As with static bool for whatever reason printing them on their own
worked fine but wasn't handled when you printed the whole type.
I don't see a good way to test this from clang's side so our existing
tests will have to do.
We can now print all of the struct "A", so there's no need for a separate
one for static bool testing. I've not checked the output, just that it
succeeds. This saves us having to handle different min/max between systems.
Depends on D135169
Reviewed By: aeubanks, shafik
Differential Revision: https://reviews.llvm.org/D135170
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
This is a recommit of b822efc740,
reverted in dc34d8df4c. The commit caused
fails because the test ast-print-fp-pragmas.c did not specify particular
target, and it failed on targets which do not support constrained
intrinsics. The original commit message is below.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
This patch gives basic parsing and semantic support for
"parallel masked taskloop simd" construct introduced in
OpenMP 5.1 (section 2.16.10)
Differential Revision: https://reviews.llvm.org/D128946
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
This patch gives basic parsing and semantic support for
"parallel masked taskloop" construct introduced in
OpenMP 5.1 (section 2.16.9)
Differential Revision: https://reviews.llvm.org/D128834
This patch gives basic parsing and semantic support for
"masked taskloop simd" construct introduced in OpenMP 5.1 (section 2.16.8)
Differential Revision: https://reviews.llvm.org/D128693
This patch gives basic parsing and semantic support for "masked taskloop"
construct introduced in OpenMP 5.1 (section 2.16.7)
Differential Revision: https://reviews.llvm.org/D128478
Adds basic parsing/sema/serialization support for the
#pragma omp target parallel loop directive.
Differential Revision: https://reviews.llvm.org/D122359
WG14 adopted N2775 (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2775.pdf)
at our Feb 2022 meeting. This paper adds a literal suffix for
bit-precise types that automatically sizes the bit-precise type to be
the smallest possible legal _BitInt type that can represent the literal
value. The suffix chosen is wb (for a signed bit-precise type) which
can be combined with the u suffix (for an unsigned bit-precise type).
The preprocessor continues to operate as-if all integer types were
intmax_t/uintmax_t, including bit-precise integer types. It is a
constraint violation if the bit-precise literal is too large to fit
within that type in the context of the preprocessor (when still using
a pp-number preprocessing token), but it is not a constraint violation
in other circumstances. This allows you to make bit-precise integer
literals that are wider than what the preprocessor currently supports
in order to initialize variables, etc.
C++20 non-type template parameter prints `MyType<{{116, 104, 105, 115}}>` when the code is as simple as `MyType<"this">`. This patch prints `MyType<{"this"}>`, with one layer of braces preserved for the intermediate structural type to trigger CTAD.
`StringLiteral` handles this case, but `StringLiteral` inside `APValue` code looks like a circular dependency. The proposed patch implements a cheap strategy to emit string literals in diagnostic messages only when they are readable and fall back to integer sequences.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D115031
Given a dependent `T` (maybe an undeduced `auto`),
Before:
new T(z) --> new T((z)) # changes meaning with more args
new T{z} --> new T{z}
T(z) --> T(z)
T{z} --> T({z}) # forbidden if T is auto
After:
new T(z) --> new T(z)
new T{z} --> new T{z}
T(z) --> T(z)
T{z} --> T{z}
Depends on D113393
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D120608
Otherwise callers of these functions have to check both the return value
for and the contents of the returned llvm::Optional.
Fixes#53742
Differential Revision: https://reviews.llvm.org/D119525
Implement P2128R6 in C++23 mode.
Unlike GCC's implementation, this doesn't try to recover when a user
meant to use a comma expression.
Because the syntax changes meaning in C++23, the patch is *NOT*
implemented as an extension. Instead, declaring an array with not
exactly 1 parameter is an error in older languages modes. There is an
off-by-default extension warning in C++23 mode.
Unlike the standard, we supports default arguments;
Ie, we assume, based on conversations in WG21, that the proposed
resolution to CWG2507 will be accepted.
We allow arrays OpenMP sections and C++23 multidimensional array to
coexist:
[a , b] multi dimensional array
[a : b] open mp section
[a, b: c] // error
The rest of the patch is relatively straight forward: we take care to
support an arbitrary number of arguments everywhere.
Underscore-uglified identifiers are used in standard library implementations to
guard against collisions with macros, and they hurt readability considerably.
(Consider `push_back(Tp_ &&__value)` vs `push_back(Tp value)`.
When we're describing an interface, the exact names of parameters are not
critical so we can drop these prefixes.
This patch adds a new PrintingPolicy flag that can applies this stripping
when recursively printing pieces of AST.
We set it in code completion/signature help, and in clangd's hover display.
All three features also do a bit of manual poking at names, so fix up those too.
Fixes https://github.com/clangd/clangd/issues/736
Differential Revision: https://reviews.llvm.org/D116387
Modify the IfStmt node to suppoort constant evaluated expressions.
Add a new ExpressionEvaluationContext::ImmediateFunctionContext to
keep track of immediate function contexts.
This proved easier/better/probably more efficient than walking the AST
backward as it allows diagnosing nested if consteval statements.
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
This patch supports OpenMP 5.0 metadirective features.
It is implemented keeping the OpenMP 5.1 features like dynamic user condition in mind.
A new function, getBestWhenMatchForContext, is defined in llvm/Frontend/OpenMP/OMPContext.h
Currently this function return the index of the when clause with the highest score from the ones applicable in the Context.
But this function is declared with an array which can be used in OpenMP 5.1 implementation to select all the valid when clauses which can be resolved in runtime. Currently this array is set to null by default and its implementation is left for future.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D91944
Currently, we have no front-end type for ppc_fp128 type in IR. PowerPC
target generates ppc_fp128 type from long double now, but there's option
(-mabi=(ieee|ibm)longdouble) to control it and we're going to do
transition from IBM extended double-double ppc_fp128 to IEEE fp128 in
the future.
This patch adds type __ibm128 which always represents ppc_fp128 in IR,
as what GCC did for that type. Without this type in Clang, compilation
will fail if compiling against future version of libstdcxx (which uses
__ibm128 in headers).
Although all operations in backend for __ibm128 is done by software,
only PowerPC enables support for it.
There's something not implemented in this commit, which can be done in
future ones:
- Literal suffix for __ibm128 type. w/W is suitable as GCC documented.
- __attribute__((mode(IF))) should be for __ibm128.
- Complex __ibm128 type.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D93377
<string> is currently the highest impact header in a clang+llvm build:
https://commondatastorage.googleapis.com/chromium-browser-clang/llvm-include-analysis.html
One of the most common places this is being included is the APInt.h header, which needs it for an old toString() implementation that returns std::string - an inefficient method compared to the SmallString versions that it actually wraps.
This patch replaces these APInt/APSInt methods with a pair of llvm::toString() helpers inside StringExtras.h, adjusts users accordingly and removes the <string> from APInt.h - I was hoping that more of these users could be converted to use the SmallString methods, but it appears that most end up creating a std::string anyhow. I avoided trying to use the raw_ostream << operators as well as I didn't want to lose having the integer radix explicit in the code.
Differential Revision: https://reviews.llvm.org/D103888
Implementation of the unroll directive introduced in OpenMP 5.1. Follows the approach from D76342 for the tile directive (i.e. AST-based, not using the OpenMPIRBuilder). Tries to use `llvm.loop.unroll.*` metadata where possible, but has to fall back to an AST representation of the outer loop if the partially unrolled generated loop is associated with another directive (because it needs to compute the number of iterations).
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D99459
The original version of this was reverted, and @rjmcall provided some
advice to architect a new solution. This is that solution.
This implements a builtin to provide a unique name that is stable across
compilations of this TU for the purposes of implementing the library
component of the unnamed kernel feature of SYCL. It does this by
running the Itanium mangler with a few modifications.
Because it is somewhat common to wrap non-kernel-related lambdas in
macros that aren't present on the device (such as for logging), this
uniquely generates an ID for all lambdas involved in the naming of a
kernel. It uses the lambda-mangling number to do this, except replaces
this with its own number (starting at 10000 for readabililty reasons)
for lambdas used to name a kernel.
Additionally, this implements itself as constexpr with a slight catch:
if a name would be invalidated by the use of this lambda in a later
kernel invocation, it is diagnosed as an error (see the Sema tests).
Differential Revision: https://reviews.llvm.org/D103112
Non-comprehensive list of cases:
* Dumping template arguments;
* Corresponding parameter contains a deduced type;
* Template arguments are for a DeclRefExpr that hadMultipleCandidates()
Type information is added in the form of prefixes (u8, u, U, L),
suffixes (U, L, UL, LL, ULL) or explicit casts to printed integral template
argument, if MSVC codeview mode is disabled.
Differential revision: https://reviews.llvm.org/D77598
Added basic parsing/sema/serialization support for interop directive.
Support for the 'init' clause.
Differential Revision: https://reviews.llvm.org/D98558
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
The tile directive is in OpenMP's Technical Report 8 and foreseeably will be part of the upcoming OpenMP 5.1 standard.
This implementation is based on an AST transformation providing a de-sugared loop nest. This makes it simple to forward the de-sugared transformation to loop associated directives taking the tiled loops. In contrast to other loop associated directives, the OMPTileDirective does not use CapturedStmts. Letting loop associated directives consume loops from different capture context would be difficult.
A significant amount of code generation logic is taking place in the Sema class. Eventually, I would prefer if these would move into the CodeGen component such that we could make use of the OpenMPIRBuilder, together with flang. Only expressions converting between the language's iteration variable and the logical iteration space need to take place in the semantic analyzer: Getting the of iterations (e.g. the overload resolution of `std::distance`) and converting the logical iteration number to the iteration variable (e.g. overload resolution of `iteration + .omp.iv`). In clang, only CXXForRangeStmt is also represented by its de-sugared components. However, OpenMP loop are not defined as syntatic sugar. Starting with an AST-based approach allows us to gradually move generated AST statements into CodeGen, instead all at once.
I would also like to refactor `checkOpenMPLoop` into its functionalities in a follow-up. In this patch it is used twice. Once for checking proper nesting and emitting diagnostics, and additionally for deriving the logical iteration space per-loop (instead of for the loop nest).
Differential Revision: https://reviews.llvm.org/D76342
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.