Currently, Clang accepts this code in C mode (where the tag is required
to be used) but rejects it in C++ mode thinking that the association is
defining a new type.
void foo(void) {
struct S { int a; };
_Generic(something, struct S : 1);
}
Clang thinks this in C++ because it sees struct S : when parsing the
class specifier and decides that must be a type definition (because the
colon signifies the presence of a base class type). This patch adds a
new declarator context to represent a _Generic association so that we
can distinguish these situations properly.
Fixes#55562
Differential Revision: https://reviews.llvm.org/D126969
New diagnostics were added for unreachable generic selection expression
associations in ca75ac5f04, but it did
not account for a difference in behavior between C and C++ regarding
lvalue to rvalue conversions. So we would issue diagnostics about a
selection being unreachable and then reach it. This corrects the
diagnostic behavior in that case.
Differential Revision: https://reviews.llvm.org/D125882
The controlling expression of a _Generic selection expression undergoes
lvalue conversion, array conversion, and function conversion before
picking the association. This means that array types, function types,
and qualified types are all unreachable code if they're used as an
association. I've been caught by this twice in the past few months and
I figure that if a WG14 member can't seem to remember this rule, users
are also likely to struggle with it. So this adds an on-by-default
unreachable code diagnostic for generic selection expression
associations.
Note, we don't have to worry about function types as those are already
a constraint violation which generates an error.
Differential Revision: https://reviews.llvm.org/D125259
We were failing to check if the controlling expression is dependent or
not when testing whether it has side effects. This would trigger an
assertion. Instead, if the controlling expression is dependent, we
suppress the check and diagnostic.
This fixes Issue 50227.
This patch adds -Wno-strict-prototypes to all of the test cases that
use functions without prototypes, but not as the primary concern of the
test. e.g., attributes testing whether they can/cannot be applied to a
function without a prototype, etc.
This is done in preparation for enabling -Wstrict-prototypes by
default.
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).
This was originally committed in 277623f4d5
Reverted in f9ad1d1c77 due to breakages
outside of clang - lldb seems to have some strange/strong dependence on
"char [N]" versus "char[N]" when printing strings (not due to that name
appearing in DWARF, but probably due to using clang to stringify type
names) that'll need to be addressed, plus a few other odds and ends in
other subprojects (clang-tools-extra, compiler-rt, etc).
Looks like lldb has some issues with this - somehow it causes lldb to
treat a "char[N]" type as an array of chars (prints them out
individually) but a "char [N]" is printed as a string. (even though the
DWARF doesn't have this string in it - it's something to do with the
string lldb generates for itself using clang)
This reverts commit 277623f4d5.
Based on post-commit review discussion on
2bd8493847 with Richard Smith.
Other uses of forcing HasEmptyPlaceHolder to false seem OK to me -
they're all around pointer/reference types where the pointer/reference
token will appear at the rightmost side of the left side of the type
name, so they make nested types (eg: the "int" in "int *") behave as
though there is a non-empty placeholder (because the "*" is essentially
the placeholder as far as the "int" is concerned).