[asan] fully re-implement the FakeStack (use-after-return) to make it faster and async-signal-safe. The implementation is not yet complete (see FIXMEs) but the existing tests pass.

llvm-svn: 190588
This commit is contained in:
Kostya Serebryany 2013-09-12 07:11:58 +00:00
parent 7fe6a5390f
commit 729c8dc65b
6 changed files with 340 additions and 231 deletions

View File

@ -17,164 +17,79 @@
namespace __asan {
bool FakeStack::AddrIsInSizeClass(uptr addr, uptr class_id) {
uptr mem = allocated_size_classes_[class_id];
uptr size = ClassMmapSize(class_id);
bool res = mem && addr >= mem && addr < mem + size;
return res;
void FakeStack::PoisonAll(u8 magic) {
PoisonShadow(reinterpret_cast<uptr>(this), RequiredSize(stack_size_log()),
magic);
}
uptr FakeStack::AddrIsInFakeStack(uptr addr) {
for (uptr class_id = 0; class_id < kNumberOfSizeClasses; class_id++) {
if (!AddrIsInSizeClass(addr, class_id)) continue;
uptr size_class_first_ptr = allocated_size_classes_[class_id];
uptr size = ClassSize(class_id);
CHECK_LE(size_class_first_ptr, addr);
CHECK_GT(size_class_first_ptr + ClassMmapSize(class_id), addr);
return size_class_first_ptr + ((addr - size_class_first_ptr) / size) * size;
FakeFrame *FakeStack::Allocate(uptr stack_size_log, uptr class_id,
uptr real_stack) {
CHECK_LT(class_id, kNumberOfSizeClasses);
uptr &hint_position = hint_position_[class_id];
const int num_iter = NumberOfFrames(stack_size_log, class_id);
u8 *flags = GetFlags(stack_size_log, class_id);
for (int i = 0; i < num_iter; i++) {
uptr pos = ModuloNumberOfFrames(stack_size_log, class_id, hint_position++);
if (flags[pos]) continue;
u8 zero = 0;
// FIXME: this does not have to be thread-safe, just async-signal-safe.
if (atomic_compare_exchange_strong((atomic_uint8_t *)&flags[pos], &zero, 1,
memory_order_acquire)) {
FakeFrame *res = reinterpret_cast<FakeFrame *>(
GetFrame(stack_size_log, class_id, pos));
res->real_stack = real_stack;
res->class_id = class_id;
return res;
}
}
CHECK(0 && "Failed to allocate a fake stack frame");
return 0;
}
// We may want to compute this during compilation.
ALWAYS_INLINE uptr FakeStack::ComputeSizeClass(uptr alloc_size) {
uptr rounded_size = RoundUpToPowerOfTwo(alloc_size);
uptr log = Log2(rounded_size);
CHECK_LE(alloc_size, (1UL << log));
CHECK_GT(alloc_size, (1UL << (log-1)));
uptr res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
CHECK_LT(res, kNumberOfSizeClasses);
CHECK_GE(ClassSize(res), rounded_size);
return res;
void FakeStack::Deallocate(FakeFrame *ff, uptr stack_size_log, uptr class_id,
uptr real_stack) {
u8 *base = GetFrame(stack_size_log, class_id, 0);
u8 *cur = reinterpret_cast<u8 *>(ff);
CHECK_LE(base, cur);
CHECK_LT(cur, base + (1UL << stack_size_log));
uptr pos = (cur - base) >> (kMinStackFrameSizeLog + class_id);
u8 *flags = GetFlags(stack_size_log, class_id);
CHECK_EQ(flags[pos], 1);
flags[pos] = 0;
}
void FakeFrameFifo::FifoPush(FakeFrame *node) {
CHECK(node);
node->next = 0;
if (first_ == 0 && last_ == 0) {
first_ = last_ = node;
} else {
CHECK(first_);
CHECK(last_);
last_->next = node;
last_ = node;
}
uptr FakeStack::AddrIsInFakeStack(uptr ptr) {
uptr stack_size_log = this->stack_size_log();
uptr beg = reinterpret_cast<uptr>(GetFrame(stack_size_log, 0, 0));
uptr end = reinterpret_cast<uptr>(this) + RequiredSize(stack_size_log);
if (ptr < beg || ptr >= end) return 0;
uptr class_id = (ptr - beg) >> stack_size_log;
uptr base = beg + (class_id << stack_size_log);
CHECK_LE(base, ptr);
CHECK_LT(ptr, base + (1UL << stack_size_log));
uptr pos = (ptr - base) >> (kMinStackFrameSizeLog + class_id);
return base + pos * BytesInSizeClass(class_id);
}
FakeFrame *FakeFrameFifo::FifoPop() {
CHECK(first_ && last_ && "Exhausted fake stack");
FakeFrame *res = 0;
if (first_ == last_) {
res = first_;
first_ = last_ = 0;
} else {
res = first_;
first_ = first_->next;
}
return res;
}
void FakeStack::Init(uptr stack_size) {
stack_size_ = stack_size;
alive_ = true;
}
void FakeStack::Cleanup() {
alive_ = false;
for (uptr i = 0; i < kNumberOfSizeClasses; i++) {
uptr mem = allocated_size_classes_[i];
if (mem) {
PoisonShadow(mem, ClassMmapSize(i), 0);
allocated_size_classes_[i] = 0;
UnmapOrDie((void*)mem, ClassMmapSize(i));
}
}
}
uptr FakeStack::ClassMmapSize(uptr class_id) {
// Limit allocation size to ClassSize * MaxDepth when running with unlimited
// stack.
return RoundUpTo(Min(ClassSize(class_id) * kMaxRecursionDepth, stack_size_),
GetPageSizeCached());
}
void FakeStack::AllocateOneSizeClass(uptr class_id) {
CHECK(ClassMmapSize(class_id) >= GetPageSizeCached());
uptr new_mem = (uptr)MmapOrDie(
ClassMmapSize(class_id), __FUNCTION__);
if (0) {
Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",
GetCurrentThread()->tid(),
class_id, new_mem, new_mem + ClassMmapSize(class_id),
ClassMmapSize(class_id));
}
uptr i;
uptr size = ClassSize(class_id);
for (i = 0; i + size <= ClassMmapSize(class_id); i += size) {
size_classes_[class_id].FifoPush((FakeFrame*)(new_mem + i));
}
CHECK_LE(i, ClassMmapSize(class_id));
allocated_size_classes_[class_id] = new_mem;
}
ALWAYS_INLINE uptr
FakeStack::AllocateStack(uptr class_id, uptr size, uptr real_stack) {
CHECK(size <= kMaxStackMallocSize && size > 1);
if (!alive_) return real_stack;
if (!allocated_size_classes_[class_id]) {
AllocateOneSizeClass(class_id);
}
FakeFrame *fake_frame = size_classes_[class_id].FifoPop();
CHECK(fake_frame);
fake_frame->class_id = class_id;
fake_frame->real_stack = real_stack;
while (FakeFrame *top = call_stack_.top()) {
if (top->real_stack > real_stack) break;
call_stack_.LifoPop();
DeallocateFrame(top);
}
call_stack_.LifoPush(fake_frame);
uptr ptr = (uptr)fake_frame;
ALWAYS_INLINE uptr OnMalloc(uptr class_id, uptr size, uptr real_stack) {
AsanThread *t = GetCurrentThread();
if (!t) return real_stack;
FakeStack *fs = t->fake_stack();
FakeFrame *ff = fs->Allocate(fs->stack_size_log(), class_id, real_stack);
uptr ptr = reinterpret_cast<uptr>(ff);
PoisonShadow(ptr, size, 0);
return ptr;
}
ALWAYS_INLINE void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
CHECK(alive_);
uptr class_id = static_cast<uptr>(fake_frame->class_id);
CHECK(allocated_size_classes_[class_id]);
uptr ptr = (uptr)fake_frame;
CHECK(AddrIsInSizeClass(ptr, class_id));
size_classes_[class_id].FifoPush(fake_frame);
}
ALWAYS_INLINE void FakeStack::OnFree(uptr ptr, uptr class_id, uptr size,
uptr real_stack) {
FakeFrame *fake_frame = (FakeFrame*)ptr;
CHECK_EQ(fake_frame->magic, kRetiredStackFrameMagic);
CHECK_NE(fake_frame->descr, 0);
CHECK_EQ(fake_frame->class_id, class_id);
PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
}
ALWAYS_INLINE uptr OnMalloc(uptr class_id, uptr size, uptr real_stack) {
if (!flags()->use_fake_stack) return real_stack;
AsanThread *t = GetCurrentThread();
if (!t) {
// TSD is gone, use the real stack.
return real_stack;
}
t->LazyInitFakeStack();
uptr ptr = t->fake_stack()->AllocateStack(class_id, size, real_stack);
// Printf("__asan_stack_malloc %p %zu %p\n", ptr, size, real_stack);
return ptr;
}
ALWAYS_INLINE void OnFree(uptr ptr, uptr class_id, uptr size, uptr real_stack) {
if (!flags()->use_fake_stack) return;
if (ptr != real_stack) {
FakeStack::OnFree(ptr, class_id, size, real_stack);
}
if (ptr == real_stack)
return;
AsanThread *t = GetCurrentThread();
if (!t) return;
FakeStack *fs = t->fake_stack();
FakeFrame *ff = reinterpret_cast<FakeFrame *>(ptr);
fs->Deallocate(ff, fs->stack_size_log(), class_id, real_stack);
PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
}
} // namespace __asan

View File

@ -9,12 +9,14 @@
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// ASan-private header for asan_fake_stack.cc
// ASan-private header for asan_fake_stack.cc, implements FakeStack.
//===----------------------------------------------------------------------===//
#ifndef ASAN_FAKE_STACK_H
#define ASAN_FAKE_STACK_H
#include "sanitizer_common/sanitizer_common.h"
namespace __asan {
// Fake stack frame contains local variables of one function.
@ -22,99 +24,144 @@ struct FakeFrame {
uptr magic; // Modified by the instrumented code.
uptr descr; // Modified by the instrumented code.
uptr pc; // Modified by the instrumented code.
u64 real_stack : 48;
u64 real_stack : 48;
u64 class_id : 16;
// End of the first 32 bytes.
// The rest should not be used when the frame is active.
FakeFrame *next;
};
struct FakeFrameFifo {
public:
void FifoPush(FakeFrame *node);
FakeFrame *FifoPop();
private:
FakeFrame *first_, *last_;
};
template<uptr kMaxNumberOfFrames>
class FakeFrameLifo {
public:
explicit FakeFrameLifo(LinkerInitialized) {}
FakeFrameLifo() : n_frames_(0) {}
void LifoPush(FakeFrame *node) {
CHECK_LT(n_frames_, kMaxNumberOfFrames);
frames_[n_frames_++] = node;
}
void LifoPop() {
CHECK(n_frames_);
n_frames_--;
}
FakeFrame *top() {
if (n_frames_ == 0)
return 0;
return frames_[n_frames_ - 1];
}
private:
uptr n_frames_;
FakeFrame *frames_[kMaxNumberOfFrames];
};
// For each thread we create a fake stack and place stack objects on this fake
// stack instead of the real stack. The fake stack is not really a stack but
// a fast malloc-like allocator so that when a function exits the fake stack
// is not poped but remains there for quite some time until gets used again.
// is not popped but remains there for quite some time until gets used again.
// So, we poison the objects on the fake stack when function returns.
// It helps us find use-after-return bugs.
// We can not rely on __asan_stack_free being called on every function exit,
// so we maintain a lifo list of all current fake frames and update it on every
// call to __asan_stack_malloc.
//
// The FakeStack objects is allocated by a single mmap call and has no other
// pointers. The size of the fake stack depends on the actual thread stack size
// and thus can not be a constant.
// stack_size is a power of two greater or equal to the thread's stack size;
// we store it as its logarithm (stack_size_log).
// FakeStack has kNumberOfSizeClasses (11) size classes, each size class
// is a power of two, starting from 64 bytes. Each size class occupies
// stack_size bytes and thus can allocate
// NumberOfFrames=(stack_size/BytesInSizeClass) fake frames (also a power of 2).
// For each size class we have NumberOfFrames allocation flags,
// each flag indicates whether the given frame is currently allocated.
// All flags for size classes 0 .. 10 are stored in a single contiguous region
// followed by another contiguous region which contains the actual memory for
// size classes. The addresses are computed by GetFlags and GetFrame without
// any memory accesses solely based on 'this' and stack_size_log.
// Allocate() flips the appropriate allocation flag atomically, thus achieving
// async-signal safety.
// This allocator does not have quarantine per se, but it tries to allocate the
// frames in round robin fasion to maximize the delay between a deallocation
// and the next allocation.
//
// FIXME: don't lazy init the FakeStack (not async-signal safe).
// FIXME: handle throw/longjmp/clone, i.e. garbage collect the unwinded frames.
// FIXME: use low bits of the pointer to store stack_size_log_ (performance).
class FakeStack {
static const uptr kMinStackFrameSizeLog = 6; // Min frame is 64B.
static const uptr kMaxStackFrameSizeLog = 16; // Max stack frame is 64K.
public:
void Init(uptr stack_size);
void StopUsingFakeStack() { alive_ = false; }
void Cleanup();
uptr AllocateStack(uptr class_id, uptr size, uptr real_stack);
static void OnFree(uptr ptr, uptr class_id, uptr size, uptr real_stack);
// Return the bottom of the maped region.
static const uptr kNumberOfSizeClasses =
kMaxStackFrameSizeLog - kMinStackFrameSizeLog + 1;
// CTOR: create the FakeStack as a single mmap-ed object.
static FakeStack *Create(uptr stack_size_log) {
if (stack_size_log < 15)
stack_size_log = 15;
FakeStack *res = reinterpret_cast<FakeStack *>(
MmapOrDie(RequiredSize(stack_size_log), "FakeStack"));
res->stack_size_log_ = stack_size_log;
return res;
}
void Destroy() {
UnmapOrDie(this, RequiredSize(stack_size_log_));
}
// stack_size_log is at least 15 (stack_size >= 32K).
static uptr SizeRequiredForFlags(uptr stack_size_log) {
return 1UL << (stack_size_log + 1 - kMinStackFrameSizeLog);
}
// Each size class occupies stack_size bytes.
static uptr SizeRequiredForFrames(uptr stack_size_log) {
return (1ULL << stack_size_log) * kNumberOfSizeClasses;
}
// Number of bytes requires for the whole object.
static uptr RequiredSize(uptr stack_size_log) {
return kFlagsOffset + SizeRequiredForFlags(stack_size_log) +
SizeRequiredForFrames(stack_size_log);
}
// Offset of the given flag from the first flag.
// The flags for class 0 begin at offset 000000000
// The flags for class 1 begin at offset 100000000
// ....................2................ 110000000
// ....................3................ 111000000
// and so on.
static uptr FlagsOffset(uptr stack_size_log, uptr class_id) {
uptr t = kNumberOfSizeClasses - 1 - class_id;
const uptr all_ones = (1 << (kNumberOfSizeClasses - 1)) - 1;
return ((all_ones >> t) << t) << (stack_size_log - 15);
}
static uptr NumberOfFrames(uptr stack_size_log, uptr class_id) {
return 1UL << (stack_size_log - kMinStackFrameSizeLog - class_id);
}
// Divide n by the numbe of frames in size class.
static uptr ModuloNumberOfFrames(uptr stack_size_log, uptr class_id, uptr n) {
return n & (NumberOfFrames(stack_size_log, class_id) - 1);
}
// The the pointer to the flags of the given class_id.
u8 *GetFlags(uptr stack_size_log, uptr class_id) {
return reinterpret_cast<u8 *>(this) + kFlagsOffset +
FlagsOffset(stack_size_log, class_id);
}
// Get frame by class_id and pos.
u8 *GetFrame(uptr stack_size_log, uptr class_id, uptr pos) {
return reinterpret_cast<u8 *>(this) + kFlagsOffset +
SizeRequiredForFlags(stack_size_log) +
(1 << stack_size_log) * class_id + BytesInSizeClass(class_id) * pos;
}
// Allocate the fake frame.
FakeFrame *Allocate(uptr stack_size_log, uptr class_id, uptr real_stack);
// Deallocate the fake frame.
void Deallocate(FakeFrame *ff, uptr stack_size_log, uptr class_id,
uptr real_stack);
// Poison the entire FakeStack's shadow with the magic value.
void PoisonAll(u8 magic);
// Return the beginning of the FakeFrame or 0 if the address is not ours.
uptr AddrIsInFakeStack(uptr addr);
uptr StackSize() const { return stack_size_; }
static uptr ComputeSizeClass(uptr alloc_size);
static uptr ClassSize(uptr class_id) {
// Number of bytes in a fake frame of this size class.
static uptr BytesInSizeClass(uptr class_id) {
return 1UL << (class_id + kMinStackFrameSizeLog);
}
uptr stack_size_log() const { return stack_size_log_; }
private:
static const uptr kMinStackFrameSizeLog = 6; // Min frame is 64B.
static const uptr kMaxStackFrameSizeLog = 16; // Max stack frame is 64K.
static const uptr kNumberOfSizeClasses =
kMaxStackFrameSizeLog - kMinStackFrameSizeLog + 1;
FakeStack() { }
static const uptr kFlagsOffset = 4096; // There is were flags begin.
// Must match the number of uses of DEFINE_STACK_MALLOC_FREE_WITH_CLASS_ID
COMPILER_CHECK(kNumberOfSizeClasses == 11);
static const uptr kMaxStackMallocSize = 1 << kMaxStackFrameSizeLog;
static const uptr kMaxRecursionDepth = 60000;
bool AddrIsInSizeClass(uptr addr, uptr class_id);
// Each size class should be large enough to hold all frames.
uptr ClassMmapSize(uptr class_id);
void DeallocateFrame(FakeFrame *fake_frame);
void AllocateOneSizeClass(uptr class_id);
uptr stack_size_;
bool alive_;
uptr allocated_size_classes_[kNumberOfSizeClasses];
FakeFrameFifo size_classes_[kNumberOfSizeClasses];
FakeFrameLifo<kMaxRecursionDepth> call_stack_;
uptr hint_position_[kNumberOfSizeClasses];
uptr stack_size_log_;
};
COMPILER_CHECK(sizeof(FakeStack) <= (1 << 19));
} // namespace __asan
#endif // ASAN_FAKE_STACK_H

View File

@ -525,14 +525,6 @@ class ScopedInErrorReport {
reporting_thread_tid = GetCurrentTidOrInvalid();
Printf("===================================================="
"=============\n");
if (reporting_thread_tid != kInvalidTid) {
// We started reporting an error message. Stop using the fake stack
// in case we call an instrumented function from a symbolizer.
AsanThread *curr_thread = GetCurrentThread();
CHECK(curr_thread);
if (curr_thread->fake_stack())
curr_thread->fake_stack()->StopUsingFakeStack();
}
}
// Destructor is NORETURN, as functions that report errors are.
NORETURN ~ScopedInErrorReport() {

View File

@ -75,17 +75,17 @@ class AsanThread {
return addr >= stack_bottom_ && addr < stack_top_;
}
void LazyInitFakeStack() {
if (fake_stack_) return;
fake_stack_ = (FakeStack*)MmapOrDie(sizeof(FakeStack), "FakeStack");
fake_stack_->Init(stack_size());
}
void DeleteFakeStack() {
if (!fake_stack_) return;
fake_stack_->Cleanup();
UnmapOrDie(fake_stack_, sizeof(FakeStack));
fake_stack_->PoisonAll(0);
fake_stack_->Destroy();
}
FakeStack *fake_stack() {
if (!fake_stack_) // FIXME: lazy init is not async-signal safe.
fake_stack_ = FakeStack::Create(Log2(RoundUpToPowerOfTwo(stack_size())));
return fake_stack_;
}
FakeStack *fake_stack() { return fake_stack_; }
AsanThreadLocalMallocStorage &malloc_storage() { return malloc_storage_; }
AsanStats &stats() { return stats_; }

View File

@ -128,6 +128,7 @@ add_custom_target(AsanBenchmarks)
set_target_properties(AsanBenchmarks PROPERTIES FOLDER "Asan benchmarks")
set(ASAN_NOINST_TEST_SOURCES
asan_fake_stack_test.cc
asan_noinst_test.cc
asan_test_main.cc)
set(ASAN_INST_TEST_SOURCES

View File

@ -0,0 +1,154 @@
//===-- asan_fake_stack_test.cc -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Tests for FakeStack.
// This test file should be compiled w/o asan instrumentation.
//===----------------------------------------------------------------------===//
#include "asan_fake_stack.h"
#include "asan_test_utils.h"
#include "sanitizer_common/sanitizer_common.h"
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <set>
namespace __asan {
TEST(FakeStack, FlagsSize) {
EXPECT_EQ(FakeStack::SizeRequiredForFlags(10), 1 << 5);
EXPECT_EQ(FakeStack::SizeRequiredForFlags(11), 1 << 6);
EXPECT_EQ(FakeStack::SizeRequiredForFlags(20), 1 << 15);
}
TEST(FakeStack, RequiredSize) {
// for (int i = 15; i < 20; i++) {
// uptr alloc_size = FakeStack::RequiredSize(i);
// printf("%zdK ==> %zd\n", 1 << (i - 10), alloc_size);
// }
EXPECT_EQ(FakeStack::RequiredSize(15), 365568);
EXPECT_EQ(FakeStack::RequiredSize(16), 727040);
EXPECT_EQ(FakeStack::RequiredSize(17), 1449984);
EXPECT_EQ(FakeStack::RequiredSize(18), 2895872);
EXPECT_EQ(FakeStack::RequiredSize(19), 5787648);
}
TEST(FakeStack, FlagsOffset) {
for (uptr stack_size_log = 15; stack_size_log <= 20; stack_size_log++) {
uptr stack_size = 1UL << stack_size_log;
uptr offset = 0;
for (uptr class_id = 0; class_id < FakeStack::kNumberOfSizeClasses;
class_id++) {
uptr frame_size = FakeStack::BytesInSizeClass(class_id);
uptr num_flags = stack_size / frame_size;
EXPECT_EQ(offset, FakeStack::FlagsOffset(stack_size_log, class_id));
// printf("%zd: %zd => %zd %zd\n", stack_size_log, class_id, offset,
// FakeStack::FlagsOffset(stack_size_log, class_id));
offset += num_flags;
}
}
}
TEST(FakeStack, CreateDestroy) {
for (int i = 0; i < 1000; i++) {
for (uptr stack_size_log = 20; stack_size_log <= 22; stack_size_log++) {
FakeStack *fake_stack = FakeStack::Create(stack_size_log);
fake_stack->Destroy();
}
}
}
TEST(FakeStack, ModuloNumberOfFrames) {
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, 0), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<15)), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<10)), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<9)), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<8)), 1<<8);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 0, (1<<15) + 1), 1);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 0), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<9), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<8), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 1, 1<<7), 1<<7);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 0), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 1), 1);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 15), 15);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 16), 0);
EXPECT_EQ(FakeStack::ModuloNumberOfFrames(15, 5, 17), 1);
}
TEST(FakeStack, GetFrame) {
const uptr stack_size_log = 20;
const uptr stack_size = 1 << stack_size_log;
FakeStack *fs = FakeStack::Create(stack_size_log);
u8 *base = fs->GetFrame(stack_size_log, 0, 0);
EXPECT_EQ(base, reinterpret_cast<u8 *>(fs) +
fs->SizeRequiredForFlags(stack_size_log) + 4096);
EXPECT_EQ(base + 0*stack_size + 64 * 7, fs->GetFrame(stack_size_log, 0, 7));
EXPECT_EQ(base + 1*stack_size + 128 * 3, fs->GetFrame(stack_size_log, 1, 3));
EXPECT_EQ(base + 2*stack_size + 256 * 5, fs->GetFrame(stack_size_log, 2, 5));
fs->Destroy();
}
TEST(FakeStack, Allocate) {
const uptr stack_size_log = 19;
FakeStack *fs = FakeStack::Create(stack_size_log);
std::set<FakeFrame *> s;
for (int iter = 0; iter < 2; iter++) {
s.clear();
for (uptr cid = 0; cid < FakeStack::kNumberOfSizeClasses; cid++) {
uptr n = FakeStack::NumberOfFrames(stack_size_log, cid);
uptr bytes_in_class = FakeStack::BytesInSizeClass(cid);
for (uptr j = 0; j < n; j++) {
FakeFrame *ff = fs->Allocate(stack_size_log, cid, 0);
uptr x = reinterpret_cast<uptr>(ff);
EXPECT_TRUE(s.insert(ff).second);
EXPECT_EQ(x, fs->AddrIsInFakeStack(x));
EXPECT_EQ(x, fs->AddrIsInFakeStack(x + 1));
EXPECT_EQ(x, fs->AddrIsInFakeStack(x + bytes_in_class - 1));
EXPECT_NE(x, fs->AddrIsInFakeStack(x + bytes_in_class));
}
if (iter == 0 &&
(cid == 0 || cid == FakeStack::kNumberOfSizeClasses - 1)) {
// This is slow, so we do it only sometimes.
EXPECT_DEATH(fs->Allocate(stack_size_log, cid, 0),
"Failed to allocate a fake stack frame");
}
}
for (std::set<FakeFrame *>::iterator it = s.begin(); it != s.end(); ++it) {
FakeFrame *ff = *it;
fs->Deallocate(ff, stack_size_log, ff->class_id, 0);
}
}
fs->Destroy();
}
static void RecursiveFunction(FakeStack *fs, int depth) {
uptr class_id = depth / 3;
FakeFrame *ff = fs->Allocate(fs->stack_size_log(), class_id, 0);
if (depth) {
RecursiveFunction(fs, depth - 1);
RecursiveFunction(fs, depth - 1);
}
fs->Deallocate(ff, fs->stack_size_log(), class_id, 0);
}
TEST(FakeStack, RecursiveStressTest) {
const uptr stack_size_log = 16;
FakeStack *fs = FakeStack::Create(stack_size_log);
RecursiveFunction(fs, 22); // with 26 runs for 2-3 seconds.
fs->Destroy();
}
} // namespace __asan