This helper method is useful even outside of Gnu toolchains, so move
it to ToolChain so it can be reused in other toolchains such as Fuchsia.
Differential Revision: https://reviews.llvm.org/D88452
This follows GCC. Having libstdc++/libc++ include paths is not useful
anyway because libstdc++/libc++ header files cannot find features.h.
While here, suppress -stdlib++-isystem with -nostdlibinc.
This moves code that sets the architecture name
and Float ABI into two new functions in
ToolChains/Arch/ARM.cpp. Greatly simplifying ComputeLLVMTriple.
Some light refactoring in setArchNameInTriple to
move local variables closer to their first use.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D98253
Fix regression where we aren't passing `-platform_version` to new ld64.lld after {D95204}.
Most of the changes were originally in D95204, but I backed them out due to
test failures on builds which have `CLANG_DEFAULT_LINKER=lld`. The tests are
properly updated in this diff.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D97741
The new Darwin backend for LLD is now able to link reasonably large
real-world programs on x86_64. For instance, we have achieved
self-hosting for the X86_64 target, where all LLD tests pass when
building lld with itself on macOS. As such, we would like to make it the
default back-end.
The new port is now named `ld64.lld`, and the old port remains
accessible as `ld64.lld.darwinold`
This [annoucement email][1] has some context. (But note that, unlike
what the email says, we are no longer doing this as part of the LLVM 12
branch cut -- instead we will go into LLVM 13.)
Numerous mechanical test changes were required to make this change; in
the interest of creating something that's reviewable on Phabricator,
I've split out the boring changes into a separate diff (D95905). I plan to
merge its contents with those in this diff before landing.
(@gkm made the original draft of this diff, and he has agreed to let me
take over.)
[1]: https://lists.llvm.org/pipermail/llvm-dev/2021-January/147665.html
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D95204
On Android, the unwinder isn't part of the C++ STL and isn't (in older
versions) exported from libc.so. Instead, the driver links the static
unwinder archive implicitly. Currently, the Android NDK implicitly
links libgcc.a to provide both builtins and the unwinder.
To support switching to compiler-rt builtins and libunwind, make
--rtlib=compiler-rt behave the same way on Android, and implicitly pass
-l:libunwind.a to the linker.
Adjust the -ldl logic. For the Android NDK, the unwinder (whether
libgcc.a or libunwind.a) is linked statically and calls a function in
the dynamic loader for finding unwind tables (e.g. dl_iterate_phdr).
On Android, this function is in libc.a for static executables and
libdl.so otherwise, so -ldl is needed. (glibc doesn't need -ldl because
its libc.so exports dl_iterate_phdr.)
Differential Revision: https://reviews.llvm.org/D96403
When targeting a MSVC triple, --dependant-libs with the name of the clang runtime library for profiling is added to the command line args. In it's current implementations clang_rt.profile-<ARCH> is chosen as the name. When building a distribution using LLVM_ENABLE_PER_TARGET_RUNTIME_DIR this fails, due to the runtime file names not having an architecture suffix in the filename.
This patch refactors getCompilerRT and getCompilerRTBasename to always consider per-target runtime directories. getCompilerRTBasename now simply returns the filename component of the path found by getCompilerRT
Differential Revision: https://reviews.llvm.org/D96638
Add option -fgpu-sanitize to enable sanitizer for AMDGPU target.
Since it is experimental, it is off by default.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D96835
Since ToolChain::GetCXXStdlibType() is a simple getter that might emit
the "invalid library name in argument" warning, it can conceivably be
called several times while initializing the build pipeline.
Before this patch, a simple 'clang++ -stdlib=foo ./test.cpp' would print
the warning twice, -rt=lib=foo would print 6 times.
Change this and always only print the warning once. Keep the rest of the
semantics of the functions.
Differential Revision: https://reviews.llvm.org/D95915
This fixes Bugzilla #48894 for Arm, where it
was reported that -Wa,-march was not being handled
by the integrated assembler.
This was previously fixed for -Wa,-mthumb by
parsing the argument in ToolChain::ComputeLLVMTriple
instead of CollectArgsForIntegratedAssembler.
It has to be done in the former because the Triple
is read only by the time we get to the latter.
Previously only mcpu would work via -Wa but only because
"-target-cpu" is it's own option to cc1, which we were
able to modify. Target architecture is part of "-target-triple".
This change applies the same workaround to -march and cleans up
handling of -Wa,-mcpu at the same time. There were some
places where we were not using the last instance of an argument.
The existing -Wa,-mthumb code was doing this correctly,
so I've just added tests to confirm that.
Now the same rules will apply to -Wa,-march/-mcpu as would
if you just passed them to the compiler:
* -Wa/-Xassembler options only apply to assembly files.
* Architecture derived from mcpu beats any march options.
* When there are multiple mcpu or multiple march, the last
one wins.
* If there is a compiler option and an assembler option of
the same type, we prefer the one that fits the input type.
* If there is an applicable mcpu option but it is overruled
by an march, the cpu value is still used for the "-target-cpu"
cc1 option.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D95872
Add powerpcle support to clang.
For FreeBSD, assume a freestanding environment for now, as we only need it in the first place to build loader, which runs in the OpenFirmware environment instead of the FreeBSD environment.
For Linux, recognize glibc and musl environments to match current usage in Void Linux PPC.
Adjust driver to match current binutils behavior regarding machine naming.
Adjust and expand tests.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93919
This also teaches MachO writers/readers about the MachO cpu subtype,
beyond the minimal subtype reader support present at the moment.
This also defines a preprocessor macro to allow users to distinguish
__arm64__ from __arm64e__.
arm64e defaults to an "apple-a12" CPU, which supports v8.3a, allowing
pointer-authentication codegen.
It also currently defaults to ios14 and macos11.
Differential Revision: https://reviews.llvm.org/D87095
New MachO LLD doesn't implement the old -macos_version_min (etc)
flags, but it understands the modern platform_version flag.
So make the clang driver pass that when using new MachO LLD.
Also, while here, don't pass -lto_library to LLD, since it
links in LTO libraries statically (which it can because it's
versioned alongside clang).
Differential Revision: https://reviews.llvm.org/D92037
This patch:
- adds an ld64.lld.darwinnew symlink for lld, to go with f2710d4b57,
so that `clang -fuse-ld=lld.darwinnew` can be used to test new
Mach-O lld while it's in bring-up. (The expectation is that we'll
remove this again once new Mach-O lld is the defauld and only Mach-O
lld.)
- lets the clang driver know if the linker is lld (currently
only triggered if `-fuse-ld=lld` or `-fuse-ld=lld.darwinnew` is
passed). Currently only used for the next point, but could be used
to implement other features that need close coordination between
compiler and linker, e.g. having a diag for calling `clang++` instead
of `clang` when link errors are caused by a missing C++ stdlib.
- lets the clang driver pass `-demangle` to Mach-O lld (both old and
new), in addition to ld64
- implements -demangle for new Mach-O lld
- changes demangleItanium() to accept _Z, __Z, ___Z, ____Z prefixes
(and updates one test added in D68014). Mach-O has an extra
underscore for symbols, and the three (or, on Mach-O, four)
underscores are used for block names.
Differential Revision: https://reviews.llvm.org/D91884
As discussed in [1], ClangFlags::DriverOption is currently only used to
mark options that should not be forwarded to other tools via `-Xarch`
options. This patch renames this flag accordingly and updates the
corresponding driver diagnostic.
A comment in ToolChain::TranslateXarchArgs is also updated to reflect
the change. The original comment referred to isDriverOption(), which is
no longer available.
[1] http://lists.llvm.org/pipermail/cfe-dev/2020-October/066953.html
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D89799
LLVM assumes that when it creates a call to a C library function it
can use the C calling convention. On ARM the effective calling
convention is determined from the target triple, however using
-mfloat-abi=hard on ARM means that calls to (and definitions of) C
library functions use the arm_aapcs_vfpcc calling convention which can
result in a mismatch.
Fix this by incorporating -mfloat-abi into the target triple, similar
to how -mbig-endian and -march/-mcpu are. This only works for EABI
targets and not Android or iOS, but there the float abi is fixed so
instead give an error.
Fixes PR45524
Differential Revision: https://reviews.llvm.org/D89573
This helper method is useful even outside of Gnu toolchains, so move
it to ToolChain so it can be reused in other toolchains such as Fuchsia.
Differential Revision: https://reviews.llvm.org/D88452
This helper method is useful even outside of Gnu toolchains, so move
it to ToolChain so it can be reused in other toolchains such as Fuchsia.
Differential Revision: https://reviews.llvm.org/D88452
Currenlty assume x18 is used as pointer to shadow call stack. User shall pass
flags:
"-fsanitize=shadow-call-stack -ffixed-x18"
Runtime supported is needed to setup x18.
If SCS is desired, all parts of the program should be built with -ffixed-x18 to
maintain inter-operatability.
There's no particuluar reason that we must use x18 as SCS pointer. Any register
may be used, as long as it does not have designated purpose already, like RA or
passing call arguments.
Differential Revision: https://reviews.llvm.org/D84414
It's not undefined behavior for an unsigned left shift to overflow (i.e. to
shift bits out), but it has been the source of bugs and exploits in certain
codebases in the past. As we do in other parts of UBSan, this patch adds a
dynamic checker which acts beyond UBSan and checks other sources of errors. The
option is enabled as part of -fsanitize=integer.
The flag is named: -fsanitize=unsigned-shift-base
This matches shift-base and shift-exponent flags.
<rdar://problem/46129047>
Differential Revision: https://reviews.llvm.org/D86000
`clang` currently requires the native linker on Solaris:
- It passes `-C` to `ld` which GNU `ld` doesn't understand.
- To use `gld`, one needs to pass the correct `-m EMU` option to select
the right emulation. Solaris `ld` cannot handle that option.
So far I've worked around this by passing `-DCLANG_DEFAULT_LINKER=/usr/bin/ld`
to `cmake`. However, if someone forgets this, it depends on the user's
`PATH` whether or not `clang` finds the correct linker, which doesn't make
for a good user experience.
While it would be nice to detect the linker flavor at runtime, this is more
involved. Instead, this patch defaults to `/usr/bin/ld` on Solaris. This
doesn't work on its own, however: a link fails with
clang-12: error: unable to execute command: Executable "x86_64-pc-solaris2.11-/usr/bin/ld" doesn't exist!
I avoid this by leaving absolute paths alone in `ToolChain::GetLinkerPath`.
Tested on `amd64-pc-solaris2.11`, `sparcv9-sun-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D84029
Supersedes D80225. Add --ld-path= to avoid strange target specific
prefixes and make -fuse-ld= focus on its intended job: "linker flavor".
(-f* affects generated code or language features. --ld-path does not
affect codegen, so it is not named -f*)
The way --ld-path= works is similar to "Command Search and Execution" in POSIX.1-2017 2.9.1 Simple Commands.
If --ld-path= specifies
* an absolute path, the value specifies the linker.
* a relative path without a path component separator (/), the value is searched using the -B, COMPILER_PATH, then PATH.
* a relative path with a path component separator, the linker is found relative to the current working directory.
-fuse-ld= and --ld-path= can be composed, e.g. `-fuse-ld=lld --ld-path=/usr/bin/ld.lld`
The driver can base its linker option decision on the flavor -fuse-ld=, but it should not do fragile
flavor checking with --ld-path=.
Reviewed By: whitequark, keith
Differential Revision: https://reviews.llvm.org/D83015
Add GNU Static Lib Tool, which supports the --emit-static-lib
flag. For HIP, a static library archive will be created and
consist of HIP Fat Binary host object with the device images embedded.
Using llvm-ar to create the static archive. Also, delete existing
output file to ensure a new archive is created each time.
Reviewers: yaxunl, tra, rjmccall, echristo
Subscribers: echristo, JonChesterfield, scchan, msearles
Differential Revision: https://reviews.llvm.org/D78759
Summary:
The Android NDK's clang driver is used with an Android -target setting,
and the driver automatically finds the Android sysroot at a path
relative to the driver. The sysroot has the libc++ headers in it.
Remove Hurd::computeSysRoot as it is equivalent to the new
ToolChain::computeSysRoot method.
Fixes PR46213.
Reviewers: srhines, danalbert, #libc, kristina
Reviewed By: srhines, danalbert
Subscribers: ldionne, sthibaul, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81622
To support std::complex and some other standard C/C++ functions in HIP device code,
they need to be forced to be __host__ __device__ functions by pragmas. This is done
by some clang standard C++ wrapper headers which are shared between cuda-clang and hip-Clang.
For these standard C++ wapper headers to work properly, specific include path order
has to be enforced:
clang C++ wrapper include path
standard C++ include path
clang include path
Also, these C++ wrapper headers require device version of some standard C/C++ functions
must be declared before including them. This needs to be done by including a default
header which declares or defines these device functions. The default header is always
included before any other headers are included by users.
This patch adds the the default header and include path for HIP.
Differential Revision: https://reviews.llvm.org/D81176
These are mapped in MachO::getMachOArchName already, but were missing
in ToolChain::getDefaultUniversalArchName.
Having these reverse mapped here fixes weird inconsistencies like
-dumpmachine showing a target triple like "aarch64-apple-darwin",
while "clang -target aarch64-apple-darwin" didn't use to work (ended
up mapped as unknown-apple-ios).
Differential Revision: https://reviews.llvm.org/D79117
Prior to this change, for a few compiler-rt libraries such as ubsan and
the profile library, Clang would embed "-defaultlib:path/to/rt-arch.lib"
into the .drective section of every object compiled with
-finstr-profile-generate or -fsanitize=ubsan as appropriate.
These paths assume that the link step will run from the same working
directory as the compile step. There is also evidence that sometimes the
paths become absolute, such as when clang is run from a different drive
letter from the current working directory. This is fragile, and I'd like
to get away from having paths embedded in the object if possible. Long
ago it was suggested that we use this for ASan, and apparently I felt
the same way back then:
https://reviews.llvm.org/D4428#56536
This is also consistent with how all other autolinking usage works for
PS4, Mac, and Windows: they all use basenames, not paths.
To keep things working for people using the standard GCC driver
workflow, the driver now adds the resource directory to the linker
library search path when it calls the linker. This is enough to make
check-ubsan pass, and seems like a generally good thing.
Users that invoke the linker directly (most clang-cl users) will have to
add clang's resource library directory to their linker search path in
their build system. I'm not sure where I can document this. Ideally I'd
also do it in the MSBuild files, but I can't figure out where they go.
I'd like to start with this for now.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D65543
The argument after -Xarch_device will be added to the arguments for CUDA/HIP
device compilation and will be removed for host compilation.
The argument after -Xarch_host will be added to the arguments for CUDA/HIP
host compilation and will be removed for device compilation.
Differential Revision: https://reviews.llvm.org/D76520
Extract common code to a function. To prepare for
adding an option for CUDA/HIP host and device only
option.
Differential Revision: https://reviews.llvm.org/D76455
This is to avoid performance regressions when the default attribute
behavior is fixed to assume ieee.
I tested the default on x86_64 ubuntu, which seems to default to
FTZ/DAZ, but am guessing for x86 and PS4.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This patch adds a new Flang mode. When in Flang mode, the driver will
invoke flang for fortran inputs instead of falling back to the GCC
toolchain as it would otherwise do.
The behaviour of other driver modes are left unmodified to preserve
backwards compatibility.
It is intended that a soon to be implemented binary in the flang project
will import libclangDriver and run the clang driver in the new flang
mode.
Please note that since the binary invoked by the driver is under
development, there will no doubt be further tweaks necessary in future
commits.
* Initial support is added for basic driver phases
* -E, -fsyntax-only, -emit-llvm -S, -emit-llvm, -S, (none specified)
* -### tests are added for all of the above
* This is more than is supported by f18 so far, which will emit errors
for those options which are unimplemented.
* A test is added that ensures that clang gives a reasonable error
message if flang is not available in the path (without -###).
* Test that the driver accepts multiple inputs in --driver-mode=flang.
* Test that a combination of C and Fortran inputs run both clang and
flang in --driver-mode=flang.
* clang/test/Driver/fortran.f95 is fixed to use the correct fortran
comment character.
Differential revision: https://reviews.llvm.org/D63607
This patch removes the remaining part of the OpenMP offload linker scripts which was used for inserting device binaries into the output linked binary. Device binaries are now inserted into the host binary with a help of the wrapper bit-code file which contains device binaries as data. Wrapper bit-code file is dynamically created by the clang driver with a help of new tool clang-offload-wrapper which takes device binaries as input and produces bit-code file with required contents. Wrapper bit-code is then compiled to an object and resulting object is appended to the host linking by the clang driver.
This is the second part of the patch for eliminating OpenMP linker script (please see https://reviews.llvm.org/D64943).
Differential Revision: https://reviews.llvm.org/D68166
llvm-svn: 374219
Second Landing Attempt:
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 374061
This patch enables end to end support for generating ELF interface stubs
directly from clang. Now the following:
clang -emit-interface-stubs -o libfoo.so a.cpp b.cpp c.cpp
will product an ELF binary with visible symbols populated. Visibility attributes
and -fvisibility can be used to control what gets populated.
* Adding ToolChain support for clang Driver IFS Merge Phase
* Implementing a default InterfaceStubs Merge clang Tool, used by ToolChain
* Adds support for the clang Driver to involve llvm-ifs on ifs files.
* Adds -emit-merged-ifs flag, to tell llvm-ifs to emit a merged ifs text file
instead of the final object format (normally ELF)
Differential Revision: https://reviews.llvm.org/D63978
llvm-svn: 373538
There are times when we wish to explicitly control the C++ standard
library search paths used by the driver. For example, when we're
building against the Android NDK, we might want to use the NDK's C++
headers (which have a custom inline namespace) even if we have C++
headers installed next to the driver. We might also be building against
a non-standard directory layout and wanting to specify the C++ standard
library include directories explicitly.
We could accomplish this by passing -nostdinc++ and adding an explicit
-isystem for our custom search directories. However, users of our
toolchain may themselves want to use -nostdinc++ and a custom C++ search
path (libc++'s build does this, for example), and our added -isystem
won't respect the -nostdinc++, leading to multiple C++ header
directories on the search path, which causes build failures.
Add a new driver option -stdlib++-isystem to support this use case.
Passing this option suppresses adding the default C++ library include
paths in the driver, and it also respects -nostdinc++ to allow users to
still override the C++ library paths themselves.
It's a bit unfortunate that we end up with both -stdlib++-isystem and
-cxx-isystem, but their semantics differ significantly. -cxx-isystem is
unaffected by -nostdinc++ and is added to the end of the search path
(which is not appropriate for C++ standard library headers, since they
often #include_next into other system headers), while -stdlib++-isystem
respects -nostdinc++, is added to the beginning of the search path, and
suppresses the default C++ library include paths.
Differential Revision: https://reviews.llvm.org/D64089
llvm-svn: 367982
This flag is analoguous to other flags like -nostdlib or -nolibc
and could be used to disable linking of profile runtime library.
This is useful in certain environments like kernel, where profile
instrumentation is still desirable, but we cannot use the standard
runtime library.
llvm-svn: 365808
D63793 removed float-divide-by-zero from the "undefined" set but it
failed to add it to getSupportedSanitizers(), thus the sanitizer is
rejected by the driver:
clang-9: error: unsupported option '-fsanitize=float-divide-by-zero' for target 'x86_64-unknown-linux-gnu'
Also, add SanitizerMask::FloatDivideByZero to a few other masks to make -fsanitize-trap, -fsanitize-recover, -fsanitize-minimal-runtime and -fsanitize-coverage work.
Reviewed By: rsmith, vitalybuka
Differential Revision: https://reviews.llvm.org/D64317
llvm-svn: 365587
This is a follow up to r361432, changing the layout of per-target
runtimes to more closely resemble multiarch. While before, we used
the following layout:
[RESOURCE_DIR]/<target>/lib/libclang_rt.<runtime>.<ext>
Now we use the following layout:
[RESOURCE_DIR]/lib/<target>/libclang_rt.<runtime>.<ext>
This also more closely resembles the existing "non-per-target" layout:
[RESOURCE_DIR]/lib/<os>/libclang_rt.<runtime>-<arch>.<ext>
This change will enable further simplification of the driver logic
in follow up changes.
Differential Revision: https://reviews.llvm.org/D62469
llvm-svn: 361784
This is a follow up to r361432 and r361504 which addresses issues
introduced by those changes. Specifically, it avoids duplicating
file and runtime paths in case when the effective triple is the
same as the cannonical one. Furthermore, it fixes the broken multilib
setup in the Fuchsia driver and deduplicates some of the code.
Differential Revision: https://reviews.llvm.org/D62442
llvm-svn: 361709
This addresses the issue introduced in r361432 where we would only
try effective triple but not the normalized one as we do for other
runtimes.
Differential Revision: https://reviews.llvm.org/D62286
llvm-svn: 361504
This change is a consequence of the discussion in "RFC: Place libs in
Clang-dedicated directories", specifically the suggestion that
libunwind, libc++abi and libc++ shouldn't be using Clang resource
directory. Tools like clangd make this assumption, but this is
currently not true for the LLVM_ENABLE_PER_TARGET_RUNTIME_DIR build.
This change addresses that by moving the output of these libraries to
lib/$target/c++ and include/c++ directories, leaving resource directory
only for compiler-rt runtimes and Clang builtin headers.
Differential Revision: https://reviews.llvm.org/D59168
llvm-svn: 361432
Summary:
In this patch we propose a temporary solution to resolving math functions for the NVPTX toolchain, temporary until OpenMP variant is supported by Clang.
We intercept the inclusion of math.h and cmath headers and if we are in the OpenMP-NVPTX case, we re-use CUDA's math function resolution mechanism.
Authors:
@gtbercea
@jdoerfert
Reviewers: hfinkel, caomhin, ABataev, tra
Reviewed By: hfinkel, ABataev, tra
Subscribers: JDevlieghere, mgorny, guansong, cfe-commits, jdoerfert
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61399
llvm-svn: 360265
"clang++ hello.cc --rtlib=compiler-rt"
now can works without specifying additional unwind or exception
handling libraries.
This reworked version of the feature no longer modifies today's default
unwind library for compiler-rt: which is nothing. Rather, a user
can specify -DCLANG_DEFAULT_UNWINDLIB=libunwind when configuring
the compiler.
This should address the issues from the previous version.
Update tests for new --unwindlib semantics.
Differential Revision: https://reviews.llvm.org/D59109
llvm-svn: 356508
This change introduces support for object files in addition to static
and shared libraries which were already supported which requires
changing the type of the argument from boolean to an enum.
Differential Revision: https://reviews.llvm.org/D56044
llvm-svn: 355891
This change is a consequence of the discussion in "RFC: Place libs in
Clang-dedicated directories", specifically the suggestion that
libunwind, libc++abi and libc++ shouldn't be using Clang resource
directory. Tools like clangd make this assumption, but this is
currently not true for the LLVM_ENABLE_PER_TARGET_RUNTIME_DIR build.
This change addresses that by moving the output of these libraries to
lib/<target> and include/ directories, leaving resource directory only
for compiler-rt runtimes and Clang builtin headers.
Differential Revision: https://reviews.llvm.org/D59013
llvm-svn: 355665
When -forder-file-instrumentation is on, we pass llvm flag to enable the order file instrumentation pass.
https://reviews.llvm.org/D58751
llvm-svn: 355333
Part 1 of CSPGO change in Clang. This includes changes in clang options
and calls to llvm PassManager. Tests will be committed in part2.
This change needs the PassManager change in llvm.
Differential Revision: https://reviews.llvm.org/D54176
llvm-svn: 355331
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
This is a recommit of r354873 but with a fix for unqualified lookup error in lldb cmake build bot.
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 355190
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 354873
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Make sure that symbols needed to implement runtime support for gcov are
exported when using an export list on Darwin.
Without the clang driver exporting these symbols, the linker hides them,
resulting in tapi verification failures.
rdar://45944768
Differential Revision: https://reviews.llvm.org/D55151
llvm-svn: 348187
This reverts commit r345370, as it uncovered even more issues in
tests with partial/inconsistent path normalization:
http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/13562http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/886http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast/builds/20994
In particular, these tests seem to have failed:
Clang :: CodeGen/thinlto-diagnostic-handler-remarks-with-hotness.ll
Clang :: CodeGen/thinlto-multi-module.ll
Clang :: Driver/cuda-external-tools.cu
Clang :: Driver/cuda-options.cu
Clang :: Driver/hip-toolchain-no-rdc.hip
Clang :: Driver/hip-toolchain-rdc.hip
Clang :: Driver/openmp-offload-gpu.c
At least the Driver tests could potentially be fixed by extending
the path normalization to even more places, but the issues with the
CodeGen tests are still unknown.
In addition, a number of other tests seem to have been broken in
other clang dependent tools such as clang-tidy and clangd.
llvm-svn: 345372
libtool inspects the output of $CC -v to detect what object files and
libraries are linked in by default. When clang is built as a native
windows executable, all paths are formatted with backslashes, and
the backslashes cause each argument to be enclosed in quotes. The
backslashes and quotes break further processing within libtool (which
is implemented in shell script, running in e.g. msys) pretty badly.
Between unix style pathes (that only work in tools that are linked
to the msys runtime, essentially the same as cygwin) and proper windows
style paths (with backslashes, that can easily break shell scripts
and msys environments), the best compromise is to use windows style
paths (starting with e.g. c:) but with forward slashes, which both
msys based tools, shell scripts and native windows executables can
cope with. This incidentally turns out to be the form of paths that
GCC prints out when run with -v on windows as well.
This change potentially makes the output from clang -v a bit more
inconsistent, but it is isn't necessarily very consistent to begin with.
Compared to the previous attempt in SVN r345004, this now does
the same transformation on more paths, hopefully on the right set
of paths so that all tests pass (previously some tests failed, where
path fragments that were required to be identical turned out to
use different path separators in different places). This now also
is done only for non-windows, or cygwin/mingw targets, to preserve
all backslashes for MSVC cases (where the paths can end up e.g. embedded
into PDB files. (The transformation function itself,
llvm::sys::path::convert_to_slash only has an effect when run on windows.)
Differential Revision: https://reviews.llvm.org/D53066
llvm-svn: 345370
This reverts commit r345004, as it broke tests when actually run
on windows; see e.g.
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/763.
This broke tests that had captured a variable containing a path
with backslashes, which failed to match cases in the output
where the path separators had been changed into forward slashes.
llvm-svn: 345005
libtool inspects the output of $CC -v to detect what object files and
libraries are linked in by default. When clang is built as a native
windows executable, all paths are formatted with backslashes, and
the backslashes cause each argument to be enclosed in quotes. The
backslashes and quotes break further processing within libtool (which
is implemented in shell script, running in e.g. msys) pretty badly.
Between unix style pathes (that only work in tools that are linked
to the msys runtime, essentially the same as cygwin) and proper windows
style paths (with backslashes, that can easily break shell scripts
and msys environments), the best compromise is to use windows style
paths (starting with e.g. c:) but with forward slashes, which both
msys based tools, shell scripts and native windows executables can
cope with. This incidentally turns out to be the form of paths that
GCC prints out when run with -v on windows as well.
This change potentially makes the output from clang -v a bit more
inconsistent, but it is isn't necessarily very consistent to begin with.
Differential Revision: https://reviews.llvm.org/D53066
llvm-svn: 345004
This patch moves the virtual file system form clang to llvm so it can be
used by more projects.
Concretely the patch:
- Moves VirtualFileSystem.{h|cpp} from clang/Basic to llvm/Support.
- Moves the corresponding unit test from clang to llvm.
- Moves the vfs namespace from clang::vfs to llvm::vfs.
- Formats the lines affected by this change, mostly this is the result of
the added llvm namespace.
RFC on the mailing list:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/126657.html
Differential revision: https://reviews.llvm.org/D52783
llvm-svn: 344140
Linking to ASan for MinGW is similar to MSVC, but MinGW always links
the MSVCRT dynamically, so there is only one of the MSVC cases to
consider.
When linking to a shared compiler runtime library on MinGW, the suffix
of the import library is .dll.a.
The existing case of .dll as suffix for windows in general doesn't
seem correct (since this is used for linking). As long as callers never
actually set the Shared flag, the default static suffix of .lib also
worked fine for import libraries as well.
Differential Revision: https://reviews.llvm.org/D52538
llvm-svn: 343537
Previously we only used target triple as provided which matches the
GCC behavior, but it also means that all clients have to be consistent
in their spelling of target triples since e.g. x86_64-linux-gnu and
x86_64-unknown-linux-gnu will result in Clang driver looking at two
different paths when searching for runtime libraries.
Unfortunatelly, as it turned out many clients aren't consistent in
their spelling of target triples, e.g. many Linux distributions use
the shorter spelling but config.guess and rustc insist on using the
normalized variant which is causing issues. To avoid having to ship
multiple copies of runtimes for different triple spelling or rely on
symlinks which are not portable, we should also check the normalized
triple when constructing paths for multiarch runtimes.
Differential Revision: https://reviews.llvm.org/D50547
llvm-svn: 340471
Summary:
C and C++ are interesting languages. They are statically typed, but weakly.
The implicit conversions are allowed. This is nice, allows to write code
while balancing between getting drowned in everything being convertible,
and nothing being convertible. As usual, this comes with a price:
```
unsigned char store = 0;
bool consume(unsigned int val);
void test(unsigned long val) {
if (consume(val)) {
// the 'val' is `unsigned long`, but `consume()` takes `unsigned int`.
// If their bit widths are different on this platform, the implicit
// truncation happens. And if that `unsigned long` had a value bigger
// than UINT_MAX, then you may or may not have a bug.
// Similarly, integer addition happens on `int`s, so `store` will
// be promoted to an `int`, the sum calculated (0+768=768),
// and the result demoted to `unsigned char`, and stored to `store`.
// In this case, the `store` will still be 0. Again, not always intended.
store = store + 768; // before addition, 'store' was promoted to int.
}
// But yes, sometimes this is intentional.
// You can either make the conversion explicit
(void)consume((unsigned int)val);
// or mask the value so no bits will be *implicitly* lost.
(void)consume((~((unsigned int)0)) & val);
}
```
Yes, there is a `-Wconversion`` diagnostic group, but first, it is kinda
noisy, since it warns on everything (unlike sanitizers, warning on an
actual issues), and second, there are cases where it does **not** warn.
So a Sanitizer is needed. I don't have any motivational numbers, but i know
i had this kind of problem 10-20 times, and it was never easy to track down.
The logic to detect whether an truncation has happened is pretty simple
if you think about it - https://godbolt.org/g/NEzXbb - basically, just
extend (using the new, not original!, signedness) the 'truncated' value
back to it's original width, and equality-compare it with the original value.
The most non-trivial thing here is the logic to detect whether this
`ImplicitCastExpr` AST node is **actually** an implicit conversion, //or//
part of an explicit cast. Because the explicit casts are modeled as an outer
`ExplicitCastExpr` with some `ImplicitCastExpr`'s as **direct** children.
https://godbolt.org/g/eE1GkJ
Nowadays, we can just use the new `part_of_explicit_cast` flag, which is set
on all the implicitly-added `ImplicitCastExpr`'s of an `ExplicitCastExpr`.
So if that flag is **not** set, then it is an actual implicit conversion.
As you may have noted, this isn't just named `-fsanitize=implicit-integer-truncation`.
There are potentially some more implicit conversions to be warned about.
Namely, implicit conversions that result in sign change; implicit conversion
between different floating point types, or between fp and an integer,
when again, that conversion is lossy.
One thing i know isn't handled is bitfields.
This is a clang part.
The compiler-rt part is D48959.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=21530 | PR21530 ]], [[ https://bugs.llvm.org/show_bug.cgi?id=37552 | PR37552 ]], [[ https://bugs.llvm.org/show_bug.cgi?id=35409 | PR35409 ]].
Partially fixes [[ https://bugs.llvm.org/show_bug.cgi?id=9821 | PR9821 ]].
Fixes https://github.com/google/sanitizers/issues/940. (other than sign-changing implicit conversions)
Reviewers: rjmccall, rsmith, samsonov, pcc, vsk, eugenis, efriedma, kcc, erichkeane
Reviewed By: rsmith, vsk, erichkeane
Subscribers: erichkeane, klimek, #sanitizers, aaron.ballman, RKSimon, dtzWill, filcab, danielaustin, ygribov, dvyukov, milianw, mclow.lists, cfe-commits, regehr
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D48958
llvm-svn: 338288
This change adds a support for multiarch style runtimes layout, so in
addition to the existing layout where runtimes get installed to:
lib/clang/$version/lib/$os
Clang now allows runtimes to be installed to:
lib/clang/$version/$target/lib
This also includes libc++, libc++abi and libunwind; today those are
assumed to be in Clang library directory built for host, with the
new layout it is possible to install libc++, libc++abi and libunwind
into the runtime directory built for different targets.
The use of new layout is enabled by setting the
LLVM_ENABLE_RUNTIME_TARGET_DIR CMake variable and is supported by both
projects and runtimes layouts. The runtimes CMake build has been further
modified to use the new layout when building runtimes for multiple
targets.
Differential Revision: https://reviews.llvm.org/D45604
llvm-svn: 335809
Summary:
This kind of functionality is useful to other project apart from clang.
LLDB works with version numbers a lot, but it does not have a convenient
abstraction for this. Moving this class to a lower level library allows
it to be freely used within LLDB.
Since this class is used in a lot of places in clang, and it used to be
in the clang namespace, it seemed appropriate to add it to the list of
adopted classes in LLVM.h to avoid prefixing all uses with "llvm::".
Also, I didn't find any tests specific for this class, so I wrote a
couple of quick ones for the more interesting bits of functionality.
Reviewers: zturner, erik.pilkington
Subscribers: mgorny, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D47887
llvm-svn: 334399
-fseh-exceptions is only meaningful for MinGW targets, and that driver
already has logic to pass either -fdwarf-exceptions or -fseh-exceptions
as appropriate. -fseh-exceptions is just a no-op for MSVC triples, and
passing it to cc1 causes unnecessary confusion.
Differential Revision: https://reviews.llvm.org/D47850
llvm-svn: 334145
NFC for targets other than PS4.
This patch is a change in behavior for PS4, in that PS4 will no longer enable
RTTI when -fexceptions is specified (RTTI and Exceptions are disabled by default
on PS4). RTTI will remain disabled except for types being thrown or caught.
Also, '-fexceptions -fno-rtti' (previously prohibited on PS4) is now accepted,
as it is for other targets.
This patch removes some PS4 specific code, making the code cleaner.
Also, in the test file rtti-options.cpp, PS4 tests where the behavior is the
same as the generic x86_64-linux are removed, making the test cleaner.
Differential Revision: https://reviews.llvm.org/D46982
llvm-svn: 332784
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
LLVM_ON_WIN32 is set exactly with MSVC and MinGW (but not Cygwin) in
HandleLLVMOptions.cmake, which is where _WIN32 defined too. Just use the
default macro instead of a reinvented one.
See thread "Replacing LLVM_ON_WIN32 with just _WIN32" on llvm-dev and cfe-dev.
No intended behavior change.
llvm-svn: 331069