Currently all callsites already assume the pointer is non-null.
This patch just asserts this assumption.
This is practically enforced by `ModuleList::Append`
which won't add `nullptr`s to `m_modules`.
Differential Revision: https://reviews.llvm.org/D139082
On macOS, LLDB uses the DebugSymbols.framework to locate symbol rich
dSYM bundles. [1] The framework uses a variety of methods, one of them
calling into a binary or shell script to locate (and download) dSYMs.
Internally at Apple, that tool is called dsymForUUID and for simplicity
I'm just going to refer to it that way here too, even though it can be
be an arbitrary executable.
The most common use case for dsymForUUID is to fetch symbols from the
network. This can take a long time, and because the calls to the
DebugSymbols.framework are blocking, it takes a while to launch the
process. This is expected and therefore many people don't use this
functionality, but instead use add-dsym when they want symbols for a
given frame, backtrace or module. This is a little faster because you're
only fetching symbols for the module you care about, but it's still a
slow, blocking operation.
This patch introduces a hybrid approach between the two. When
symbols.enable-background-lookup is enabled, lldb will do the equivalent
of add-dsym in the background for every module that shows up in the
backtrace but doesn't have symbols for. From the user's perspective
there is no slowdown, because the process launches immediately, with
whatever symbols are available. Meanwhile, more symbol information is
added over time as the background fetching completes.
[1] https://lldb.llvm.org/use/symbols.html
rdar://76241471
Differential revision: https://reviews.llvm.org/D131328
This reverts commit 967df65a36.
This fixes test/Shell/SymbolFile/NativePDB/find-functions.cpp. When
looking up functions with the PDB plugins, if we are looking for a
full function name, we should use `GetName` to populate the `name`
field instead of `GetLookupName` since `GetName` has the more
complete information.
Context:
When setting a breakpoint by name, we invoke Module::FindFunctions to
find the function(s) in question. However, we use a Module::LookupInfo
to first process the user-provided name and figure out exactly what
we're looking for. When we actually perform the function lookup, we
search for the basename. After performing the search, we then filter out
the results using Module::LookupInfo::Prune. For example, given
a:🅱️:foo we would first search for all instances of foo and then filter
out the results to just names that have a:🅱️:foo in them. As one can
imagine, this involves a lot of debug info processing that we do not
necessarily need to be doing. Instead of doing one large post-processing
step after finding each instance of `foo`, we can filter them as we go
to save time.
Some numbers:
Debugging LLDB and placing a breakpoint on
llvm::itanium_demangle::StringView::begin without this change takes
approximately 70 seconds and resolves 31,920 DIEs. With this change,
placing the breakpoint takes around 30 seconds and resolves 8 DIEs.
Differential Revision: https://reviews.llvm.org/D129682
This diff introduces a new symbol on-demand which skips
loading a module's debug info unless explicitly asked on
demand. This provides significant performance improvement
for application with dynamic linking mode which has large
number of modules.
The feature can be turned on with:
"settings set symbols.load-on-demand true"
The feature works by creating a new SymbolFileOnDemand class for
each module which wraps the actual SymbolFIle subclass as member
variable. By default, most virtual methods on SymbolFileOnDemand are
skipped so that it looks like there is no debug info for that module.
But once the module's debug info is explicitly requested to
be enabled (in the conditions mentioned below) SymbolFileOnDemand
will allow all methods to pass through and forward to the actual SymbolFile
which would hydrate module's debug info on-demand.
In an internal benchmark, we are seeing more than 95% improvement
for a 3000 modules application.
Currently we are providing several ways to on demand hydrate
a module's debug info:
* Source line breakpoint: matching in supported files
* Stack trace: resolving symbol context for an address
* Symbolic breakpoint: symbol table match guided promotion
* Global variable: symbol table match guided promotion
In all above situations the module's debug info will be on-demand
parsed and indexed.
Some follow-ups for this feature:
* Add a command that allows users to load debug info explicitly while using a
new or existing command when this feature is enabled
* Add settings for "never load any of these executables in Symbols On Demand"
that takes a list of globs
* Add settings for "always load the the debug info for executables in Symbols
On Demand" that takes a list of globs
* Add a new column in "image list" that shows up by default when Symbols On
Demand is enable to show the status for each shlib like "not enabled for
this", "debug info off" and "debug info on" (with a single character to
short string, not the ones I just typed)
Differential Revision: https://reviews.llvm.org/D121631
Applied modernize-use-default-member-init clang-tidy check over LLDB.
It appears in many files we had already switched to in class member init but
never updated the constructors to reflect that. This check is already present in
the lldb/.clang-tidy config.
Differential Revision: https://reviews.llvm.org/D121481
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
This is an updated version of the https://reviews.llvm.org/D113789 patch with the following changes:
- We no longer modify modification times of the cache files
- Use LLVM caching and cache pruning instead of making a new cache mechanism (See DataFileCache.h/.cpp)
- Add signature to start of each file since we are not using modification times so we can tell when caches are stale and remove and re-create the cache file as files are changed
- Add settings to control the cache size, disk percentage and expiration in days to keep cache size under control
This patch enables symbol tables to be cached in the LLDB index cache directory. All cache files are in a single directory and the files use unique names to ensure that files from the same path will re-use the same file as files get modified. This means as files change, their cache files will be deleted and updated. The modification time of each of the cache files is not modified so that access based pruning of the cache can be implemented.
The symbol table cache files start with a signature that uniquely identifies a file on disk and contains one or more of the following items:
- object file UUID if available
- object file mod time if available
- object name for BSD archive .o files that are in .a files if available
If none of these signature items are available, then the file will not be cached. This keeps temporary object files from expressions from being cached.
When the cache files are loaded on subsequent debug sessions, the signature is compare and if the file has been modified (uuid changes, mod time changes, or object file mod time changes) then the cache file is deleted and re-created.
Module caching must be enabled by the user before this can be used:
symbols.enable-lldb-index-cache (boolean) = false
(lldb) settings set symbols.enable-lldb-index-cache true
There is also a setting that allows the user to specify a module cache directory that defaults to a directory that defaults to being next to the symbols.clang-modules-cache-path directory in a temp directory:
(lldb) settings show symbols.lldb-index-cache-path
/var/folders/9p/472sr0c55l9b20x2zg36b91h0000gn/C/lldb/IndexCache
If this setting is enabled, the finalized symbol tables will be serialized and saved to disc so they can be quickly loaded next time you debug.
Each module can cache one or more files in the index cache directory. The cache file names must be unique to a file on disk and its architecture and object name for .o files in BSD archives. This allows universal mach-o files to support caching multuple architectures in the same module cache directory. Making the file based on the this info allows this cache file to be deleted and replaced when the file gets updated on disk. This keeps the cache from growing over time during the compile/edit/debug cycle and prevents out of space issues.
If the cache is enabled, the symbol table will be loaded from the cache the next time you debug if the module has not changed.
The cache also has settings to control the size of the cache on disk. Each time LLDB starts up with the index cache enable, the cache will be pruned to ensure it stays within the user defined settings:
(lldb) settings set symbols.lldb-index-cache-expiration-days <days>
A value of zero will disable cache files from expiring when the cache is pruned. The default value is 7 currently.
(lldb) settings set symbols.lldb-index-cache-max-byte-size <size>
A value of zero will disable pruning based on a total byte size. The default value is zero currently.
(lldb) settings set symbols.lldb-index-cache-max-percent <percentage-of-disk-space>
A value of 100 will allow the disc to be filled to the max, a value of zero will disable percentage pruning. The default value is zero.
Reviewed By: labath, wallace
Differential Revision: https://reviews.llvm.org/D115324
The amount of roundtrips between StringRefs, ConstStrings and std::strings is
getting a bit out of hand, this patch avoid the unnecessary roundtrips.
Reviewed By: wallace, aprantl
Differential Revision: https://reviews.llvm.org/D112863
Rather than passing two booleans around, which is especially error prone
with them being next to each other, use a struct with named fields
instead.
Differential revision: https://reviews.llvm.org/D107295
This converts a default constructor's member initializers into C++11
default member initializers. This patch was automatically generated with
clang-tidy and the modernize-use-default-member-init check.
$ run-clang-tidy.py -header-filter='lldb' -checks='-*,modernize-use-default-member-init' -fix
This is a mass-refactoring patch and this commit will be added to
.git-blame-ignore-revs.
Differential revision: https://reviews.llvm.org/D103483
Replace uses of GetModuleAtIndexUnlocked and
GetModulePointerAtIndexUnlocked with the ModuleIterable and
ModuleIterableNoLocking where applicable.
Differential revision: https://reviews.llvm.org/D94271
LLDB is supposed to ask the Clang Driver what the default module cache path is
and then use that value as the default for the
`symbols.clang-modules-cache-path` setting. However, we use the property type
`String` to change `symbols.clang-modules-cache-path` even though the type of
that setting is `FileSpec`, so the setter will simply do nothing and return
`false`. We also don't check the return value of the setter, so this whole code
ends up not doing anything at all.
This changes the setter to use the correct property type and adds an assert that
we actually successfully set the default path. Also adds a test that checks that
the default value for this setting is never unset/empty path as this would
effectively disable the import-std-module feature from working by default.
Reviewed By: JDevlieghere, shafik
Differential Revision: https://reviews.llvm.org/D92772
This allows the Target to update its module list when loading a shared
module replaces an equivalent one.
A testcase is added which hits this codepath -- without the fix, the
target reports libbreakpad.so twice in its module list.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D89157
The various GetSharedModule methods have an optional out parameter for
the old module when a file has changed or been replaced, which the
Target uses to keep its module list current/correct. We've been using
a single ModuleSP to track "the" old module, and this change switches
to using a SmallVector of ModuleSP, which has a couple benefits:
- There are multiple codepaths which may discover an old module, and
this centralizes the code for how to handle multiples in one place,
in the Target code. With the single ModuleSP, each place that may
discover an old module is responsible for how it handles multiples,
and the current code is inconsistent (some code paths drop the first
old module, others drop the second).
- The API will be more natural for identifying old modules in routines
that work on sets, like ModuleList::ReplaceEquivalent (which I plan
on updating to report old module(s) in a subsequent change to fix a
bug).
I'm not convinced we can ever actually run into the case that multiple
old modules are found in the same GetOrCreateModule call, but I think
this change makes sense regardless, in light of the above.
When an old module is reported, Target::GetOrCreateModule calls
m_images.ReplaceModule, which doesn't allow multiple "old" modules; the
new code calls ReplaceModule for the first "old" module, and for any
subsequent old modules it logs the event and calls m_images.Remove.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D89156
Summary:
When modules reference each other (which happens for example with the different
modules LLDB loads when debugging -gmodules-compiled binaries), just iterating
over the module list once isn't good enough to find all orphans. Any removed
modules in the module list will also clear up the shared pointers they hold to
other modules, so after any module was removed from the list, LLDB should
iterate again and check if any additional modules can no be safely deleted.
This is currently causing that many gmodules tests are not cleaning up all
allocated modules which causes cleanup asserts to fail (right now these asserts
just mark the test as unsupported, but after D83865 the tests will start
failing).
Reviewers: aprantl, clayborg, JDevlieghere
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D84015
Summary:
All of our lookup APIs either use `CompilerDeclContext &` or `CompilerDeclContext *` semi-randomly it seems.
This leads to us constantly converting between those two types (and doing nullptr checks when going from
pointer to reference). It also leads to the confusing situation where we have two possible ways to express
that we don't have a CompilerDeclContex: either a nullptr or an invalid CompilerDeclContext (aka a default
constructed CompilerDeclContext).
This moves all APIs to use references and gets rid of all the nullptr checks and conversions.
Reviewers: labath, mib, shafik
Reviewed By: labath, shafik
Subscribers: shafik, arphaman, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74607
StringRef will call strlen on the C string which is inefficient (as ConstString already
knows the string lenght and so does StringRef). This patch replaces all those calls
with GetStringRef() which doesn't recompute the length.
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
Summary:
This code is handling debug info paths starting with /proc/self/cwd,
which is one of the mechanisms people use to obtain "relocatable" debug
info (the idea being that one starts the debugger with an appropriate
cwd and things "just work").
Instead of resolving the symlinks inside DWARFUnit, we can do the same
thing more elegantly by hooking into the existing Module path remapping
code. Since llvm::DWARFUnit does not support any similar functionality,
doing things this way is also a step towards unifying llvm and lldb
dwarf parsers.
Reviewers: JDevlieghere, aprantl, clayborg, jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71770
This patch removes the size_t return value and the append parameter
from the remainder of the Find.* functions in LLDB's internal API. As
in the previous patches, this is motivated by the fact that these
parameters aren't really used, and in the case of the append parameter
were frequently implemented incorrectly.
Differential Revision: https://reviews.llvm.org/D69119
llvm-svn: 375160
In r368345 I accidentally introduced a regression that would
over-report the number of matches found by FindTypes if the
DeclContext Filter was hit.
This patch simply removes the size_t return parameter altogether —
it's not that useful.
rdar://problem/55500457
Differential Revision: https://reviews.llvm.org/D68169
llvm-svn: 373344
Summary:
This is a bit more explicit, and makes it possible to build LLDB without
varying the -I lines per-directory.
(The latter is useful because many build systems only allow this to be
configured per-library, and LLDB is insufficiently layered to be split into
multiple libraries on stricter build systems).
(My comment on D65185 has some more context)
Reviewers: JDevlieghere, labath, chandlerc, jdoerfert
Reviewed By: labath
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D65397
Patch by Sam McCall!
llvm-svn: 367241
Right now our Properties.inc only generates the initializer for the
options list but not the array declaration boilerplate around it. As the
array definition is identical for all arrays, we might as well also let
the Properties.inc generate it alongside the initializers.
Unfortunately we cannot do the same for enums, as there's this magic
ePropertyExperimental, which needs to come at the end to be interpreted
correctly. Hopefully we can get rid of this in the future and do the
same for the property enums.
Differential revision: https://reviews.llvm.org/D65353
llvm-svn: 367238
Property definitions are currently defined in a PropertyDefinition array
and have a corresponding enum to index in this array. Unfortunately this
is quite error prone. Indeed, just today we found an incorrect merge
where a discrepancy between the order of the enum values and their
definition caused the test suite to fail spectacularly.
Tablegen can streamline the process of generating the property
definition table while at the same time guaranteeing that the enums stay
in sync. That's exactly what this patch does. It adds a new tablegen
file for the properties, building on top of the infrastructure that
Raphael added recently for the command options. It also introduces two
new tablegen backends: one for the property definitions and one for
their corresponding enums.
It might be worth mentioning that I generated most of the tablegen
definitions from the existing property definitions, by adding a dump
method to the struct. This seems both more efficient and less error
prone that copying everything over by hand. Only Enum properties needed
manual fixup for the EnumValues and DefaultEnumValue fields.
Differential revision: https://reviews.llvm.org/D65185
llvm-svn: 367058
This patch replaces explicit calls to log::Printf with the new LLDB_LOGF
macro. The macro is similar to LLDB_LOG but supports printf-style format
strings, instead of formatv-style format strings.
So instead of writing:
if (log)
log->Printf("%s\n", str);
You'd write:
LLDB_LOG(log, "%s\n", str);
This change was done mechanically with the command below. I replaced the
spurious if-checks with vim, since I know how to do multi-line
replacements with it.
find . -type f -name '*.cpp' -exec \
sed -i '' -E 's/log->Printf\(/LLDB_LOGF\(log, /g' "{}" +
Differential revision: https://reviews.llvm.org/D65128
llvm-svn: 366936
D55859 <https://reviews.llvm.org/D55859> has no effect for some of the
testcases so this patch extends it even for (all?) other testcases known to me.
LLDB was failing when LLDB prints errors reading system debug infos
(`*-debuginfo.rpm`, DWZ-optimized) which should never happen as LLDB testcases
should not be affected by system debug infos.
`lldb/packages/Python/lldbsuite/test/api/multithreaded/driver.cpp.template` is
using only SB API which does not expose `ModuleList` so I had to call
`HandleCommand()` there.
`lldb-test.cpp` could also use `HandleCommand` and then there would be no need
for `ModuleListProperties::SetEnableExternalLookup()` but I think it is cleaner
with API and not on based on text commands.
Differential Revision: https://reviews.llvm.org/D63339
llvm-svn: 363567
Add a flag to control whether the ModulesDidLoad notification is
called when a module is added. If the notifications are disabled,
the caller must call ModulesDidLoad after adding all the new modules,
but postponing this notification until they're all batched up can
allow for better efficiency than notifying one-by-one.
Change the name of the ModuleList notifier functions that a subclass
can implement to start with 'Notify' to make it clear what they are.
Add a NotifyModulesRemoved.
Add header documentation for the changed/updated methods.
Added defaulted-value 'notify' argument to ModuleList Append,
AppendIfNeeded, and Remove because callers working with a local
ModuleList don't have an obvious idea of what notify means in this
context. When the ModuleList is a part of the Target class, the
notify behavior matters.
DynamicLoaderDarwin has been updated so that libraries being
added/removed are correctly batched up before notifications are
sent. Added the TestModuleLoadedNotifys.py test to run on
Darwin to test this.
<rdar://problem/48293064>
Differential Revision: https://reviews.llvm.org/D60172
llvm-svn: 357955
For = operators for lists that have mutexes, we were either
just taking the locks sequentially or hand-rolling a trick
to try to avoid lock inversion. Use the std::lock mechanism
for this instead.
Differential Revision: https://reviews.llvm.org/D59957
llvm-svn: 357276
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
Given that we have a target named Symbols, one wonders why a
file named Symbols.cpp is not in this target. To be clear,
the functions exposed from this file are really focused on
*locating* a symbol file on a given host, which is where the
ambiguity comes in. However, it makes more sense conceptually
to be in the Symbols target. While some of the specific places
to search for symbol files might change depending on the Host,
this is not inherently true in the same way that, for example,
"accessing the file system" or "starting threads" is
fundamentally dependent on the Host.
PDBs, for example, recently became a reality on non-Windows platforms,
and it's theoretically possible that DSYMs could become a thing on non
MacOSX platforms (maybe in a remote debugging scenario). Other types of
symbol files, such as DWO, DWP, etc have never been tied to any Host
platform anyway.
After this patch, there is only one remaining dependency from
Host to Target.
Differential Revision: https://reviews.llvm.org/D58730
llvm-svn: 355032
Unlike std::make_unique, which is only available since C++14,
std::make_shared is available since C++11. Not only is std::make_shared
a lot more readable compared to ::reset(new), it also performs a single
heap allocation for the object and control block.
Differential revision: https://reviews.llvm.org/D57990
llvm-svn: 353764
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This parameter was only ever used with the Module set, and
since a SymbolFile is tied to a module, the parameter turns
out to be entirely unnecessary. Furthermore, it doesn't make
a lot of sense to ask a caller to ask SymbolFile which is tied
to Module X to find types for Module Y, but that possibility
was open with the previous interface. By removing this
parameter from the API, it makes it harder to use incorrectly
as well as easier for an implementor to understand what it
needs to do.
llvm-svn: 351133
D55859 changed "external tools or libraries" to "external sources" according to
Pavel Labath. Now it is changed sort of back to "external tools and
repositories" according to Adrian Prantl.
https://reviews.llvm.org/D55859#1345881
llvm-svn: 350479
There is already in use:
lit/lit-lldb-init:
settings set symbols.enable-external-lookup false
packages/Python/lldbsuite/test/lldbtest.py:
self.runCmd('settings set symbols.enable-external-lookup false')
But those are not in effect during MI part of the testsuite. Another problem is
that symbols.enable-external-lookup (read by GetEnableExternalLookup) has been
currently read only by LocateMacOSXFilesUsingDebugSymbols and therefore it had
no effect on Linux.
On Red Hat platforms (Fedoras, RHEL-7) there is DWZ in use and so
MiSyntaxTestCase-test_lldbmi_output_grammar FAILs due to:
AssertionError: error: inconsistent pattern ''^.+?\n'' for state 0x5f
(matched string: warning: (x86_64) /lib64/libstdc++.so.6 unsupported
DW_FORM values: 0x1f20 0x1f21
It is the only testcase with this error. It happens due to:
(lldb) target create "/lib64/libstdc++.so.6"
Current executable set to '/lib64/libstdc++.so.6' (x86_64).
(lldb) b main
warning: (x86_64) /lib64/libstdc++.so.6 unsupported DW_FORM values: 0x1f20 0x1f21
Breakpoint 1: no locations (pending).
WARNING: Unable to resolve breakpoint to any actual locations.
which happens only with gcc-base-debuginfo rpm installed (similarly for other packages).
It should also speed up the testsuite as it no longer needs to read
/usr/lib/debug symbols which have no effect (and should not have any effect) on
the testsuite results.
Differential Revision: https://reviews.llvm.org/D55859
llvm-svn: 350368
This patch removes the comments following the header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
Differential revision: https://reviews.llvm.org/D54385
llvm-svn: 346625
Replace calls to LLVM's is_directory with calls to LLDB's FileSytem
class. For this I introduced a new convenience method that, like the
other methods, takes either a path or filespec. This still uses the LLVM
functions under the hood.
Differential revision: https://reviews.llvm.org/D54135
llvm-svn: 346375
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
This patch removes the Exists method from FileSpec and updates its uses
with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53845
llvm-svn: 345854
This patch extends the FileSystem class with a bunch of functions that
are currently implemented as methods of the FileSpec class. These
methods will be removed in future commits and replaced by calls to the
file system.
The new functions are operated in terms of the virtual file system which
was recently moved from clang into LLVM so it could be reused in lldb.
Because the VFS is stateful, we turned the FileSystem class into a
singleton.
Differential revision: https://reviews.llvm.org/D53532
llvm-svn: 345783