WG21 approved delimited escape sequences and named escape
sequences.
Adjust the extension warnings accordingly, and update
the release notes.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D129664
"Ascii" StringLiteral instances are actually narrow strings
that are UTF-8 encoded and do not have an encoding prefix.
(UTF8 StringLiteral are also UTF-8 encoded strings, but with
the u8 prefix.
To avoid possible confusion both with actuall ASCII strings,
and with future works extending the set of literal encodings
supported by clang, this rename StringLiteral::isAscii() to
isOrdinary(), matching C++ standard terminology.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D128762
Implements [[ https://wg21.link/p2071r1 | P2071 Named Universal Character Escapes ]] - as an extension in all language mode, the patch not warn in c++23 mode will be done later once this paper is plenary approved (in July).
We add
* A code generator that transforms `UnicodeData.txt` and `NameAliases.txt` to a space efficient data structure that can be queried in `O(NameLength)`
* A set of functions in `Unicode.h` to query that data, including
* A function to find an exact match of a given Unicode character name
* A function to perform a loose (ignoring case, space, underscore, medial hyphen) matching
* A function returning the best matching codepoint for a given string per edit distance
* Support of `\N{}` escape sequences in String and character Literals, with loose and typos diagnostics/fixits
* Support of `\N{}` as UCN with loose matching diagnostics/fixits.
Loose matching is considered an error to match closely the semantics of P2071.
The generated data contributes to 280kB of data to the binaries.
`UnicodeData.txt` and `NameAliases.txt` are not committed to the repository in this patch, and regenerating the data is a manual process.
Reviewed By: tahonermann
Differential Revision: https://reviews.llvm.org/D123064
Currently if a lexically-valid UCN encodes an invalid codepoint, then we
diagnose that, and then hit an assertion while trying to decode it.
Since there isn't anything preventing us reaching this state, remove the
assertion. expandUCNs("X\UAAAAAAAAY") will produce "XY".
Differential Revision: https://reviews.llvm.org/D125059
WG14 adopted N2775 (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2775.pdf)
at our Feb 2022 meeting. This paper adds a literal suffix for
bit-precise types that automatically sizes the bit-precise type to be
the smallest possible legal _BitInt type that can represent the literal
value. The suffix chosen is wb (for a signed bit-precise type) which
can be combined with the u suffix (for an unsigned bit-precise type).
The preprocessor continues to operate as-if all integer types were
intmax_t/uintmax_t, including bit-precise integer types. It is a
constraint violation if the bit-precise literal is too large to fit
within that type in the context of the preprocessor (when still using
a pp-number preprocessing token), but it is not a constraint violation
in other circumstances. This allows you to make bit-precise integer
literals that are wider than what the preprocessor currently supports
in order to initialize variables, etc.
When using clangd, it's possible to trigger assertions in
NumericLiteralParser and CharLiteralParser when switching git branches.
This commit removes the initial asserts on invalid input and replaces
those asserts with the error handling mechanism from those respective
classes instead. This allows clangd to gracefully recover without
crashing.
See https://github.com/clangd/clangd/issues/888 for more information
on the clangd crashes.
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in clang.
Differential Revision: https://reviews.llvm.org/D110808
\x{XXXX} \u{XXXX} and \o{OOOO} are accepted in all languages mode
in characters and string literals.
This is a feature proposed for both C++ (P2290R1) and C (N2785). The
papers have been seen by both committees but are not yet adopted into
either standard. However, they do have support from both committees.
This implements P2362, which has not yet been approved by the
C++ committee, but because wide-multi character literals are
implementation defined, clang might not have to wait for WG21.
This change is also being applied in C mode as the behavior is
implementation-defined in C as well and there's no benefit to
having different rules between the languages.
The other part of P2362, making non-representable character
literals ill-formed, is already implemented by clang
This attempts to fix a (non-deterministic) buffer overrun when parsing raw string literals during modular build.
Similar fix to 4e5b5c36f4.
Reviewed By: beccadax
Differential Revision: https://reviews.llvm.org/D94950
Summary:
We would like to use NumericLiteralParser in the implementation of the
syntax tree builder, and plumbing a preprocessor there seems
inconvenient and superfluous.
Reviewers: eduucaldas
Reviewed By: eduucaldas
Subscribers: gribozavr2, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83480
`APFLoat::convertFromString` returns `Expected` result, which must be
"checked" if the LLVM_ENABLE_ABI_BREAKING_CHECKS preprocessor flag is
set.
To mark an `Expected` result as "checked" we must consume the `Error`
within.
In many cases, we are only interested in knowing if an error occured,
without the need to examine the error info. This is achieved, easily,
with the `errorToBool()` API.
r352221 caused regressions in CUDA/HIP since device function may use _Float16 whereas host does not support it.
In this case host compilation should not diagnose usage of _Float16 in device functions or variables.
For now just do not diagnose _Float16 for CUDA/HIP. In the future we should have more precise check.
Differential Revision: https://reviews.llvm.org/D57369
llvm-svn: 352488
Float16 support was disabled recently on many platforms, however that
commit still allowed literals of Float16 type to work. This commit
removes those based on the same logic as Float16 disable.
Change-Id: I72243048ae2db3dc47bd3d699843e3edf9c395ea
llvm-svn: 352229
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
C++2a via http://wg21.link/p0355 permits the library
literals of 'd' and 'y'. This patch enables them in the
Lexer so that they can be properly parsed.
Note that 'd' gets confused with the hex character, so
modifications to how octal, binary, and decimal numbers are
parsed were required. Since this is simply making previously
invalid code legal, this should be fine.
Hex still greedily parses the 'd' as a hexit, since it would
a: violate [lex.ext]p1
b: break existing code.
Differential Revision: https://reviews.llvm.org/D49504
llvm-svn: 337454
This addresses a bug brought up in https://bugs.llvm.org/show_bug.cgi?id=38161 where integer literals could be treated as fixed point types and throw errors related to fixed point types when the 'k' or 'r' suffix used. The fix also addresses the second issue brought up with the assertion by not treating integers as fixed point types in the first place.
Integers that have suffixes 'k' and 'r' now throw the error `invalid suffix 'k/r' on integer constant`.
A few more tests were also added to ensure that fixed point types, and any errors/warnings related to them, are limited to C for now.
Prior discussion also at https://reviews.llvm.org/D46915.
Differential Revision: https://reviews.llvm.org/D49327
llvm-svn: 337289
As listed in the above PRs, vector_size doesn't allow
dependent types/values. This patch introduces a new
DependentVectorType to handle a VectorType that has a dependent
size or type.
In the future, ALL the vector-types should be able to create one
of these to handle dependent types/sizes as well. For example,
DependentSizedExtVectorType could likely be switched to just use
this instead, though that is left as an exercise for the future.
Differential Revision: https://reviews.llvm.org/D49045
llvm-svn: 337036
This diff includes the logic for setting the precision bits for each primary fixed point type in the target info and logic for initializing a fixed point literal.
Fixed point literals are declared using the suffixes
```
hr: short _Fract
uhr: unsigned short _Fract
r: _Fract
ur: unsigned _Fract
lr: long _Fract
ulr: unsigned long _Fract
hk: short _Accum
uhk: unsigned short _Accum
k: _Accum
uk: unsigned _Accum
```
Errors are also thrown for illegal literal values
```
unsigned short _Accum u_short_accum = 256.0uhk; // expected-error{{the integral part of this literal is too large for this unsigned _Accum type}}
```
Differential Revision: https://reviews.llvm.org/D46915
llvm-svn: 335148
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
For input `0'e+1` lexer tokenized as numeric constant only `0'e`. Later
NumericLiteralParser skipped 0 and ' as digits and parsed `e+1` as valid
exponent going past the end of the token. Because it didn't mark numeric
literal as having an error, it continued parsing and tried to expandUCNs
with StringRef of length -2.
The fix is not to parse exponent when we reached the end of token.
Discovered by OSS-Fuzz:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=4588
rdar://problem/36076719
Reviewers: rsmith, t.p.northover
Reviewed By: rsmith
Subscribers: cfe-commits, jkorous-apple
Differential Revision: https://reviews.llvm.org/D41834
llvm-svn: 324419
This is a recommit of r312781; in some build configurations
variable names are omitted, so changed the new regression
test accordingly.
llvm-svn: 312794
This adds _Float16 as a source language type, which is a 16-bit floating point
type defined in C11 extension ISO/IEC TS 18661-3.
In follow up patches documentation and more tests will be added.
Differential Revision: https://reviews.llvm.org/D33719
llvm-svn: 312781
C++14 added user-defined literal support for complex numbers so that you
can write something like "complex<double> val = 2i". However, there is
an existing GNU extension supporting this syntax and interpreting the
result as a _Complex type.
This changes parsing so that such literals are interpreted in terms of
C++14's operators if an overload is present but otherwise falls back to
the original GNU extension.
(We now have more robust diagnostics for implicit conversions so the
libc++ test that caused the original revert still passes).
llvm-svn: 310478
C++14 added user-defined literal support for complex numbers so that you can
write something like "complex<double> val = 2i". However, there is an existing
GNU extension supporting this syntax and interpreting the result as a _Complex
type.
This changes parsing so that such literals are interpreted in terms of C++14's
operators if an overload is present but otherwise falls back to the original
GNU extension.
llvm-svn: 303694