Summary:
This replaces the C-style "void *" baton of the child process monitoring functions with a more
C++-like API taking a std::function. The motivation for this was that it was very difficult to
handle the ownership of the object passed into the callback function -- each caller ended up
implementing his own way of doing it, some doing it better than others. With the new API, one can
just pass a smart pointer into the callback and all of the lifetime management will be handled
automatically.
This has enabled me to simplify the rather complicated handshake in Host::RunShellCommand. I have
left handling of MonitorDebugServerProcess (my original motivation for this change) to a separate
commit to reduce the scope of this change.
Reviewers: clayborg, zturner, emaste, krytarowski
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20106
llvm-svn: 269205
When stopping the private state thread, there was a race condition between the time the thread exits (resetting the HostThread object) and the time a Join was attempted, especially in the case of a timeout.
The previous workaround of copying the HostThread object is not enough, since on a Reset the internal thread stuff gets nulled out regardless of which HostThread object actually has Reset called on it, resulting in an attempt to dereference a null pointer on the subsequent call to Join from the copy as well.
Additionally, there was a race between the detach (called when stopping the process) and the stop itself, causing the stop to time out because it was waiting for the private state thread to see the stop state, but it had exited immediately after entering the detached state.
Patch by cameron314
Differential Revision: http://reviews.llvm.org/D19122
llvm-svn: 266733
This patch fixes a bunch of issues that show up on big-endian systems:
- The gnu_libstdcpp.py script doesn't follow the way libstdc++ encodes
bit vectors: it should identify the enclosing *word* and then access
the appropriate bit within that word. Instead, the script simply
operates on bytes. This gives the same result on little-endian
systems, but not on big-endian.
- lldb_private::formatters::WCharSummaryProvider always assumes wchar_t
is UTF16, even though it could also be UTF8 or UTF32. This is mostly
not an issue on little-endian systems, but immediately fails on BE.
Fixed by checking the size of wchar_t like WCharStringSummaryProvider
already does.
- ClangASTContext::GetChildCompilerTypeAtIndex uses uint32_t to access
the virtual base offset stored in the vtable, even though the size
of this field matches the target pointer size according to the C++
ABI. Again, this is mostly not visible on LE, but fails on BE.
- Process::ReadStringFromMemory uses strncmp to search for a terminator
consisting of multiple zero bytes. This doesn't work since strncmp
will stop already at the first zero byte. Use memcmp instead.
Differential Revision: http://reviews.llvm.org/D18983
llvm-svn: 266313
os to "ios" or "macosx" if it is unspecified. For environments
where there genuinely is no os, we don't want to errantly
convert that to ios/macosx, e.g. bare board debugging.
Change PlatformRemoteiOS, PlatformRemoteAppleWatch, and
PlatformRemoteAppleTV to not create themselves if we have
an unspecified OS. Same problem - these are not appropriate
platforms for bare board debugging environments.
Have Process::Attach's logging take place if either
process or target logging is enabled.
<rdar://problem/25592378>
llvm-svn: 265732
Summary:
There was a bug in linux core file handling, where if there was a running process with the same
process id as the id in the core file, the core file debugging would fail, as we would pull some
pieces of information (ProcessInfo structure) from the running process instead of the core file.
I fix this by routing the ProcessInfo requests through the Process class and overriding it in
ProcessElfCore to return correct data.
A (slightly convoluted) test is included.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18697
llvm-svn: 265391
We want to do a better job presenting errors that occur when evaluating
expressions. Key to this effort is getting away from a model where all
errors are spat out onto a stream where the client has to take or leave
all of them.
To this end, this patch adds a new class, DiagnosticManager, which
contains errors produced by the compiler or by LLDB as an expression
is created. The DiagnosticManager can dump itself to a log as well as
to a string. Clients will (in the future) be able to filter out the
errors they're interested in by ID or present subsets of these errors
to the user.
This patch is not intended to change the *users* of errors - only to
thread DiagnosticManagers to all the places where streams are used. I
also attempt to standardize our use of errors a bit, removing trailing
newlines and making clients omit 'error:', 'warning:' etc. and instead
pass the Severity flag.
The patch is testsuite-neutral, with modifications to one part of the
MI tests because it relied on "error: error:" being erroneously
printed. This patch fixes the MI variable handling and the testcase.
<rdar://problem/22864976>
llvm-svn: 263859
to each other. This should remove some infrequent teardown crashes when the
listener is not the debugger's listener.
Processes now need to take a ListenerSP, not a Listener&.
This required changing over the Process plugin class constructors to take a ListenerSP, instead
of a Listener&. Other than that there should be no functional change.
<rdar://problem/24580184> CrashTracer: [USER] Xcode at …ework: lldb_private::Listener::BroadcasterWillDestruct + 39
llvm-svn: 262863
(lldb) command_that_steps_process_thousands_of_times
As the "command_that_steps_process_thousands_of_times" could be a python command that resumed the process thousands of times and in doing so the IOHandlerProcessSTDIO would get pushed when the process resumed, and popped when it stoppped, causing the call to IOHandlerProcessSTDIO::Cancel(). Since the IOHandler thread is currently in IOHandlerEditline::Run() for the command interpreter handling the "command_that_steps_process_thousands_of_times" command, IOHandlerProcessSTDIO::Run() would never get called, even though the IOHandlerProcessSTDIO is on the top of the stack. This caused the command pipe to keep getting 1 bytes written each time the IOHandlerProcessSTDIO::Cancel() was called and eventually we will deadlock since the write buffer is full.
The fix here is to make sure we are in IOHandlerProcessSTDIO::Run() before we write anything to the command pipe, and just call SetIsDone(true) if we are not.
<rdar://problem/22361364>
llvm-svn: 262040
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
Seems that the patch was rebased on top of another change which obsoleted the
change but wasnt caught.
Thanks to nbjoerg for pointing this out!
llvm-svn: 258821
Address a couple of instances of -Wreturn-type warning from GCC. The switches
are covered, add an llvm_unreachable to the end of the functions to silence the
warning. NFC.
llvm-svn: 258546
Zachary introduced the 'default' case explicitly to placate a warning in
the Microsoft compiler but that broke clang with -Werror.
The new code should keep both compilers happy.
llvm-svn: 258212
with the one change that ThreadPlanStepOut::ThreadPlanStepOut
will now only advance the return address breakpoint to
the end of a source line, if we have source line debug information.
It will not advance to the end of a Symbol if we lack source line
information. This, or the recognition of the LEAVE instruction
in r257209, would have fixed the regression that Siva was seeing.
Both were good changes, so I've made both.
Original commit message:
Performance improvement: Change lldb so that it puts a breakpoint
on the first branch instruction after a function return (or the end
of a source line), instead of a breakpoint on the return address,
to skip an extra stop & start of the inferior process.
I changed Process::AdvanceAddressToNextBranchInstruction to not
take an optional InstructionList argument - no callers are providing
a cached InstructionList today, and if this function was going to
do that, the right thing to do would be to fill out / use a
DisassemblerSP which is a disassembler with the InstructionList for
this address range.
http://reviews.llvm.org/D15708
<rdar://problem/23309838>
llvm-svn: 257210
puts a breakpoint" it is causing a regression in the TestStepNoDebug
test case on ubuntu 14.04 with gcc 4.9.2. Thanks for the email
Siva. I'll recommit when I've figured out the regression.
llvm-svn: 257138
on the first branch instruction after a function return (or the end
of a source line), instead of a breakpoint on the return address,
to skip an extra stop & start of the inferior process.
I changed Process::AdvanceAddressToNextBranchInstruction to not
take an optional InstructionList argument - no callers are providing
a cached InstructionList today, and if this function was going to
do that, the right thing to do would be to fill out / use a
DisassemblerSP which is a disassembler with the InstructionList for
this address range.
http://reviews.llvm.org/D15708
<rdar://problem/23309838>
llvm-svn: 257117
Demangling complex Boost symbols can exhaust the default stack size. In practice, any thread that calls into LLDB functionality that touches symbols runs this risk. Guaranteeing a reasonable minimum for our own private state thread addressees some known scenarios debugging processes that make use of cpp-netlib.
llvm-svn: 255868
This is a resubmit of r254403, see that commit's message for context. This fixes an issue in the
original commit, where we would incorrectly interrupt the process if the interrupt request came
just as we were about to send the stopped event to the public.
llvm-svn: 254902
On android the symbols exposed by libdl (dlopen, dlclose, dlerror)
prefixed by "__dl_". This change moves the handling of process
load/unload to the platform object and override it for android to
handle the special prefix.
Differential revision: http://reviews.llvm.org/D11465
llvm-svn: 254504
Summary:
The following situation was occuring in TestAttachResume:
- we did a "continue" from a breakpoint (which involves a private start-stop to step over the
breakpoint)
- after receiving the stop-reply from the step-over, we issue a "detach" (which requires a
process interrupt)
- at this moment, the public state is "running", private state is "about-to-be-stopped" (the
stopped event was broadcast, but it was not received yet)
- StopForDestroyOrDetach (public thread) notes the public state is running, sends an interrupt
request to the private thread
- private thread gets the eBroadcastBitInterrupt (before the eStateStopped message), and asks the
process plugin to stop (via Halt())
- process plugin says it has nothing to do as the process is already stopped
- private thread shrugs and carries on. receives the stop event, restores the breakpoint and
resumes the process.
- after a while, the public thread times out and says it failed to stop the process
This patch does the following:
- splits Halt() into two functions, private and public, their usage depends on the context
- public Halt(): sends eBroadcastBitInterrupt to the private thread and waits for the Stop
event
- HaltPrivate(): asks the plugin to stop and makes a note that the halt was requested. When the
next stop event comes it sets the interrupt flag on it.
- removes HijackPrivateProcessEvents(), as the only user (old Halt()) has gone away
- removes the m_currently_handling_event hack, as the new Halt() does not need it
- adds a use_run_lock parameter to public Halt() and WaitForProcessToStop(). This was needed
because RunThreadPlan uses Halt() while holding the run lock and we don't want Halt() to take
it away from him.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14989
llvm-svn: 254403
in places where we check for Triple::IOS. They're mostly the same as far
as lldb is conerned.
.
Also add a base cass implementation for Process::IsAlive - Greg added this
last year but it didn't get upstreamed.
llvm-svn: 252227
Summary:
The code which was preventing the usage of the OS plugin while detach is in
progress also prevented us to update the thread list correctly. This resulted
in an empty thread list, which confused the detaching logic. Change the
condition do only do what it says (disable the usage of the OS plugin).
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14201
llvm-svn: 251932
Summary:
ADB packets have a maximum size of 4k. This means the size of memory reads does not affect speed
too much (as long as it fits in one packet). Therefore, I am increasing the default memory read
size for android to 2k. This value is used only if the user has not modified the default
memory-cache-line-size setting.
Reviewers: clayborg, tberghammer
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D13812
llvm-svn: 250814
Most platforms have "/dev/null". Windows has "nul". Instead of
hardcoding the string /dev/null at various places, make a constant
that contains the correct value depending on the platform, and use
that everywhere instead.
llvm-svn: 250331
* ArchSpec::MergeFrom() would erroneously promote an unspecified
unknown to a specified unknown when both the ArchSpec and the merged
in ArchSpec were both unspecified unknowns. This no longer happens,
which fixes issues with global module cache lookup in some
situations.
* Added ArchSpec::DumpTriple(Stream&) that now properly prints
unspecified unknowns as '*' and specified unknows as 'unknown'.
This makes it trivial to tell the difference between the two.
Converted printing code over ot using DumpTriple() rather than
building from scratch.
* Fixed up a couple places that were not guaranteeing that an
unspecified unknown was recorded as such.
llvm-svn: 250253
set to true, but all plans run by RunThreadPlan need to have this set to false so they will
return control to RunThreadPlan without consulting plans higher on the stack.
Since this seems like a common error, I also modified RunThreadPlan to enforce this behavior.
<rdar://problem/22543166>
llvm-svn: 250084
Summary:
The following situation occured in TestAttachResume:
The inferior was stoped at a breakpoint and we did a continue, immediately followed by a detach.
Since there was a trap instruction under the IP, the continue did a step-over-breakpoint before
resuming the inferior for real. In some cases, the detach command was executed between these two
events (after the step-over stop, but before continue). Here, public state was running, but
private state was stopped. This caused a problem because HaltForDestroyOrDetach was checking the
public state to see whether it needs to stop the process (call Halt()), but Halt() was checking
the private state and concluded that there is nothing for it to do.
Solution: Instead of Halt() call SendAsyncInterrupt(), which will then cause Halt() to be
executed in the context of the private state thread. I also rename HaltForDestroyOrDetach to
reflect it does not call halt directly.
Reviewers: jingham, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13056
llvm-svn: 248371
The Go runtime schedules user level threads (goroutines) across real threads.
This adds an OS plugin to create memory threads for goroutines.
It supports the 1.4 and 1.5 go runtime.
Differential Revision: http://reviews.llvm.org/D5871
llvm-svn: 247852
Before we had:
ClangFunction
ClangUtilityFunction
ClangUserExpression
and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression
base class, and three pure virtual implementations for the Expression kinds:
FunctionCaller
UtilityFunction
UserExpression
You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage.
The Target will then consult all the registered TypeSystem plugins, and if the type system that matches
the language can make an expression of that kind, it will do so and return it.
Because all of the real expression types need to communicate with their ExpressionParser in a uniform way,
I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper
that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types.
Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs.
The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller
to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a
FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions.
Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common
JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency
but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary.
llvm-svn: 247720
Summary:
There was a race condition in Process class, where we would not wait for process stdout to
propagate fully before we would shut down the connection (repro case: slow down the stdio thread
by placing a sleep right at the end of the while loop in Communication::ReadThread). The Process
class already tried to solve this problem by synchronizing with the read thread in
Process::ShouldBroadcastEvent, but unfortunately the connection got closed before that in
Process::SetExitStatus. I solve this issue by delaying the connection shutdown until we get a
chance to process the event and synchronize. Alternatively, I could have moved the
synchronization point to an earlier point in SetExitStatus, but it seems safer to delay the
shutdown until other things get a chance to notice the process has exited.
Reviewers: clayborg, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12558
llvm-svn: 246753
contained within Process so that we won't be duplicating the warning
message if other parts of the code want to issue the message. Change
Process::PrintWarning to be a protected method - the public method
will be the PrintWarningOptimization et al. Also, Have
Thread::FunctionOptimizationWarning shortcut out if the warnings
have been disabled so that we don't (potentially) compute parts of
the SymbolContext unnecessarily.
llvm-svn: 244436
The first part was in r243508 -- the extent of the UI changes in that
patchset was to add "[opt]" to the frame-format when a stack frame was
built with optimized code.
In this change, when a stack frame built with optimization is selected,
a message will be printed to the async output channel --
opt1.c was compiled with optimization - stepping may behave oddly; variables may not be available.
The warning will be only be printed once per source file in a debug session.
These warnings may be disabled by
settings set target.process.optimization-warnings false
Internally, a new Process::PrintWarning() method has been added for
warnings that we want to print only once to the user. It takes a type
of warning (currently only eWarningsOptimization) and an object
pointer (CompileUnit*) - the warning will only be printed once for a
given object pointer value.
This is a bit of a prototype of this change - I think we will be
tweaking it more in the future. But I wanted to land this and see
how it goes. Advanced users will find these warnings unnecessary
noise and will quickly disable them - but anyone who maintains a
debugger knows that debugging optimized code, without realizing it,
is a constant source of confusion and frustation for more typical
debugger users.
I imagine there will be more of these "warn once per whatever" style
warnings that we will want to add in the future and we'll need to
come up with a better way for enabling/disabling them. But I'm not
srue what form that warning settings should take and I didn't want
to code up something that we regret later, so for now I just added
another process setting for this one warning.
<rdar://problem/19281172>
llvm-svn: 244190
dSYMs, or reading binaries out of memory to the 'Host' log channel.
There's more to be done here, both for Mac and for other platforms,
but the initial set of new loggings are useful enough to check in
at this point.
llvm-svn: 243200
Summary:
This replaces (void)x; usages where they x was subsequently
involved in an assertion with this macro to make the
intent more clear.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11451
llvm-svn: 243074
Changed the "jthreads" key/value in the stop reply packets to be "jstopinfo". This JSON only contains threads with valid stop reasons and allows us not to have to ask about other threads via qThreadStopInfo when we are stepping. The "jstopinfo" only gets sent if there are more than one thread since the stop reply packet contains all the info needed for a single thread.
Added a Process::WillPublicStop() in case process subclasses want to do any extra gathering for public stops. For ProcessGDBRemote, we end up sending a jThreadsInfo packet to gather all expedited registers, expedited memory and MacOSX queue information. We only do this for public stops to minimize the packets we send when we have multiple private stops. Multiple private stops happen when a source level single step, step into or step out run the process multiple times while implementing the stepping, and none of these private stops make it out to the UI via notifications because they are private stops.
llvm-svn: 242593
For Hexagon we want to be able to call functions during debugging, however currently lldb only supports this when there is JIT support.
Although emulation using IR interpretation is an alternative, it is currently limited in that it can't make function calls.
In this patch we have extended the IR interpreter so that it can execute a function call on the target using register manipulation.
To do this we need to handle the Call IR instruction, passing arguments to a new thread plan and collecting any return values to pass back into the IR interpreter.
The new thread plan is needed to call an alternative ABI interface of "ABI::PerpareTrivialCall()", allowing more detailed information about arguments and return values.
Reviewers: jingham, spyffe
Subscribers: emaste, lldb-commits, ted, ADodds, deepak2427
Differential Revision: http://reviews.llvm.org/D9404
llvm-svn: 242137
Summary:
- Consolidate Unix signals selection in UnixSignals.
- Make Unix signals available from platform.
- Add jSignalsInfo packet to retrieve Unix signals from remote platform.
- Get a copy of the platform signal for each remote process.
- Update SB API for signals.
- Update signal utility in test suite.
Reviewers: ovyalov, clayborg
Subscribers: chaoren, jingham, labath, emaste, tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D11094
llvm-svn: 242101
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
a hand-called function from the private state thread. The problem
was that on the way out of the private state thread, we try to drop
the run lock. That is appropriate for the main private state thread,
but not the secondary private state thread. Only the thread that
spawned them can know whether this is an appropriate thing to do or
not.
<rdar://problem/21375352>
llvm-svn: 240461
The problem was the mutex was only protecting the setting of m_exit_string and m_exit_string, but this function relies on the m_private_state being set to eStateExited in order to prevent more than 1 client setting the exit status. We want to only allow the first caller to succeed.
On MacOSX we have a thread that reaps the process we are debugging, and we also have a thread that monitors the debugserver process. When a process exists, the ProcessGDBRemote::AsyncThread() would set the exit status to the correct value and then another thread would reap the debugserver process and they would often both end up in Process::SetExitStatus() at the same time. With the mutex at the top we allow all variables to be set and the m_private_state to be set to eStateExited _before_ the other thread (debugserver reaped) can try to set th exist status to -1 and "lost connection to debugserver" being set as the exit status.
This was probably an issue for lldb-server as well and could very well cleanup some tests that might have been expecting a specific exit status from the process being debugged.
llvm-svn: 238794
Summary:
This should solve the issue of sending denormalized paths over gdb-remote
if we stick to GetPath(false) in GDBRemoteCommunicationClient, and let the
server handle any denormalization.
Reviewers: ovyalov, zturner, vharron, clayborg
Reviewed By: clayborg
Subscribers: tberghammer, emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D9728
llvm-svn: 238604
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
Summary:
IOHandlerProcessSTDIO::Run() was opening the pipe for interrupt requests lazily. This was racing
with another thread executing IOHandlerProcessSTDIO::Cancel() simultaneously. I fix this by
opening the pipe in the object constructor. The pipe will be automatically closed when the object
is destroyed.
Test Plan: Tests pass on linux.
Reviewers: clayborg, ribrdb
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10060
llvm-svn: 238423
This was the original cause of the file descriptor leaks that would cause the test suite to die after running a few hundred processes since no process would ever get destroyed and the communication channel in ProcessGDBRemote and the ProcessIOHandler would never close their pipes.
This process leak was previously worked around by closing the pipes when the communication channel was disconnected.
This was found by using "ptr_refs" from the heap.py in the lldb.macosx.heap module. It was able to find all strong references to the Process and helped me to figure out who was holding this extra reference.
llvm-svn: 238392
Summary:
There is an issue in lldb where the command prompt can appear at the wrong time. The partial fix
we have in for this is not working all the time and is introducing unnecessary delays. This
change does:
- Change Process:SyncIOHandler to use integer start id's for synchronization to avoid it being
confused by quick start-stop cycles. I picked this up from a suggested patch by Greg to
lldb-dev.
- coordinates printing of asynchronous text with the iohandlers. This is also based on a
(different) Greg's patch, but I have added stronger synchronization to it to avoid races.
Together, these changes solve the prompt problem for me on linux (both with and without libedit).
I think they should behave similarly on Mac and FreeBSD and I think they will not make matters
worse for windows.
Test Plan: Prompt comes out alright. All tests still pass on linux.
Reviewers: clayborg, emaste, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9823
llvm-svn: 238313
The main issue was the Communication::Disconnect() was calling its Connection::Disconnect() but this wouldn't release the pipes that the ConnectionFileDescriptor was using. We also have someone that is holding a strong reference to the Process so that when you re-run, target replaces its m_process_sp, but it doesn't get destructed because someone has a strong reference to it. I need to track that down. But, even if we have a strong reference to the a process that is outstanding, we need to call Process::Finalize() to have it release as much of its resources as possible to avoid memory bloat.
Removed the ProcessGDBRemote::SetExitStatus() override and replaced it with ProcessGDBRemote::DidExit().
Now we aren't leaking file descriptors and the stand alone test suite should run much better.
llvm-svn: 238089
the changes in r233255/r233258. Normally if lldb attaches to
a running process, when we call Process::Destroy, we want to detach
from the process. If lldb launched the process itself, ::Destroy
should kill it.
However, if we attach to a process and the driver calls SBProcess::Kill()
(which calls Destroy), we need to kill it even if we didn't launch it
originally.
The force_kill param allows for the SBProcess::Kill method to force the
behavior of Destroy.
<rdar://problem/20424439>
llvm-svn: 235158
virtual void
LanguageRuntime::ModulesDidLoad (const ModuleList &module_list);
Then reorganized how the objective C plug-in is notified so it will work for all LanguageRuntime subclasses.
llvm-svn: 235118
There were a couple of real bugs here regarding error checking and
signed/unsigned comparisons, but mostly these were just noise.
There was one class of bugs fixed here which is particularly
annoying, dealing with MSVC's non-standard behavior regarding
the underlying type of enums. See the comment in
lldb-enumerations.h for details. In short, from now on please use
FLAGS_ENUM and FLAGS_ANONYMOUS_ENUM when defining enums which
contain values larger than can fit into a signed integer.
llvm-svn: 233943
Guard against this by setting a new "m_finalizing" flag that lets us know we are in the process of finalizing.
<rdar://problem/20369152>
llvm-svn: 233935
Summary:
This patch fixes -gdb-exit for locally target. It includes the following changes:
# Fix Process::Finalize
# Use SBProcess::Destroy in -gdb-exit
Reviewers: abidh, zturner, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits, clayborg, abidh
Differential Revision: http://reviews.llvm.org/D8298
llvm-svn: 233255
Previously the remote module sepcification was fetched only from the
remote platform. With this CL if we have a remote process then we ask it
if it have any information from a given module. It is required because
on android the dynamic linker only reports the name of the SO file and
the platform can't always find it without a full path (the process can
do it based on /proc/<pid>/maps).
Differential revision: http://reviews.llvm.org/D8547
llvm-svn: 233061
Specifically, there were some functions for converting enums
to strings and a function for matching a string using a specific
matching algorithm. This moves those functions to more appropriate
headers in lldb/Utility and updates references to include the
new headers.
llvm-svn: 232673
So that we don't have to update every single #include in the entire
codebase to #include this new header (which used to get included by
lldb-private-log.h, we automatically #include "Logging.h" from
within "Log.h".
llvm-svn: 232653
# Fix CommandInterpreter.Broadcaster name (it should be the same as CommandInterpreter::GetStaticBroadcasterClass())
# Prevent the same error in Process.Broadcaster
# Fix SBCommandInterpreter::GetBroadcasterClass (it should call CommandInterpreter::GetStaticBroadcasterClass(), was Communication::GetStaticBroadcasterClass())
llvm-svn: 232500
Summary:
There was a race condition regarding the output of the inferior process. The reading of the
output is performed on a separate thread, and there was no guarantee that the output will get
eventually consumed. Because of that, it was happening that calling Process::GetSTDOUT was not
returning anything even though the process was terminated and would definitely not produce any
further output. This was usually happening only under very heavy system load, but it can be
reproduced by placing an usleep in the stdio thread (Process::STDIOReadThreadBytesReceived).
This patch addresses this by adding synchronization capabilities to the Communication thread.
After calling Communication::SynchronizeWithReadThread one can be sure that all pending input has
been processed by the read thread. This function is then called after every public event which
stops the process to obtain the entire process output.
Test Plan: TestProcessIO.py should now succeed every time instead of flaking in and out.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8246
llvm-svn: 232023
Summary:
starting a debug session on linux with -o "process launch" lldb parameter was failing since
Target::Launch (in sychronous mode) is expecting to be able to receive public process events.
However, PlatformLinux did not set up event hijacking on process launch, which caused these
events to be processed elsewhere and left Target::Launch hanging. This patch enables event
interception in PlatformLinux (which was commented out).
Upon enabling event interception, I noticed an issue, which I traced back to the inconsistent
state of public run lock, which remained false even though public and private process states were
"stopped". I addressed this by making sure the run lock is "stopped" upon exit from
WaitForProcessToStop (which already had similar provisions for other return paths).
Test Plan: This should fix the intermittent TestFormats failure we have been experiencing on Linux.
Reviewers: jingham, clayborg, vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8079
llvm-svn: 231460
Earlier this week I was able to get clang-cl on Windows to be
able to self host. This opened the door to being able to
get a whole new slew of warnings for the Windows build.
This patch fixes all of the warnings, many of which were real
bugs.
llvm-svn: 230522
Process::Launch try to catch a stop signal after launching a process. If
it is unsuccessful it destroy the process but previously still reported
that the process launched successfully. This behavior caused a
deadlock. With thic change the process launch error reported correctly.
Differential revision: http://reviews.llvm.org/D7784
llvm-svn: 230212
We want to forward stdin when stdio is not disabled and when we're not
redirecting stdin from a file.
renamed m_stdio_disable to m_stdin_forward and inverted value because
that's what we want to remember.
There was previously a bug that if you redirected stdin from a file,
stdout and stderr would also be redirected to /dev/null
Adds support for remote target to TestProcessIO.py
Fixes ProcessIOTestCase.test_stdin_redirection_with_dwarf for remote
Linux targets
llvm-svn: 228744
Processes running on a remote target can already send $O messages
to send stdout but there is no way to send stdin to a remote
inferior.
This allows processes using the API to pump stdin into a remote
inferior process.
It fixes a hang in TestProcessIO.py when running against a remote
target.
llvm-svn: 228419
Summary:
This patch fixes *stopped notification for remote target when started with eLaunchFlagStopAtEntry (for example, using "process launch -s").
See explanation below:
```
Target::Launch (ProcessLaunchInfo &launch_info, Stream *stream)
{
...
if (state != eStateConnected && platform_sp && platform_sp->CanDebugProcess ())
{
...
}
else
{
...
if (m_process_sp)
error = m_process_sp->Launch (launch_info);
}
if (error.Success())
{
if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry) == false)
{
....
}
-- missing event if eLaunchFlagStopAtEntry is set --
m_process_sp->RestoreProcessEvents ();
}
...
return error
```
Also this patch contains tests and you can check how it works.
Reviewers: zturner, clayborg, abidh
Reviewed By: clayborg
Subscribers: clayborg, abidh, zturner, lldb-commits
Differential Revision: http://reviews.llvm.org/D7273
llvm-svn: 228417
CommandInterpreter's execution context AFTER the process had started running
and before it initially stopped. Also fixed one test case that was implicitly
using this (and an abuse of the async mode) to accidentally succeed.
<rdar://problem/16814726>
llvm-svn: 226528
This is currently controlled by a setting:
(lldb) settings set target.process.python-os-plugin-path <path>
Or clearing it with:
(lldb) settings clear target.process.python-os-plugin-path
The process will now reload the OperatingSystem plug-in.
This was implemented by:
- adding the ability to set a notify callback for when an option value is changed
- added the ability for the process plug-in to load the operating system plug-in on the fly
- fixed bugs in the Process::GetStatus() so all threads are displayed if their thread IDs are larger than 32 bits
- adding a callback in ProcessProperties to tell when the "python-os-plugin-path" is changed by the user
- fixing a crasher in ProcessMachCore that happens when updating the thread list when the OS plugin is reloaded
llvm-svn: 225831
This patch makes a number of improvements to the Pipe interface.
1) An interface (PipeBase) is provided which exposes pure virtual
methods for any implementation of Pipe to override. While not
strictly necessary, this helps catch errors where the interfaces
are out of sync.
2) All methods return lldb_private::Error instead of returning bool
or void. This allows richer error information to be propagated
up to LLDB.
3) A new ReadWithTimeout() method is exposed in the base class and
implemented on Windows.
4) Support for both named and anonymous pipes is exposed through the
base interface and implemented on Windows. For creating a new
pipe, both named and anonymous pipes are supported, and for
opening an existing pipe, only named pipes are supported.
New methods described in points #3 and #4 are stubbed out on posix,
but fully implemented on Windows. These should be implemented by
someone on the linux / mac / bsd side.
Reviewed by: Greg Clayton, Oleksiy Vyalov
Differential Revision: http://reviews.llvm.org/D6686
llvm-svn: 224442
Summary:
If a stream contains an empty string, no need to append it to the output
(otherwise we end up with a blank line). Also, no need to print a status
message when the state changes to connected, as this string brings no
information -- "Process 0" does not mean anything to the user, and the
process being connected has no meaning either.
Test Plan:
Connect to a remote linux platform mode daemon with `platform select
remote-linux` followed by `platform connect ...`, create a target and
run it, observe the output. Also, run the full test suite (dosep.py).
Before:
(lldb) [...] connect, etc.
(lldb) r
Process 0 connected
Process 5635 launched: '/Users/sas/Source/test' (x86_64)
Process 5635 stopped
After:
(lldb) [...] connect, etc.
(lldb) r
Process 5635 launched: '/Users/sas/Source/test' (x86_64)
Process 5635 stopped
Reviewers: tfiala, vharron, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D6593
llvm-svn: 224188
The issue with Thumb IT (if/then) instructions is the IT instruction preceeds up to four instructions that are made conditional. If a breakpoint is placed on one of the conditional instructions, the instruction either needs to match the thumb opcode size (2 or 4 bytes) or a BKPT instruction needs to be used as these are always unconditional (even in a IT instruction). If BKPT instructions are used, then we might end up stopping on an instruction that won't get executed. So if we do stop at a BKPT instruction, we need to continue if the condition is not true.
When using the BKPT isntructions are easy in that you don't need to detect the size of the breakpoint that needs to be used when setting a breakpoint even in a thumb IT instruction. The bad part is you will now always stop at the opcode location and let LLDB determine if it should auto-continue. If the BKPT instruction is used, the BKPT that is used for ARM code should be something that also triggers the BKPT instruction in Thumb in case you set a breakpoint in the middle of code and the code is actually Thumb code. A value of 0xE120BE70 will work since the lower 16 bits being 0xBE70 happens to be a Thumb BKPT instruction.
The alternative is to use trap or illegal instructions that the kernel will translate into breakpoint hits. On Mac this was 0xE7FFDEFE for ARM and 0xDEFE for Thumb. The darwin kernel currently doesn't recognize any 32 bit Thumb instruction as a instruction that will get turned into a breakpoint exception (EXC_BREAKPOINT), so we had to use the BKPT instruction on Mac. The linux kernel recognizes a 16 and a 32 bit instruction as valid thumb breakpoint opcodes. The benefit of using 16 or 32 bit instructions is you don't stop on opcodes in a IT block when the condition doesn't match.
To further complicate things, single stepping on ARM is often implemented by modifying the BCR/BVR registers and setting the processor to stop when the PC is not equal to the current value. This means single stepping is another way the ARM target can stop on instructions that won't get executed.
This patch does the following:
1 - Fix the internal debugserver for Apple to use the BKPT instruction for ARM and Thumb
2 - Fix LLDB to catch when we stop in the middle of a Thumb IT instruction and continue if we stop at an instruction that won't execute
3 - Fixes this in a way that will work for any target on any platform as long as it is ARM/Thumb
4 - Adds a patch for ignoring conditions that don't match when in ARM mode (see below)
This patch also provides the code that implements the same thing for ARM instructions, though it is disabled for now. The ARM patch will check the condition of the instruction in ARM mode and continue if the condition isn't true (and therefore the instruction would not be executed). Again, this is not enable, but the code for it has been added.
<rdar://problem/19145455>
llvm-svn: 223851
Fixed include:
- Change Platform::ResolveExecutable(...) to take a ModuleSpec instead of a FileSpec + ArchSpec to help resolve executables correctly when we have just a path + UUID (no arch).
- Add the ability to set the listener in SBLaunchInfo and SBAttachInfo in case you don't want to use the debugger as the default listener.
- Modified all places that use the SBLaunchInfo/SBAttachInfo and the internal ProcessLaunchInfo/ProcessAttachInfo to not take a listener as a parameter since it is in the launch/attach info now
- Load a module's sections by default when removing a module from a target. Since we create JIT modules for expressions and helper functions, we could end up with stale data in the section load list if a module was removed from the target as the section load list would still have entries for the unloaded module. Target now has the following functions to help unload all sections a single or multiple modules:
size_t
Target::UnloadModuleSections (const ModuleList &module_list);
size_t
Target::UnloadModuleSections (const lldb::ModuleSP &module_sp);
llvm-svn: 222167
Improvements include:
* Use of libedit's wide character support, which is imperfect but a distinct improvement over ASCII-only
* Fallback for ASCII editing path
* Support for a "faint" prompt clearly distinguished from input
* Breaking lines and insert new lines in the middle of a batch by simply pressing return
* Joining lines with forward and backward character deletion
* Detection of paste to suppress automatic formatting and statement completion tests
* Correctly reformatting when lines grow or shrink to occupy different numbers of rows
* Saving multi-line history, and correctly preserving the "tip" of history during editing
* Displaying visible ^C and ^D indications when interrupting input or sending EOF
* Fledgling VI support for multi-line editing
* General correctness and reliability improvements
llvm-svn: 222163
There were many issues with synchronous mode that we discovered when started to try and add a "batch" mode. There was a race condition where the event handling thread might consume events when in sync mode and other times the Process::WaitForProcessToStop() would consume them. This also led to places where the Process IO handler might or might not get popped when it needed to be.
llvm-svn: 220254
an uninitialized value. In reality the code block that
initializes it and the code block that restores it will always
match up - but the analyzer doesn't know that and I want to
quiet it, so...
clang static analyzer fixit.
llvm-svn: 219869
Reviewed at http://reviews.llvm.org/D5738
This adds an SB API into SBProcess:
bool SBProcess::IsInstrumentationRuntimePresent(InstrumentationRuntimeType type);
which simply tells whether a particular InstrumentationRuntime (read "ASan") plugin is present and active.
llvm-svn: 219560
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
As part of getting ConnectionFileDescriptor working on Windows,
there is going to be alot of platform specific work to be done.
As a result, the implementation is moving into Host. This patch
performs the code move and fixes up call-sites appropriately.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5548
llvm-svn: 219143
There are several places where multiple threads are accessing the same variables simultaneously without any kind of protection. I propose using std::atomic<> to make it safer. I did a special build of lldb, using the google tool 'thread sanitizer' which identified many cases of multiple threads accessing the same memory. std::atomic is low overhead and does not use any locks for simple types such as int/bool.
See http://reviews.llvm.org/D5302 for more details.
Change by Shawn Best.
llvm-svn: 217818
This patch moves creates a thread abstraction that represents a
thread running inside the LLDB process. This is a replacement for
otherwise using lldb::thread_t, and provides a platform agnostic
interface to managing these threads.
Differential Revision: http://reviews.llvm.org/D5198
Reviewed by: Jim Ingham
llvm-svn: 217460
lldb's internal memory cache chunks that are read from the remote
system. For a remote connection that is especially slow, a user may
need to reduce it; reading a 512 byte chunk of memory whenever a
4-byte region is requested may not be the right decision in these
kinds of environments.
<rdar://problem/18175117>
llvm-svn: 217083
See http://reviews.llvm.org/D5108 for details.
This change does the following:
* eliminates the Process::GetUnixSignals() virtual method and replaces with a fixed getter.
* replaces the Process UnixSignals storage with a shared pointer.
* adds a Process constructor variant that can be passed the UnixSignalsSP. When the constructor without the UnixSignalsSP is specified, the Host's default UnixSignals is used.
* adds a host-specific version of GetUnixSignals() that is used when we need the host's appropriate UnixSignals variant.
* replaces GetUnixSignals() overrides in PlatformElfCore, ProcessGDBRemote, ProcessFreeBSD and ProcessLinux with code that appropriately sets the Process::UnixSignals for the process.
This change also enables some future patches that will enable llgs to be used for local Linux debugging.
llvm-svn: 216748
This change modifies the 'process launch' --disable-aslr option to take a boolean argument. If the user directly specifies --disable-aslr {true,false}, that setting will control whether the process is launched with ASLR disabled accordingly. In the event that the setting is not explicitly made on the process launch command line, then the value is retrieved from the target.disable-aslr setting (i.e. settings show target.disable-aslr).
llvm-svn: 215996
More specifically, this change can be summarized as follows:
1) Makes an lldbHostPosix library which contains code common to
all posix platforms.
2) Creates Host/FileSystem.h which defines a common FileSystem
interface.
3) Implements FileSystem.h in Host/windows and Host/posix.
4) Creates Host/FileCache.h, implemented in Host/common, which
defines a class useful for storing handles to open files needed
by the debugger.
Differential Revision: http://reviews.llvm.org/D4889
llvm-svn: 215775
FileAction was previously a nested class in ProcessLaunchInfo.
This led to some unfortunate style consequences, such as requiring
the AddPosixSpawnFileAction() funciton to be defined in the Target
layer, instead of the more appropriate Host layer. This patch
makes FileAction its own independent class in the Target layer,
and then moves AddPosixSpawnFileAction() into Host as a result.
Differential Revision: http://reviews.llvm.org/D4877
llvm-svn: 215649
result variable and use in in "Process::LoadImage" so that,
for instance, "process load" doesn't increment the return
variable number.
llvm-svn: 213440
The problem was that we have an IOHandler thread that services the IOHandler stack. The command interepter is on the top of the stack and it receives a "expression ..." command, and it calls the IOHandlerIsComplete() callback in the command interpereter delegate which runs an expression. This causes the IOHandlerProcessSTDIO to be pushed, but since we are running the code from the IOHandler thread, it won't get run. When CTRL+C is pressed, we do deliver the interrupt to the IOHandlerProcessSTDIO::Interrupt() function, but it was always writing 'i' to the interrupt pipe, even if we weren't actively reading from the debugger input and the pipes. This fix works around the issue by directly issuing the async interrupt to the process if the process is running.
A longer term more correct fix would to be run the IOHandler thread and have it just do the determination of the input and when complete input is received, run the code that handles that input on another thread and syncronize with that other thread to detect when more input is desired. That change is too big to make right now, so this fix will tide us over until we can get there.
<rdar://problem/16556228>
llvm-svn: 213196
This value gets set to a max uint32_t value when there is no known limit; otherwise,
it is set to a value appropriate for the platform. For the moment, only
Linux, FreeBSD and NetBSD set it to 16. All other platforms set it to
the max uint32_t value.
Modifies the Process private state thread names to fit within a 16-character limit
when the max thread name length is <= 16. These guarantee that the thread names
can be distinguished within the first 16 characters. Prior to this change, those
threads had names in the final dotted name segment that were not distinguishable
within the first 16 characters.
llvm-svn: 213183
This reverses out the options validators changes. We'll get these
back in once the changes to the output can be resolved.
Restores broken tests on FreeBSD, Linux, MacOSX.
Changes reverted: r212500, r212317, r212290.
llvm-svn: 212543
The purpose of the OptionValidator is to determine, based on some
arbitrary set of conditions, whether or not a command option is
valid for a given debugger state. An example of this might be
to selectively disable or enable certain command options that
don't apply to a particular platform.
This patch contains no functional change, and does not actually
make use of an OptionValidator for any purpose yet. A follow-up
patch will begin to add the logic and users of OptionValidator.
Reviewed by: Greg Clayton, Jim Ingham
Differential Revision: http://reviews.llvm.org/D4369
llvm-svn: 212290
Windows does support pipes, but they do so in a slightly different way. Added a Host layer which abstracts the use of pipes into a new Pipe class that everyone can use.
Windows benefits include:
- Being able to interrupt running processes when IO is directly hooked up
- being able to interrupt long running python scripts
- being able to interrupt anything based on ConnectionFileDescriptor
llvm-svn: 212220
This change brings in lldb-gdbserver (llgs) specifically for Linux x86_64.
(More architectures coming soon).
Not every debugserver option is covered yet. Currently
the lldb-gdbserver command line can start unattached,
start attached to a pid (process-name attach not supported yet),
or accept lldb attaching and launching a process or connecting
by process id.
The history of this large change can be found here:
https://github.com/tfiala/lldb/tree/dev-tfiala-native-protocol-linux-x86_64
Until mid/late April, I was not sharing the work and continued
to rebase it off of head (developed via id tfiala@google.com). I switched over to
user todd.fiala@gmail.com in the middle, and once I went to github, I did
merges rather than rebasing so I could share with others.
llvm-svn: 212069
Elevate ProcessInfo and ProcessLaunchInfo into their own headers.
llgs will be using ProcessLaunchInfo but doesn't need to pull in
the rest of Process.h.
This also moves a bunch of implementation details from the header
declarations into ProcessInfo.cpp and ProcessLaunchInfo.cpp.
Tested on Ubuntu 14.04 Cmake and MacOSX Xcode.
Related to https://github.com/tfiala/lldb/issues/26.
llvm-svn: 212005
Add a callback that will allow an expression to be cancelled between the
expression evaluation stages (for the ClangUserExpressions.)
<rdar://problem/16790467>, <rdar://problem/16573440>
llvm-svn: 207944
- CTRL+C wasn't clearing the command in lldb
- CTRL+C doesn't work in python macros in lldb
- Ctrl+C no longer interrupts the running process that you attach to
<rdar://problem/15949205>
<rdar://problem/16778652>
<rdar://problem/16774411>
llvm-svn: 207816
but by the time we go to halt, it has already stopped by hitting the
function end breakpoint. That wasn't being shown to the threads so the
Function call thread plan didn't know its job was done.
<rdar://problem/16515785>
llvm-svn: 205803
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
I carefully reviewed exactly how the IOHandlers interact and found places where we weren't properly controlling things. There should be no overlapping prompts and all output should now come out in a controlled fashion.
<rdar://problem/16111293>
llvm-svn: 202525
Also remove SetStopOthers from the ThreadPlanCallFunction, because if the value you have doesn't match what is
in the EvaluateExpressionOptions the plan was passed when created it won't work correctly.
llvm-svn: 202464
We now write a 'q' to indicate to exit the IOHandlerProcessSTDIO::Run(), and a 'i' to interrupt the process. This should make this code safer to use in a signal handler function.
llvm-svn: 202311
libldi library to collect extended backtrace information; switch
to the libBacktraceRecording library and its APIs. Complete the
work of adding QueueItems to Queues and allow for the QueueItems
to be interrogated about their extended backtraces in turn.
There's still cleanup and documentation to do on this code but the
code is functional and I it's a good time to get the work-in-progress
checked in.
<rdar://problem/15314027>
llvm-svn: 200822
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
symbols correctly. There were a couple of pieces to this.
1) When a breakpoint location finds itself pointing to an Indirect symbol, when the site for it is created
it needs to resolve the symbol and actually set the site at its target.
2) Not all breakpoints want to do this (i.e. a straight address breakpoint should always set itself on the
specified address, so somem machinery was needed to specify that.
3) I added some info to the break list output for indirect symbols so you could see what was happening.
Also I made it clear when we re-route through re-exported symbols.
4) I moved ResolveIndirectFunction from ProcessPosix to Process since it works the exact same way on Mac OS X
and the other posix systems. If we find a platform that doesn't do it this way, they can override the
call in Process.
5) Fixed one bug in RunThreadPlan, if you were trying to run a thread plan after a "running" event had
been broadcast, the event coalescing would cause you to miss the ThreadPlan running event. So I added
a way to override the coalescing.
6) Made DynamicLoaderMacOSXDYLD::GetStepThroughTrampolinePlan handle Indirect & Re-exported symbols.
<rdar://problem/15280639>
llvm-svn: 198976
libdispatch aka Grand Central Dispatch (GCD) queues. Still fleshing out the
documentation and testing of these but the overall API is settling down so it's
a good time to check it in.
<rdar://problem/15600370>
llvm-svn: 197190
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
do anything right now. Add a few new methods to the Thread base
class which HistoryThread needs. I think I updated all the
CMakeLists files correctly for the new plugin.
llvm-svn: 194756
something; add a new ExtendedThreadList to Process where they can be retained
for the duration of a public stop.
<rdar://problem/15314068>
llvm-svn: 194367
It completes the job of using EvaluateExpressionOptions consistently throughout
the inferior function calling mechanism in lldb begun in Greg's patch r194009.
It removes a handful of alternate calls into the ClangUserExpression/ClangFunction/ThreadPlanCallFunction which
were there for convenience. Using the EvaluateExpressionOptions removes the need for them.
Using that it gets the --debug option from Greg's patch to work cleanly.
It also adds another EvaluateExpressionOption to not trap exceptions when running expressions. You shouldn't
use this option unless you KNOW your expression can't throw beyond itself. This is:
<rdar://problem/15374885>
At present this is only available through the SB API's or python.
It fixes a bug where function calls would unset the ObjC & C++ exception breakpoints without checking whether
they were set by somebody else already.
llvm-svn: 194182
Fixed the test case for "test/functionalities/exec/TestExec.py" on Darwin.
The issue was breakpoints were persisting and causing problems. When we exec, we need to clear out the process and target and start fresh with nothing and let the breakpoints populate themselves again. This patch correctly clears out the breakpoints and also flushes the process so that the objects (process/thread/frame) give out valid information.
llvm-svn: 194106
Cleaned up ClangUserExpression::Evaluate() to have only one variant that takes a "const EvaluateExpressionOptions& options" instead of taking many arguments.
The "--debug" option is designed to allow you to debug your expression by stopping at the first instruction (it enables --ignore-breakpoints=true and --unwind-on-error=false) and allowing you to step through your JIT code. It needs to be more integrated with the thread plan, so I am checking this in so Jim Ingham can make it happen.
llvm-svn: 194009
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
Added a way to set hardware breakpoints from the "breakpoint set" command with the new "--hardware" option. Hardware breakpoints are not a request, they currently are a requirement. So when breakpoints are specified as hardware breakpoints, they might fail to be set when they are able to be resolved and should be used sparingly. This is currently hooked up for GDB remote debugging.
Linux and FreeBSD should quickly enable this feature if possible, or return an error for any breakpoints that are hardware breakpoint sites in the "virtual Error Process::EnableBreakpointSite (BreakpointSite *bp_site);" function.
llvm-svn: 192491
- By default, the above function will wait for at least one event
- Set wait_always=false to make the function return immediately if the process is already stopped
llvm-svn: 192301
that /bin/sh re-exec's itself to /bin/bash, so it needs one more resume when you
are using it as the shell than /bin/bash did or you will stop at the start of your
program, rather than running it.
So I added a Platform API to get the number of resumes needed when launching with
a particular shell, and set the right values for Mac OS X.
<rdar://problem/14935282>
llvm-svn: 190381
/bin/sh is more portable, and all systems with /bin/bash are expected to
have /bin/sh as well, even if only a link to bash.
Review: http://llvm-reviews.chandlerc.com/D1576
llvm-svn: 189879
- this fix ensures the ThreadList mutex is always locked before the StackFrameList mutex
Situation where deadlock could occur (without this fix):
Thread 1 is in Process::WillResume and locks the ThreadList mutex (on entry), and subsequently calls StackFrameList::Clear() which locks the StackFrameList mutex.
Meanwhile, thread 2 is in Process::RunThreadPlan and calls Thread::SetSelectedFrame() (which locks the StackFrameList mutex) before calling GetSelectedThread (which attempts to lock the ThreadList mutex)
In my testing on both Linux and Mac OS X, I was unable to reproduce any hangs with this patch applied.
llvm-svn: 187522
LLDB requires that the inferior process be stopped before, and remain
stopped during, certain accesses to process state.
Previously this was achieved with a POSIX rwlock which had a write lock
taken for the duration that the process was running, and released when
the process was stopped. Any access to process state was performed with
a read lock held.
However, POSIX requires that pthread_rwlock_unlock() be called from the
same thread as pthread_rwlock_wrlock(), and lldb needs to stop and start
the process from different threads. Violating this constraint is
technically undefined behaviour, although as it happens Linux and Darwin
result in the unlock proceeding in this case. FreeBSD follows POSIX
more strictly, and the unlock would fail, resulting in a hang later upon
the next attempt to take the lock.
All read lock consumers use ReadTryLock() and handle failure to obtain
the lock (typically by logging an error "process is running"). Thus,
instead of using the lock state itself to track the running state, this
change adds an explicit m_running flag. ReadTryLock tests the flag, and
if the process is not running it returns with the read lock held.
WriteLock and WriteTryLock are renamed to SetRunning and TrySetRunning,
and (if successful) they set m_running with the lock held. This way,
read consumers can determine if the process is running and act
appropriately, and write consumers are still held off from starting the
process if read consumers are active.
Note that with this change there are still some curious access patterns,
such as calling WriteUnlock / SetStopped twice in a row, and there's no
protection from multiple threads trying to simultaneously start the
process. In practice this does not seem to be a problem, and was
exposing other undefined POSIX behaviour prior to this change.
llvm-svn: 187377
bother checking if a region is safe to use. In
cases where regions need to be synthesized rather
than properly allocated, the memory reads required
to determine whether the area is used are
- insufficient, because intermediate locations
could be in use, and
- unsafe, because on some platforms reading from
memory can trigger events.
All this only makes a difference on platforms
where memory allocation in the target is impossible.
Behavior on platforms where it is possible should
stay the same.
<rdar://problem/14023970>
llvm-svn: 185046
Made sure that temporary object created from HarmonizeThreadIdsForProfileData() doesn’t get passed around without creating an object first.
Reviewed by Greg
llvm-svn: 184769
325,000 breakpoints for running "breakpoint set --func-regex ." on lldb itself (after hitting a breakpoint at main so that LLDB.framework is loaded) used to take up to an hour to set, now we are down under a minute. With warm file caches, we are at 40 seconds, and that is with setting 325,000 breakpoint through the GDB remote API. Linux and the native debuggers might be faster. I haven't timed what how much is debug info parsing and how much is the protocol traffic to/from GDB remote.
That there were many performance issues. Most of them were due to storing breakpoints in the wrong data structures, or using the wrong iterators to traverse the lists, traversing the lists in inefficient ways, and not optimizing certain function name lookups/symbol merges correctly.
Debugging after that is also now very efficient. There were issues with replacing the breakpoint opcodes in memory that was read, and those routines were also fixed.
llvm-svn: 183820
regions that aren't actually allocated in the
process. This cache is used by the expression
parser if the underlying process doesn't support
memory allocation, to avoid needless repeated
searches for unused address ranges.
Also fixed a silly bug in IRMemoryMap where it
would continue searching even after it found a
valid region.
<rdar://problem/13866629>
llvm-svn: 182028
Avoid a deadlock when using the OperatingSystemPython code and typing "process interrupt". There was a possible lock inversion between the target API lock and the process' thread list lock due to code trying to discard the thread list. This was fixed by adding a boolean to Process::Halt() that indicates if the thread plans should be discarded and doing it in the private state thread when we process the stopped state.
llvm-svn: 181651
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
This re-submission of this patch fixes a problem where the code sometimes caused a deadlock. The Process::SetPrivateState method was locking the Process::m_private_state variable and then later calling ThreadList::DidStop, which locks the ThreadList mutex. Other methods in ThreadList which were being called from other threads lock the ThreadList mutex and then call Process::GetPrivateState which locks the Process::m_private_state mutex. To avoid deadlocks, Process::SetPrivateState now locks the ThreadList mutex before locking the Process::m_private_state mutex.
llvm-svn: 181609
- Played with the current dual run lock implementation for a few days, noticed
no regressions, so enabling in trunk so we see if any problems are detected
by buildbots.
llvm-svn: 181446
value. This fixes problems, for instance, with the StepRange plans, where they know that
they explained the stop because they were at their "run to here" breakpoint, then deleted
that breakpoint, so when they got asked again, doh! I had done this for a couple of plans
in an ad hoc fashion, this just formalizes it.
Also add a "ResumeRequested" in Process so that the code in the completion handlers can
tell the ShouldStop logic they want to resume rather than just directly resuming. That allows
us to handle resuming in a more controlled fashion.
Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when
the target was immediately restarted.
--This line, and those below , will be ignored--
M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py
M include/lldb/Target/ThreadList.h
M include/lldb/Target/ThreadPlanStepOut.h
M include/lldb/Target/Thread.h
M include/lldb/Target/ThreadPlanBase.h
M include/lldb/Target/ThreadPlanStepThrough.h
M include/lldb/Target/ThreadPlanStepInstruction.h
M include/lldb/Target/ThreadPlanStepInRange.h
M include/lldb/Target/ThreadPlanStepOverBreakpoint.h
M include/lldb/Target/ThreadPlanStepUntil.h
M include/lldb/Target/StopInfo.h
M include/lldb/Target/Process.h
M include/lldb/Target/ThreadPlanRunToAddress.h
M include/lldb/Target/ThreadPlan.h
M include/lldb/Target/ThreadPlanCallFunction.h
M include/lldb/Target/ThreadPlanStepOverRange.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp
M source/Target/StopInfo.cpp
M source/Target/Process.cpp
M source/Target/ThreadPlanRunToAddress.cpp
M source/Target/ThreadPlan.cpp
M source/Target/ThreadPlanCallFunction.cpp
M source/Target/ThreadPlanStepOverRange.cpp
M source/Target/ThreadList.cpp
M source/Target/ThreadPlanStepOut.cpp
M source/Target/Thread.cpp
M source/Target/ThreadPlanBase.cpp
M source/Target/ThreadPlanStepThrough.cpp
M source/Target/ThreadPlanStepInstruction.cpp
M source/Target/ThreadPlanStepInRange.cpp
M source/Target/ThreadPlanStepOverBreakpoint.cpp
M source/Target/ThreadPlanStepUntil.cpp
M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme
llvm-svn: 181381
while we develop a better understanding of how to manage the thread lists in a platform-independant fashion.
Reviewed by: Daniel Malea
llvm-svn: 181323
This checkin aims to fix this. The process now has two thread lists: a real thread list for threads that are created by the lldb_private::Process subclass, and the user visible threads. The user visible threads are the same as the real threas when no OS plug-in in used. But when an OS plug-in is used, the user thread can be a combination of real and "memory" threads. Real threads can be placed inside of memory threads so that a thread appears to be different, but is still controlled by the actual real thread. When the thread list needs updating, the lldb_private::Process class will call the: lldb_private::Process::UpdateThreadList() function with the old real thread list, and the function is expected to fill in the new real thread list with the current state of the process. After this function, the process will check if there is an OS plug-in being used, and if so, it will give the old user thread list, the new real thread list and the OS plug-in will create the new user thread list from both of these lists. If there is no OS plug-in, the real thread list is the user thread list.
These changes keep the lldb_private::Process subclasses clean and no changes are required.
llvm-svn: 181091
If someone on Linux and/or FreeBSD can try to comment out the " #if defined(__APPLE__)" that surrounds access to "m_private_run_lock" and run the test suite, that would be nice. The new location where the locking/unlocking happens is bulletproof on MacOSX, and I want to verify that it is good on linux as well.
llvm-svn: 181061
specially, and make sure we stop. This shouldn't happen, but if it does, the user will probably want to
see it.
<rdar://problem/13273125>
llvm-svn: 180244
This prevents unbounded reads (i.e. reads of GetMaximumSizeOfStringSummary() bytes)
from causing test failures (i.e. due to ptrace EIO or EFAULT on Linux).
Note that ReadCStringFromMemory is marked as deprecated because the loop that calls
ReadMemory does not continue until the string has been completely read.
The expected behavior is to read until until max_bytes or a null terminator.
Note: As discussed on lldb-dev, further testing will be performed with ReadStringFromMemory
before further changes are made for users of ReadCStringFromMemory.
Thanks to Enrico, Matt and Andy for their review feedback.
llvm-svn: 179857
Made some fixes to the OperatingSystemPython class:
- If any thread dictionary contains any "core=N" key/value pairs then the threads obtained from the lldb_private::Process itself will be placed inside the ThreadMemory threads and will be used to get the information for a thread.
- Cleaned up all the places where a thread inside a thread was causing problems
llvm-svn: 179405
Fixed a case there the OperatingSystemPython would try to access and play with SBValue objects when the process' public run lock was taken. Prior to this fix, all attempts to run any SBValue functions would fail if run from the private state thread (like updating the thread list). Now we have two run locks, one for public (all threads except the private state thread) and one for private.
llvm-svn: 179329
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
and use it to keep from doing the OS Plugin UpdateThreadList while destroying, since
if that does anything that requires the API lock it may deadlock against whoever is
running the Process::Destroy.
<rdar://problem/13308627>
llvm-svn: 176375
to have it not named appropriately. Also in StopInfoMachException, we aren't testing for software or not software, just
whether the thing is a breakpoint we set. So don't use "software"...
llvm-svn: 175241
When launching in the shell, make sure if you specify a relative path, and if the current working directory has a space in it, that we don't hose the shell invocation.
Currently if we launch with a relative path, we prepend the current working directory to the PATH using:
PATH=`cwd`:$PATH a.out ...
We needed to add quotes around the value for PATH to make sure if any paths in PATH contained spaces, that we don't hose the shell command. Now we do a:
PATH="`cwd`:$PATH" a.out ...
llvm-svn: 175135
hitting auto-continue signals while running a thread plan would cause us to lose control of the debug
session.
<rdar://problem/12993641>
llvm-svn: 174793
Fix in loading mach files from memory when using DynamicLoaderMacOSXDYLD.
Removed the uuid mismatch warning that could be spit out and any time during debugging and removed the test case that was looking for that. Currently the "add-dsym" or "target symbols add" command will report an error when the UUID's don't match.
Be more careful when checking and resolving section + offset addresses to make sure none of the base addresses are invalid.
llvm-svn: 174222
Add the ability to give breakpoints a "kind" string, and have the StopInfoBreakpoint
print that in the brief description if set. Also print the kind - if set - in the breakpoint
listing.
Give kinds to a bunch of the internal breakpoints.
We were deleting the Mac OS X dynamic loader breakpoint as though the id we had stored away was
a breakpoint site ID, but in fact it was a breakpoint id, so we never actually deleted it. Fixed that.
llvm-svn: 173555
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method:
class OperatingSystemPlugin:
def create_thread(self, tid, context):
# Return a dictionary for a new thread to create it on demand
This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used.
Cleaned up the code in PythonDataObjects.cpp/h:
- renamed all classes that started with PythonData* to be Python*.
- renamed PythonArray to PythonList. Cleaned up the code to use inheritance where
- Centralized the code that does ref counting in the PythonObject class to a single function.
- Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object.
- Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form:
- PyObject *
- const PythonObject &
- const lldb::ScriptInterpreterObjectSP &
Cleaned up code in ScriptInterpreterPython:
- Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time.
- Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized.
llvm-svn: 172873
Added a unique integer identifier to processes. Some systems, like JTAG or other simulators, might always assign the same process ID (pid) to the processes that are being debugged. In order for scripts and the APIs to uniquely identify the processes, there needs to be another ID. Now the SBProcess class has:
uint32_t SBProcess::GetUniqueID();
This integer ID will help to truly uniquely identify a process and help with appropriate caching that can be associated with a SBProcess object.
llvm-svn: 172628
controlled by the --unwind-on-error flag, and --ignore-breakpoint which separately controls behavior when a called
function hits a breakpoint. For breakpoints, we don't unwind, we either stop, or ignore the breakpoint, which makes
more sense.
Also make both these behaviors globally settable through "settings set".
Also handle the case where a breakpoint command calls code that ends up re-hitting the breakpoint. We were recursing
and crashing. Now we just stop without calling the second command.
<rdar://problem/12986644>
<rdar://problem/9119325>
llvm-svn: 172503
Fixed an issue where the platform auto select code was changing the architecture and causing the wrong architecture to be assigned to the target.
llvm-svn: 172251
Should be that if any of the threads wants to stop, we should stop. The opposite was what was actually happening
<rdar://problem/12869725>
llvm-svn: 170153
equality can be strict or loose and we want code to
explicitly choose one or the other.
Also renamed the Compare function to IsEqualTo, to
avoid confusion.
<rdar://problem/12856749>
llvm-svn: 170152
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
Prevent async and sync calls to get profile data from stomping on each other.
At the same time, don't use '$' as end delimiter per chunk of profile data.
llvm-svn: 168948
This commit does three things:
(a) introduces a new notification model for adding/removing/changing modules to a ModuleList, and applies it to the Target's ModuleList, so that we make sure to always trigger the right set of actions
whenever modules come and go in a target. Certain spots in the code still need to "manually" notify the Target for several reasons, so this is a work in progress
(b) adds a new capability to the Platforms: locating a scripting resources associated to a module. A scripting resource is a Python file that can load commands, formatters, ... and any other action
of interest corresponding to the loading of a module. At the moment, this is only implemented on Mac OS X and only for files inside .dSYM bundles - the next step is going to be letting
the frameworks themselves hold their scripting resources. Implementors of platforms for other systems are free to implement "the right thing" for their own worlds
(c) hooking up items (a) and (b) so that targets auto-load the scripting resources as the corresponding modules get loaded in a target. This has a few caveats at the moment:
- the user needs to manually add the .py file to the dSYM (soon, it will also work in the framework itself)
- if two modules with the same name show up during the lifetime of an LLDB session, the second one won't be able to load its scripting resource, but will otherwise work just fine
llvm-svn: 167569
I tracked down a leak that could happen when detaching from a process where the lldb_private::Process objects would stay around forever. This was caused by a eStateDetached event that was queued up on the lldb_private::Process private state thread listener. Since process events contain shared pointers to the process, this is dangerous if they don't get consume or cleared as having the lldb_private::Process class contain a collection of things that have a shared pointer to yourself is obviously bad.
To fix this I modified the Process::Finalize() function to clear this list. The actual thing that was holding onto the ModuleSP and thus the static archive, was a stack frame. Since the process wasn't going away, it still had thread objects and they still had frames. I modified the Thread::Destroy() to clear the stack frames to ensure this further doesn't happen.
llvm-svn: 166964
There was a generic catch-all type for path arguments
called "eArgTypePath," and a specialized version
called "eArgTypeFilename." It turns out all the
cases where we used eArgTypePath we could have
used Filename or we explicitly meant a directory.
I changed Path to DirectoryName, made it use the
directory completer, and rationalized the uses of
Path.
<rdar://problem/12559915>
llvm-svn: 166533
Added a new setting that allows a python OS plug-in to detect threads and provide registers for memory threads. To enable this you set the setting:
settings set target.process.python-os-plugin-path lldb/examples/python/operating_system.py
Then run your program and see the extra threads.
llvm-svn: 166244
LLDB changes argv[0] when debugging a symlink. Now we have the notion of argv0 in the target settings:
target.arg0 (string) =
There is also the program argument that are separate from the first argument that have existed for a while:
target.run-args (arguments) =
When running "target create <exe>", we will place the untouched "<exe>" into target.arg0 to ensure when we run, we run with what the user typed. This has been added to the ProcessLaunchInfo and all other needed places so we always carry around the:
- resolved executable path
- argv0
- program args
Some systems may not support separating argv0 from the resolved executable path and the ProcessLaunchInfo needs to carry all of this information along so that each platform can make that decision.
llvm-svn: 166137
enabled after we'd found a few bugs that were caused by shadowed
local variables; the most important issue this turned up was
a common mistake of trying to obtain a mutex lock for the scope
of a code block by doing
Mutex::Locker(m_map_mutex);
This doesn't assign the lock object to a local variable; it is
a temporary that has its dtor called immediately. Instead,
Mutex::Locker locker(m_map_mutex);
does what is intended. For some reason -Wshadow happened to
highlight these as shadowed variables.
I also fixed a few obivous and easy shadowed variable issues
across the code base but there are a couple dozen more that
should be fixed when someone has a free minute.
<rdar://problem/12437585>
llvm-svn: 165269
loaded at a random offset).
To get the kernel's UUID and load address I need to send a kdp
packet so I had to implement the kernel relocation (and attempt to
find the kernel if none was provided to lldb already) in ProcessKDP
-- but this code really properly belongs in DynamicLoaderDarwinKernel.
I also had to add an optional Stream to ConnectRemote so
ProcessKDP::DoConnectRemote can print feedback about the remote kernel's
UUID, load address, and notify the user if we auto-loaded the kernel via
the UUID.
<rdar://problem/7714201>
llvm-svn: 164881
Fixed an issue where if we call "Process::Destroy()" and the process is running, if we try to stop it and get "exited" back as the stop reason, we will still deliver the exited event.
llvm-svn: 163591