This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
This patch is mostly about removing the "Category" enum, which was
very useful when the Type enum contained a large number of types, but
now the two are completely identical.
It also removes some other artifacts like unused typedefs and macros.
Specify type when constructing PromotionKeys,
this fixes error:
"chosen constructor is explicit in copy-initialization"
when compiling lldb with GCC 5.4.0.
This is due to std::tuple having an explicit
default constructor, see:
http://cplusplus.github.io/LWG/lwg-defects.html#2193
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86690
Similarly to D85836, collapse all Scalar float types to a single enum
value, and use APFloat semantics to differentiate between. This
simplifies the code, and opens to door to supporting other floating
point semantics (which would be needed for fully supporting
architectures with more interesting float types such as PPC).
Differential Revision: https://reviews.llvm.org/D86220
The class contains an enum listing all host integer types as well as
some non-host types. This setup is a remnant of a time when this class
was actually implemented in terms of host integer types. Now that we are
using llvm::APInt, they are mostly useless and mean that each function
needs to enumerate all of these cases even though it treats most of them
identically.
I only leave e_sint and e_uint to denote the integer signedness, but I
want to remove that in a follow-up as well.
Removing these cases simplifies most of these functions, with the only
exception being PromoteToMaxType, which can no longer rely on a simple
enum comparison to determine what needs to be promoted.
This also makes the class ready to work with arbitrary integer sizes, so
it does not need to be modified when someone needs to add a larger
integer size.
Differential Revision: https://reviews.llvm.org/D85836
The function had very complicated signature, because it was trying to
avoid making unnecessary copies of the Scalar object. However, this
class is not hot enough to worry about these kinds of optimizations. My
making copies unconditionally, we can simplify the function and all of
its call sites.
Differential Revision: https://reviews.llvm.org/D85906
The function was fairly complicated and didn't support new bigger
integer sizes. Use llvm function for loading an APInt from memory to
write a unified implementation for all sizes.
The function's reliance on host types meant that it was needlessly
complicated, and did not handle the newer (wider) types. Rewrite it in
terms of APInt/APFloat functions to save code and improve functionality.
These functions were doing a bitcast on the float value, which is not
consistent with the other getters, which were doing a numeric conversion
(47.0 -> 47). Change these to do numeric conversions too.
A lot of the methods handle all integral and all floating point types
the same way. They can be changed to switch on the category of the type,
instead of the actual type, saving a lot of boilerplate.
This patch does that for the methods where I could be reasonably certain
of their expected semantics.
Summary:
The Scalar class claims to follow the C type conversion rules. This is
true for the Promote function, but it is not true for the implicit
conversions done in the getter methods.
These functions had a subtle bug: when extending the type, they used the
signedness of the *target* type in order to determine whether to do
sign-extension or zero-extension. This is not how things work in C,
which uses the signedness of the *source* type. I.e., C does
(sign-)extension before it does signed->unsigned conversion, and not the
other way around.
This means that: (unsigned long)(int)-1
is equal to (unsigned long)0xffffffffffffffff
and not (unsigned long)0x00000000ffffffff
Unsurprisingly, we have accumulated code which depended on this
inconsistent behavior. It mainly manifested itself as code calling
"ULongLong/SLongLong" as a way to get the value of the Scalar object in
a primitive type that is "large enough". Previously, the ULongLong
conversion did not do sign-extension, but now it does.
This patch makes the Scalar getters consistent with the declared
semantics, and fixes the couple of call sites that were using it
incorrectly.
Reviewers: teemperor, JDevlieghere
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D82772
The refactor in 48ca15592f reintroduced UB when converting out-of-bounds
floating point numbers to integers -- the behavior for ULongLong() was
originally fixed in r341685, but did not survive my refactor because I
based my template code on one of the methods which did not have this
fix.
This time, I apply the fix to all float->int conversions, instead of
just the "double->unsigned long long" case. I also use a slightly
simpler version of the code, with fewer round-trips
(APFloat->APSInt->native_int vs
APFloat->native_float->APInt->native_int).
I also add some unit tests for the conversions.
Fix UBSan error detected in TestDataFormatterObjCCF.py and
TestDataFormatterObjCNSDate.py:
Scalar.cpp:698:27: runtime error: -4.96303e+08 is outside the range of
representable values of type 'unsigned long long'.
This function was implementing c-like promotion rules by switching on
the both types. C promotion rules are complicated, but they are not
*that* complicated -- they basically boil down to:
- wider types trump narrower ones
- unsigned trump signed
- floating point trumps integral
With a couple of helper functions, we can rewrite the function in terms
of these rules and greatly reduce the size and complexity of this
function.
This function was modifying and returning pointers to static storage,
which meant that any two accesses to different Scalar objects could
potentially race (depending on which types the objects were storing and
the host endianness).
In the new version the user is responsible for providing a buffer into
which this method will store its binary representation. The main caller
(RegisterValue::GetBytes) already has one such buffer handy, so this did
not require any major rewrites.
To make that work, I've needed to mark the RegisterValue value buffer
mutable -- not an ideal solution, but definitely better than modifying
global storage. This could be further improved by changing
RegisterValue::GetBytes to take a buffer too.
The "type" argument to the function is mostly useless -- the only
interesting aspect of it is signedness. Pass signedness directly and
compute the value of bits and signedness fields -- that's exactly
what the single caller of this function does.
The are not needed as Scalar is implicitly constructible from all of
these types (so the compiler will use a combination of a constructor +
move assignment instead), and they make it very easy for implementations
of assignment and construction operations to diverge.
This field is unused (the only way to change its value is via a
constructor which is never called), and as far as I can tell it has been
unused since it was introduced in D12100. It also has some soundness
issues -- e.g. operator= does not reinitialize it, but uses the old
value from the overwritten object.
It sounds like this class should be able to support different floating
point semantics, but if that is needed, it would be better to start
afresh -- probably by passing in an APFloat::fltSemantics object instead
of a bool flag.
Summary:
Assignment operator `operator=(long long)` currently allocates `sizeof(long)`.
On some platforms it works as they have `sizeof(long) == sizeof(long long)`,
but on others (e.g. Windows) it's not the case.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D80995
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
Summary: There are a few places in LLDB where we do a `reinterpret_cast` for conversions that we could also do with `static_cast`. This patch moves all this code to `static_cast`.
Reviewers: shafik, JDevlieghere, labath
Reviewed By: labath
Subscribers: arphaman, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72161
gcc-9 started warning when a class defined a copy constructor without a
copy assignment operator (or vice-versa).
This fixes those warnings by deleting the other special member too
(after verifying it doesn't do anything non-trivial).
This patch adds basic support for DW_OP_convert[1] for integer
types. Recent versions of LLVM's optimizer may insert this opcode into
DWARF expressions. DW_OP_convert is effectively a type cast operation
that takes a reference to a base type DIE (or zero) and then casts the
value at the top of the DWARF stack to that type. Internally this
works by changing the bit size of the APInt that is used as backing
storage for LLDB's DWARF stack.
I managed to write a unit test for this by implementing a mock YAML
object file / module that takes debug info sections in yaml2obj
format.
[1] Typed DWARF stack. http://www.dwarfstd.org/ShowIssue.php?issue=140425.1
<rdar://problem/48167864>
Differential Revision: https://reviews.llvm.org/D67369
llvm-svn: 371532
Replaces the remaining C-style casts with explicit casts in Utility. The
motivation is that they are (1) easier to spot and (2) don't have
multiple meanings.
llvm-svn: 361458
Summary:
The DWARF spec states that the DWARF stack arguments are numbered from
the top. Our implementation of DW_OP_pick was counting them from the
bottom.
This bug probably wasn't noticed because nobody (except my upcoming
postfix-to-DWARF converter) uses DW_OP_pick, but I've cross-checked with
gdb to confirm that counting from the top is the expected behavior.
This patch fixes the implementation to match the spec and gdb behavior
and adds a test.
Reviewers: jasonmolenda, clayborg
Subscribers: mgorny, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D61182
llvm-svn: 359436
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch removes the comments following the header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
Differential revision: https://reviews.llvm.org/D54385
llvm-svn: 346625
This showed up in an Ubsan build of lldb (inside the CFAbsoluteTime
data formatter). As we only care about the bit pattern, we just
round to the nearest double, and truncate to a size that fits
in ulonglong_t.
<rdar://problem/44229924>
llvm-svn: 341682
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127