This is a corner of the differences between C99 designators and C++20
designators that we'd previously overlooked. As with other such cases,
this continues to be permitted as an extension and allowed by default,
behind the -Wc99-designators warning flag, except in cases where it
leads to a conformance difference (such as in overload resolution and in
a SFINAE context).
Prevent materializing temporaries in the address space of the references
they are bind to. The temporaries should always be in the same address
space - private for OpenCL.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D95608
reference binding to an expression.
We need to know the array bound in order to determine whether the
parameter type is reference-compatible with the argument type, so we
need to trigger instantiation in this case.
Like the VarDecl that gets its type updated based on an init-list, this
patch corrects the MaterializeTemporaryExpr's type to make sure it isn't
creating an incomplete type, which leads to a handful of CodeGen crashes
(see PR 47636).
Based on @rsmith 's comments on D88236
Differential Revision: https://reviews.llvm.org/D88298
In implicitly movable test, a two-stage overload resolution is performed.
If the first overload resolution selects a deleted function, Clang directly
performs the second overload resolution, without checking whether the
deleted function matches the additional criteria.
This patch fixes the above problem.
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D92936
In implicitly movable test, a two-stage overload resolution is performed.
If the first overload resolution selects a deleted function, Clang directly
performs the second overload resolution, without checking whether the
deleted function matches the additional criteria.
This patch fixes the above problem.
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D92936
Technically 'noexcept' isn't a qualifier, so this should be a separate conversion.
Also make the test a pure frontend test.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D67112
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
folding to not constant folding.
Constant folding of ICEs is done as a GCC compatibility measure, but new
code was picking it up, presumably by accident, due to the bad default.
While here, also switch the flag from a bool to an enum to make it more
obvious what it means at call sites. This highlighted a couple of places
where our behavior is different between C++11 and C++14 due to switching
from checking for an ICE to checking for a converted constant
expression (where there is no 'fold' codepath).
The function `TryListConversion` didn't properly validate the following
part of the standard:
Otherwise, if the parameter type is a character array [... ]
and the initializer list has a single element that is an
appropriately-typed string literal (8.5.2 [dcl.init.string]), the
implicit conversion sequence is the identity conversion.
This caused the following call to `f()` to be ambiguous.
void f(int(&&)[1]);
void f(unsigned(&&)[1]);
void g(unsigned i) {
f({i});
}
This issue only occurs when the initializer list had one element.
Differential Revision: https://reviews.llvm.org/D87561
This is recommit of 6c8041aa0f, reverted in de044f7562 because of some
fails. Original commit message is below.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
- Prevent nullptr-deference at try to emit warning for invalid `expr`
- Simplify `InitListChecker::UpdateStructuredListElement()` usages. We do not need to check `expr` and increment `StructuredIndex` (for invalid `expr`) before the call anymore.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85193
When a semantic checking fails on a syntactic InitListExpr, we will
get an ill-formed semantic InitListExpr (e.g. some inits are nullptr),
using this semantic InitListExpr in clang (without setting the err-bits) is crashy.
Differential Revision: https://reviews.llvm.org/D84140
__builtin_va_*() and __builtin_ms_va_*() are declared as functions with a
parameter of reference type.
This patch fixes a crash when using these functions in C where an argument
of structure type is incompatible with the parameter type.
Differential Revision: https://reviews.llvm.org/D82805
Reviewed By: riccibruno
Patch by: Aleksandr Platonov <platonov.aleksandr@huawei.com>
`noderef` was failing to trigger warnings in some cases related to c++ style
casting. This patch addresses them.
Differential Revision: https://reviews.llvm.org/D77836
Summary:
The Initializer of a InitListExpr can be reset to null, which leads to
nullptr-acces crashes.
Reviewers: sammccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80980
This patch implements matrix index expressions
(matrix[RowIdx][ColumnIdx]).
It does so by introducing a new MatrixSubscriptExpr(Base, RowIdx, ColumnIdx).
MatrixSubscriptExprs are built in 2 steps in ActOnMatrixSubscriptExpr. First,
if the base of a subscript is of matrix type, we create a incomplete
MatrixSubscriptExpr(base, idx, nullptr). Second, if the base is an incomplete
MatrixSubscriptExpr, we create a complete
MatrixSubscriptExpr(base->getBase(), base->getRowIdx(), idx)
Similar to vector elements, it is not possible to take the address of
a MatrixSubscriptExpr.
For CodeGen, a new MatrixElt type is added to LValue, which is very
similar to VectorElt. The only difference is that we may need to cast
the type of the base from an array to a vector type when accessing it.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76791
The built-in SVE types are supposed to be treated as opaque types.
This means that for initialisation purposes they should be treated
as a single unit, much like a scalar type.
However, as Eli pointed out, actually using "scalar" in the diagnostics
is likely to cause confusion, given the types are logically vectors.
The patch therefore uses custom diagnostics or generalises existing
ones. Some of the messages use the word "indivisible" to try to make
it clear(er) that these types can't be initialised elementwise.
I don't think it's possible to trigger warn_braces_around_(scalar_)init
for sizeless types as things stand, since the types can't be used as
members or elements of more complex types. But it seemed better to be
consistent with ext_many_braces_around_(scalar_)init, so the patch
changes it anyway.
Differential Revision: https://reviews.llvm.org/D76689
This fixes a common mistake (the 3 should be @3): NSNumber *n = 3. This extends
an existing check for NSString. Also, this only errs if the initializer isn't a
null pointer constant, so NSNumber *n = 0; continues to work. rdar://47029572
Differential revision: https://reviews.llvm.org/D78066
Summary:
Changes:
- handle immediate invocations for constructors.
- add tests
after this patch i believe the implementation of consteval is nearly standard compliant, but IR-gen still needs to be taught not to emit consteval declarations.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: wchilders
Differential Revision: https://reviews.llvm.org/D74007
The C++ rules briefly allowed this, but the rule changed nearly 10 years
ago and we never updated our implementation to match. However, we've
warned on this by default for a long time, and no other compiler accepts
(even as an extension).
In passing, split it up into three values (no explicit functions /
explicit conversion functions only / any explicit functions) in
preparation for using that in a future change.
list constructor when initializing from {}.
We would previously pick between calling an initializer list constructor
and calling a default constructor unstably in this situation, depending
on whether the inherited default constructor had already been used
elsewhere in the program.
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers, including ranking
reference bindings against non-reference bindings if they differ in
non-top-level qualification conversions.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
This reinstates commit de21704ba9,
reverted in commit d8018233d1, with
workarounds for some overload resolution ordering problems introduced by
CWG2352.
explicit functions that are not candidates.
It's not always obvious that the reason a conversion was not possible is
because the function you wanted to call is 'explicit', so explicitly say
if that's the case.
It would be nice to rank the explicit candidates higher in the
diagnostic if an implicit conversion sequence exists for their
arguments, but unfortunately we can't determine that without potentially
triggering non-immediate-context errors that we're not permitted to
produce.
This reverts commit de21704ba9.
Regressed/causes this to error due to ambiguity:
void f(const int * const &);
void f(int *);
int main() {
int * x;
f(x);
}
(in case it's important - the original case where this turned up was a
member function overload in a class template with, essentially:
f(const T1&)
f(T2*)
(where T1 == X const *, T2 == X))
It's not super clear to me if this ^ is expected behavior, in which case
I'm sorry about the revert & happy to look into ways to fix the original
code.
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
implementing the resolution of CWG2352.
No functionality change, except that we now convert the referent of a
reference binding to the underlying type of the reference in more cases;
we used to happen to preserve the type sugar from the referent if the
only type change was in the cv-qualifiers.
This exposed a bug in how we generate code for trivial assignment
operators: if the type sugar (particularly the may_alias attribute)
got lost during reference binding, we'd use the "wrong" TBAA information
for the load during the assignment.
References need somewhat special treatment. While copying a gsl::Pointer
will propagate the points-to set, creating an object from a reference
often behaves more like a dereference operation.
Differential Revision: https://reviews.llvm.org/D70755
This fixes an assertion failure in the case where an implicit conversion for a
function call involves an lvalue function conversion, and makes the AST for
initializations involving implicit lvalue function conversions more accurate.
Differential Revision: https://reviews.llvm.org/D66437
llvm-svn: 375313
We previously failed to treat an array with an instantiation-dependent
but not value-dependent bound as being an instantiation-dependent type.
We now track the array bound expression as part of a constant array type
if it's an instantiation-dependent expression.
llvm-svn: 373685
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<> directly and if not assert will fire for us.
llvm-svn: 373474
r368237 attempted to improve fix-its for move warnings, but introduced some
regressions to -Wpessimizing-move. Revert that change and add the missing
test cases to the pessimizing move test to prevent future regressions.
llvm-svn: 373421
Reland after https://reviews.llvm.org/D66806 fixed the false-positive diagnostics.
Summary:
This fixes inference of gsl::Pointer on std::set::iterator with libstdc++ (the typedef for iterator
on the template is a DependentNameType - we can only put the gsl::Pointer attribute
on the underlaying record after instantiation)
inference of gsl::Pointer on std::vector::iterator with libc++ (the class was forward-declared,
we added the gsl::Pointer on the canonical decl (the forward decl), and later when the
template was instantiated, there was no attribute on the definition so it was not instantiated).
and a duplicate gsl::Pointer on some class with libstdc++ (we first added an attribute to
a incomplete instantiation, and then another was copied from the template definition
when the instantiation was completed).
We now add the attributes to all redeclarations to fix thos issues and make their usage easier.
Reviewers: gribozavr
Subscribers: Szelethus, xazax.hun, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66179
llvm-svn: 371182
initializers.
This has some interesting interactions with our existing extensions to
support C99 designated initializers as an extension in C++. Those are
resolved as follows:
* We continue to permit the full breadth of C99 designated initializers
in C++, with the exception that we disallow a partial overwrite of an
initializer with a non-trivially-destructible type. (Full overwrite
is OK, because we won't run the first initializer at all.)
* The C99 extensions are disallowed in SFINAE contexts and during
overload resolution, where they could change the meaning of valid
programs.
* C++20 disallows reordering of initializers. We only check for that for
the simple cases that the C++20 rules permit (designators of the form
'.field_name =' and continue to allow reordering in other cases).
It would be nice to improve this behavior in future.
* All C99 designated initializer extensions produce a warning by
default in C++20 mode. People are going to learn the C++ rules based
on what Clang diagnoses, so it's important we diagnose these properly
by default.
* In C++ <= 17, we apply the C++20 rules rather than the C99 rules, and
so still diagnose C99 extensions as described above. We continue to
accept designated C++20-compatible initializers in C++ <= 17 silently
by default (but naturally still reject under -pedantic-errors).
This is not a complete implementation of P0329R4. In particular, that
paper introduces new non-C99-compatible syntax { .field { init } }, and
we do not support that yet.
This is based on a previous patch by Don Hinton, though I've made
substantial changes when addressing the above interactions.
Differential Revision: https://reviews.llvm.org/D59754
llvm-svn: 370544
We failed to correctly handle the 'holes' left behind by designated
initializers in VerifyOnly mode. This would result in us thinking that a
designated initialization would be valid, only to find that it is not
actually valid when we come to build it. In a +Asserts build, that would
assert, and in a -Asserts build, that would silently lose some part of
the initialization or crash.
With this change, when an InitListExpr contains any designators, we now
always build a structured list so that we can track the locations of the
'holes' that we need to go back and fill in.
We could in principle do better: we only need the structured form if
there is a designator that jumps backwards (and can otherwise check for
the holes as we progress through the initializer list), but dealing with
that turns out to be rather complicated, so it's not done as part of
this patch.
llvm-svn: 370419
list, rather than recursively checking multiple lists in C.
This simplification is in preparation for making InitListChecker
maintain more state that's specific to the explicit initializer list,
particularly when handling designated initialization.
llvm-svn: 370418
set to true in VerifyOnly mode in cases where it's also set to true when
actually building the initializer list.
Add FIXMEs for the two cases where that's not true. No functionality
change intended.
llvm-svn: 370417
Summary:
Clang performs various recursive operations (such as template instantiation),
and may use non-trivial amounts of stack space in each recursive step (for
instance, due to recursive AST walks). While we try to keep the stack space
used by such steps to a minimum and we have explicit limits on the number of
such steps we perform, it's impractical to guarantee that we won't blow out the
stack on deeply recursive template instantiations on complex ASTs, even with
only a moderately high instantiation depth limit.
The user experience in these cases is generally terrible: we crash with
no hint of what went wrong. Under this patch, we attempt to do better:
* Detect when the stack is nearly exhausted, and produce a warning with a
nice template instantiation backtrace, telling the user that we might
run slowly or crash.
* For cases where we're forced to trigger recursive template
instantiation in arbitrarily-deeply-nested contexts, check whether
we're nearly out of stack space and allocate a new stack (by spawning
a new thread) after producing the warning.
Reviewers: rnk, aaron.ballman
Subscribers: mgorny, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66361
llvm-svn: 369940
This reverts commit r369591, because it causes the formerly-reliable
-Wreturn-stack-address warning to start issuing false positives.
Testcase provided on the commit thread.
llvm-svn: 369677
Summary:
This fixes inference of gsl::Pointer on std::set::iterator with libstdc++ (the typedef for iterator
on the template is a DependentNameType - we can only put the gsl::Pointer attribute
on the underlaying record after instantiation)
inference of gsl::Pointer on std::vector::iterator with libc++ (the class was forward-declared,
we added the gsl::Pointer on the canonical decl (the forward decl), and later when the
template was instantiated, there was no attribute on the definition so it was not instantiated).
and a duplicate gsl::Pointer on some class with libstdc++ (we first added an attribute to
a incomplete instantiation, and then another was copied from the template definition
when the instantiation was completed).
We now add the attributes to all redeclarations to fix thos issues and make their usage easier.
Reviewers: gribozavr
Subscribers: Szelethus, xazax.hun, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66179
llvm-svn: 369591
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
The sampler handling logic in SemaInit.cpp would inadvertently treat
parentheses around sampler arguments as an implicit cast, leading to
an unreachable "can't implicitly cast lvalue to rvalue with
this cast kind". Fix by ignoring parentheses once we are in the
sampler initializer case.
Differential Revision: https://reviews.llvm.org/D66080
llvm-svn: 368561
Fix -Wpessimizing-move and -Wredundant-move when warning on initializer lists.
The new fix-it hints for removing the std::move call will now also suggest
removing the braces for the initializer list so that the resulting code will
still be compilable.
This fixes PR42832
llvm-svn: 368237
This patch extends some existing warnings to utilize the knowledge about the gsl::Pointer and gsl::Owner attributes.
Differential Revision: https://reviews.llvm.org/D64256
llvm-svn: 368072
If we construct an object in some arbitrary non-default addr space
it should fail unless either:
- There is an implicit conversion from the address space to default
/generic address space.
- There is a matching ctor qualified with an address space that is
either exactly matching or convertible to the address space of an
object.
Differential Revision: https://reviews.llvm.org/D62156
llvm-svn: 363944
In addition to being unused and duplicating code, this was also wrong
(it didn't properly mark the operand as being potentially not odr-used).
This reinstates r363340, reverted in r363352.
llvm-svn: 363430
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r363337, reverted in r363352.
llvm-svn: 363429
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
In addition to being unused and duplicating code, this was also wrong
(it didn't properly mark the operand as being potentially not odr-used).
llvm-svn: 363340
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r345562, reverted in r346065, now that CodeGen's
handling of non-odr-used variables has been fixed.
llvm-svn: 363337
References to arbitrary address spaces can't always be bound to
temporaries. This change extends the reference binding logic to
check that the address space of a temporary can be implicitly
converted to the address space in a reference when temporary
materialization is performed.
Differential Revision: https://reviews.llvm.org/D61318
llvm-svn: 362604
This fixes a crash where we would neglect to mark a destructor referenced for an
__attribute__((no_destory)) array. The destructor is needed though, since if an
exception is thrown we need to cleanup the elements.
rdar://48462498
Differential revision: https://reviews.llvm.org/D61165
llvm-svn: 360446
This caused Clang to start erroring on the following:
struct S {
template <typename = int> explicit S();
};
struct T : S {};
struct U : T {
U();
};
U::U() {}
$ clang -c /tmp/x.cc
/tmp/x.cc:10:4: error: call to implicitly-deleted default constructor of 'T'
U::U() {}
^
/tmp/x.cc:5:12: note: default constructor of 'T' is implicitly deleted
because base class 'S' has no default constructor
struct T : S {};
^
1 error generated.
See discussion on the cfe-commits email thread.
This also reverts the follow-ups r359966 and r359968.
> this patch adds support for the explicit bool specifier.
>
> Changes:
> - The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
> - The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
> - Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
> - Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
> - The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
> - Test for Semantic and Serialization were added.
>
> This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
> Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
>
> Patch by Tyker
>
> Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 360024
this patch adds support for the explicit bool specifier.
Changes:
- The parsing for the explicit(bool) specifier was added in ParseDecl.cpp.
- The storage of the explicit specifier was changed. the explicit specifier was stored as a boolean value in the FunctionDeclBitfields and in the DeclSpec class. now it is stored as a PointerIntPair<Expr*, 2> with a flag and a potential expression in CXXConstructorDecl, CXXDeductionGuideDecl, CXXConversionDecl and in the DeclSpec class.
- Following the AST change, Serialization, ASTMatchers, ASTComparator and ASTPrinter were adapted.
- Template instantiation was adapted to instantiate the potential expressions of the explicit(bool) specifier When instantiating their associated declaration.
- The Add*Candidate functions were adapted, they now take a Boolean indicating if the context allowing explicit constructor or conversion function and this boolean is used to remove invalid overloads that required template instantiation to be detected.
- Test for Semantic and Serialization were added.
This patch is not yet complete. I still need to check that interaction with CTAD and deduction guides is correct. and add more tests for AST operations. But I wanted first feedback.
Perhaps this patch should be spited in smaller patches, but making each patch testable as a standalone may be tricky.
Patch by Tyker
Differential Revision: https://reviews.llvm.org/D60934
llvm-svn: 359949
Because diagnostics and their notes are not connected at the API level,
if the error message for an overload is emitted, then the overload
candidates are completed - if a diagnostic is emitted during that work,
the notes related to overload candidates would be attached to the latter
diagnostic, not the original error. Sort of worse, if the latter
diagnostic was disabled, the notes are disabled.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D61357
llvm-svn: 359854
Improved classification of address space cast when qualification
conversion is performed - prevent adding addr space cast for
non-pointer and non-reference types. Take address space correctly
from the pointee.
Also pass correct address space from 'this' object using
AggValueSlot when generating addrspacecast in the constructor
call.
Differential Revision: https://reviews.llvm.org/D59988
llvm-svn: 357682
The various CorrectionCandidateCallbacks are currently heap-allocated
unconditionally. This was needed because of delayed typo correction.
However these allocations represent currently 15.4% of all allocations
(number of allocations) when parsing all of Boost (!), mostly because
of ParseCastExpression, ParseStatementOrDeclarationAfterAttrtibutes
and isCXXDeclarationSpecifier. Note that all of these callback objects
are small. Let's not do this.
Instead initially allocate the callback on the stack, and only do a
heap allocation if we are going to do some typo correction. Do this by:
1. Adding a clone function to each callback, which will do a polymorphic
clone of the callback. This clone function is required to be implemented
by every callback (of which there is a fair amount). Make sure this is
the case by making it pure virtual.
2. Use this clone function when we are going to try to correct a typo.
This additionally cut the time of -fsyntax-only on all of Boost by 0.5%
(not that much, but still something). No functional changes intended.
Differential Revision: https://reviews.llvm.org/D58827
Reviewed By: rnk
llvm-svn: 356925