This patch adds AArch64 to the LP64 feature to avoid running LLP64
incompatible test on AArch64/Windows platform.
Differential Revision: https://reviews.llvm.org/D136070
Remove the ability to disable opaque pointers by default in clang.
It is still possible to explicitly disable them via cc1
-no-opaque-pointers.
Differential Revision: https://reviews.llvm.org/D135259
Add support for a CLANG_NO_DEFAULT_CONFIG envvar that works like
the --no-default-config option when set to a non-empty value. Use it
to disable loading system configuration files during the test suite
runs.
Configuration files can change the driver behavior in extensive ways,
and it is neither really possible nor feasible to account for or undo
the effects of even the most common configuration uses. Therefore,
the most reasonable option seems to be to ignore configuration files
while running the majority of tests (with the notable exception of tests
for configuration file support).
Due to the diversity of ways that %clang is used in the test suite,
including using it to copy or symlink the clang executable, as well to
call -cc1 and -cc1as modes, it is not feasible to pass the explicit
options to disable config loading either. Using an environment variable
has the advantage of being easily applied across the test suite
and easily unset for default configuration file loading tests.
Differential Revision: https://reviews.llvm.org/D134905
Move the `%clang_dxc` substitution from local definition in clang/test
to lit's `llvm/config.py` module where all other driver definitions
are found. This improves consistency and makes it easier to control
global clang options.
Differential Revision: https://reviews.llvm.org/D134871
Summary:
since default object mode of llvm-nm is change to -X32 (from default -Xany) in patch https://reviews.llvm.org/D132494.In order not effect the test cases in clang/test we need to change "llvm-nm" to "env OBJECT_MODE=any llvm-nm" in clang/test for AIX OS
Reviewers: James Henderson,David Tenty, Hubert Tong
Differential Revision: https://reviews.llvm.org/D134284
Newer SDKs don't even provide libstdc++ headers, so it's effectively
never valid to build for libstdc++ unless the user explicitly asks
for it (in which case they will need to provide include paths and more).
This is a re-application of c5ccb78ade which had been reverted in
33171df9cc because it broke the Fuchsia CI bots. The issue was that
the test was XPASSing because it didn't fail anymore when the
CLANG_DEFAULT_CXX_LIB was set to libc++, which seems to be done for
Fuchsia. Instead, the test only fails if CLANG_DEFAULT_CXX_LIB is
set to libstdc++.
As a fly-by fix, also adjust the triple used by various tests to
something that is supported. Those tests were shown to fail on
internal bots.
Differential Revision: https://reviews.llvm.org/D131274
We have seen random symbol not found "__cxa_throw" error in fuschia build bots and out-of-tree users. The understanding have been that they are built without exception support, but it turned out that these platforms have LLVM_STATIC_LINK_CXX_STDLIB ON so that they link libstdc++ to llvm statically. The reason why this is problematic for clang-repl is that by default clang-repl tries to find symbols from symbol table of executable and dynamic libraries loaded by current process. It needs to load another libstdc++, but the platform that had LLVM_STATIC_LINK_CXX_STDLIB turned on is usally those with missing or obsolate shared libstdc++ in the first place -- trying to load it again would be destined to fail eventually with a risk to introuduce mixed libstdc++ versions.
A proper solution that doesn't take a workaround is statically link the same libstdc++ by clang-repl side, but this is not possible with old JIT linker runtimedyld. New just-in-time linker JITLink handles this relatively well, but it's not availalbe in majority of platforms. For now, this patch just disables the building of clang-repl when LLVM_STATIC_LINK_CXX_STDLIB is ON and removes the "__cxa_throw" check in exception unittest as well as reverting previous exception check flag patch.
Reviewed By: v.g.vassilev
Differential Revision: https://reviews.llvm.org/D130788
Add host exception support check utility flag. This is needed to not run tests that require exception support in few buildbots that lacks related symbols for some reason.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D129242
Some tests perform deep recursion, which requires a larger pthread stack
size than the relatively low default of 192 KiB for 64-bit processes on
AIX. The `AIXTHREAD_STK` environment variable provides a non-intrusive
way to request a larger pthread stack size for the tests. The required
pthread stack size depends on the build configuration.
A 4 MiB default is generous compared to the 512 KiB of macOS; however,
it is known that some compilers on AIX produce code that uses
comparatively more stack space.
This patch expands the solution from D65688 to apply to all Clang LIT
tests.
This also reverts commit c3c75d805c,
"[clang][test] Mark test arm-float-abi-lto.c unsupported on AIX".
The problem was caused by the test running up against the per-thread
stack limit on AIX. This is resolved by having the tests run with
`AIXTHREAD_STK` set for 4 MiB.
Reviewed By: xingxue
Differential Revision: https://reviews.llvm.org/D129165
In order to do offloading compilation we need to embed files into the
host and create fatbainaries. Clang uses a special binary format to
bundle several files along with their metadata into a single binary
image. This is currently performed using the `-fembed-offload-binary`
option. However this is not very extensibile since it requires changing
the command flag every time we want to add something and makes optional
arguments difficult. This patch introduces a new tool called
`clang-offload-packager` that behaves similarly to CUDA's `fatbinary`.
This tool takes several input files with metadata and embeds it into a
single image that can then be embedded in the host.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D125165
The linker wrapper is used to perform linking and wrapping of embedded
device object files. Currently its internals are not able to be tested
easily. This patch adds the `--dry-run` and `--print-wrapped-module`
options to investigate the link jobs that will be run along with the
wrapped code that will be created to register the binaries.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D124039
The target profile option(/T) decide the shader model when compile hlsl.
The format is shaderKind_major_minor like ps_6_1.
The shader model is saved as llvm::Triple is clang/llvm like
dxil-unknown-shadermodel6.1-hull.
The main job to support the option is translating ps_6_1 into
shadermodel6.1-pixel.
That is done inside tryParseProfile at HLSL.cpp.
To integrate the option into clang Driver, a new DriverMode DxcMode is
created. When DxcMode is enabled, OSType for TargetTriple will be
forced into Triple::ShaderModel. And new ToolChain HLSLToolChain will
be created when OSType is Triple::ShaderModel.
In HLSLToolChain, ComputeEffectiveClangTriple is overridden to call
tryParseProfile when targetProfile option is set.
To make test work, Fo option is added and .hlsl is added for active
-xhlsl.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D122865
Patch by: Xiang Li <python3kgae@outlook.com>
The current cc1 CLANG_ENABLE_OPAQUE_POINTERS=on default difference is not ideal
in that people contribute %clang_cc1 tests may assume the default ON behavior,
which will cause failures on systems set to OFF.
cc1 option default dependent on CMake options should be used prudently
(generally avoided). We prefer to limit target differences to Driver.
Change the CLANG_ENABLE_OPAQUE_POINTERS_INTERNAL mechanism introduced in D123122
to use a driver default instead. This is similar to the mechanism used for the
-flegacy-pass-manager transition to new PM transition.
Reviewed By: #opaque-pointers, rsmith, aeubanks
Differential Revision: https://reviews.llvm.org/D123744
Or rather, error out if it is set to something other than ON. This
removes the ability to enable the legacy pass manager by default,
but does not remove the ability to explicitly enable it through
various flags like -flegacy-pass-manager or -enable-new-pm=0.
I checked, and our test suite definitely doesn't pass with
LLVM_ENABLE_NEW_PASS_MANAGER=OFF anymore.
Differential Revision: https://reviews.llvm.org/D123126
Bringing in HLSL as a language as well as language options for each of
the HLSL language standards.
While the HLSL language is unimplemented, this patch adds the
HLSL-specific preprocessor defines which enables testing of the command
line options through the driver.
Reviewed By: pete, rnk
Differential Revision: https://reviews.llvm.org/D122087
This patch gets rid of the ridiculous relative path we use to invoke the `module-deps-to-rsp.py` script and creates proper lit substitution, cleaning up the tests.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D121525
Exactly what it says on the tin! We had a nasty crash with the following incovation:
$ clang --analyze -Xclang -analyzer-constraints=z3 test.c
fatal error: error in backend: LLVM was not compiled with Z3 support, rebuild with -DLLVM_ENABLE_Z3_SOLVER=ON
... <stack trace> ...
Differential Revision: https://reviews.llvm.org/D120325
The modified tests fail because 64-bit XCOFF object files are not currently supported on AIX. This patch disables these tests on 64-bit AIX for now.
This patch is similar to D111887 except the failures on this patch are on a 64-bit build.
Reviewed By: shchenz, #powerpc
Differential Revision: https://reviews.llvm.org/D113049
In 2015-05, GCC added the configure option `--enable-default-pie`. When enabled,
* in the absence of -fno-pic/-fpie/-fpic (and their upper-case variants), -fPIE is the default.
* in the absence of -no-pie/-pie/-shared/-static/-static-pie, -pie is the default.
This has been adopted by all(?) major distros.
I think default PIE is the majority in the Linux world, but
--disable-default-pie users is not that uncommon because GCC upstream hasn't
switched the default yet (https://gcc.gnu.org/PR103398).
This patch add CLANG_DEFAULT_PIE_ON_LINUX which allows distros to use default PIE.
The option is justified as its adoption can be very high among Linux distros
to make Clang default match GCC, and is likely a future-new-default, at which
point we will remove CLANG_DEFAULT_PIE_ON_LINUX.
The lit feature `default-pie-on-linux` can be handy to exclude default PIE sensitive tests.
Reviewed By: foutrelis, sylvestre.ledru, thesamesam
Differential Revision: https://reviews.llvm.org/D113372
Original commit message: "
Original commit message: "
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
"
This patch also works around PR49692 and finds a way to use llvm::consumeError
in rtti mode.
"
This patch also checks if stl is built with rtti.
Differential revision: https://reviews.llvm.org/D107049
Original commit message: "
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
"
This patch also works around PR49692 and finds a way to use llvm::consumeError
in rtti mode.
Differential revision: https://reviews.llvm.org/D107049
Original commit message: "
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
"
Additionally, this patch defines a custom exception type and thus avoids the
requirement to include header <exception>, making it easier to deploy across
systems without standard location of the c++ headers.
Differential revision: https://reviews.llvm.org/D107049
Original commit message:"
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
"
This patch also ignores ppc due to missing weak symbol for __gxx_personality_v0
which may be a feature request for the jit infrastructure. Also, adds a missing
build system dependency to the orc jit.
The current infrastructure in lib/Interpreter has a tool, clang-repl, very
similar to clang-interpreter which also allows incremental compilation.
This patch moves clang-interpreter as a test case and drops it as conditionally
built example as we already have clang-repl in place.
Differential revision: https://reviews.llvm.org/D107049
The lit tests for `clang-scan-deps` invoke the tool without going through the substitution system. While the test runner correctly picks up the `clang-scan-deps` binary from the build directory, it doesn't print its absolute path. When copying the invocations when reproducing test failures, this can result in `command not found: clang-scan-deps` errors or worse yet: pick up the system `clang-scan-deps`. This patch adds new local `%clang-scan-deps` substitution.
Reviewed By: lxfind, dblaikie
Differential Revision: https://reviews.llvm.org/D107155
Original commit message:
In http://lists.llvm.org/pipermail/llvm-dev/2020-July/143257.html we have
mentioned our plans to make some of the incremental compilation facilities
available in llvm mainline.
This patch proposes a minimal version of a repl, clang-repl, which enables
interpreter-like interaction for C++. For instance:
./bin/clang-repl
clang-repl> int i = 42;
clang-repl> extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=42
clang-repl> quit
The patch allows very limited functionality, for example, it crashes on invalid
C++. The design of the proposed patch follows closely the design of cling. The
idea is to gather feedback and gradually evolve both clang-repl and cling to
what the community agrees upon.
The IncrementalParser class is responsible for driving the clang parser and
codegen and allows the compiler infrastructure to process more than one input.
Every input adds to the “ever-growing” translation unit. That model is enabled
by an IncrementalAction which prevents teardown when HandleTranslationUnit.
The IncrementalExecutor class hides some of the underlying implementation
details of the concrete JIT infrastructure. It exposes the minimal set of
functionality required by our incremental compiler/interpreter.
The Transaction class keeps track of the AST and the LLVM IR for each
incremental input. That tracking information will be later used to implement
error recovery.
The Interpreter class orchestrates the IncrementalParser and the
IncrementalExecutor to model interpreter-like behavior. It provides the public
API which can be used (in future) when using the interpreter library.
Differential revision: https://reviews.llvm.org/D96033
This reverts commit 44a4000181.
We are seeing build failures due to missing dependency to libSupport and
CMake Error at tools/clang/tools/clang-repl/cmake_install.cmake
file INSTALL cannot find
In http://lists.llvm.org/pipermail/llvm-dev/2020-July/143257.html we have
mentioned our plans to make some of the incremental compilation facilities
available in llvm mainline.
This patch proposes a minimal version of a repl, clang-repl, which enables
interpreter-like interaction for C++. For instance:
./bin/clang-repl
clang-repl> int i = 42;
clang-repl> extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=42
clang-repl> quit
The patch allows very limited functionality, for example, it crashes on invalid
C++. The design of the proposed patch follows closely the design of cling. The
idea is to gather feedback and gradually evolve both clang-repl and cling to
what the community agrees upon.
The IncrementalParser class is responsible for driving the clang parser and
codegen and allows the compiler infrastructure to process more than one input.
Every input adds to the “ever-growing” translation unit. That model is enabled
by an IncrementalAction which prevents teardown when HandleTranslationUnit.
The IncrementalExecutor class hides some of the underlying implementation
details of the concrete JIT infrastructure. It exposes the minimal set of
functionality required by our incremental compiler/interpreter.
The Transaction class keeps track of the AST and the LLVM IR for each
incremental input. That tracking information will be later used to implement
error recovery.
The Interpreter class orchestrates the IncrementalParser and the
IncrementalExecutor to model interpreter-like behavior. It provides the public
API which can be used (in future) when using the interpreter library.
Differential revision: https://reviews.llvm.org/D96033
Allow opting out from preprocessing with a command line argument.
Update tests to pass -no-preprocess to make it not try to use clang
(which isn't a build level dependency of llvm-rc), but add a test that
does preprocessing under clang/test/Preprocessor.
Update a few options to allow them both joined (as -DFOO) and separate
(-D BR), as rc.exe allows both forms of them.
With the verbose flag set, this prints the preprocessing command
used (which differs from what rc.exe does).
Tests under llvm/test/tools/llvm-rc only test constructing the
preprocessor commands, while tests under clang/test/Preprocessor test
actually running the preprocessor.
Differential Revision: https://reviews.llvm.org/D100755
hipRTC compiles HIP device code at run time. Since the system may not
have development tools installed, when a HIP program is compiled through
hipRTC, there is no standard C or C++ header available. As such, the HIP
headers should not depend on standard C or C++ headers when used
with hipRTC. Basically when hipRTC is used, HIP headers only provides
definitions of HIP device API functions. This is in line with what nvRTC does.
This patch adds support of hipRTC to HIP headers in clang. Basically hipRTC
defines a macro __HIPCC_RTC__ when compile HIP code at run time. When
this macro is defined, HIP headers do not include standard C/C++ headers.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D100652
Files compiled with C++ for OpenCL mode can now have a distinct
file extension - clcpp, then clang driver picks the compilation
mode automatically (-x clcpp) without the use of -cl-std=clc++.
Differential Revision: https://reviews.llvm.org/D96771
Required by D83660.
Test cases may want to use the host compiler to compile some mocks for the
test case.
This patch adds two substitutions `%host_cc` and `%host_cxx` to use the host
compilers set via variable `CMAKE_C_COMPILER` and `CMAKE_CXX_COMPILER`.
Patch by Ella Ma!
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D98918
Link: https://lists.llvm.org/pipermail/llvm-dev/2020-October/146162.html "[RFC] FileCheck: (dis)allowing unused prefixes"
If a downstream project using lit needs time for transition,
add the following to `lit.local.cfg`:
```
from lit.llvm.subst import ToolSubst
fc = ToolSubst('FileCheck', unresolved='fatal')
config.substitutions.insert(0, (fc.regex, 'FileCheck --allow-unused-prefixes'))
```
Differential Revision: https://reviews.llvm.org/D95849
The test needs an object file, which it currenty gets with
`-target x86_64-apple-darwin10`. Rather than adding `REQUIRES: X86`, create
the object file via yaml2obj. This way, the test runs and passes even if the
host arch isn't x86 and only the host arch is built.
Part of PR46644.
This adds the skeleton of the YAML Compiler for APINotes. This change
only adds the YAML IO model for the API Notes along with a new testing
tool `apinotes-test` which can be used to verify that can round trip the
YAML content properly. It provides the basis for the future work which
will add a binary serialization and deserialization format to the data
model.
This is based on the code contributed by Apple at
https://github.com/llvm/llvm-project-staging/tree/staging/swift/apinotes.
Differential Revision: https://reviews.llvm.org/D88859
Reviewed By: Gabor Marton