significandParts();
 | 
						|
  partsCount = partCount();
 | 
						|
 | 
						|
  if(partsCount > 2)
 | 
						|
    dividend = new integerPart[partsCount * 2];
 | 
						|
  else
 | 
						|
    dividend = scratch;
 | 
						|
 | 
						|
  divisor = dividend + partsCount;
 | 
						|
 | 
						|
  /* Copy the dividend and divisor as they will be modified in-place.  */
 | 
						|
  for(i = 0; i < partsCount; i++) {
 | 
						|
    dividend[i] = lhsSignificand[i];
 | 
						|
    divisor[i] = rhsSignificand[i];
 | 
						|
    lhsSignificand[i] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  exponent -= rhs.exponent;
 | 
						|
 | 
						|
  unsigned int precision = semantics->precision;
 | 
						|
 | 
						|
  /* Normalize the divisor.  */
 | 
						|
  bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
 | 
						|
  if(bit) {
 | 
						|
    exponent += bit;
 | 
						|
    APInt::tcShiftLeft(divisor, partsCount, bit);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Normalize the dividend.  */
 | 
						|
  bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
 | 
						|
  if(bit) {
 | 
						|
    exponent -= bit;
 | 
						|
    APInt::tcShiftLeft(dividend, partsCount, bit);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Ensure the dividend >= divisor initially for the loop below.
 | 
						|
     Incidentally, this means that the division loop below is
 | 
						|
     guaranteed to set the integer bit to one.  */
 | 
						|
  if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
 | 
						|
    exponent--;
 | 
						|
    APInt::tcShiftLeft(dividend, partsCount, 1);
 | 
						|
    assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Long division.  */
 | 
						|
  for(bit = precision; bit; bit -= 1) {
 | 
						|
    if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
 | 
						|
      APInt::tcSubtract(dividend, divisor, 0, partsCount);
 | 
						|
      APInt::tcSetBit(lhsSignificand, bit - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    APInt::tcShiftLeft(dividend, partsCount, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Figure out the lost fraction.  */
 | 
						|
  int cmp = APInt::tcCompare(dividend, divisor, partsCount);
 | 
						|
 | 
						|
  if(cmp > 0)
 | 
						|
    lost_fraction = lfMoreThanHalf;
 | 
						|
  else if(cmp == 0)
 | 
						|
    lost_fraction = lfExactlyHalf;
 | 
						|
  else if(APInt::tcIsZero(dividend, partsCount))
 | 
						|
    lost_fraction = lfExactlyZero;
 | 
						|
  else
 | 
						|
    lost_fraction = lfLessThanHalf;
 | 
						|
 | 
						|
  if(partsCount > 2)
 | 
						|
    delete [] dividend;
 | 
						|
 | 
						|
  return lost_fraction;
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
APFloat::significandMSB() const
 | 
						|
{
 | 
						|
  return APInt::tcMSB(significandParts(), partCount());
 | 
						|
}
 | 
						|
 | 
						|
unsigned int
 | 
						|
APFloat::significandLSB() const
 | 
						|
{
 | 
						|
  return APInt::tcLSB(significandParts(), partCount());
 | 
						|
}
 | 
						|
 | 
						|
/* Note that a zero result is NOT normalized to fcZero.  */
 | 
						|
lostFraction
 | 
						|
APFloat::shiftSignificandRight(unsigned int bits)
 | 
						|
{
 | 
						|
  /* Our exponent should not overflow.  */
 | 
						|
  assert((exponent_t) (exponent + bits) >= exponent);
 | 
						|
 | 
						|
  exponent += bits;
 | 
						|
 | 
						|
  return shiftRight(significandParts(), partCount(), bits);
 | 
						|
}
 | 
						|
 | 
						|
/* Shift the significand left BITS bits, subtract BITS from its exponent.  */
 | 
						|
void
 | 
						|
APFloat::shiftSignificandLeft(unsigned int bits)
 | 
						|
{
 | 
						|
  assert(bits < semantics->precision);
 | 
						|
 | 
						|
  if(bits) {
 | 
						|
    unsigned int partsCount = partCount();
 | 
						|
 | 
						|
    APInt::tcShiftLeft(significandParts(), partsCount, bits);
 | 
						|
    exponent -= bits;
 | 
						|
 | 
						|
    assert(!APInt::tcIsZero(significandParts(), partsCount));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APFloat::cmpResult
 | 
						|
APFloat::compareAbsoluteValue(const APFloat &rhs) const
 | 
						|
{
 | 
						|
  int compare;
 | 
						|
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
  assert(category == fcNormal);
 | 
						|
  assert(rhs.category == fcNormal);
 | 
						|
 | 
						|
  compare = exponent - rhs.exponent;
 | 
						|
 | 
						|
  /* If exponents are equal, do an unsigned bignum comparison of the
 | 
						|
     significands.  */
 | 
						|
  if(compare == 0)
 | 
						|
    compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
 | 
						|
                               partCount());
 | 
						|
 | 
						|
  if(compare > 0)
 | 
						|
    return cmpGreaterThan;
 | 
						|
  else if(compare < 0)
 | 
						|
    return cmpLessThan;
 | 
						|
  else
 | 
						|
    return cmpEqual;
 | 
						|
}
 | 
						|
 | 
						|
/* Handle overflow.  Sign is preserved.  We either become infinity or
 | 
						|
   the largest finite number.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::handleOverflow(roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  /* Infinity?  */
 | 
						|
  if(rounding_mode == rmNearestTiesToEven
 | 
						|
     || rounding_mode == rmNearestTiesToAway
 | 
						|
     || (rounding_mode == rmTowardPositive && !sign)
 | 
						|
     || (rounding_mode == rmTowardNegative && sign))
 | 
						|
    {
 | 
						|
      category = fcInfinity;
 | 
						|
      return (opStatus) (opOverflow | opInexact);
 | 
						|
    }
 | 
						|
 | 
						|
  /* Otherwise we become the largest finite number.  */
 | 
						|
  category = fcNormal;
 | 
						|
  exponent = semantics->maxExponent;
 | 
						|
  APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
 | 
						|
                                   semantics->precision);
 | 
						|
 | 
						|
  return opInexact;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns TRUE if, when truncating the current number, with BIT the
 | 
						|
   new LSB, with the given lost fraction and rounding mode, the result
 | 
						|
   would need to be rounded away from zero (i.e., by increasing the
 | 
						|
   signficand).  This routine must work for fcZero of both signs, and
 | 
						|
   fcNormal numbers.  */
 | 
						|
bool
 | 
						|
APFloat::roundAwayFromZero(roundingMode rounding_mode,
 | 
						|
                           lostFraction lost_fraction,
 | 
						|
                           unsigned int bit) const
 | 
						|
{
 | 
						|
  /* NaNs and infinities should not have lost fractions.  */
 | 
						|
  assert(category == fcNormal || category == fcZero);
 | 
						|
 | 
						|
  /* Current callers never pass this so we don't handle it.  */
 | 
						|
  assert(lost_fraction != lfExactlyZero);
 | 
						|
 | 
						|
  switch(rounding_mode) {
 | 
						|
  default:
 | 
						|
    assert(0);
 | 
						|
 | 
						|
  case rmNearestTiesToAway:
 | 
						|
    return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
 | 
						|
 | 
						|
  case rmNearestTiesToEven:
 | 
						|
    if(lost_fraction == lfMoreThanHalf)
 | 
						|
      return true;
 | 
						|
 | 
						|
    /* Our zeroes don't have a significand to test.  */
 | 
						|
    if(lost_fraction == lfExactlyHalf && category != fcZero)
 | 
						|
      return APInt::tcExtractBit(significandParts(), bit);
 | 
						|
 | 
						|
    return false;
 | 
						|
 | 
						|
  case rmTowardZero:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case rmTowardPositive:
 | 
						|
    return sign == false;
 | 
						|
 | 
						|
  case rmTowardNegative:
 | 
						|
    return sign == true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::normalize(roundingMode rounding_mode,
 | 
						|
                   lostFraction lost_fraction)
 | 
						|
{
 | 
						|
  unsigned int omsb;                /* One, not zero, based MSB.  */
 | 
						|
  int exponentChange;
 | 
						|
 | 
						|
  if(category != fcNormal)
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  /* Before rounding normalize the exponent of fcNormal numbers.  */
 | 
						|
  omsb = significandMSB() + 1;
 | 
						|
 | 
						|
  if(omsb) {
 | 
						|
    /* OMSB is numbered from 1.  We want to place it in the integer
 | 
						|
       bit numbered PRECISON if possible, with a compensating change in
 | 
						|
       the exponent.  */
 | 
						|
    exponentChange = omsb - semantics->precision;
 | 
						|
 | 
						|
    /* If the resulting exponent is too high, overflow according to
 | 
						|
       the rounding mode.  */
 | 
						|
    if(exponent + exponentChange > semantics->maxExponent)
 | 
						|
      return handleOverflow(rounding_mode);
 | 
						|
 | 
						|
    /* Subnormal numbers have exponent minExponent, and their MSB
 | 
						|
       is forced based on that.  */
 | 
						|
    if(exponent + exponentChange < semantics->minExponent)
 | 
						|
      exponentChange = semantics->minExponent - exponent;
 | 
						|
 | 
						|
    /* Shifting left is easy as we don't lose precision.  */
 | 
						|
    if(exponentChange < 0) {
 | 
						|
      assert(lost_fraction == lfExactlyZero);
 | 
						|
 | 
						|
      shiftSignificandLeft(-exponentChange);
 | 
						|
 | 
						|
      return opOK;
 | 
						|
    }
 | 
						|
 | 
						|
    if(exponentChange > 0) {
 | 
						|
      lostFraction lf;
 | 
						|
 | 
						|
      /* Shift right and capture any new lost fraction.  */
 | 
						|
      lf = shiftSignificandRight(exponentChange);
 | 
						|
 | 
						|
      lost_fraction = combineLostFractions(lf, lost_fraction);
 | 
						|
 | 
						|
      /* Keep OMSB up-to-date.  */
 | 
						|
      if(omsb > (unsigned) exponentChange)
 | 
						|
        omsb -= exponentChange;
 | 
						|
      else
 | 
						|
        omsb = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now round the number according to rounding_mode given the lost
 | 
						|
     fraction.  */
 | 
						|
 | 
						|
  /* As specified in IEEE 754, since we do not trap we do not report
 | 
						|
     underflow for exact results.  */
 | 
						|
  if(lost_fraction == lfExactlyZero) {
 | 
						|
    /* Canonicalize zeroes.  */
 | 
						|
    if(omsb == 0)
 | 
						|
      category = fcZero;
 | 
						|
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Increment the significand if we're rounding away from zero.  */
 | 
						|
  if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
 | 
						|
    if(omsb == 0)
 | 
						|
      exponent = semantics->minExponent;
 | 
						|
 | 
						|
    incrementSignificand();
 | 
						|
    omsb = significandMSB() + 1;
 | 
						|
 | 
						|
    /* Did the significand increment overflow?  */
 | 
						|
    if(omsb == (unsigned) semantics->precision + 1) {
 | 
						|
      /* Renormalize by incrementing the exponent and shifting our
 | 
						|
         significand right one.  However if we already have the
 | 
						|
         maximum exponent we overflow to infinity.  */
 | 
						|
      if(exponent == semantics->maxExponent) {
 | 
						|
        category = fcInfinity;
 | 
						|
 | 
						|
        return (opStatus) (opOverflow | opInexact);
 | 
						|
      }
 | 
						|
 | 
						|
      shiftSignificandRight(1);
 | 
						|
 | 
						|
      return opInexact;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* The normal case - we were and are not denormal, and any
 | 
						|
     significand increment above didn't overflow.  */
 | 
						|
  if(omsb == semantics->precision)
 | 
						|
    return opInexact;
 | 
						|
 | 
						|
  /* We have a non-zero denormal.  */
 | 
						|
  assert(omsb < semantics->precision);
 | 
						|
 | 
						|
  /* Canonicalize zeroes.  */
 | 
						|
  if(omsb == 0)
 | 
						|
    category = fcZero;
 | 
						|
 | 
						|
  /* The fcZero case is a denormal that underflowed to zero.  */
 | 
						|
  return (opStatus) (opUnderflow | opInexact);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
 | 
						|
{
 | 
						|
  switch(convolve(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    assert(0);
 | 
						|
 | 
						|
  case convolve(fcNaN, fcZero):
 | 
						|
  case convolve(fcNaN, fcNormal):
 | 
						|
  case convolve(fcNaN, fcInfinity):
 | 
						|
  case convolve(fcNaN, fcNaN):
 | 
						|
  case convolve(fcNormal, fcZero):
 | 
						|
  case convolve(fcInfinity, fcNormal):
 | 
						|
  case convolve(fcInfinity, fcZero):
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcZero, fcNaN):
 | 
						|
  case convolve(fcNormal, fcNaN):
 | 
						|
  case convolve(fcInfinity, fcNaN):
 | 
						|
    category = fcNaN;
 | 
						|
    copySignificand(rhs);
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcInfinity):
 | 
						|
  case convolve(fcZero, fcInfinity):
 | 
						|
    category = fcInfinity;
 | 
						|
    sign = rhs.sign ^ subtract;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcZero, fcNormal):
 | 
						|
    assign(rhs);
 | 
						|
    sign = rhs.sign ^ subtract;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcZero, fcZero):
 | 
						|
    /* Sign depends on rounding mode; handled by caller.  */
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcInfinity, fcInfinity):
 | 
						|
    /* Differently signed infinities can only be validly
 | 
						|
       subtracted.  */
 | 
						|
    if((sign ^ rhs.sign) != subtract) {
 | 
						|
      makeNaN();
 | 
						|
      return opInvalidOp;
 | 
						|
    }
 | 
						|
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcNormal):
 | 
						|
    return opDivByZero;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Add or subtract two normal numbers.  */
 | 
						|
lostFraction
 | 
						|
APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
 | 
						|
{
 | 
						|
  integerPart carry;
 | 
						|
  lostFraction lost_fraction;
 | 
						|
  int bits;
 | 
						|
 | 
						|
  /* Determine if the operation on the absolute values is effectively
 | 
						|
     an addition or subtraction.  */
 | 
						|
  subtract ^= (sign ^ rhs.sign) ? true : false;
 | 
						|
 | 
						|
  /* Are we bigger exponent-wise than the RHS?  */
 | 
						|
  bits = exponent - rhs.exponent;
 | 
						|
 | 
						|
  /* Subtraction is more subtle than one might naively expect.  */
 | 
						|
  if(subtract) {
 | 
						|
    APFloat temp_rhs(rhs);
 | 
						|
    bool reverse;
 | 
						|
 | 
						|
    if (bits == 0) {
 | 
						|
      reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
 | 
						|
      lost_fraction = lfExactlyZero;
 | 
						|
    } else if (bits > 0) {
 | 
						|
      lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
 | 
						|
      shiftSignificandLeft(1);
 | 
						|
      reverse = false;
 | 
						|
    } else {
 | 
						|
      lost_fraction = shiftSignificandRight(-bits - 1);
 | 
						|
      temp_rhs.shiftSignificandLeft(1);
 | 
						|
      reverse = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (reverse) {
 | 
						|
      carry = temp_rhs.subtractSignificand
 | 
						|
        (*this, lost_fraction != lfExactlyZero);
 | 
						|
      copySignificand(temp_rhs);
 | 
						|
      sign = !sign;
 | 
						|
    } else {
 | 
						|
      carry = subtractSignificand
 | 
						|
        (temp_rhs, lost_fraction != lfExactlyZero);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Invert the lost fraction - it was on the RHS and
 | 
						|
       subtracted.  */
 | 
						|
    if(lost_fraction == lfLessThanHalf)
 | 
						|
      lost_fraction = lfMoreThanHalf;
 | 
						|
    else if(lost_fraction == lfMoreThanHalf)
 | 
						|
      lost_fraction = lfLessThanHalf;
 | 
						|
 | 
						|
    /* The code above is intended to ensure that no borrow is
 | 
						|
       necessary.  */
 | 
						|
    assert(!carry);
 | 
						|
  } else {
 | 
						|
    if(bits > 0) {
 | 
						|
      APFloat temp_rhs(rhs);
 | 
						|
 | 
						|
      lost_fraction = temp_rhs.shiftSignificandRight(bits);
 | 
						|
      carry = addSignificand(temp_rhs);
 | 
						|
    } else {
 | 
						|
      lost_fraction = shiftSignificandRight(-bits);
 | 
						|
      carry = addSignificand(rhs);
 | 
						|
    }
 | 
						|
 | 
						|
    /* We have a guard bit; generating a carry cannot happen.  */
 | 
						|
    assert(!carry);
 | 
						|
  }
 | 
						|
 | 
						|
  return lost_fraction;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::multiplySpecials(const APFloat &rhs)
 | 
						|
{
 | 
						|
  switch(convolve(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    assert(0);
 | 
						|
 | 
						|
  case convolve(fcNaN, fcZero):
 | 
						|
  case convolve(fcNaN, fcNormal):
 | 
						|
  case convolve(fcNaN, fcInfinity):
 | 
						|
  case convolve(fcNaN, fcNaN):
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcZero, fcNaN):
 | 
						|
  case convolve(fcNormal, fcNaN):
 | 
						|
  case convolve(fcInfinity, fcNaN):
 | 
						|
    category = fcNaN;
 | 
						|
    copySignificand(rhs);
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcInfinity):
 | 
						|
  case convolve(fcInfinity, fcNormal):
 | 
						|
  case convolve(fcInfinity, fcInfinity):
 | 
						|
    category = fcInfinity;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcZero, fcNormal):
 | 
						|
  case convolve(fcNormal, fcZero):
 | 
						|
  case convolve(fcZero, fcZero):
 | 
						|
    category = fcZero;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcZero, fcInfinity):
 | 
						|
  case convolve(fcInfinity, fcZero):
 | 
						|
    makeNaN();
 | 
						|
    return opInvalidOp;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcNormal):
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::divideSpecials(const APFloat &rhs)
 | 
						|
{
 | 
						|
  switch(convolve(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    assert(0);
 | 
						|
 | 
						|
  case convolve(fcNaN, fcZero):
 | 
						|
  case convolve(fcNaN, fcNormal):
 | 
						|
  case convolve(fcNaN, fcInfinity):
 | 
						|
  case convolve(fcNaN, fcNaN):
 | 
						|
  case convolve(fcInfinity, fcZero):
 | 
						|
  case convolve(fcInfinity, fcNormal):
 | 
						|
  case convolve(fcZero, fcInfinity):
 | 
						|
  case convolve(fcZero, fcNormal):
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcZero, fcNaN):
 | 
						|
  case convolve(fcNormal, fcNaN):
 | 
						|
  case convolve(fcInfinity, fcNaN):
 | 
						|
    category = fcNaN;
 | 
						|
    copySignificand(rhs);
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcInfinity):
 | 
						|
    category = fcZero;
 | 
						|
    return opOK;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcZero):
 | 
						|
    category = fcInfinity;
 | 
						|
    return opDivByZero;
 | 
						|
 | 
						|
  case convolve(fcInfinity, fcInfinity):
 | 
						|
  case convolve(fcZero, fcZero):
 | 
						|
    makeNaN();
 | 
						|
    return opInvalidOp;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcNormal):
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Change sign.  */
 | 
						|
void
 | 
						|
APFloat::changeSign()
 | 
						|
{
 | 
						|
  /* Look mummy, this one's easy.  */
 | 
						|
  sign = !sign;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::clearSign()
 | 
						|
{
 | 
						|
  /* So is this one. */
 | 
						|
  sign = 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::copySign(const APFloat &rhs)
 | 
						|
{
 | 
						|
  /* And this one. */
 | 
						|
  sign = rhs.sign;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized addition or subtraction.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
 | 
						|
                       bool subtract)
 | 
						|
{
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
 | 
						|
  fs = addOrSubtractSpecials(rhs, subtract);
 | 
						|
 | 
						|
  /* This return code means it was not a simple case.  */
 | 
						|
  if(fs == opDivByZero) {
 | 
						|
    lostFraction lost_fraction;
 | 
						|
 | 
						|
    lost_fraction = addOrSubtractSignificand(rhs, subtract);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
 | 
						|
    /* Can only be zero if we lost no fraction.  */
 | 
						|
    assert(category != fcZero || lost_fraction == lfExactlyZero);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | 
						|
     positive zero unless rounding to minus infinity, except that
 | 
						|
     adding two like-signed zeroes gives that zero.  */
 | 
						|
  if(category == fcZero) {
 | 
						|
    if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
 | 
						|
      sign = (rounding_mode == rmTowardNegative);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized addition.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  return addOrSubtract(rhs, rounding_mode, false);
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized subtraction.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  return addOrSubtract(rhs, rounding_mode, true);
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized multiply.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
  sign ^= rhs.sign;
 | 
						|
  fs = multiplySpecials(rhs);
 | 
						|
 | 
						|
  if(category == fcNormal) {
 | 
						|
    lostFraction lost_fraction = multiplySignificand(rhs, 0);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
    if(lost_fraction != lfExactlyZero)
 | 
						|
      fs = (opStatus) (fs | opInexact);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized divide.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
  sign ^= rhs.sign;
 | 
						|
  fs = divideSpecials(rhs);
 | 
						|
 | 
						|
  if(category == fcNormal) {
 | 
						|
    lostFraction lost_fraction = divideSignificand(rhs);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
    if(lost_fraction != lfExactlyZero)
 | 
						|
      fs = (opStatus) (fs | opInexact);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized remainder.  This is not currently doing TRT.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  opStatus fs;
 | 
						|
  APFloat V = *this;
 | 
						|
  unsigned int origSign = sign;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
  fs = V.divide(rhs, rmNearestTiesToEven);
 | 
						|
  if (fs == opDivByZero)
 | 
						|
    return fs;
 | 
						|
 | 
						|
  int parts = partCount();
 | 
						|
  integerPart *x = new integerPart[parts];
 | 
						|
  fs = V.convertToInteger(x, parts * integerPartWidth, true,
 | 
						|
                          rmNearestTiesToEven);
 | 
						|
  if (fs==opInvalidOp)
 | 
						|
    return fs;
 | 
						|
 | 
						|
  fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
 | 
						|
                                        rmNearestTiesToEven);
 | 
						|
  assert(fs==opOK);   // should always work
 | 
						|
 | 
						|
  fs = V.multiply(rhs, rounding_mode);
 | 
						|
  assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
 | 
						|
 | 
						|
  fs = subtract(V, rounding_mode);
 | 
						|
  assert(fs==opOK || fs==opInexact);   // likewise
 | 
						|
 | 
						|
  if (isZero())
 | 
						|
    sign = origSign;    // IEEE754 requires this
 | 
						|
  delete[] x;
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Normalized fused-multiply-add.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
 | 
						|
                          const APFloat &addend,
 | 
						|
                          roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
 | 
						|
  /* Post-multiplication sign, before addition.  */
 | 
						|
  sign ^= multiplicand.sign;
 | 
						|
 | 
						|
  /* If and only if all arguments are normal do we need to do an
 | 
						|
     extended-precision calculation.  */
 | 
						|
  if(category == fcNormal
 | 
						|
     && multiplicand.category == fcNormal
 | 
						|
     && addend.category == fcNormal) {
 | 
						|
    lostFraction lost_fraction;
 | 
						|
 | 
						|
    lost_fraction = multiplySignificand(multiplicand, &addend);
 | 
						|
    fs = normalize(rounding_mode, lost_fraction);
 | 
						|
    if(lost_fraction != lfExactlyZero)
 | 
						|
      fs = (opStatus) (fs | opInexact);
 | 
						|
 | 
						|
    /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | 
						|
       positive zero unless rounding to minus infinity, except that
 | 
						|
       adding two like-signed zeroes gives that zero.  */
 | 
						|
    if(category == fcZero && sign != addend.sign)
 | 
						|
      sign = (rounding_mode == rmTowardNegative);
 | 
						|
  } else {
 | 
						|
    fs = multiplySpecials(multiplicand);
 | 
						|
 | 
						|
    /* FS can only be opOK or opInvalidOp.  There is no more work
 | 
						|
       to do in the latter case.  The IEEE-754R standard says it is
 | 
						|
       implementation-defined in this case whether, if ADDEND is a
 | 
						|
       quiet NaN, we raise invalid op; this implementation does so.
 | 
						|
 | 
						|
       If we need to do the addition we can do so with normal
 | 
						|
       precision.  */
 | 
						|
    if(fs == opOK)
 | 
						|
      fs = addOrSubtract(addend, rounding_mode, false);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Comparison requires normalized numbers.  */
 | 
						|
APFloat::cmpResult
 | 
						|
APFloat::compare(const APFloat &rhs) const
 | 
						|
{
 | 
						|
  cmpResult result;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
  assert(semantics == rhs.semantics);
 | 
						|
 | 
						|
  switch(convolve(category, rhs.category)) {
 | 
						|
  default:
 | 
						|
    assert(0);
 | 
						|
 | 
						|
  case convolve(fcNaN, fcZero):
 | 
						|
  case convolve(fcNaN, fcNormal):
 | 
						|
  case convolve(fcNaN, fcInfinity):
 | 
						|
  case convolve(fcNaN, fcNaN):
 | 
						|
  case convolve(fcZero, fcNaN):
 | 
						|
  case convolve(fcNormal, fcNaN):
 | 
						|
  case convolve(fcInfinity, fcNaN):
 | 
						|
    return cmpUnordered;
 | 
						|
 | 
						|
  case convolve(fcInfinity, fcNormal):
 | 
						|
  case convolve(fcInfinity, fcZero):
 | 
						|
  case convolve(fcNormal, fcZero):
 | 
						|
    if(sign)
 | 
						|
      return cmpLessThan;
 | 
						|
    else
 | 
						|
      return cmpGreaterThan;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcInfinity):
 | 
						|
  case convolve(fcZero, fcInfinity):
 | 
						|
  case convolve(fcZero, fcNormal):
 | 
						|
    if(rhs.sign)
 | 
						|
      return cmpGreaterThan;
 | 
						|
    else
 | 
						|
      return cmpLessThan;
 | 
						|
 | 
						|
  case convolve(fcInfinity, fcInfinity):
 | 
						|
    if(sign == rhs.sign)
 | 
						|
      return cmpEqual;
 | 
						|
    else if(sign)
 | 
						|
      return cmpLessThan;
 | 
						|
    else
 | 
						|
      return cmpGreaterThan;
 | 
						|
 | 
						|
  case convolve(fcZero, fcZero):
 | 
						|
    return cmpEqual;
 | 
						|
 | 
						|
  case convolve(fcNormal, fcNormal):
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Two normal numbers.  Do they have the same sign?  */
 | 
						|
  if(sign != rhs.sign) {
 | 
						|
    if(sign)
 | 
						|
      result = cmpLessThan;
 | 
						|
    else
 | 
						|
      result = cmpGreaterThan;
 | 
						|
  } else {
 | 
						|
    /* Compare absolute values; invert result if negative.  */
 | 
						|
    result = compareAbsoluteValue(rhs);
 | 
						|
 | 
						|
    if(sign) {
 | 
						|
      if(result == cmpLessThan)
 | 
						|
        result = cmpGreaterThan;
 | 
						|
      else if(result == cmpGreaterThan)
 | 
						|
        result = cmpLessThan;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convert(const fltSemantics &toSemantics,
 | 
						|
                 roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  lostFraction lostFraction;
 | 
						|
  unsigned int newPartCount, oldPartCount;
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
  assertArithmeticOK(toSemantics);
 | 
						|
  lostFraction = lfExactlyZero;
 | 
						|
  newPartCount = partCountForBits(toSemantics.precision + 1);
 | 
						|
  oldPartCount = partCount();
 | 
						|
 | 
						|
  /* Handle storage complications.  If our new form is wider,
 | 
						|
     re-allocate our bit pattern into wider storage.  If it is
 | 
						|
     narrower, we ignore the excess parts, but if narrowing to a
 | 
						|
     single part we need to free the old storage.
 | 
						|
     Be careful not to reference significandParts for zeroes
 | 
						|
     and infinities, since it aborts.  */
 | 
						|
  if (newPartCount > oldPartCount) {
 | 
						|
    integerPart *newParts;
 | 
						|
    newParts = new integerPart[newPartCount];
 | 
						|
    APInt::tcSet(newParts, 0, newPartCount);
 | 
						|
    if (category==fcNormal || category==fcNaN)
 | 
						|
      APInt::tcAssign(newParts, significandParts(), oldPartCount);
 | 
						|
    freeSignificand();
 | 
						|
    significand.parts = newParts;
 | 
						|
  } else if (newPartCount < oldPartCount) {
 | 
						|
    /* Capture any lost fraction through truncation of parts so we get
 | 
						|
       correct rounding whilst normalizing.  */
 | 
						|
    if (category==fcNormal)
 | 
						|
      lostFraction = lostFractionThroughTruncation
 | 
						|
        (significandParts(), oldPartCount, toSemantics.precision);
 | 
						|
    if (newPartCount == 1) {
 | 
						|
        integerPart newPart = 0;
 | 
						|
        if (category==fcNormal || category==fcNaN)
 | 
						|
          newPart = significandParts()[0];
 | 
						|
        freeSignificand();
 | 
						|
        significand.part = newPart;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(category == fcNormal) {
 | 
						|
    /* Re-interpret our bit-pattern.  */
 | 
						|
    exponent += toSemantics.precision - semantics->precision;
 | 
						|
    semantics = &toSemantics;
 | 
						|
    fs = normalize(rounding_mode, lostFraction);
 | 
						|
  } else if (category == fcNaN) {
 | 
						|
    int shift = toSemantics.precision - semantics->precision;
 | 
						|
    // Do this now so significandParts gets the right answer
 | 
						|
    semantics = &toSemantics;
 | 
						|
    // No normalization here, just truncate
 | 
						|
    if (shift>0)
 | 
						|
      APInt::tcShiftLeft(significandParts(), newPartCount, shift);
 | 
						|
    else if (shift < 0)
 | 
						|
      APInt::tcShiftRight(significandParts(), newPartCount, -shift);
 | 
						|
    // If the new size is shorter, we lost information.
 | 
						|
    fs = (shift < 0) ? opInexact : opOK;
 | 
						|
    // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
 | 
						|
    // does not give you back the same bits.  This is dubious, and we
 | 
						|
    // don't currently do it.  You're really supposed to get
 | 
						|
    // an invalid operation signal at runtime, but nobody does that.
 | 
						|
  } else {
 | 
						|
    semantics = &toSemantics;
 | 
						|
    fs = opOK;
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a floating point number to an integer according to the
 | 
						|
   rounding mode.  If the rounded integer value is out of range this
 | 
						|
   returns an invalid operation exception and the contents of the
 | 
						|
   destination parts are unspecified.  If the rounded value is in
 | 
						|
   range but the floating point number is not the exact integer, the C
 | 
						|
   standard doesn't require an inexact exception to be raised.  IEEE
 | 
						|
   854 does require it so we do that.
 | 
						|
 | 
						|
   Note that for conversions to integer type the C standard requires
 | 
						|
   round-to-zero to always be used.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
 | 
						|
                                      bool isSigned,
 | 
						|
                                      roundingMode rounding_mode) const
 | 
						|
{
 | 
						|
  lostFraction lost_fraction;
 | 
						|
  const integerPart *src;
 | 
						|
  unsigned int dstPartsCount, truncatedBits;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
 | 
						|
  /* Handle the three special cases first.  */
 | 
						|
  if(category == fcInfinity || category == fcNaN)
 | 
						|
    return opInvalidOp;
 | 
						|
 | 
						|
  dstPartsCount = partCountForBits(width);
 | 
						|
 | 
						|
  if(category == fcZero) {
 | 
						|
    APInt::tcSet(parts, 0, dstPartsCount);
 | 
						|
    return opOK;
 | 
						|
  }
 | 
						|
 | 
						|
  src = significandParts();
 | 
						|
 | 
						|
  /* Step 1: place our absolute value, with any fraction truncated, in
 | 
						|
     the destination.  */
 | 
						|
  if (exponent < 0) {
 | 
						|
    /* Our absolute value is less than one; truncate everything.  */
 | 
						|
    APInt::tcSet(parts, 0, dstPartsCount);
 | 
						|
    truncatedBits = semantics->precision;
 | 
						|
  } else {
 | 
						|
    /* We want the most significant (exponent + 1) bits; the rest are
 | 
						|
       truncated.  */
 | 
						|
    unsigned int bits = exponent + 1U;
 | 
						|
 | 
						|
    /* Hopelessly large in magnitude?  */
 | 
						|
    if (bits > width)
 | 
						|
      return opInvalidOp;
 | 
						|
 | 
						|
    if (bits < semantics->precision) {
 | 
						|
      /* We truncate (semantics->precision - bits) bits.  */
 | 
						|
      truncatedBits = semantics->precision - bits;
 | 
						|
      APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
 | 
						|
    } else {
 | 
						|
      /* We want at least as many bits as are available.  */
 | 
						|
      APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
 | 
						|
      APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
 | 
						|
      truncatedBits = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Step 2: work out any lost fraction, and increment the absolute
 | 
						|
     value if we would round away from zero.  */
 | 
						|
  if (truncatedBits) {
 | 
						|
    lost_fraction = lostFractionThroughTruncation(src, partCount(),
 | 
						|
                                                  truncatedBits);
 | 
						|
    if (lost_fraction != lfExactlyZero
 | 
						|
        && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
 | 
						|
      if (APInt::tcIncrement(parts, dstPartsCount))
 | 
						|
        return opInvalidOp;     /* Overflow.  */
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    lost_fraction = lfExactlyZero;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Step 3: check if we fit in the destination.  */
 | 
						|
  unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
 | 
						|
 | 
						|
  if (sign) {
 | 
						|
    if (!isSigned) {
 | 
						|
      /* Negative numbers cannot be represented as unsigned.  */
 | 
						|
      if (omsb != 0)
 | 
						|
        return opInvalidOp;
 | 
						|
    } else {
 | 
						|
      /* It takes omsb bits to represent the unsigned integer value.
 | 
						|
         We lose a bit for the sign, but care is needed as the
 | 
						|
         maximally negative integer is a special case.  */
 | 
						|
      if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
 | 
						|
        return opInvalidOp;
 | 
						|
 | 
						|
      /* This case can happen because of rounding.  */
 | 
						|
      if (omsb > width)
 | 
						|
        return opInvalidOp;
 | 
						|
    }
 | 
						|
 | 
						|
    APInt::tcNegate (parts, dstPartsCount);
 | 
						|
  } else {
 | 
						|
    if (omsb >= width + !isSigned)
 | 
						|
      return opInvalidOp;
 | 
						|
  }
 | 
						|
 | 
						|
  if (lost_fraction == lfExactlyZero)
 | 
						|
    return opOK;
 | 
						|
  else
 | 
						|
    return opInexact;
 | 
						|
}
 | 
						|
 | 
						|
/* Same as convertToSignExtendedInteger, except we provide
 | 
						|
   deterministic values in case of an invalid operation exception,
 | 
						|
   namely zero for NaNs and the minimal or maximal value respectively
 | 
						|
   for underflow or overflow.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertToInteger(integerPart *parts, unsigned int width,
 | 
						|
                          bool isSigned,
 | 
						|
                          roundingMode rounding_mode) const
 | 
						|
{
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode);
 | 
						|
 | 
						|
  if (fs == opInvalidOp) {
 | 
						|
    unsigned int bits, dstPartsCount;
 | 
						|
 | 
						|
    dstPartsCount = partCountForBits(width);
 | 
						|
 | 
						|
    if (category == fcNaN)
 | 
						|
      bits = 0;
 | 
						|
    else if (sign)
 | 
						|
      bits = isSigned;
 | 
						|
    else
 | 
						|
      bits = width - isSigned;
 | 
						|
 | 
						|
    APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
 | 
						|
    if (sign && isSigned)
 | 
						|
      APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert an unsigned integer SRC to a floating point number,
 | 
						|
   rounding according to ROUNDING_MODE.  The sign of the floating
 | 
						|
   point number is not modified.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertFromUnsignedParts(const integerPart *src,
 | 
						|
                                  unsigned int srcCount,
 | 
						|
                                  roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  unsigned int omsb, precision, dstCount;
 | 
						|
  integerPart *dst;
 | 
						|
  lostFraction lost_fraction;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
  category = fcNormal;
 | 
						|
  omsb = APInt::tcMSB(src, srcCount) + 1;
 | 
						|
  dst = significandParts();
 | 
						|
  dstCount = partCount();
 | 
						|
  precision = semantics->precision;
 | 
						|
 | 
						|
  /* We want the most significant PRECISON bits of SRC.  There may not
 | 
						|
     be that many; extract what we can.  */
 | 
						|
  if (precision <= omsb) {
 | 
						|
    exponent = omsb - 1;
 | 
						|
    lost_fraction = lostFractionThroughTruncation(src, srcCount,
 | 
						|
                                                  omsb - precision);
 | 
						|
    APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
 | 
						|
  } else {
 | 
						|
    exponent = precision - 1;
 | 
						|
    lost_fraction = lfExactlyZero;
 | 
						|
    APInt::tcExtract(dst, dstCount, src, omsb, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return normalize(rounding_mode, lost_fraction);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertFromAPInt(const APInt &Val,
 | 
						|
                          bool isSigned,
 | 
						|
                          roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  unsigned int partCount = Val.getNumWords();
 | 
						|
  APInt api = Val;
 | 
						|
 | 
						|
  sign = false;
 | 
						|
  if (isSigned && api.isNegative()) {
 | 
						|
    sign = true;
 | 
						|
    api = -api;
 | 
						|
  }
 | 
						|
 | 
						|
  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a two's complement integer SRC to a floating point number,
 | 
						|
   rounding according to ROUNDING_MODE.  ISSIGNED is true if the
 | 
						|
   integer is signed, in which case it must be sign-extended.  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertFromSignExtendedInteger(const integerPart *src,
 | 
						|
                                        unsigned int srcCount,
 | 
						|
                                        bool isSigned,
 | 
						|
                                        roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  opStatus status;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
  if (isSigned
 | 
						|
      && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
 | 
						|
    integerPart *copy;
 | 
						|
 | 
						|
    /* If we're signed and negative negate a copy.  */
 | 
						|
    sign = true;
 | 
						|
    copy = new integerPart[srcCount];
 | 
						|
    APInt::tcAssign(copy, src, srcCount);
 | 
						|
    APInt::tcNegate(copy, srcCount);
 | 
						|
    status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
 | 
						|
    delete [] copy;
 | 
						|
  } else {
 | 
						|
    sign = false;
 | 
						|
    status = convertFromUnsignedParts(src, srcCount, rounding_mode);
 | 
						|
  }
 | 
						|
 | 
						|
  return status;
 | 
						|
}
 | 
						|
 | 
						|
/* FIXME: should this just take a const APInt reference?  */
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
 | 
						|
                                        unsigned int width, bool isSigned,
 | 
						|
                                        roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  unsigned int partCount = partCountForBits(width);
 | 
						|
  APInt api = APInt(width, partCount, parts);
 | 
						|
 | 
						|
  sign = false;
 | 
						|
  if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
 | 
						|
    sign = true;
 | 
						|
    api = -api;
 | 
						|
  }
 | 
						|
 | 
						|
  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertFromHexadecimalString(const char *p,
 | 
						|
                                      roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  lostFraction lost_fraction;
 | 
						|
  integerPart *significand;
 | 
						|
  unsigned int bitPos, partsCount;
 | 
						|
  const char *dot, *firstSignificantDigit;
 | 
						|
 | 
						|
  zeroSignificand();
 | 
						|
  exponent = 0;
 | 
						|
  category = fcNormal;
 | 
						|
 | 
						|
  significand = significandParts();
 | 
						|
  partsCount = partCount();
 | 
						|
  bitPos = partsCount * integerPartWidth;
 | 
						|
 | 
						|
  /* Skip leading zeroes and any (hexa)decimal point.  */
 | 
						|
  p = skipLeadingZeroesAndAnyDot(p, &dot);
 | 
						|
  firstSignificantDigit = p;
 | 
						|
 | 
						|
  for(;;) {
 | 
						|
    integerPart hex_value;
 | 
						|
 | 
						|
    if(*p == '.') {
 | 
						|
      assert(dot == 0);
 | 
						|
      dot = p++;
 | 
						|
    }
 | 
						|
 | 
						|
    hex_value = hexDigitValue(*p);
 | 
						|
    if(hex_value == -1U) {
 | 
						|
      lost_fraction = lfExactlyZero;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    p++;
 | 
						|
 | 
						|
    /* Store the number whilst 4-bit nibbles remain.  */
 | 
						|
    if(bitPos) {
 | 
						|
      bitPos -= 4;
 | 
						|
      hex_value <<= bitPos % integerPartWidth;
 | 
						|
      significand[bitPos / integerPartWidth] |= hex_value;
 | 
						|
    } else {
 | 
						|
      lost_fraction = trailingHexadecimalFraction(p, hex_value);
 | 
						|
      while(hexDigitValue(*p) != -1U)
 | 
						|
        p++;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Hex floats require an exponent but not a hexadecimal point.  */
 | 
						|
  assert(*p == 'p' || *p == 'P');
 | 
						|
 | 
						|
  /* Ignore the exponent if we are zero.  */
 | 
						|
  if(p != firstSignificantDigit) {
 | 
						|
    int expAdjustment;
 | 
						|
 | 
						|
    /* Implicit hexadecimal point?  */
 | 
						|
    if(!dot)
 | 
						|
      dot = p;
 | 
						|
 | 
						|
    /* Calculate the exponent adjustment implicit in the number of
 | 
						|
       significant digits.  */
 | 
						|
    expAdjustment = static_cast<int>(dot - firstSignificantDigit);
 | 
						|
    if(expAdjustment < 0)
 | 
						|
      expAdjustment++;
 | 
						|
    expAdjustment = expAdjustment * 4 - 1;
 | 
						|
 | 
						|
    /* Adjust for writing the significand starting at the most
 | 
						|
       significant nibble.  */
 | 
						|
    expAdjustment += semantics->precision;
 | 
						|
    expAdjustment -= partsCount * integerPartWidth;
 | 
						|
 | 
						|
    /* Adjust for the given exponent.  */
 | 
						|
    exponent = totalExponent(p, expAdjustment);
 | 
						|
  }
 | 
						|
 | 
						|
  return normalize(rounding_mode, lost_fraction);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
 | 
						|
                                      unsigned sigPartCount, int exp,
 | 
						|
                                      roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  unsigned int parts, pow5PartCount;
 | 
						|
  fltSemantics calcSemantics = { 32767, -32767, 0, true };
 | 
						|
  integerPart pow5Parts[maxPowerOfFiveParts];
 | 
						|
  bool isNearest;
 | 
						|
 | 
						|
  isNearest = (rounding_mode == rmNearestTiesToEven
 | 
						|
               || rounding_mode == rmNearestTiesToAway);
 | 
						|
 | 
						|
  parts = partCountForBits(semantics->precision + 11);
 | 
						|
 | 
						|
  /* Calculate pow(5, abs(exp)).  */
 | 
						|
  pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
 | 
						|
 | 
						|
  for (;; parts *= 2) {
 | 
						|
    opStatus sigStatus, powStatus;
 | 
						|
    unsigned int excessPrecision, truncatedBits;
 | 
						|
 | 
						|
    calcSemantics.precision = parts * integerPartWidth - 1;
 | 
						|
    excessPrecision = calcSemantics.precision - semantics->precision;
 | 
						|
    truncatedBits = excessPrecision;
 | 
						|
 | 
						|
    APFloat decSig(calcSemantics, fcZero, sign);
 | 
						|
    APFloat pow5(calcSemantics, fcZero, false);
 | 
						|
 | 
						|
    sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
 | 
						|
                                                rmNearestTiesToEven);
 | 
						|
    powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
 | 
						|
                                              rmNearestTiesToEven);
 | 
						|
    /* Add exp, as 10^n = 5^n * 2^n.  */
 | 
						|
    decSig.exponent += exp;
 | 
						|
 | 
						|
    lostFraction calcLostFraction;
 | 
						|
    integerPart HUerr, HUdistance;
 | 
						|
    unsigned int powHUerr;
 | 
						|
 | 
						|
    if (exp >= 0) {
 | 
						|
      /* multiplySignificand leaves the precision-th bit set to 1.  */
 | 
						|
      calcLostFraction = decSig.multiplySignificand(pow5, NULL);
 | 
						|
      powHUerr = powStatus != opOK;
 | 
						|
    } else {
 | 
						|
      calcLostFraction = decSig.divideSignificand(pow5);
 | 
						|
      /* Denormal numbers have less precision.  */
 | 
						|
      if (decSig.exponent < semantics->minExponent) {
 | 
						|
        excessPrecision += (semantics->minExponent - decSig.exponent);
 | 
						|
        truncatedBits = excessPrecision;
 | 
						|
        if (excessPrecision > calcSemantics.precision)
 | 
						|
          excessPrecision = calcSemantics.precision;
 | 
						|
      }
 | 
						|
      /* Extra half-ulp lost in reciprocal of exponent.  */
 | 
						|
      powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Both multiplySignificand and divideSignificand return the
 | 
						|
       result with the integer bit set.  */
 | 
						|
    assert (APInt::tcExtractBit
 | 
						|
            (decSig.significandParts(), calcSemantics.precision - 1) == 1);
 | 
						|
 | 
						|
    HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
 | 
						|
                       powHUerr);
 | 
						|
    HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
 | 
						|
                                      excessPrecision, isNearest);
 | 
						|
 | 
						|
    /* Are we guaranteed to round correctly if we truncate?  */
 | 
						|
    if (HUdistance >= HUerr) {
 | 
						|
      APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
 | 
						|
                       calcSemantics.precision - excessPrecision,
 | 
						|
                       excessPrecision);
 | 
						|
      /* Take the exponent of decSig.  If we tcExtract-ed less bits
 | 
						|
         above we must adjust our exponent to compensate for the
 | 
						|
         implicit right shift.  */
 | 
						|
      exponent = (decSig.exponent + semantics->precision
 | 
						|
                  - (calcSemantics.precision - excessPrecision));
 | 
						|
      calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
 | 
						|
                                                       decSig.partCount(),
 | 
						|
                                                       truncatedBits);
 | 
						|
      return normalize(rounding_mode, calcLostFraction);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  decimalInfo D;
 | 
						|
  opStatus fs;
 | 
						|
 | 
						|
  /* Scan the text.  */
 | 
						|
  interpretDecimal(p, &D);
 | 
						|
 | 
						|
  /* Handle the quick cases.  First the case of no significant digits,
 | 
						|
     i.e. zero, and then exponents that are obviously too large or too
 | 
						|
     small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
 | 
						|
     definitely overflows if
 | 
						|
 | 
						|
           (exp - 1) * L >= maxExponent
 | 
						|
 | 
						|
     and definitely underflows to zero where
 | 
						|
 | 
						|
           (exp + 1) * L <= minExponent - precision
 | 
						|
 | 
						|
     With integer arithmetic the tightest bounds for L are
 | 
						|
 | 
						|
           93/28 < L < 196/59            [ numerator <= 256 ]
 | 
						|
           42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
 | 
						|
  */
 | 
						|
 | 
						|
  if (decDigitValue(*D.firstSigDigit) >= 10U) {
 | 
						|
    category = fcZero;
 | 
						|
    fs = opOK;
 | 
						|
  } else if ((D.normalizedExponent + 1) * 28738
 | 
						|
             <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
 | 
						|
    /* Underflow to zero and round.  */
 | 
						|
    zeroSignificand();
 | 
						|
    fs = normalize(rounding_mode, lfLessThanHalf);
 | 
						|
  } else if ((D.normalizedExponent - 1) * 42039
 | 
						|
             >= 12655 * semantics->maxExponent) {
 | 
						|
    /* Overflow and round.  */
 | 
						|
    fs = handleOverflow(rounding_mode);
 | 
						|
  } else {
 | 
						|
    integerPart *decSignificand;
 | 
						|
    unsigned int partCount;
 | 
						|
 | 
						|
    /* A tight upper bound on number of bits required to hold an
 | 
						|
       N-digit decimal integer is N * 196 / 59.  Allocate enough space
 | 
						|
       to hold the full significand, and an extra part required by
 | 
						|
       tcMultiplyPart.  */
 | 
						|
    partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
 | 
						|
    partCount = partCountForBits(1 + 196 * partCount / 59);
 | 
						|
    decSignificand = new integerPart[partCount + 1];
 | 
						|
    partCount = 0;
 | 
						|
 | 
						|
    /* Convert to binary efficiently - we do almost all multiplication
 | 
						|
       in an integerPart.  When this would overflow do we do a single
 | 
						|
       bignum multiplication, and then revert again to multiplication
 | 
						|
       in an integerPart.  */
 | 
						|
    do {
 | 
						|
      integerPart decValue, val, multiplier;
 | 
						|
 | 
						|
      val = 0;
 | 
						|
      multiplier = 1;
 | 
						|
 | 
						|
      do {
 | 
						|
        if (*p == '.')
 | 
						|
          p++;
 | 
						|
 | 
						|
        decValue = decDigitValue(*p++);
 | 
						|
        multiplier *= 10;
 | 
						|
        val = val * 10 + decValue;
 | 
						|
        /* The maximum number that can be multiplied by ten with any
 | 
						|
           digit added without overflowing an integerPart.  */
 | 
						|
      } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
 | 
						|
 | 
						|
      /* Multiply out the current part.  */
 | 
						|
      APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
 | 
						|
                            partCount, partCount + 1, false);
 | 
						|
 | 
						|
      /* If we used another part (likely but not guaranteed), increase
 | 
						|
         the count.  */
 | 
						|
      if (decSignificand[partCount])
 | 
						|
        partCount++;
 | 
						|
    } while (p <= D.lastSigDigit);
 | 
						|
 | 
						|
    category = fcNormal;
 | 
						|
    fs = roundSignificandWithExponent(decSignificand, partCount,
 | 
						|
                                      D.exponent, rounding_mode);
 | 
						|
 | 
						|
    delete [] decSignificand;
 | 
						|
  }
 | 
						|
 | 
						|
  return fs;
 | 
						|
}
 | 
						|
 | 
						|
APFloat::opStatus
 | 
						|
APFloat::convertFromString(const char *p, roundingMode rounding_mode)
 | 
						|
{
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
 | 
						|
  /* Handle a leading minus sign.  */
 | 
						|
  if(*p == '-')
 | 
						|
    sign = 1, p++;
 | 
						|
  else
 | 
						|
    sign = 0;
 | 
						|
 | 
						|
  if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
 | 
						|
    return convertFromHexadecimalString(p + 2, rounding_mode);
 | 
						|
  else
 | 
						|
    return convertFromDecimalString(p, rounding_mode);
 | 
						|
}
 | 
						|
 | 
						|
/* Write out a hexadecimal representation of the floating point value
 | 
						|
   to DST, which must be of sufficient size, in the C99 form
 | 
						|
   [-]0xh.hhhhp[+-]d.  Return the number of characters written,
 | 
						|
   excluding the terminating NUL.
 | 
						|
 | 
						|
   If UPPERCASE, the output is in upper case, otherwise in lower case.
 | 
						|
 | 
						|
   HEXDIGITS digits appear altogether, rounding the value if
 | 
						|
   necessary.  If HEXDIGITS is 0, the minimal precision to display the
 | 
						|
   number precisely is used instead.  If nothing would appear after
 | 
						|
   the decimal point it is suppressed.
 | 
						|
 | 
						|
   The decimal exponent is always printed and has at least one digit.
 | 
						|
   Zero values display an exponent of zero.  Infinities and NaNs
 | 
						|
   appear as "infinity" or "nan" respectively.
 | 
						|
 | 
						|
   The above rules are as specified by C99.  There is ambiguity about
 | 
						|
   what the leading hexadecimal digit should be.  This implementation
 | 
						|
   uses whatever is necessary so that the exponent is displayed as
 | 
						|
   stored.  This implies the exponent will fall within the IEEE format
 | 
						|
   range, and the leading hexadecimal digit will be 0 (for denormals),
 | 
						|
   1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
 | 
						|
   any other digits zero).
 | 
						|
*/
 | 
						|
unsigned int
 | 
						|
APFloat::convertToHexString(char *dst, unsigned int hexDigits,
 | 
						|
                            bool upperCase, roundingMode rounding_mode) const
 | 
						|
{
 | 
						|
  char *p;
 | 
						|
 | 
						|
  assertArithmeticOK(*semantics);
 | 
						|
 | 
						|
  p = dst;
 | 
						|
  if (sign)
 | 
						|
    *dst++ = '-';
 | 
						|
 | 
						|
  switch (category) {
 | 
						|
  case fcInfinity:
 | 
						|
    memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
 | 
						|
    dst += sizeof infinityL - 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case fcNaN:
 | 
						|
    memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
 | 
						|
    dst += sizeof NaNU - 1;
 | 
						|
    break;
 | 
						|
 | 
						|
  case fcZero:
 | 
						|
    *dst++ = '0';
 | 
						|
    *dst++ = upperCase ? 'X': 'x';
 | 
						|
    *dst++ = '0';
 | 
						|
    if (hexDigits > 1) {
 | 
						|
      *dst++ = '.';
 | 
						|
      memset (dst, '0', hexDigits - 1);
 | 
						|
      dst += hexDigits - 1;
 | 
						|
    }
 | 
						|
    *dst++ = upperCase ? 'P': 'p';
 | 
						|
    *dst++ = '0';
 | 
						|
    break;
 | 
						|
 | 
						|
  case fcNormal:
 | 
						|
    dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  *dst = 0;
 | 
						|
 | 
						|
  return static_cast<unsigned int>(dst - p);
 | 
						|
}
 | 
						|
 | 
						|
/* Does the hard work of outputting the correctly rounded hexadecimal
 | 
						|
   form of a normal floating point number with the specified number of
 | 
						|
   hexadecimal digits.  If HEXDIGITS is zero the minimum number of
 | 
						|
   digits necessary to print the value precisely is output.  */
 | 
						|
char *
 | 
						|
APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
 | 
						|
                                  bool upperCase,
 | 
						|
                                  roundingMode rounding_mode) const
 | 
						|
{
 | 
						|
  unsigned int count, valueBits, shift, partsCount, outputDigits;
 | 
						|
  const char *hexDigitChars;
 | 
						|
  const integerPart *significand;
 | 
						|
  char *p;
 | 
						|
  bool roundUp;
 | 
						|
 | 
						|
  *dst++ = '0';
 | 
						|
  *dst++ = upperCase ? 'X': 'x';
 | 
						|
 | 
						|
  roundUp = false;
 | 
						|
  hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
 | 
						|
 | 
						|
  significand = significandParts();
 | 
						|
  partsCount = partCount();
 | 
						|
 | 
						|
  /* +3 because the first digit only uses the single integer bit, so
 | 
						|
     we have 3 virtual zero most-significant-bits.  */
 | 
						|
  valueBits = semantics->precision + 3;
 | 
						|
  shift = integerPartWidth - valueBits % integerPartWidth;
 | 
						|
 | 
						|
  /* The natural number of digits required ignoring trailing
 | 
						|
     insignificant zeroes.  */
 | 
						|
  outputDigits = (valueBits - significandLSB () + 3) / 4;
 | 
						|
 | 
						|
  /* hexDigits of zero means use the required number for the
 | 
						|
     precision.  Otherwise, see if we are truncating.  If we are,
 | 
						|
     find out if we need to round away from zero.  */
 | 
						|
  if (hexDigits) {
 | 
						|
    if (hexDigits < outputDigits) {
 | 
						|
      /* We are dropping non-zero bits, so need to check how to round.
 | 
						|
         "bits" is the number of dropped bits.  */
 | 
						|
      unsigned int bits;
 | 
						|
      lostFraction fraction;
 | 
						|
 | 
						|
      bits = valueBits - hexDigits * 4;
 | 
						|
      fraction = lostFractionThroughTruncation (significand, partsCount, bits);
 | 
						|
      roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
 | 
						|
    }
 | 
						|
    outputDigits = hexDigits;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Write the digits consecutively, and start writing in the location
 | 
						|
     of the hexadecimal point.  We move the most significant digit
 | 
						|
     left and add the hexadecimal point later.  */
 | 
						|
  p = ++dst;
 | 
						|
 | 
						|
  count = (valueBits + integerPartWidth - 1) / integerPartWidth;
 | 
						|
 | 
						|
  while (outputDigits && count) {
 | 
						|
    integerPart part;
 | 
						|
 | 
						|
    /* Put the most significant integerPartWidth bits in "part".  */
 | 
						|
    if (--count == partsCount)
 | 
						|
      part = 0;  /* An imaginary higher zero part.  */
 | 
						|
    else
 | 
						|
      part = significand[count] << shift;
 | 
						|
 | 
						|
    if (count && shift)
 | 
						|
      part |= significand[count - 1] >> (integerPartWidth - shift);
 | 
						|
 | 
						|
    /* Convert as much of "part" to hexdigits as we can.  */
 | 
						|
    unsigned int curDigits = integerPartWidth / 4;
 | 
						|
 | 
						|
    if (curDigits > outputDigits)
 | 
						|
      curDigits = outputDigits;
 | 
						|
    dst += partAsHex (dst, part, curDigits, hexDigitChars);
 | 
						|
    outputDigits -= curDigits;
 | 
						|
  }
 | 
						|
 | 
						|
  if (roundUp) {
 | 
						|
    char *q = dst;
 | 
						|
 | 
						|
    /* Note that hexDigitChars has a trailing '0'.  */
 | 
						|
    do {
 | 
						|
      q--;
 | 
						|
      *q = hexDigitChars[hexDigitValue (*q) + 1];
 | 
						|
    } while (*q == '0');
 | 
						|
    assert (q >= p);
 | 
						|
  } else {
 | 
						|
    /* Add trailing zeroes.  */
 | 
						|
    memset (dst, '0', outputDigits);
 | 
						|
    dst += outputDigits;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Move the most significant digit to before the point, and if there
 | 
						|
     is something after the decimal point add it.  This must come
 | 
						|
     after rounding above.  */
 | 
						|
  p[-1] = p[0];
 | 
						|
  if (dst -1 == p)
 | 
						|
    dst--;
 | 
						|
  else
 | 
						|
    p[0] = '.';
 | 
						|
 | 
						|
  /* Finally output the exponent.  */
 | 
						|
  *dst++ = upperCase ? 'P': 'p';
 | 
						|
 | 
						|
  return writeSignedDecimal (dst, exponent);
 | 
						|
}
 | 
						|
 | 
						|
// For good performance it is desirable for different APFloats
 | 
						|
// to produce different integers.
 | 
						|
uint32_t
 | 
						|
APFloat::getHashValue() const
 | 
						|
{
 | 
						|
  if (category==fcZero) return sign<<8 | semantics->precision ;
 | 
						|
  else if (category==fcInfinity) return sign<<9 | semantics->precision;
 | 
						|
  else if (category==fcNaN) return 1<<10 | semantics->precision;
 | 
						|
  else {
 | 
						|
    uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
 | 
						|
    const integerPart* p = significandParts();
 | 
						|
    for (int i=partCount(); i>0; i--, p++)
 | 
						|
      hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
 | 
						|
    return hash;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Conversion from APFloat to/from host float/double.  It may eventually be
 | 
						|
// possible to eliminate these and have everybody deal with APFloats, but that
 | 
						|
// will take a while.  This approach will not easily extend to long double.
 | 
						|
// Current implementation requires integerPartWidth==64, which is correct at
 | 
						|
// the moment but could be made more general.
 | 
						|
 | 
						|
// Denormals have exponent minExponent in APFloat, but minExponent-1 in
 | 
						|
// the actual IEEE respresentations.  We compensate for that here.
 | 
						|
 | 
						|
APInt
 | 
						|
APFloat::convertF80LongDoubleAPFloatToAPInt() const
 | 
						|
{
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
 | 
						|
  assert (partCount()==2);
 | 
						|
 | 
						|
  uint64_t myexponent, mysignificand;
 | 
						|
 | 
						|
  if (category==fcNormal) {
 | 
						|
    myexponent = exponent+16383; //bias
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
    if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0x7fff;
 | 
						|
    mysignificand = 0x8000000000000000ULL;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category");
 | 
						|
    myexponent = 0x7fff;
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t words[2];
 | 
						|
  words[0] =  ((uint64_t)(sign & 1) << 63) |
 | 
						|
              ((myexponent & 0x7fffLL) <<  48) |
 | 
						|
              ((mysignificand >>16) & 0xffffffffffffLL);
 | 
						|
  words[1] = mysignificand & 0xffff;
 | 
						|
  return APInt(80, 2, words);
 | 
						|
}
 | 
						|
 | 
						|
APInt
 | 
						|
APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
 | 
						|
{
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
 | 
						|
  assert (partCount()==2);
 | 
						|
 | 
						|
  uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
 | 
						|
 | 
						|
  if (category==fcNormal) {
 | 
						|
    myexponent = exponent + 1023; //bias
 | 
						|
    myexponent2 = exponent2 + 1023;
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
    mysignificand2 = significandParts()[1];
 | 
						|
    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
    if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
 | 
						|
      myexponent2 = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
    myexponent2 = 0;
 | 
						|
    mysignificand2 = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0x7ff;
 | 
						|
    myexponent2 = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
    mysignificand2 = 0;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category");
 | 
						|
    myexponent = 0x7ff;
 | 
						|
    mysignificand = significandParts()[0];
 | 
						|
    myexponent2 = exponent2;
 | 
						|
    mysignificand2 = significandParts()[1];
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t words[2];
 | 
						|
  words[0] =  ((uint64_t)(sign & 1) << 63) |
 | 
						|
              ((myexponent & 0x7ff) <<  52) |
 | 
						|
              (mysignificand & 0xfffffffffffffLL);
 | 
						|
  words[1] =  ((uint64_t)(sign2 & 1) << 63) |
 | 
						|
              ((myexponent2 & 0x7ff) <<  52) |
 | 
						|
              (mysignificand2 & 0xfffffffffffffLL);
 | 
						|
  return APInt(128, 2, words);
 | 
						|
}
 | 
						|
 | 
						|
APInt
 | 
						|
APFloat::convertDoubleAPFloatToAPInt() const
 | 
						|
{
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
 | 
						|
  assert (partCount()==1);
 | 
						|
 | 
						|
  uint64_t myexponent, mysignificand;
 | 
						|
 | 
						|
  if (category==fcNormal) {
 | 
						|
    myexponent = exponent+1023; //bias
 | 
						|
    mysignificand = *significandParts();
 | 
						|
    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0x7ff;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category!");
 | 
						|
    myexponent = 0x7ff;
 | 
						|
    mysignificand = *significandParts();
 | 
						|
  }
 | 
						|
 | 
						|
  return APInt(64, ((((uint64_t)(sign & 1) << 63) |
 | 
						|
                     ((myexponent & 0x7ff) <<  52) |
 | 
						|
                     (mysignificand & 0xfffffffffffffLL))));
 | 
						|
}
 | 
						|
 | 
						|
APInt
 | 
						|
APFloat::convertFloatAPFloatToAPInt() const
 | 
						|
{
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
 | 
						|
  assert (partCount()==1);
 | 
						|
 | 
						|
  uint32_t myexponent, mysignificand;
 | 
						|
 | 
						|
  if (category==fcNormal) {
 | 
						|
    myexponent = exponent+127; //bias
 | 
						|
    mysignificand = (uint32_t)*significandParts();
 | 
						|
    if (myexponent == 1 && !(mysignificand & 0x800000))
 | 
						|
      myexponent = 0;   // denormal
 | 
						|
  } else if (category==fcZero) {
 | 
						|
    myexponent = 0;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else if (category==fcInfinity) {
 | 
						|
    myexponent = 0xff;
 | 
						|
    mysignificand = 0;
 | 
						|
  } else {
 | 
						|
    assert(category == fcNaN && "Unknown category!");
 | 
						|
    myexponent = 0xff;
 | 
						|
    mysignificand = (uint32_t)*significandParts();
 | 
						|
  }
 | 
						|
 | 
						|
  return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
 | 
						|
                    (mysignificand & 0x7fffff)));
 | 
						|
}
 | 
						|
 | 
						|
// This function creates an APInt that is just a bit map of the floating
 | 
						|
// point constant as it would appear in memory.  It is not a conversion,
 | 
						|
// and treating the result as a normal integer is unlikely to be useful.
 | 
						|
 | 
						|
APInt
 | 
						|
APFloat::convertToAPInt() const
 | 
						|
{
 | 
						|
  if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
 | 
						|
    return convertFloatAPFloatToAPInt();
 | 
						|
  
 | 
						|
  if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
 | 
						|
    return convertDoubleAPFloatToAPInt();
 | 
						|
 | 
						|
  if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
 | 
						|
    return convertPPCDoubleDoubleAPFloatToAPInt();
 | 
						|
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
 | 
						|
         "unknown format!");
 | 
						|
  return convertF80LongDoubleAPFloatToAPInt();
 | 
						|
}
 | 
						|
 | 
						|
float
 | 
						|
APFloat::convertToFloat() const
 | 
						|
{
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
 | 
						|
  APInt api = convertToAPInt();
 | 
						|
  return api.bitsToFloat();
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
APFloat::convertToDouble() const
 | 
						|
{
 | 
						|
  assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
 | 
						|
  APInt api = convertToAPInt();
 | 
						|
  return api.bitsToDouble();
 | 
						|
}
 | 
						|
 | 
						|
/// Integer bit is explicit in this format.  Intel hardware (387 and later)
 | 
						|
/// does not support these bit patterns:
 | 
						|
///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
 | 
						|
///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
 | 
						|
///  exponent = 0, integer bit 1 ("pseudodenormal")
 | 
						|
///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
 | 
						|
/// At the moment, the first two are treated as NaNs, the second two as Normal.
 | 
						|
void
 | 
						|
APFloat::initFromF80LongDoubleAPInt(const APInt &api)
 | 
						|
{
 | 
						|
  assert(api.getBitWidth()==80);
 | 
						|
  uint64_t i1 = api.getRawData()[0];
 | 
						|
  uint64_t i2 = api.getRawData()[1];
 | 
						|
  uint64_t myexponent = (i1 >> 48) & 0x7fff;
 | 
						|
  uint64_t mysignificand = ((i1 << 16) &  0xffffffffffff0000ULL) |
 | 
						|
                          (i2 & 0xffff);
 | 
						|
 | 
						|
  initialize(&APFloat::x87DoubleExtended);
 | 
						|
  assert(partCount()==2);
 | 
						|
 | 
						|
  sign = static_cast<unsigned int>(i1>>63);
 | 
						|
  if (myexponent==0 && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
 | 
						|
    // exponent meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = 0;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 16383;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = 0;
 | 
						|
    if (myexponent==0)          // denormal
 | 
						|
      exponent = -16382;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
 | 
						|
{
 | 
						|
  assert(api.getBitWidth()==128);
 | 
						|
  uint64_t i1 = api.getRawData()[0];
 | 
						|
  uint64_t i2 = api.getRawData()[1];
 | 
						|
  uint64_t myexponent = (i1 >> 52) & 0x7ff;
 | 
						|
  uint64_t mysignificand = i1 & 0xfffffffffffffLL;
 | 
						|
  uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
 | 
						|
  uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
 | 
						|
 | 
						|
  initialize(&APFloat::PPCDoubleDouble);
 | 
						|
  assert(partCount()==2);
 | 
						|
 | 
						|
  sign = static_cast<unsigned int>(i1>>63);
 | 
						|
  sign2 = static_cast<unsigned int>(i2>>63);
 | 
						|
  if (myexponent==0 && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    // exponent2 and significand2 are required to be 0; we don't check
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0x7ff && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    // exponent2 and significand2 are required to be 0; we don't check
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0x7ff && mysignificand!=0) {
 | 
						|
    // exponent meaningless.  So is the whole second word, but keep it 
 | 
						|
    // for determinism.
 | 
						|
    category = fcNaN;
 | 
						|
    exponent2 = myexponent2;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = mysignificand2;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    // Note there is no category2; the second word is treated as if it is
 | 
						|
    // fcNormal, although it might be something else considered by itself.
 | 
						|
    exponent = myexponent - 1023;
 | 
						|
    exponent2 = myexponent2 - 1023;
 | 
						|
    significandParts()[0] = mysignificand;
 | 
						|
    significandParts()[1] = mysignificand2;
 | 
						|
    if (myexponent==0)          // denormal
 | 
						|
      exponent = -1022;
 | 
						|
    else
 | 
						|
      significandParts()[0] |= 0x10000000000000LL;  // integer bit
 | 
						|
    if (myexponent2==0) 
 | 
						|
      exponent2 = -1022;
 | 
						|
    else
 | 
						|
      significandParts()[1] |= 0x10000000000000LL;  // integer bit
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::initFromDoubleAPInt(const APInt &api)
 | 
						|
{
 | 
						|
  assert(api.getBitWidth()==64);
 | 
						|
  uint64_t i = *api.getRawData();
 | 
						|
  uint64_t myexponent = (i >> 52) & 0x7ff;
 | 
						|
  uint64_t mysignificand = i & 0xfffffffffffffLL;
 | 
						|
 | 
						|
  initialize(&APFloat::IEEEdouble);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  sign = static_cast<unsigned int>(i>>63);
 | 
						|
  if (myexponent==0 && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0x7ff && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0x7ff && mysignificand!=0) {
 | 
						|
    // exponent meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 1023;
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
    if (myexponent==0)          // denormal
 | 
						|
      exponent = -1022;
 | 
						|
    else
 | 
						|
      *significandParts() |= 0x10000000000000LL;  // integer bit
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
APFloat::initFromFloatAPInt(const APInt & api)
 | 
						|
{
 | 
						|
  assert(api.getBitWidth()==32);
 | 
						|
  uint32_t i = (uint32_t)*api.getRawData();
 | 
						|
  uint32_t myexponent = (i >> 23) & 0xff;
 | 
						|
  uint32_t mysignificand = i & 0x7fffff;
 | 
						|
 | 
						|
  initialize(&APFloat::IEEEsingle);
 | 
						|
  assert(partCount()==1);
 | 
						|
 | 
						|
  sign = i >> 31;
 | 
						|
  if (myexponent==0 && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcZero;
 | 
						|
  } else if (myexponent==0xff && mysignificand==0) {
 | 
						|
    // exponent, significand meaningless
 | 
						|
    category = fcInfinity;
 | 
						|
  } else if (myexponent==0xff && mysignificand!=0) {
 | 
						|
    // sign, exponent, significand meaningless
 | 
						|
    category = fcNaN;
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
  } else {
 | 
						|
    category = fcNormal;
 | 
						|
    exponent = myexponent - 127;  //bias
 | 
						|
    *significandParts() = mysignificand;
 | 
						|
    if (myexponent==0)    // denormal
 | 
						|
      exponent = -126;
 | 
						|
    else
 | 
						|
      *significandParts() |= 0x800000; // integer bit
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Treat api as containing the bits of a floating point number.  Currently
 | 
						|
/// we infer the floating point type from the size of the APInt.  The
 | 
						|
/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
 | 
						|
/// when the size is anything else).
 | 
						|
void
 | 
						|
APFloat::initFromAPInt(const APInt& api, bool isIEEE)
 | 
						|
{
 | 
						|
  if (api.getBitWidth() == 32)
 | 
						|
    return initFromFloatAPInt(api);
 | 
						|
  else if (api.getBitWidth()==64)
 | 
						|
    return initFromDoubleAPInt(api);
 | 
						|
  else if (api.getBitWidth()==80)
 | 
						|
    return initFromF80LongDoubleAPInt(api);
 | 
						|
  else if (api.getBitWidth()==128 && !isIEEE)
 | 
						|
    return initFromPPCDoubleDoubleAPInt(api);
 | 
						|
  else
 | 
						|
    assert(0);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(const APInt& api, bool isIEEE)
 | 
						|
{
 | 
						|
  initFromAPInt(api, isIEEE);
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(float f)
 | 
						|
{
 | 
						|
  APInt api = APInt(32, 0);
 | 
						|
  initFromAPInt(api.floatToBits(f));
 | 
						|
}
 | 
						|
 | 
						|
APFloat::APFloat(double d)
 | 
						|
{
 | 
						|
  APInt api = APInt(64, 0);
 | 
						|
  initFromAPInt(api.doubleToBits(d));
 | 
						|
}
 |