This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
Adds support for NamespaceDecl to inform if its part of a nested namespace.
This flag only corresponds to the inner namespaces in a nested namespace declaration.
In this example:
namespace <X>::<Y>::<Z> {}
Only <Y> and <Z> will be classified as nested.
This flag isn't meant for assisting in building the AST, more for static analysis and refactorings.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D90568
This patch replaces:
return Optional<T>();
with:
return None;
to make the migration from llvm::Optional to std::optional easier.
Specifically, I can deprecate None (in my source tree, that is) to
identify all the instances of None that should be replaced with
std::nullopt.
Note that "return None" far outnumbers "return Optional<T>();". There
are more than 2000 instances of "return None" in our source tree.
All of the instances in this patch come from functions that return
Optional<T> except Archive::findSym and ASTNodeImporter::import, where
we return Expected<Optional<T>>. Note that we can construct
Expected<Optional<T>> from any parameter convertible to Optional<T>,
which None certainly is.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Differential Revision: https://reviews.llvm.org/D138464
This was done as a test for D137302 and it makes sense to push these changes
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D137491
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
Implement https://cplusplus.github.io/CWG/issues/2631.html.
Immediate calls in default arguments and defaults members
are not evaluated.
Instead, we evaluate them when constructing a
`CXXDefaultArgExpr`/`BuildCXXDefaultInitExpr`.
The immediate calls are executed by doing a
transform on the initializing expression.
Note that lambdas are not considering subexpressions so
we do not need to transform them.
As a result of this patch, unused default member
initializers are not considered odr-used, and
errors about members binding to local variables
in an outer scope only surface at the point
where a constructor is defined.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D136554
Implements the changes required to perform substitution with
non-canonical template arguments, and to 'finalize' them
by not placing 'Subst' nodes.
A finalized substitution means we won't resugar them later,
because these templates themselves were eagerly substituted
with the intended arguments at the point of use. We may still
resugar other templates used within those, though.
This patch does not actually implement any uses of this
functionality, those will be added in subsequent patches,
so expect no changes to existing tests.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D134604
Function 'isAncestorDeclContextOf' was using 'ParentMapContext' for
looking up parent of statement nodes. There may be cases (bugs?) with
ParentMapContext when parents of specific statements are not found.
This leads to 'ASTImporter' infinite import loops when function
'hasAutoReturnTypeDeclaredInside' returns false incorrectly.
A real case was found but could not be reproduced with test code.
Use of 'ParentMapContext' is now removed and changed to a more safe
(currently) method by searching for declarations in statements
and find parent of these declarations. The new code was tested on
a number of projects and no related crash was found.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D136684
Implements the changes required to perform substitution with
non-canonical template arguments, and to 'finalize' them
by not placing 'Subst' nodes.
A finalized substitution means we won't resugar them later,
because these templates themselves were eagerly substituted
with the intended arguments at the point of use. We may still
resugar other templates used within those, though.
This patch does not actually implement any uses of this
functionality, those will be added in subsequent patches,
so expect no changes to existing tests.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D134604
Removes a bunch of obsolete methods in favor of a single one returning
an ArrayRef of TemplateArgument.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D136602
This is a change to how we represent type subsitution in the AST.
Instead of only storing the replaced type, we track the templated
entity we are substituting, plus an index.
We modify MLTAL to track the templated entity at each level.
Otherwise, it's much more expensive to go from the template parameter back
to the templated entity, and not possible to do in some cases, as when
we instantiate outer templates, parameters might still reference the
original entity.
This also allows us to very cheaply lookup the templated entity we saw in
the naming context and find the corresponding argument it was replaced
from, such as for implementing template specialization resugaring.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D131858
- store NestedNameSpecifier & Loc for the qualifiers
This information was entirely missing from the AST.
- expose the location information for qualifier/identifier/typedefs as typeloc
This allows many traversals/astmatchers etc to handle these generically along
with other references. The decl vs type split can help preserve typedef
sugar when https://github.com/llvm/llvm-project/issues/57659 is resolved.
- fix the SourceRange of UsingEnumDecl to include 'using'.
Fixes https://github.com/clangd/clangd/issues/1283
Differential Revision: https://reviews.llvm.org/D134303
Adds a fix to the diagnostic of replacing the `= default` to `= delete`
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D134549
With this patch, TypedefTypes and UsingTypes can have an
underlying type which diverges from their corresponding
declarations.
For the TypedefType case, this can be seen when getting
the common sugared type between two redeclarations with
different sugar.
For both cases, this will become important as resugaring
is implemented, as this will allow us to resugar these
when they were dependent before instantiation.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D133468
This implements WG14 N2927 and WG14 N2930, which together define the
feature for typeof and typeof_unqual, which get the type of their
argument as either fully qualified or fully unqualified. The argument
to either operator is either a type name or an expression. If given a
type name, the type information is pulled directly from the given name.
If given an expression, the type information is pulled from the
expression. Recursive use of these operators is allowed and has the
expected behavior (the innermost operator is resolved to a type, and
that's used to resolve the next layer of typeof specifier, until a
fully resolved type is determined.
Note, we already supported typeof in GNU mode as a non-conforming
extension and we are *not* exposing typeof_unqual as a non-conforming
extension in that mode, nor are we exposing typeof or typeof_unqual as
a nonconforming extension in other language modes. The GNU variant of
typeof supports a form where the parentheses are elided from the
operator when given an expression (e.g., typeof 0 i = 12;). When in C2x
mode, we do not support this extension.
Differential Revision: https://reviews.llvm.org/D134286
This reverts commit 95d94a6775.
This implements the deferred concepts instantiation, which should allow
the libstdc++ ranges to properly compile, and for the CRTP to work for
constrained functions.
Since the last attempt, this has fixed the issues from @wlei and
@mordante.
Differential Revision: https://reviews.llvm.org/D126907
This change allows us to represent in the AST some specific
circumstances where we substitute a template parameter type
which is part of the underlying type of a previous substitution.
This presently happens in some circumstances dealing with
substitution of defaulted parameters of template template
parameters, and in some other cases during concepts substitution.
The main motivation for this change is for the future use in the
implementation of template specialization resugaring, as this will
allow us to represent a substitution with sugared types.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D132816
ASTImporter used to crash in some cases when a function is imported with
`auto` return type and the return type has references into the function.
The handling of such cases is improved and crash should not occur any more
but it is not fully verified, there are very many different types of
cases to care for.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D130705
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
Avoid a crash if a function is imported that has auto return type that
references to a template with an expression-type of argument that
references into the function's body.
Fixes issue #56047
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D129640
In cases where a non-template function is defined inside a function
template, we don't have information about the original uninstantiated
version. In the case of concepts instantiation, we will need the
ability to get back to the original template. This patch splits a piece
of the deferred concepts instantaition patch off to accomplish the
storage of this, with minor runtime overhead, and zero additional
storage.
I think that these conditions are unnecessary because in VisitClassTemplateDecl we import the definition via the templated CXXRecordDecl and in VisitVarTemplateDecl via the templated VarDecl. These are named ToTemplted and DTemplated respectively.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D128608
This is a recommit of b822efc740,
reverted in dc34d8df4c. The commit caused
fails because the test ast-print-fp-pragmas.c did not specify particular
target, and it failed on targets which do not support constrained
intrinsics. The original commit message is below.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
This reverts commit d4d47e574e.
This fixes the lldb crash that was observed by ensuring that our
friend-'template contains reference to' TreeTransform properly handles a
TemplateDecl.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
This reverts commit 2f20743952 because it
triggers an assertion when building an LLDB test program:
Assertion failed: (InstantiatingSpecializations.empty() && "failed to
clean up an InstantiatingTemplate?"), function ~Sema, file
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/clang/lib/Sema/Sema.cpp,
line 458.
More details in https://reviews.llvm.org/D126907.
this patch is the continuation of my previous patch regarding the ImportError in ASTImportError.h
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D125340
Fix a case of importing a function with auto return type
that is resolved with a type template argument that is declared
inside the function.
Fixes#55500
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127396