Add a basic intra-procedural escape analysis. This hasn't be extensively tested yet, but feedback is welcome.
llvm-svn: 57342
This commit is contained in:
		
							parent
							
								
									c9e7c272da
								
							
						
					
					
						commit
						45d41c6741
					
				| 
						 | 
				
			
			@ -0,0 +1,59 @@
 | 
			
		|||
//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
// This file defines the interface for the pointer escape analysis.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
#ifndef LLVM_ANALYSIS_LOOPVR_H
 | 
			
		||||
#define LLVM_ANALYSIS_LOOPVR_H
 | 
			
		||||
 | 
			
		||||
#include "llvm/Pass.h"
 | 
			
		||||
#include "llvm/Instructions.h"
 | 
			
		||||
#include "llvm/Analysis/AliasAnalysis.h"
 | 
			
		||||
#include "llvm/Target/TargetData.h"
 | 
			
		||||
#include <set>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
namespace llvm {
 | 
			
		||||
 | 
			
		||||
/// EscapeAnalysis - This class determines whether an allocation (a MallocInst 
 | 
			
		||||
/// or an AllocaInst) can escape from the current function.  It performs some
 | 
			
		||||
/// precomputation, with the rest of the work happening on-demand.
 | 
			
		||||
class EscapeAnalysis : public FunctionPass {
 | 
			
		||||
private:
 | 
			
		||||
  std::set<Instruction*> EscapePoints;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
  static char ID; // Class identification, replacement for typeinfo
 | 
			
		||||
 | 
			
		||||
  EscapeAnalysis() : FunctionPass(intptr_t(&ID)) {}
 | 
			
		||||
 | 
			
		||||
  bool runOnFunction(Function &F);
 | 
			
		||||
  
 | 
			
		||||
  void releaseMemory() {
 | 
			
		||||
    EscapePoints.clear();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
			
		||||
    AU.addRequiredTransitive<TargetData>();
 | 
			
		||||
    AU.addRequiredTransitive<AliasAnalysis>();
 | 
			
		||||
    AU.setPreservesAll();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  //===---------------------------------------------------------------------
 | 
			
		||||
  // Client API
 | 
			
		||||
 | 
			
		||||
  /// escapes - returns true if the AllocationInst can escape.
 | 
			
		||||
  bool escapes(AllocationInst* A);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // end llvm namespace
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,131 @@
 | 
			
		|||
//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
// This file provides the implementation of the pointer escape analysis.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
#define DEBUG_TYPE "escape-analysis"
 | 
			
		||||
#include "llvm/Analysis/EscapeAnalysis.h"
 | 
			
		||||
#include "llvm/Module.h"
 | 
			
		||||
#include "llvm/Support/InstIterator.h"
 | 
			
		||||
#include "llvm/ADT/SmallPtrSet.h"
 | 
			
		||||
using namespace llvm;
 | 
			
		||||
 | 
			
		||||
char EscapeAnalysis::ID = 0;
 | 
			
		||||
static RegisterPass<EscapeAnalysis> X("escape-analysis",
 | 
			
		||||
                                      "Pointer Escape Analysis", true, true);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/// runOnFunction - Precomputation for escape analysis.  This collects all know
 | 
			
		||||
/// "escape points" in the def-use graph of the function.  These are 
 | 
			
		||||
/// instructions which allow their inputs to escape from the current function.  
 | 
			
		||||
bool EscapeAnalysis::runOnFunction(Function& F) {
 | 
			
		||||
  EscapePoints.clear();
 | 
			
		||||
  
 | 
			
		||||
  TargetData& TD = getAnalysis<TargetData>();
 | 
			
		||||
  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
 | 
			
		||||
  Module* M = F.getParent();
 | 
			
		||||
  
 | 
			
		||||
  // Walk through all instructions in the function, identifying those that
 | 
			
		||||
  // may allow their inputs to escape.
 | 
			
		||||
  for(inst_iterator II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
 | 
			
		||||
    Instruction* I = &*II;
 | 
			
		||||
    
 | 
			
		||||
    // The most obvious case is stores.  Any store that may write to global
 | 
			
		||||
    // memory or to a function argument potentially allows its input to escape.
 | 
			
		||||
    if (StoreInst* S = dyn_cast<StoreInst>(I)) {
 | 
			
		||||
      const Type* StoreType = S->getOperand(0)->getType();
 | 
			
		||||
      unsigned StoreSize = TD.getTypeStoreSize(StoreType);
 | 
			
		||||
      Value* Pointer = S->getPointerOperand();
 | 
			
		||||
      
 | 
			
		||||
      bool inserted = false;
 | 
			
		||||
      for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
 | 
			
		||||
           AI != AE; ++AI) {
 | 
			
		||||
        AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, AI, ~0UL);
 | 
			
		||||
        if (R != AliasAnalysis::NoAlias) {
 | 
			
		||||
          EscapePoints.insert(S);
 | 
			
		||||
          inserted = true;
 | 
			
		||||
          break;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      
 | 
			
		||||
      if (inserted)
 | 
			
		||||
        continue;
 | 
			
		||||
      
 | 
			
		||||
      for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
 | 
			
		||||
           GI != GE; ++GI) {
 | 
			
		||||
        AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, GI, ~0UL);
 | 
			
		||||
        if (R != AliasAnalysis::NoAlias) {
 | 
			
		||||
          EscapePoints.insert(S);
 | 
			
		||||
          break;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    
 | 
			
		||||
    // Calls and invokes potentially allow their parameters to escape.
 | 
			
		||||
    // FIXME: This can and should be refined.  Intrinsics have known escape
 | 
			
		||||
    // behavior, and alias analysis may be able to tell us more about callees.
 | 
			
		||||
    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | 
			
		||||
      EscapePoints.insert(I);
 | 
			
		||||
    
 | 
			
		||||
    // Returns allow the return value to escape.  This is mostly important
 | 
			
		||||
    // for malloc to alloca promotion.
 | 
			
		||||
    } else if (isa<ReturnInst>(I)) {
 | 
			
		||||
      EscapePoints.insert(I);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    // FIXME: Are there any other possible escape points?
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// escapes - Determines whether the passed allocation can escape from the 
 | 
			
		||||
/// current function.  It does this by using a simple worklist algorithm to
 | 
			
		||||
/// search for a path in the def-use graph from the allocation to an
 | 
			
		||||
/// escape point.
 | 
			
		||||
/// FIXME: Once we've discovered a path, it would be a good idea to memoize it,
 | 
			
		||||
/// and all of its subpaths, to amortize the cost of future queries.
 | 
			
		||||
bool EscapeAnalysis::escapes(AllocationInst* A) {
 | 
			
		||||
  std::vector<Value*> worklist;
 | 
			
		||||
  worklist.push_back(A);
 | 
			
		||||
  
 | 
			
		||||
  SmallPtrSet<Value*, 8> visited;
 | 
			
		||||
  while (!worklist.empty()) {
 | 
			
		||||
    Value* curr = worklist.back();
 | 
			
		||||
    worklist.pop_back();
 | 
			
		||||
    
 | 
			
		||||
    visited.insert(curr);
 | 
			
		||||
    
 | 
			
		||||
    if (Instruction* CurrInst = dyn_cast<Instruction>(curr))
 | 
			
		||||
      if (EscapePoints.count(CurrInst))
 | 
			
		||||
        return true;
 | 
			
		||||
    
 | 
			
		||||
    for (Instruction::use_iterator UI = curr->use_begin(), UE = curr->use_end();
 | 
			
		||||
         UI != UE; ++UI)
 | 
			
		||||
      if (Instruction* U = dyn_cast<Instruction>(UI))
 | 
			
		||||
        if (!visited.count(U))
 | 
			
		||||
          if (StoreInst* S = dyn_cast<StoreInst>(U)) {
 | 
			
		||||
            // We know this must be an instruction, because constant gep's would
 | 
			
		||||
            // have been found to alias a global, so stores to them would have
 | 
			
		||||
            // been in EscapePoints.
 | 
			
		||||
            worklist.push_back(cast<Instruction>(S->getPointerOperand()));
 | 
			
		||||
          } else if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
 | 
			
		||||
            // Because branches on the pointer value can hide data dependencies,
 | 
			
		||||
            // we need to track values that were generated by branching on the
 | 
			
		||||
            // pointer (or some derived value).  To do that, we push the block,
 | 
			
		||||
            // whose uses will be the PHINodes that generate information based
 | 
			
		||||
            // one it.
 | 
			
		||||
            worklist.push_back(U->getParent());
 | 
			
		||||
          } else
 | 
			
		||||
            worklist.push_back(U);
 | 
			
		||||
  }
 | 
			
		||||
  
 | 
			
		||||
  return false;
 | 
			
		||||
}
 | 
			
		||||
		Loading…
	
		Reference in New Issue