This patch updates Clang's IRGen to add !annotation nodes with an
"auto-init" annotation to all stores for auto-initialization.
As discussed in 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
this allows using optimization remarks to track down where auto-init
code was inserted (and not removed by optimizations).
There are a few cases in the tests where !annotation gets dropped by
optimizations. Those optimizations will be updated in subsequent
patches.
This patch is based on a patch by Francis Visoiu Mistrih.
Reviewed By: thegameg, paquette
Differential Revision: https://reviews.llvm.org/D91417
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
Previously, clang was crashing on the attached test because the EH cleanup for
the block capture was incorrectly emitted under the assumption that the
expression wasn't conditionally evaluated. This was because before 9a52de00260,
pushLifetimeExtendedDestroy was mainly used with C++ automatic lifetime
extension, where a conditionally evaluated expression wasn't possible. Now that
we're using this path for block captures, we need to handle this case.
rdar://66250047
Differential revision: https://reviews.llvm.org/D86854
Fixes pr/11710.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Resubmit after breaking Windows and OSX builds.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D80242
Summary:
D82193 exposed a problem with global type definitions in
`OMPConstants.h`. This causes a race when running in thinLTO mode.
Types now live inside of OpenMPIRBuilder to prevent this from happening.
Reviewers: jdoerfert
Subscribers: yaxunl, hiraditya, guansong, dexonsmith, aaron.ballman, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D83176
Summary:
Modified the OMPBuilderCBHelpers in the following ways:
- Moved location of class definition and deleted all constructors
- Moved OpenMP-specific address allocation of local variables
- Moved threadprivate variable creation for the current thread
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79676
Prevent IR-gen from emitting consteval declarations
Summary: with this patch instead of emitting calls to consteval function. the IR-gen will emit a store of the already computed result.
Summary: with this patch instead of emitting calls to consteval function. the IR-gen will emit a store of the already computed result.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76420
Rather than pushing inactive cleanups for the block captures at the
entry of a full expression and activating them during the creation of
the block literal, just call pushLifetimeExtendedDestroy to ensure the
cleanups are popped at the end of the scope enclosing the block
expression.
rdar://problem/63996471
Differential Revision: https://reviews.llvm.org/D81624
Summary:
Add -ftrivial-auto-var-init-stop-after= to limit the number of times
stack variables are initialized when -ftrivial-auto-var-init= is used to
initialize stack variables to zero or a pattern. This flag can be used
to bisect uninitialized uses of a stack variable exposed by automatic
variable initialization, such as http://crrev.com/c/2020401.
Reviewers: jfb, vitalybuka, kcc, glider, rsmith, rjmccall, pcc, eugenis, vlad.tsyrklevich
Reviewed By: jfb
Subscribers: phosek, hubert.reinterpretcast, srhines, MaskRay, george.burgess.iv, dexonsmith, inglorion, gbiv, llozano, manojgupta, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77168
Summary:
Previously, we treated CXXUuidofExpr as quite a special case: it was the
only kind of expression that could be a canonical template argument, it
could be a constant lvalue base object, and so on. In addition, we
represented the UUID value as a string, whose source form we did not
preserve faithfully, and that we partially parsed in multiple different
places.
With this patch, we create an MSGuidDecl object to represent the
implicit object of type 'struct _GUID' created by a UuidAttr. Each
UuidAttr holds a pointer to its 'struct _GUID' and its original
(as-written) UUID string. A non-value-dependent CXXUuidofExpr behaves
like a DeclRefExpr denoting that MSGuidDecl object. We cache an APValue
representation of the GUID on the MSGuidDecl and use it from constant
evaluation where needed.
This allows removing a lot of the special-case logic to handle these
expressions. Unfortunately, many parts of Clang assume there are only
a couple of interesting kinds of ValueDecl, so the total amount of
special-case logic is not really reduced very much.
This fixes a few bugs and issues:
* PR38490: we now support reading from GUID objects returned from
__uuidof during constant evaluation.
* Our Itanium mangling for a non-instantiation-dependent template
argument involving __uuidof no longer depends on which CXXUuidofExpr
template argument we happened to see first.
* We now predeclare ::_GUID, and permit use of __uuidof without
any header inclusion, better matching MSVC's behavior. We do not
predefine ::__s_GUID, though; that seems like a step too far.
* Our IR representation for GUID constants now uses the correct IR type
wherever possible. We will still fall back to using the
{i32, i16, i16, [8 x i8]}
layout if a definition of struct _GUID is not available. This is not
ideal: in principle the two layouts could have different padding.
Reviewers: rnk, jdoerfert
Subscribers: arphaman, cfe-commits, aeubanks
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78171
The code was pretending to be doing something useful with vectors, but
really it was doing nothing: the element type of a vector is always a
scalar type, so constWithPadding would always just return the input constant.
Split off from D75661 so it can be reviewed separately.
While I'm here, also add testcase to show missing vector handling.
Differential Revision: https://reviews.llvm.org/D76528
Summary:
- https://reviews.llvm.org/D68578 revises the `GlobalDecl` constructors
to ensure all GPU kernels have `ReferenceKenelKind` initialized
properly with an explicit constructor and static one. But, there are
lots of places using the implicit constructor triggering the assertion
on non-GPU kernels. That's found in compilation of many tests and
workloads.
- Fixing all of them may change more code and, more importantly, all of
them assumes the default kernel reference kind. This patch changes
that constructor to tell `CUDAGlobalAttr` and construct `GlobalDecl`
properly.
Reviewers: yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76344
Summary:
[Clang] Attribute to allow defining undef global variables
Initializing global variables is very cheap on hosted implementations. The
C semantics of zero initializing globals work very well there. It is not
necessarily cheap on freestanding implementations. Where there is no loader
available, code must be emitted near the start point to write the appropriate
values into memory.
At present, external variables can be declared in C++ and definitions provided
in assembly (or IR) to achive this effect. This patch provides an attribute in
order to remove this reason for writing assembly for performance sensitive
freestanding implementations.
A close analogue in tree is LDS memory for amdgcn, where the kernel is
responsible for initializing the memory after it starts executing on the gpu.
Uninitalized variables in LDS are observably cheaper than zero initialized.
Patch is loosely based on the cuda __shared__ and opencl __local variable
implementation which also produces undef global variables.
Reviewers: kcc, rjmccall, rsmith, glider, vitalybuka, pcc, eugenis, vlad.tsyrklevich, jdoerfert, gregrodgers, jfb, aaron.ballman
Reviewed By: rjmccall, aaron.ballman
Subscribers: Anastasia, aaron.ballman, davidb, Quuxplusone, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74361
HIP emits a device stub function for each kernel in host code.
The HIP debugger requires device stub function to have a different unmangled name as the kernel.
Currently the name of the device stub function is the mangled name with a postfix .stub. However,
this does not work with the HIP debugger since the unmangled name is the same as the kernel.
This patch adds prefix __device__stub__ to the unmangled name of the device stub before mangling,
therefore the device stub function has a valid mangled name which is different than the device kernel
name. The device side kernel name is kept unchanged. kernels with extern "C" also gets the prefix added
to the corresponding device stub function.
Differential Revision: https://reviews.llvm.org/D68578
directive.
According to OpenMP 5.0, The atomic_default_mem_order clause specifies the default memory ordering behavior for atomic constructs that must be provided by an implementation. If the default memory ordering is specified as seq_cst, all atomic constructs on which memory-order-clause is not specified behave as if the seq_cst clause appears. If the default memory ordering is specified as relaxed, all atomic constructs on which memory-order-clause is not specified behave as if the relaxed clause appears.
If the default memory ordering is specified as acq_rel, atomic constructs on which memory-order-clause is not specified behave as if the release clause appears if the atomic write or atomic update operation is specified, as if the acquire clause appears if the atomic read operation is specified, and as if the acq_rel clause appears if the atomic captured update operation is specified.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
The option will limit debug info by only emitting complete class
type information when its constructor is emitted.
This patch changes comparisons with LimitedDebugInfo to use the new
level instead.
Differential Revision: https://reviews.llvm.org/D72427
This fixes a regression introduced in
2b4fa5348e that caused us to emit
shutdown-time destruction for variables with ARC ownership, using
C++-specific functions that don't exist in C implementations.
AggValueSlot
This reapplies 8a5b7c3570 after a null
dereference bug in CGOpenMPRuntime::emitUserDefinedMapper.
Original commit message:
This is needed for the pointer authentication work we plan to do in the
near future.
a63a81bd99/clang/docs/PointerAuthentication.rst
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<RecordType> directly and if not assert will fire for us.
llvm-svn: 373584
has a constexpr destructor.
For constexpr variables, reject if the variable does not have constant
destruction. In all cases, do not emit runtime calls to the destructor
for variables with constant destruction.
llvm-svn: 373159
This patch implements the code generation for OpenMP 5.0 declare mapper
(user-defined mapper) constructs. For each declare mapper, a mapper
function is generated. These mapper functions will be called by the
runtime and/or other mapper functions to achieve user defined mapping.
The design slides can be found at
https://github.com/lingda-li/public-sharing/blob/master/mapper_runtime_design.pptx
Re-commit after revert in r367773 because r367755 changed the LLVM-IR
output such that a CHECK line failed.
Patch by Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D59474
llvm-svn: 367905
This patch implements the code generation for OpenMP 5.0 declare mapper
(user-defined mapper) constructs. For each declare mapper, a mapper
function is generated. These mapper functions will be called by the
runtime and/or other mapper functions to achieve user defined mapping.
The design slides can be found at
https://github.com/lingda-li/public-sharing/blob/master/mapper_runtime_design.pptx
Patch by Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D59474
llvm-svn: 367773
The `this` parameter of a thunk requires adjustment. Stop emitting an
incorrect dbg.declare pointing to the unadjusted pointer.
We could describe the adjusted value instead, but there may not be much
benefit in doing so as users tend not to debug thunks.
Robert O'Callahan reports that this matches gcc's behavior.
Fixes PR42627.
Differential Revision: https://reviews.llvm.org/D65035
llvm-svn: 367269
Reason: this commit causes crashes in the clang compiler when building
LLVM Support with libc++, see https://bugs.llvm.org/show_bug.cgi?id=42665
for details.
llvm-svn: 366429
Summary:
This patch does mainly three things:
1. It fixes a false positive error detection in Sema that is similar to
D62156. The error happens when explicitly calling an overloaded
destructor for different address spaces.
2. It selects the correct destructor when multiple overloads for
address spaces are available.
3. It inserts the expected address space cast when invoking a
destructor, if needed, and therefore fixes a crash due to the unmet
assertion in llvm::CastInst::Create.
The following is a reproducer of the three issues:
struct MyType {
~MyType() {}
~MyType() __constant {}
};
__constant MyType myGlobal{};
kernel void foo() {
myGlobal.~MyType(); // 1 and 2.
// 1. error: cannot initialize object parameter of type
// '__generic MyType' with an expression of type '__constant MyType'
// 2. error: no matching member function for call to '~MyType'
}
kernel void bar() {
// 3. The implicit call to the destructor crashes due to:
// Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
// in llvm::CastInst::Create.
MyType myLocal;
}
The added test depends on D62413 and covers a few more things than the
above reproducer.
Subscribers: yaxunl, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64569
llvm-svn: 366422
Summary:
We will need to handle IntToPtr which I will submit in a separate patch as it's
not going to be NFC.
Reviewers: eugenis, pcc
Reviewed By: eugenis
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63940
llvm-svn: 365709
This case implicitly falls-through, which is fine now as it's at the end of the
function, but it seems like an accident waiting to happen.
llvm-svn: 365210
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
This reinstates r363295, reverted in r363352, with a fix for PR42276:
we now produce a proper name for a non-odr-use reference to a static
constexpr data member. The name <mangled-name>.const is used in that
case; such names are reserved to the implementation for cases such as
this and should demangle nicely.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363428
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363295
Summary:
C guarantees that brace-init with fewer initializers than members in the
aggregate will initialize the rest of the aggregate as-if it were static
initialization. In turn static initialization guarantees that padding is
initialized to zero bits.
Quoth the Standard:
C17 6.7.9 Initialization ❡21
If there are fewer initializers in a brace-enclosed list than there are elements
or members of an aggregate, or fewer characters in a string literal used to
initialize an array of known size than there are elements in the array, the
remainder of the aggregate shall be initialized implicitly the same as objects
that have static storage duration.
C17 6.7.9 Initialization ❡10
If an object that has automatic storage duration is not initialized explicitly,
its value is indeterminate. If an object that has static or thread storage
duration is not initialized explicitly, then:
* if it has pointer type, it is initialized to a null pointer;
* if it has arithmetic type, it is initialized to (positive or unsigned) zero;
* if it is an aggregate, every member is initialized (recursively) according to
these rules, and any padding is initialized to zero bits;
* if it is a union, the first named member is initialized (recursively)
according to these rules, and any padding is initialized to zero bits;
<rdar://problem/50188861>
Reviewers: glider, pcc, kcc, rjmccall, erik.pilkington
Subscribers: jkorous, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61280
llvm-svn: 359628
Summary:
This patch implements `__builtin_is_constant_evaluated` as specifier by [P0595R2](https://wg21.link/p0595r2). It is built on the back of Bill Wendling's work for `__builtin_constant_p()`.
More tests to come, but early feedback is appreciated.
I plan to implement warnings for common mis-usages like those belowe in a following patch:
```
void foo(int x) {
if constexpr (std::is_constant_evaluated())) { // condition is always `true`. Should use plain `if` instead.
foo_constexpr(x);
} else {
foo_runtime(x);
}
}
```
Reviewers: rsmith, MaskRay, bruno, void
Reviewed By: rsmith
Subscribers: dexonsmith, zoecarver, fdeazeve, kristina, cfe-commits
Differential Revision: https://reviews.llvm.org/D55500
llvm-svn: 359067
Summary:
alloca isn’t auto-init’d right now because it’s a different path in clang that
all the other stuff we support (it’s a builtin, not an expression).
Interestingly, alloca doesn’t have a type (as opposed to even VLA) so we can
really only initialize it with memset.
<rdar://problem/49794007>
Subscribers: jkorous, dexonsmith, cfe-commits, rjmccall, glider, kees, kcc, pcc
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60548
llvm-svn: 358243
When emitting initializers for local structures for code built with
-ftrivial-auto-var-init, replace constant structures with sequences of
stores.
This appears to greatly help removing dead initialization stores to those
locals that are later overwritten by other data.
This also removes a lot of .rodata constants (see PR40605), replacing most
of them with immediate values (for Linux kernel the .rodata size is
reduced by ~1.9%)
llvm-svn: 355181
When we have an annotated local variable after a function returns, we
generate IR that fails verification with the error
> Instruction referencing instruction not embedded in a basic block!
And it means that bitcast referencing alloca doesn't have a parent basic
block.
Fix by checking if we are at an unreachable point and skip emitting
annotations. This approach is similar to the way we emit variable
initializer and debug info.
rdar://problem/46200420
Reviewers: rjmccall
Reviewed By: rjmccall
Subscribers: aprantl, jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D58147
llvm-svn: 355166
When generating initializers for local structures in the
-ftrivial-auto-var-init mode, explicitly wipe the padding bytes with
either 0x00 or 0xAA.
This will allow us to automatically handle the padding when splitting
the initialization stores (see https://reviews.llvm.org/D57898).
Reviewed at https://reviews.llvm.org/D58188
llvm-svn: 354861
Summary:
Blocks that capture themselves (and escape) after initialization currently codegen wrong because this:
bool capturedByInit =
Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
Address Loc =
capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
Already adjusts Loc from thr alloca to a GEP. This code:
if (emission.IsEscapingByRef)
Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
Was trying to do the same adjustment, and a GEP on a GEP (returning an int) triggers an assertion.
<rdar://problem/47943027>
Reviewers: ahatanak
Subscribers: jkorous, dexonsmith, cfe-commits, rjmccall
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58218
llvm-svn: 354147
The various EltSize, Offset, DataLayout, and StructLayout arguments
are all computable from the Address's element type and the DataLayout
which the CGBuilder already has access to.
After having previously asserted that the computed values are the same
as those passed in, now remove the redundant arguments from
CGBuilder's Create*GEP functions.
Differential Revision: https://reviews.llvm.org/D57767
llvm-svn: 353629
Summary:
Automatic initialization [1] of __block variables was trampling over the block's
headers after they'd been initialized, which caused self-init usage to crash,
such as here:
typedef struct XYZ { void (^block)(); } *xyz_t;
__attribute__((noinline))
xyz_t create(void (^block)()) {
xyz_t myself = malloc(sizeof(struct XYZ));
myself->block = block;
return myself;
}
int main() {
__block xyz_t captured = create(^(){ (void)captured; });
}
This type of code shouldn't be broken by variable auto-init, even if it's
sketchy.
[1] With -ftrivial-auto-var-init=pattern
<rdar://problem/47798396>
Reviewers: rjmccall, pcc, kcc
Subscribers: jkorous, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57797
llvm-svn: 353495
This patch implements parsing and sema for "omp declare mapper"
directive. User defined mapper, i.e., declare mapper directive, is a new
feature in OpenMP 5.0. It is introduced to extend existing map clauses
for the purpose of simplifying the copy of complex data structures
between host and device (i.e., deep copy). An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(struct S s) map(s, s.d[0:s.len]) // Memory region that d points to is also mapped using this mapper.
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D56326
llvm-svn: 352906
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This attribute, called "objc_externally_retained", exposes clang's
notion of pseudo-__strong variables in ARC. Pseudo-strong variables
"borrow" their initializer, meaning that they don't retain/release
it, instead assuming that someone else is keeping their value alive.
If a function is annotated with this attribute, implicitly strong
parameters of that function aren't implicitly retained/released in
the function body, and are implicitly const. This is useful to expose
for performance reasons, most functions don't need the extra safety
of the retain/release, so programmers can opt out as needed.
This attribute can also apply to declarations of local variables,
with similar effect.
Differential revision: https://reviews.llvm.org/D55865
llvm-svn: 350422
All of the other constructors already take a reference to the AST context.
This avoids calling Decl::getASTContext in most cases. Additionally move
the definition of the constructor from Expr.h to Expr.cpp since it is calling
DeclRefExpr::computeDependence. NFC.
llvm-svn: 349901
Summary:
Add an option to initialize automatic variables with either a pattern or with
zeroes. The default is still that automatic variables are uninitialized. Also
add attributes to request uninitialized on a per-variable basis, mainly to disable
initialization of large stack arrays when deemed too expensive.
This isn't meant to change the semantics of C and C++. Rather, it's meant to be
a last-resort when programmers inadvertently have some undefined behavior in
their code. This patch aims to make undefined behavior hurt less, which
security-minded people will be very happy about. Notably, this means that
there's no inadvertent information leak when:
- The compiler re-uses stack slots, and a value is used uninitialized.
- The compiler re-uses a register, and a value is used uninitialized.
- Stack structs / arrays / unions with padding are copied.
This patch only addresses stack and register information leaks. There's many
more infoleaks that we could address, and much more undefined behavior that
could be tamed. Let's keep this patch focused, and I'm happy to address related
issues elsewhere.
To keep the patch simple, only some `undef` is removed for now, see
`replaceUndef`. The padding-related infoleaks are therefore not all gone yet.
This will be addressed in a follow-up, mainly because addressing padding-related
leaks should be a stand-alone option which is implied by variable
initialization.
There are three options when it comes to automatic variable initialization:
0. Uninitialized
This is C and C++'s default. It's not changing. Depending on code
generation, a programmer who runs into undefined behavior by using an
uninialized automatic variable may observe any previous value (including
program secrets), or any value which the compiler saw fit to materialize on
the stack or in a register (this could be to synthesize an immediate, to
refer to code or data locations, to generate cookies, etc).
1. Pattern initialization
This is the recommended initialization approach. Pattern initialization's
goal is to initialize automatic variables with values which will likely
transform logic bugs into crashes down the line, are easily recognizable in
a crash dump, without being values which programmers can rely on for useful
program semantics. At the same time, pattern initialization tries to
generate code which will optimize well. You'll find the following details in
`patternFor`:
- Integers are initialized with repeated 0xAA bytes (infinite scream).
- Vectors of integers are also initialized with infinite scream.
- Pointers are initialized with infinite scream on 64-bit platforms because
it's an unmappable pointer value on architectures I'm aware of. Pointers
are initialize to 0x000000AA (small scream) on 32-bit platforms because
32-bit platforms don't consistently offer unmappable pages. When they do
it's usually the zero page. As people try this out, I expect that we'll
want to allow different platforms to customize this, let's do so later.
- Vectors of pointers are initialized the same way pointers are.
- Floating point values and vectors are initialized with a negative quiet
NaN with repeated 0xFF payload (e.g. 0xffffffff and 0xffffffffffffffff).
NaNs are nice (here, anways) because they propagate on arithmetic, making
it more likely that entire computations become NaN when a single
uninitialized value sneaks in.
- Arrays are initialized to their homogeneous elements' initialization
value, repeated. Stack-based Variable-Length Arrays (VLAs) are
runtime-initialized to the allocated size (no effort is made for negative
size, but zero-sized VLAs are untouched even if technically undefined).
- Structs are initialized to their heterogeneous element's initialization
values. Zero-size structs are initialized as 0xAA since they're allocated
a single byte.
- Unions are initialized using the initialization for the largest member of
the union.
Expect the values used for pattern initialization to change over time, as we
refine heuristics (both for performance and security). The goal is truly to
avoid injecting semantics into undefined behavior, and we should be
comfortable changing these values when there's a worthwhile point in doing
so.
Why so much infinite scream? Repeated byte patterns tend to be easy to
synthesize on most architectures, and otherwise memset is usually very
efficient. For values which aren't entirely repeated byte patterns, LLVM
will often generate code which does memset + a few stores.
2. Zero initialization
Zero initialize all values. This has the unfortunate side-effect of
providing semantics to otherwise undefined behavior, programs therefore
might start to rely on this behavior, and that's sad. However, some
programmers believe that pattern initialization is too expensive for them,
and data might show that they're right. The only way to make these
programmers wrong is to offer zero-initialization as an option, figure out
where they are right, and optimize the compiler into submission. Until the
compiler provides acceptable performance for all security-minded code, zero
initialization is a useful (if blunt) tool.
I've been asked for a fourth initialization option: user-provided byte value.
This might be useful, and can easily be added later.
Why is an out-of band initialization mecanism desired? We could instead use
-Wuninitialized! Indeed we could, but then we're forcing the programmer to
provide semantics for something which doesn't actually have any (it's
uninitialized!). It's then unclear whether `int derp = 0;` lends meaning to `0`,
or whether it's just there to shut that warning up. It's also way easier to use
a compiler flag than it is to manually and intelligently initialize all values
in a program.
Why not just rely on static analysis? Because it cannot reason about all dynamic
code paths effectively, and it has false positives. It's a great tool, could get
even better, but it's simply incapable of catching all uses of uninitialized
values.
Why not just rely on memory sanitizer? Because it's not universally available,
has a 3x performance cost, and shouldn't be deployed in production. Again, it's
a great tool, it'll find the dynamic uses of uninitialized variables that your
test coverage hits, but it won't find the ones that you encounter in production.
What's the performance like? Not too bad! Previous publications [0] have cited
2.7 to 4.5% averages. We've commmitted a few patches over the last few months to
address specific regressions, both in code size and performance. In all cases,
the optimizations are generally useful, but variable initialization benefits
from them a lot more than regular code does. We've got a handful of other
optimizations in mind, but the code is in good enough shape and has found enough
latent issues that it's a good time to get the change reviewed, checked in, and
have others kick the tires. We'll continue reducing overheads as we try this out
on diverse codebases.
Is it a good idea? Security-minded folks think so, and apparently so does the
Microsoft Visual Studio team [1] who say "Between 2017 and mid 2018, this
feature would have killed 49 MSRC cases that involved uninitialized struct data
leaking across a trust boundary. It would have also mitigated a number of bugs
involving uninitialized struct data being used directly.". They seem to use pure
zero initialization, and claim to have taken the overheads down to within noise.
Don't just trust Microsoft though, here's another relevant person asking for
this [2]. It's been proposed for GCC [3] and LLVM [4] before.
What are the caveats? A few!
- Variables declared in unreachable code, and used later, aren't initialized.
This goto, Duff's device, other objectionable uses of switch. This should
instead be a hard-error in any serious codebase.
- Volatile stack variables are still weird. That's pre-existing, it's really
the language's fault and this patch keeps it weird. We should deprecate
volatile [5].
- As noted above, padding isn't fully handled yet.
I don't think these caveats make the patch untenable because they can be
addressed separately.
Should this be on by default? Maybe, in some circumstances. It's a conversation
we can have when we've tried it out sufficiently, and we're confident that we've
eliminated enough of the overheads that most codebases would want to opt-in.
Let's keep our precious undefined behavior until that point in time.
How do I use it:
1. On the command-line:
-ftrivial-auto-var-init=uninitialized (the default)
-ftrivial-auto-var-init=pattern
-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang
2. Using an attribute:
int dont_initialize_me __attribute((uninitialized));
[0]: https://users.elis.ugent.be/~jsartor/researchDocs/OOPSLA2011Zero-submit.pdf
[1]: https://twitter.com/JosephBialek/status/1062774315098112001
[2]: https://outflux.net/slides/2018/lss/danger.pdf
[3]: https://gcc.gnu.org/ml/gcc-patches/2014-06/msg00615.html
[4]: 776a0955ef
[5]: http://wg21.link/p1152
I've also posted an RFC to cfe-dev: http://lists.llvm.org/pipermail/cfe-dev/2018-November/060172.html
<rdar://problem/39131435>
Reviewers: pcc, kcc, rsmith
Subscribers: JDevlieghere, jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D54604
llvm-svn: 349442
Summary: The name of the synthesized constants for constant initialization was using mangling for statics, which isn't generally correct and (in a yet-uncommitted patch) causes the mangler to assert out because the static ends up trying to mangle function parameters and this makes no sense. Instead, mangle to `"__const." + FunctionName + "." + DeclName`.
Reviewers: rjmccall
Subscribers: dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D54055
llvm-svn: 346915
The artificial variable describing the array size is supposed to be
called "__vla_expr", but this was implemented by retrieving the name
of the associated alloca, which isn't a reliable source for the name,
since nonassert compilers may drop names from LLVM IR.
rdar://problem/45924808
llvm-svn: 346542
A ConstantExpr class represents a full expression that's in a context where a
constant expression is required. This class reflects the path the evaluator
took to reach the expression rather than the syntactic context in which the
expression occurs.
In the future, the class will be expanded to cache the result of the evaluated
expression so that it's not needlessly re-evaluated
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D53475
llvm-svn: 345692
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
This reapplies r343518 after fixing a use-after-free bug in function
Sema::ActOnBlockStmtExpr where the BlockScopeInfo was dereferenced after
it was popped and deleted.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 343542
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
This reapplies r341754, which was reverted in r341757 because it broke a
couple of bots. r341754 was calling markEscapingByrefs after the call to
PopFunctionScopeInfo, which caused the popped function scope to be
cleared out when the following code was compiled, for example:
$ cat test.m
struct A {
id data[10];
};
void foo() {
__block A v;
^{ (void)v; };
}
This commit calls markEscapingByrefs before calling PopFunctionScopeInfo
to prevent that from happening.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 343518
Add support for OMP5.0 requires directive and unified_address clause.
Patches to follow will include support for additional clauses.
Differential Revision: https://reviews.llvm.org/D52359
llvm-svn: 343063
Summary:
This code was in CGDecl.cpp and really belongs in LLVM. It happened to have isBytewiseValue which served a very similar purpose but wasn't as powerful as clang's version. Remove the clang version, and augment isBytewiseValue to be as powerful so that clang does the same thing it used to.
LLVM part of this patch: D51751
Subscribers: dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D51752
llvm-svn: 342734
from those that aren't.
This patch changes the way __block variables that aren't captured by
escaping blocks are handled:
- Since non-escaping blocks on the stack never get copied to the heap
(see https://reviews.llvm.org/D49303), Sema shouldn't error out when
the type of a non-escaping __block variable doesn't have an accessible
copy constructor.
- IRGen doesn't have to use the specialized byref structure (see
https://clang.llvm.org/docs/Block-ABI-Apple.html#id8) for a
non-escaping __block variable anymore. Instead IRGen can emit the
variable as a normal variable and copy the reference to the block
literal. Byref copy/dispose helpers aren't needed either.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D51564
llvm-svn: 341754
Clang generates copy and dispose helper functions for each block literal
on the stack. Often these functions are equivalent for different blocks.
This commit makes changes to merge equivalent copy and dispose helper
functions and reduce code size.
To enable merging equivalent copy/dispose functions, the captured object
infomation is encoded into the helper function name. This allows IRGen
to check whether an equivalent helper function has already been emitted
and reuse the function instead of generating a new helper function
whenever a block is defined. In addition, the helper functions are
marked as linkonce_odr to enable merging helper functions that have the
same name across translation units and marked as unnamed_addr to enable
the linker's deduplication pass to merge functions that have different
names but the same content.
rdar://problem/42640608
Differential Revision: https://reviews.llvm.org/D50152
llvm-svn: 339438
When an exception is thrown in a block copy helper function, captured
objects that have previously been copied should be destructed or
released. Similarly, captured objects that are yet to be released should
be released when an exception is thrown in a dispose helper function.
rdar://problem/42410255
Differential Revision: https://reviews.llvm.org/D49718
llvm-svn: 338041