This introduces support for nullptr and nullptr_t in C2x mode. The
proposal accepted by WG14 is:
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3042.htm
Note, there are quite a few incompatibilities with the C++ feature in
some of the edge cases of this feature. Therefore, there are some FIXME
comments in tests for testing behavior that might change after WG14 has
resolved national body comments (a process we've not yet started). So
this implementation might change slightly depending on the resolution
of comments. This is called out explicitly in the release notes as
well.
Differential Revision: https://reviews.llvm.org/D135099
For failed static assertions, try to take the expression apart and print
useful information about why it failed. In particular, look at binary
operators and print the compile-time evaluated value of the LHS/RHS.
Differential Revision: https://reviews.llvm.org/D130894
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
Looks like we again are going to have problems with libcxx tests that
are overly specific in their dependency on clang's diagnostics.
This reverts commit 6542cb55a3.
This patch is basically the rewording of the static assert statement's
output(error) on screen after failing. Failing a _Static_assert in C
should not report that static_assert failed. It’d probably be better to
reword the diagnostic to be more like GCC and say “static assertion”
failed in both C and C++.
consider a c file having code
_Static_assert(0, "oh no!");
In clang the output is like:
<source>:1:1: error: static_assert failed: oh no!
_Static_assert(0, "oh no!");
^ ~
1 error generated.
Compiler returned: 1
Thus here the "static_assert" is not much good, it will be better to
reword it to the "static assertion failed" to more generic. as the gcc
prints as:
<source>:1:1: error: static assertion failed: "oh no!"
1 | _Static_assert(0, "oh no!");
| ^~~~~~~~~~~~~~
Compiler returned: 1
The above can also be seen here. This patch is about rewording
the static_assert to static assertion.
Differential Revision: https://reviews.llvm.org/D129048
This reverts commit b7e77ff25f.
Reason: Broke sanitizer builds bots + libcxx. 'static assertion
expression is not an integral constant expression'. More details
available in the Phabricator review: https://reviews.llvm.org/D129048
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
Display 'static_assert failed: message' instead of
'static_assert failed "message"' to be consistent
with other implementations and be slightly more
readable.
Reviewed By: #libc, aaron.ballman, philnik, Mordante
Differential Revision: https://reviews.llvm.org/D128844
Instead of dumping the string literal (which
quotes it and escape every non-ascii symbol),
we can use the content of the string when it is a
8 byte string.
Wide, UTF-8/UTF-16/32 strings are still completely
escaped, until we clarify how these entities should
behave (cf https://wg21.link/p2361).
`FormatDiagnostic` is modified to escape
non printable characters and invalid UTF-8.
This ensures that unicode characters, spaces and new
lines are properly rendered in static messages.
This make clang more consistent with other implementation
and fixes this tweet
https://twitter.com/jfbastien/status/1298307325443231744 :)
Of note, `PaddingChecker` did print out new lines that were
later removed by the diagnostic printing code.
To be consistent with its tests, the new lines are removed
from the diagnostic.
Unicode tables updated to both use the Unicode definitions
and the Unicode 14.0 data.
U+00AD SOFT HYPHEN is still considered a print character
to match existing practices in terminals, in addition of
being considered a formatting character as per Unicode.
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D108469
Our diagnostics relating to static assertions were a bit confused. For
instance, when in MS compatibility mode in C (where we accept
static_assert even without including <assert.h>), we would fail
to warn the user that they were using the wrong spelling (even in
pedantic mode), we were missing a compatibility warning about using
_Static_assert in earlier standards modes, diagnostics for the optional
message were not reflected in C as they were in C++, etc.
initializers.
This has some interesting interactions with our existing extensions to
support C99 designated initializers as an extension in C++. Those are
resolved as follows:
* We continue to permit the full breadth of C99 designated initializers
in C++, with the exception that we disallow a partial overwrite of an
initializer with a non-trivially-destructible type. (Full overwrite
is OK, because we won't run the first initializer at all.)
* The C99 extensions are disallowed in SFINAE contexts and during
overload resolution, where they could change the meaning of valid
programs.
* C++20 disallows reordering of initializers. We only check for that for
the simple cases that the C++20 rules permit (designators of the form
'.field_name =' and continue to allow reordering in other cases).
It would be nice to improve this behavior in future.
* All C99 designated initializer extensions produce a warning by
default in C++20 mode. People are going to learn the C++ rules based
on what Clang diagnoses, so it's important we diagnose these properly
by default.
* In C++ <= 17, we apply the C++20 rules rather than the C99 rules, and
so still diagnose C99 extensions as described above. We continue to
accept designated C++20-compatible initializers in C++ <= 17 silently
by default (but naturally still reject under -pedantic-errors).
This is not a complete implementation of P0329R4. In particular, that
paper introduces new non-C99-compatible syntax { .field { init } }, and
we do not support that yet.
This is based on a previous patch by Don Hinton, though I've made
substantial changes when addressing the above interactions.
Differential Revision: https://reviews.llvm.org/D59754
llvm-svn: 370544