COFF section names can either be stored truncated to 8 chars, in the
section header, or as a longer section name, stored separately in the
string table.
libunwind locates the .eh_frame section by runtime introspection,
which only works for section names stored in the section header (as
the string table isn't mapped at runtime). To support this behaviour,
lld always truncates the section names for sections that will be
mapped, like .eh_frame.
Differential Revision: https://reviews.llvm.org/D70745
llvm::object::createBinary returns an Expected<>, which requires
not only checking the object for success, but also requires consuming
the Error, if one was set.
Use LLDB_LOG_ERROR for this case, and change an existing similar log
statement to use it as well, to make sure the Error is consumed even
if the log channel is disabled.
Differential Revision: https://reviews.llvm.org/D69646
Summary:
This enables us to reason about whether a given address can be
executable, for instance during unwinding.
Reviewers: amccarth, mstorsjo
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D69102
The virtual container/header section caused the section list to be
offset by one, but by using FindSectionByID, the layout of the
section list shouldn't matter.
Differential Revision: https://reviews.llvm.org/D69366
In an attempt to ensure that every part of the module's memory image is
accounted for, D56537 created a special "container section" spanning the
entire image. While that seemed reasonable at the time (and it still
mostly does), it did create a problem of what to put as the "file size"
of the section, because the image is not continuous on disk, as we
generally assume (which is why I put zero there). Additionally, this
arrangement makes it unclear what kind of permissions should be assigned
to that section (which is what my next patch does).
To get around these, this patch partially reverts D56537, and goes back
to top-level sections. Instead, what I do is create a new "section" for
the object file header, which is also being loaded into memory, though
its not considered to be a section in the strictest sense. This makes it
possible to correctly assign file size section, and we can later assign
permissions to it as well.
Reviewers: amccarth, mstorsjo
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D69100
This matches all other architectures listed in the same file.
This fixes debugging aarch64 executables with lldb-server, which
otherwise fails, with log messages like these:
Target::SetArchitecture changing architecture to aarch64 (aarch64-pc-windows-msvc)
Target::SetArchitecture Trying to select executable file architecture aarch64 (aarch64-pc-windows-msvc)
ArchSpec::SetArchitecture sets the vendor to llvm::Triple::PC
for any coff/win32 combination, and if this doesn't match the triple
set by the PECOFF module, things doesn't seem to work with when
using lldb-server.
Differential Revision: https://reviews.llvm.org/D68939
llvm-svn: 374867
This patch adds an implementation of unwinding using PE EH info. It allows to
get almost ideal call stacks on 64-bit Windows systems (except some epilogue
cases, but I believe that they can be fixed with unwind plan disassembly
augmentation in the future).
To achieve the goal the CallFrameInfo abstraction was made. It is based on the
DWARFCallFrameInfo class interface with a few changes to make it less
DWARF-specific.
To implement the new interface for PECOFF object files the class PECallFrameInfo
was written. It uses the next helper classes:
- UnwindCodesIterator helps to iterate through UnwindCode structures (and
processes chained infos transparently);
- EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram;
- EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction
over the low-level unwind codes and simplifies work with them. It contains
only the information that is relevant to unwinding in the unified form. Also
the required unwind codes are read from the object file only once with it;
- EHProgramRange allows to take a range of EHProgram and to build an unwind row
for it.
So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges
corresponding to every offset in prologue and builds the rows of the resulted
unwind plan. The resulted plan covers the whole range of the function except the
epilogue.
Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola
Reviewed By: jasonmolenda
Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67347
llvm-svn: 374528
Add a test case for the change from SVN r372657, and for the
preexisting ARM identification.
Add a missing ArchDefinitionEntry for PECOFF/arm64, and tweak
the ArmNt case to set the architecture to armv7 (ArmNt never ran
on anything lower than that). (This avoids a case where
ArchSpec::MergeFrom would override the arch from arm to armv7 and
ArchSpec::CoreUpdated would reset the OS to unknown at the same time.)
Differential Revision: https://reviews.llvm.org/D67951
llvm-svn: 372741
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368933
Summary:
On the heels of D62934, this patch uses the same approach to introduce
llvm RTTI support to the ObjectFile hierarchy. It also replaces the
existing uses of GetPluginName doing run-time type checks with
llvm::dyn_cast and friends.
This formally introduces new dependencies from some other plugins to
ObjectFile plugins. However, I believe this is fine because:
- these dependencies were already kind of there, and the only reason
we could get away with not modeling them explicitly was because the
code was relying on magically knowing what will GetPluginName() return
for a particular kind of object files.
- the dependencies themselves are logical (it makes sense for
SymbolVendorELF to depend on ObjectFileELF), or at least don't
actively get in the way (the JitLoaderGDB->MachO thing).
- they don't introduce any new dependency loops as ObjectFile plugins
don't depend on any other plugins
Reviewers: xiaobai, JDevlieghere, espindola
Subscribers: emaste, mgorny, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D65450
llvm-svn: 367413
This time, the warning pointed to an actual problem, because the
coff_opt_header structure contained a std::vector. I guess this happened
to work because the all-zero state was a valid representation of an
empty vector, but its not a good idea to rely on that.
I remove the memset, and have the structure clear its members in the
constructor instead.
llvm-svn: 367299
This patch replaces explicit calls to log::Printf with the new LLDB_LOGF
macro. The macro is similar to LLDB_LOG but supports printf-style format
strings, instead of formatv-style format strings.
So instead of writing:
if (log)
log->Printf("%s\n", str);
You'd write:
LLDB_LOG(log, "%s\n", str);
This change was done mechanically with the command below. I replaced the
spurious if-checks with vim, since I know how to do multi-line
replacements with it.
find . -type f -name '*.cpp' -exec \
sed -i '' -E 's/log->Printf\(/LLDB_LOGF\(log, /g' "{}" +
Differential revision: https://reviews.llvm.org/D65128
llvm-svn: 366936
Instead of having to write FileSpecList::Append(FileSpec(args)) you can
now call FileSpecList::EmplaceBack(args), similar to
std::vector<>::emplace_back.
llvm-svn: 366489
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
COFF files are modelled in lldb as having one big container section
spanning the entire module image, with the actual sections being
subsections of that. In this model, the base address is simply the
address of the first byte of that section.
This also removes the hack where ObjectFilePECOFF was using the
m_file_offset field to communicate this information. Using file offset
for this purpose is completely wrong, as that is supposed to indicate
where is this ObjectFile located in the file on disk. This field is only
meaningful for fat binaries, and should normally be 0.
Both PDB plugins have been updated to use GetBaseAddress instead of
GetFileOffset.
llvm-svn: 354258
Summary:
This is coming from the discussion in D55356 (the most interesting part
happened on the mailing list, so it isn't reflected on the review page).
In short the issue is that lldb assumes that all bytes of a module image
in memory will be backed by a "section". This isn't the case for PECOFF
files because the initial bytes of the module image will contain the
file header, which does not correspond to any normal section in the
file. In particular, this means it is not possible to implement
GetBaseAddress function for PECOFF files, because that's supposed point
to the first byte of that header.
If my (limited) understanding of how PECOFF files work is correct, then
the OS is expecded to load the entire module into one continuous chunk
of memory. The address of that chunk (+/- ASLR) is given by the "image
base" field in the COFF header, and it's size by "image size". All of
the COFF sections are then loaded into this range.
If that's true, then we can model this behavior in lldb by creating a
"container" section to represent the entire module image, and then place
other sections inside that. This would make be consistent with how MachO
and ELF files are modelled (except that those can have multiple
top-level containers as they can be loaded into multiple discontinuous
chunks of memory).
This change required a small number of fixups in the PDB plugins, which
assumed a certain order of sections within the object file (which
obivously changes now). I fix this by changing the lookup code to use
section IDs (which are unchanged) instead of indexes. This has the nice
benefit of removing spurious -1s in the plugins as the section IDs in
the pdbs match the 1-based section IDs in the COFF plugin.
Besides making the implementation of GetBaseAddress possible, this also
improves the lookup of addresses in the gaps between the object file
sections, which will now be correctly resolved as belonging to the
object file.
Reviewers: zturner, amccarth, stella.stamenova, clayborg, lemo
Reviewed By: clayborg, lemo
Subscribers: JDevlieghere, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D56537
llvm-svn: 353916
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
instead of returning the UUID through by-ref argument and a boolean
value indicating success, we can just return it directly. Since the UUID
class already has an invalid state, it can be used to denote the failure
without the additional bool.
llvm-svn: 353714
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If a section name is exactly 8 bytes long (or has been truncated to 8
bytes), it will not contain the terminating nul character. This means
reading the name as a c string will pick up random data following the
name field (which happens to be the section vm size).
This fixes the name computation to avoid out-of-bounds access and adds a
test.
Reviewers: zturner, stella.stamenova
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56124
llvm-svn: 350809
Summary:
instead of returning the architecture through by-ref argument and a
boolean value indicating success, we can just return the ArchSpec
directly. Since the ArchSpec already has an invalid state, it can be
used to denote the failure without the additional bool.
Reviewers: clayborg, zturner, espindola
Subscribers: emaste, arichardson, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56129
llvm-svn: 350291
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
Summary: Instead use a more reasonable value to start and rely on the fact that SmallString will resize if necessary.
Reviewers: labath, asmith
Reviewed By: labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D55457
llvm-svn: 348775
Summary:
This parses entries in pecoff import tables for imported DLLs and
is intended as the first step to allow LLDB to load a PE's shared
modules when creating a target on the LLDB console.
Reviewers: rnk, zturner, aleksandr.urakov, lldb-commits, labath, asmith
Reviewed By: labath, asmith
Subscribers: labath, lemo, clayborg, Hui, mgorny, mgrang, teemperor
Differential Revision: https://reviews.llvm.org/D53094
llvm-svn: 348527
Summary:
This patch contains several small fixes, which makes it possible to evaluate
expressions on Windows using information from PDB. The changes are:
- several sanitize checks;
- make IRExecutionUnit::MemoryManager::getSymbolAddress to not return a magic
value on a failure, because callers wait 0 in this case;
- entry point required to be a file address, not RVA, in the ObjectFilePECOFF;
- do not crash on a debuggee second chance exception - it may be an expression
evaluation crash. Also fix detection of "crushed" threads in tests;
- create parameter declarations for functions in AST to make it possible to call
debugee functions from expressions;
- relax name searching rules for variables, functions, namespaces and types. Now
it works just like in the DWARF plugin;
- fix endless recursion in SymbolFilePDB::ParseCompileUnitFunctionForPDBFunc.
Reviewers: zturner, asmith, stella.stamenova
Reviewed By: stella.stamenova, asmith
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53759
llvm-svn: 348136
This reverts commit dec87759523b2f22fcff3325bc2cd543e4cda0e7.
This commit caused the tests on Windows to run forever rather than complete.
Reverting until the commit can be fixed to not stall.
llvm-svn: 348009
Summary:
This patch contains several small fixes, which makes it possible to evaluate
expressions on Windows using information from PDB. The changes are:
- several sanitize checks;
- make IRExecutionUnit::MemoryManager::getSymbolAddress to not return a magic
value on a failure, because callers wait 0 in this case;
- entry point required to be a file address, not RVA, in the ObjectFilePECOFF;
- do not crash on a debuggee second chance exception - it may be an expression
evaluation crash;
- create parameter declarations for functions in AST to make it possible to call
debugee functions from expressions;
- relax name searching rules for variables, functions, namespaces and types. Now
it works just like in the DWARF plugin;
- fix endless recursion in SymbolFilePDB::ParseCompileUnitFunctionForPDBFunc.
Reviewers: zturner, asmith, stella.stamenova
Reviewed By: stella.stamenova, asmith
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53759
llvm-svn: 347962
The original commit was actually 2 unrelated bug fixes, but it turns
out the second bug fix wasn't quite correct, so the entire patch was
reverted. Resubmitting this half of the patch by itself, then will
follow up with a new patch which fixes the rest of the issue in a
more appropriate way.
llvm-svn: 346505
There are two bugs here. The first is that MSVC and clang-cl
emit their bss section under the name '.data' instead of '.bss'
but with the size and file offset set to 0. ObjectFilePECOFF
didn't handle this, and would only recognize a section as bss
if it was actually called '.bss'. The effect of this is that
if we tried to print the value of a variable that lived in BSS
we would fail.
The second bug is that ValueObjectVariable was only returning
the forward type, which is insufficient to print the value of an
enum. So we bump this up to the layout type.
Differential Revision: https://reviews.llvm.org/D54241
llvm-svn: 346430
Summary:
This patch adds possibility of searching a public symbol with name and type in a
symbol file. It is helpful when working with PE, because PE's symtabs contain
only imported / exported symbols only. Such a search is required for e.g.
evaluation of an expression that calls some function of the debuggee.
Reviewers: zturner, asmith, labath, clayborg, espindola
Reviewed By: clayborg
Subscribers: emaste, arichardson, aleksandr.urakov, jingham, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53368
llvm-svn: 345957
This implements the support for .debug_loclists section, which is
DWARF 5 version of .debug_loc.
Currently, clang is able to emit it with the use of D53365.
Differential revision: https://reviews.llvm.org/D53436
llvm-svn: 345016
In an effort to make the .debug_types patch smaller, breaking out the part that reads the .debug_types from object files into a separate patch
Differential Revision: https://reviews.llvm.org/D46529
llvm-svn: 331777
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
Summary:
We sometimes need to write to the object file we've mapped into memory,
generally to apply relocations to debug info sections. We've had that
ability before, but with the introduction of DataBufferLLVM, we have
lost it, as the underlying llvm class (MemoryBuffer) only supports
read-only mappings.
This switches DataBufferLLVM to use the new llvm::WritableMemoryBuffer
class as a back-end, as this one guarantees to return a writable buffer.
This removes the need for the "Private" flag to the DataBufferLLVM
creation functions, as it was really used to mean "writable". The LLVM
function also does not have the NullTerminate flag, so I've modified our
clients to not require this feature and removed that flag as well.
Reviewers: zturner, clayborg, jingham
Subscribers: emaste, aprantl, arichardson, krytarowski, lldb-commits
Differential Revision: https://reviews.llvm.org/D40079
llvm-svn: 321255
The rationale here is that ArchSpec is used throughout the codebase,
including in places which should not depend on the rest of the code in
the Core module.
This commit touches many files, but most of it is just renaming of
#include lines. In a couple of cases, I removed the #include ArchSpec
line altogether, as the file was not using it. In one or two places,
this necessitated adding other #includes like lldb-private-defines.h.
llvm-svn: 318048
Cast to `const uint8_t *` instead of `uint8_t *` to avoid the warning
from GCC.
EmulationStateARM.cpp:206:34: warning: cast from type 'const void*' to type 'uint8_t* {aka unsigned char*}' casts away qualifiers [-Wcast-qual]
Cast to `const uint32_t *` and the explicitly cast away the const-ness
of the value. This seems pretty sketchy as the `DataExtractor` holds a
const reference to the data. However, this is no worse than before.
ObjectFilePECOFF.cpp:540:78: warning: cast from type 'const uint8_t* {aka const unsigned char*}' to type 'uint32_t* {aka unsigned int*}' casts away qualifiers [-Wcast-qual]
llvm-svn: 308489
Summary:
The classes have no dependencies, and they are used both by lldb and
lldb-server, so it makes sense for them to live in the lowest layers.
Reviewers: zturner, jingham
Subscribers: emaste, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D34746
llvm-svn: 306682
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
This functionality is subsumed by DataBufferLLVM, which is
also more efficient since it will try to mmap. However, we
don't yet support mmaping writable private sections, and in
some cases we were using ReadFileContents and then modifying
the buffer. To address that I've added a flag to the
DataBufferLLVM methods that allow you to map privately, which
disables the mmaping path entirely. Eventually we should teach
DataBufferLLVM to use mmap with writable private, but that is
orthogonal to this effort.
Differential Revision: https://reviews.llvm.org/D30622
llvm-svn: 297095
After a series of patches on the LLVM side to get the mmaping
code up to compatibility with LLDB's needs, it is now ready
to go, which means LLDB's custom mmapping code is redundant.
So this patch deletes it all and uses LLVM's code instead.
In the future, we could take this one step further and delete
even the lldb DataBuffer base class and rely entirely on
LLVM's facilities, but this is a job for another day.
Differential Revision: https://reviews.llvm.org/D30054
llvm-svn: 296159
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
Summary:
When the local lldb doesn't have access to a copy of the modules in the target, e.g. winphone, with this change now we read these modules from memory.
There are mainly 2 changes:
1. create pecoff object files from memory
2. read from memory when the local file is not available
Reviewers: sas, fjricci, zturner
Subscribers: #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D24284
llvm-svn: 284422
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
This fixes the regression of several tests on Windows after rL258621.
The root problem is that ObjectFilePECOFF was not setting type information for the symbols, and the new CL rejects symbols without type information, breaking functionality like thread step-over.
The fix sets the type information for functions (and creates a TODO for other types).
Along the way, I fixed some typos and formatting that made the code I was debugging harder to understand.
In the long run, we should consider replacing most of ObjectFilePECOFF with the COFF parsing code from LLVM.
Differential Revision: http://reviews.llvm.org/D16563
llvm-svn: 258758
This fixes the `thread step-over` regression exposed by http://reviews.llvm.org/D16186 , which depends on the symbols having actual sizes. Nine tests on Windows had started failing as a result. They all work again with this fix.
Differential Revision: http://reviews.llvm.org/D16415
llvm-svn: 258429
The Go runtime schedules user level threads (goroutines) across real threads.
This adds an OS plugin to create memory threads for goroutines.
It supports the 1.4 and 1.5 go runtime.
Differential Revision: http://reviews.llvm.org/D5871
llvm-svn: 247852
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
This is implemented by making a new FileSystem function:
bool
FileSystem::IsLocal(const FileSpec &spec)
Then using this in a new function:
DataBufferSP
FileSpec::MemoryMapFileContentsIfLocal(off_t file_offset, size_t file_size) const;
This function only mmaps data if the file is a local file since that means we can reliably page in data. We were experiencing crashes where people would use debug info files on network mounted file systems and that mount would go away and cause the next access to a page that wasn't paged in to crash LLDB.
We now avoid this by just copying the data into a heap buffer and keeping a permanent copy to avoid the crash. Updated all previous users of FileSpec::MemoryMapFileContentsIfLocal() in ObjectFile subclasses over to use the new FileSpec::MemoryMapFileContentsIfLocal() function.
<rdar://problem/19470249>
llvm-svn: 230283
When you create a target, it tries to look for the platform's list
of supported architectures for a match. The match it finds can
contain specific triples, like i386-pc-windows-msvc. Later, we
overwrite this value with the most generic triple that can apply
to any platform with COFF support, causing some of the fields of
the triple to get overwritten.
This patch changes the behavior to only merge in values from the COFF
triple if the fields of the matching triple were unknown/unspecified
to begin with.
This fixes load address resolution on Windows, since it enables the
DynamicLoaderWindows to be used instead of DynamicLoaderStatic.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D7120
llvm-svn: 226849
i386, i486, i486sx, and i686 are all indistinguishable as far as
PE/COFF files are concerned. This patch adds support for all of
these architectures to PlatformWindows.
Differential Revision: http://reviews.llvm.org/D4658
llvm-svn: 214092
The patch is as is with the functionality left disabled for apple vendors because of performance regressions. If this is enabled it ends up searching for symbols in all shared libraries that are loadeded.
llvm-svn: 211638
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
0 as CPU subtype never matches anything (at least, it doesn't match x86_64 windows binaries, of which there are correct arch definitions for). It should be created with LLDB_INVALID_CPUTYPE.
llvm-svn: 195435
Since I renamed most of the LLVM Mach-O enums in r189314, I had to go fix
LLDB to use the new names. While I was here, I decided that a COFF
plugin really shouldn't be using Mach-O enums.
llvm-svn: 189316
- ObjectFile::GetSymtab() and ObjectFile::ClearSymtab() no longer takes any flags
- Module coordinates with the object files and contain a unified section list so that object file and symbol file can share sections when they need to, yet contain their own sections.
Other cleanups:
- Fixed Symbol::GetByteSize() to not have the symbol table compute the byte sizes on the fly
- Modified the ObjectFileMachO class to compute symbol sizes all at once efficiently
- Modified the Symtab class to store a file address lookup table for more efficient lookups
- Removed Section::Finalize() and SectionList::Finalize() as they did nothing
- Improved performance of the detection of symbol files that have debug maps by excluding stripped files and core files, debug files, object files and stubs
- Added the ability to tell if an ObjectFile has been stripped with ObjectFile::IsStripped() (used this for the above performance improvement)
llvm-svn: 185990
3 patches, aiming to improve PE/COFF support:
- First patch fix symbol reading (invalid header size from sizeof() == 20 != 18, and various bugfixes such as invalid skipping of auxiliary symbols, 4 bytes shift from beginning, etc...).
- Second patch add image_base to section vmaddr offset so that VM addr is in image_base space.
- Third patch add support for DWARF section in PECOFF (taken from ELF counterpart), since they are generated by gcc/clang under windows.
llvm-svn: 184153
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
There is a new static ObjectFile function you can call:
size_t
ObjectFile::GetModuleSpecifications (const FileSpec &file,
lldb::offset_t file_offset,
ModuleSpecList &specs)
This will fill in "specs" which the details of all the module specs (file + arch + UUID (if there is one) + object name (for BSD archive objects eventually) + file offset to the object in question).
This helps us when a user specifies a file that contains a single architecture, and also helps us when we are given a debug symbol file (like a dSYM file on MacOSX) that contains one or more architectures and we need to be able to match it up to an existing Module that has no debug info.
llvm-svn: 180224
lldb was mmap'ing archive files once per .o file it loads, now it correctly shares the archive between modules.
LLDB was also always mapping entire contents of universal mach-o files, now it maps just the slice that is required.
Added a new logging channel for "lldb" called "mmap" to help track future regressions.
Modified the ObjectFile and ObjectContainer plugin interfaces to take a data offset along with the file offset and size so we can implement the correct caching and efficient reading of parts of files without mmap'ing the entire file like we used to.
The current implementation still keeps entire .a files mmaped (once) and entire slices from universal files mmaped to ensure that if a client builds their binaries during a debug session we don't lose our data and get corrupt object file info and debug info.
llvm-svn: 174524
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
a cache of address ranges for child sections,
accelerating lookups. This cache is built during
object file loading, and is then set in stone once
the object files are done loading. (In Debug builds,
we ensure that the cache is never invalidated after
that.)
llvm-svn: 158188