In the textual format, `noduplicates` means no COMDAT/section group
deduplication is performed. Therefore, if both sets of sections are retained, and
they happen to define strong external symbols with the same names,
there will be a duplicate definition linker error.
In PE/COFF, the selection kind lowers to `IMAGE_COMDAT_SELECT_NODUPLICATES`.
The name describes the corollary instead of the immediate semantics. The name
can cause confusion to other binary formats (ELF, wasm) which have implemented/
want to implement the "no deduplication" selection kind. Rename it to be clearer.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106319
Continuing on from D105780, this should be the last major bit of
attribute cleanup. Currently, LLParser implements attribute parsing
for functions, parameters and returns separately, enumerating all
supported (and unsupported) attributes each time. This patch
extracts the common parsing logic, and performs a check afterwards
whether the attribute is valid in the given position. Parameters
and returns are handled together, while function attributes need
slightly different logic to support attribute groups.
Differential Revision: https://reviews.llvm.org/D105938
While working on the elementtype attribute, I felt that the type
attribute handling in AttrBuilder is overly repetitive. This patch
converts the separate Type* members into an std::array<Type*>, so
that all type attribute kinds can be handled generically.
There's more room for improvement here (especially when it comes to
converting the AttrBuilder to an Attribute), but this seems like a
good starting point.
Differential Revision: https://reviews.llvm.org/D105658
This reverts commit 8cd35ad854.
It breaks `TestMembersAndLocalsWithSameName.py` on GreenDragon and
Mikael Holmén points out in D104827 that bitcode files created with the
patch cannot be parsed with binaries built before it.
While this should not matter for most architectures (where the program
address space is 0), it is important for CHERI (and therefore Arm Morello).
We use address space 200 for all of our code pointers and without this
change we assert in the SelectionDAG handling of BlockAddress nodes.
It is also useful for AVR: previously programs targeting
AVR that attempt to read their own machine code
via a pointer to a label would instead read from RAM
using a pointer relative to the the start of program flash.
Reviewed By: dylanmckay, theraven
Differential Revision: https://reviews.llvm.org/D48803
4506f614cb fixed parsing of textual IR to
reject `ptr*`, but broke the auto-conversion of `i32**` to `ptr` with
`--force-opaque-pointers`.
Get that working again by refactoring LLParser::parseType to only send
`ptr`-spelled pointers into the type suffix logic when it's the return
of a function type. This also rejects `ptr addrspace(3) addrspace(2)`,
which 1e6303e60c invadvertently started
accepting. Just the default top-level error message for the
double-addrspace since I had trouble thinking of something nice;
probably it's fine as is (it doesn't look valid the way that `ptr*`
does).
Differential Revision: https://reviews.llvm.org/D105146
Currently, LLParser will create a Function/GlobalVariable forward
reference based on the desired pointer type and then modify it when
it is declared. With opaque pointers, we generally do not know the
correct type to use until we see the declaration.
Solve this by creating the forward reference with a dummy type, and
then performing a RAUW with the correct Function/GlobalVariable when
it is declared. The approach is adopted from
b5b55963f6.
This results in a change to the use list order, which is why we see
test changes on some module passes that are not stable under use list
reordering.
Differential Revision: https://reviews.llvm.org/D104950
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
Bring back the testcase dropped in
1e6303e60c and get it passing by checking
explicitly for `ptr*` in LLParser. Uses `Type::isOpaquePointerTy()` from
ad4bb82809.
Differential Revision: https://reviews.llvm.org/D104938
Add support for call of opaque pointer, currently only possible for
indirect calls.
This requires a bit of special casing in LLParser, as calls do not
specify the callee operand type explicitly.
Differential Revision: https://reviews.llvm.org/D104740
Spin-off from D104740: I don't think this special handling is needed
anymore. Calls in textual IR are annotated with addrspace(N) (which
defaults to the program address space from data layout) and specifies
the expected pointer address space of the callee. There is no need
to special-case the program address space on top of that, as it
already is the default expected address space, and we shouldn't
allow use of the program address space if the call was explicitly
annotated with some other address space.
The IsCall parameter is retained because it will be used again soon.
Differential Revision: https://reviews.llvm.org/D104752
Adjust assertions to use isOpaqueOrPointeeTypeMatches() and make
it return an opaque pointer result for an opaque base pointer. We
also need to enumerate the element type, as it is no longer
implicitly enumerated through the pointer type.
Differential Revision: https://reviews.llvm.org/D104655
The comment mentions deplibs should be removed in 4.0. Removing it in this patch.
Reviewed By: compnerd, dexonsmith, lattner
Differential Revision: https://reviews.llvm.org/D102763
FullTy is only necessary when we need to figure out what type an
instruction works with given a pointer's pointee type. However, we just
end up using the value operand's type, so FullTy isn't necessary.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102788
We really ought to support no_sanitize("coverage") in line with other
sanitizers. This came up again in discussions on the Linux-kernel
mailing lists, because we currently do workarounds using objtool to
remove coverage instrumentation. Since that support is only on x86, to
continue support coverage instrumentation on other architectures, we
must support selectively disabling coverage instrumentation via function
attributes.
Unfortunately, for SanitizeCoverage, it has not been implemented as a
sanitizer via fsanitize= and associated options in Sanitizers.def, but
rolls its own option fsanitize-coverage. This meant that we never got
"automatic" no_sanitize attribute support.
Implement no_sanitize attribute support by special-casing the string
"coverage" in the NoSanitizeAttr implementation. To keep the feature as
unintrusive to existing IR generation as possible, define a new negative
function attribute NoSanitizeCoverage to propagate the information
through to the instrumentation pass.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49035
Reviewed By: vitalybuka, morehouse
Differential Revision: https://reviews.llvm.org/D102772
These checks already exist as asserts when creating the corresponding
instruction. Anybody creating these instructions already need to take
care to not break these checks.
Move the checks for success/failure ordering in cmpxchg from the
verifier to the LLParser and BitcodeReader plus an assert.
Add some tests for cmpxchg ordering. The .bc files are created from the
.ll files with an llvm-as with these checks disabled.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102803
FullTy is only necessary when we need to figure out what type an
instruction works with given a pointer's pointee type. However, we just
end up using the value operand's type, so FullTy isn't necessary.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102788
No verifier changes needed, the verifier currently doesn't check that
the pointer operand's pointee type matches the GEP type. There is a
similar check in GetElementPtrInst::Create() though.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102744
Don't check that types match when the pointer operand is an opaque
pointer.
I would separate the Assembler and Verifier changes, but
verify-uselistorder in the Assembler test ends up running the verifier.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102450
Swift's new concurrency features are going to require guaranteed tail calls so
that they don't consume excessive amounts of stack space. This would normally
mean "tailcc", but there are also Swift-specific ABI desires that don't
naturally go along with "tailcc" so this adds another calling convention that's
the combination of "swiftcc" and "tailcc".
Support is added for AArch64 and X86 for now.
This extends any frame record created in the function to include that
parameter, passed in X22.
The new record looks like [X22, FP, LR] in memory, and FP is stored with 0b0001
in bits 63:60 (CodeGen assumes they are 0b0000 in normal operation). The effect
of this is that tools walking the stack should expect to see one of three
values there:
* 0b0000 => a normal, non-extended record with just [FP, LR]
* 0b0001 => the extended record [X22, FP, LR]
* 0b1111 => kernel space, and a non-extended record.
All other values are currently reserved.
If compiling for arm64e this context pointer is address-discriminated with the
discriminator 0xc31a and the DB (process-specific) key.
There is also an "i8** @llvm.swift.async.context.addr()" intrinsic providing
front-ends access to this slot (and forcing its creation initialized to nullptr
if necessary).
The opaque pointer type is essentially just a normal pointer type with a
null pointee type.
This also adds support for the opaque pointer type to the bitcode
reader/writer, as well as to textual IR.
To avoid confusion with existing pointer types, we disallow creating a
pointer to an opaque pointer.
Opaque pointer types should not be widely used at this point since many
parts of LLVM still do not support them. The next steps are to add some
very simple use cases of opaque pointers to make sure they work, then
start pretending that all pointers are opaque pointers and see what
breaks.
https://lists.llvm.org/pipermail/llvm-dev/2021-May/150359.html
Reviewed By: dblaikie, dexonsmith, pcc
Differential Revision: https://reviews.llvm.org/D101704
I've taken the following steps to add unwinding support from inline assembly:
1) Add a new `unwind` "attribute" (like `sideeffect`) to the asm syntax:
```
invoke void asm sideeffect unwind "call thrower", "~{dirflag},~{fpsr},~{flags}"()
to label %exit unwind label %uexit
```
2.) Add Bitcode writing/reading support + LLVM-IR parsing.
3.) Emit EHLabels around inline assembly lowering (SelectionDAGBuilder + GlobalISel) when `InlineAsm::canThrow` is enabled.
4.) Tweak InstCombineCalls/InlineFunction pass to not mark inline assembly "calls" as nounwind.
5.) Add clang support by introducing a new clobber: "unwind", which lower to the `canThrow` being enabled.
6.) Don't allow unwinding callbr.
Reviewed By: Amanieu
Differential Revision: https://reviews.llvm.org/D95745
Follow up on 431e3138a and complete the other possible combinations.
Besides enforcing the new behavior, it also mitigates TSAN false positives when
combining orders that used to be stronger.
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example
struct S {
__attribute__ ((__aligned__(16))) double v[4];
};
Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)
Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.
This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.
The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.
For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.
On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.
Patch by Momchil Velikov and Lucas Prates.
Differential Revision: https://reviews.llvm.org/D98794
This is needed for Fortran assumed shape arrays whose dimensions are
defined as,
- 'count' is taken from array descriptor passed as parameter by
caller, access from descriptor is defined by type DIExpression.
- 'lowerBound' is defined by callee.
The current alternate way represents using upperBound in place of
count, where upperBound is calculated in callee in a temp variable
using lowerBound and count
Representation with count (DIExpression) is not only clearer as
compared to upperBound (DIVariable) but it has another advantage that
variable count is accessed by being parameter has better chance of
survival at higher optimization level than upperBound being local
variable.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D99335
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
This attribute represents the minimum and maximum values vscale can
take. For now this attribute is not hooked up to anything during
codegen, this will be added in the future when such codegen is
considered stable.
Additionally hook up the -msve-vector-bits=<x> clang option to emit this
attribute.
Differential Revision: https://reviews.llvm.org/D98030
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
This is a follow up patch to D83136 adding the align attribute to `cmpxchg`.
See also D83465 for `atomicrmw`.
Differential Revision: https://reviews.llvm.org/D87443
Imported functions and variable get the visibility from the module supplying the
definition. However, non-imported definitions do not get the visibility from
(ELF) the most constraining visibility among all modules (Mach-O) the visibility
of the prevailing definition.
This patch
* adds visibility bits to GlobalValueSummary::GVFlags
* computes the result visibility and propagates it to all definitions
Protected/hidden can imply dso_local which can enable some optimizations (this
is stronger than GVFlags::DSOLocal because the implied dso_local can be
leveraged for ELF -shared while default visibility dso_local has to be cleared
for ELF -shared).
Note: we don't have summaries for declarations, so for ELF if a declaration has
the most constraining visibility, the result visibility may not be that one.
Differential Revision: https://reviews.llvm.org/D92900
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
This change implements support for applying profile instrumentation
only to selected files or functions. The implementation uses the
sanitizer special case list format to select which files and functions
to instrument, and relies on the new noprofile IR attribute to exclude
functions from instrumentation.
Differential Revision: https://reviews.llvm.org/D94820
The main change is to add a 'IsDecl' field to DIModule so
that when IsDecl is set to true, the debug info entry generated
for the module would be marked as a declaration. That way, the debugger
would look up the definition of the module in the gloabl scope.
Please see the comments in llvm/test/DebugInfo/X86/dimodule.ll
for what the debug info entries would look like.
Differential Revision: https://reviews.llvm.org/D93462
Clang FE currently has hot/cold function attribute. But we only have
cold function attribute in LLVM IR.
This patch adds support of hot function attribute to LLVM IR. This
attribute will be used in setting function section prefix/suffix.
Currently .hot and .unlikely suffix only are added in PGO (Sample PGO)
compilation (through isFunctionHotInCallGraph and
isFunctionColdInCallGraph).
This patch changes the behavior. The new behavior is:
(1) If the user annotates a function as hot or isFunctionHotInCallGraph
is true, this function will be marked as hot. Otherwise,
(2) If the user annotates a function as cold or
isFunctionColdInCallGraph is true, this function will be marked as
cold.
The changes are:
(1) user annotated function attribute will used in setting function
section prefix/suffix.
(2) hot attribute overwrites profile count based hotness.
(3) profile count based hotness overwrite user annotated cold attribute.
The intention for these changes is to provide the user a way to mark
certain function as hot in cases where training input is hard to cover
all the hot functions.
Differential Revision: https://reviews.llvm.org/D92493
Define ConstantData::PoisonValue.
Add support for poison value to LLLexer/LLParser/BitcodeReader/BitcodeWriter.
Add support for poison value to llvm-c interface.
Add support for poison value to OCaml binding.
Add m_Poison in PatternMatch.
Differential Revision: https://reviews.llvm.org/D71126
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.
When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.
In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
advantage of `dso_local_equivalent` for relative references
This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.
See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.
Differential Revision: https://reviews.llvm.org/D77248
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
This is needed to support fortran assumed rank arrays which
have runtime rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF TAG
DW_TAG_generic_subrange is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89218
For any newly added parse function, clang-tidy complains. New parse
functions are implicitly defined by a macro "Parse##CLASS(N, IsDistinct)".
Now this macro and exising function definitions are corrected (lower case
first character). Some other variable/function names are also corrected
to comply LLVM coding style.
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D90243
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
This adds the LLVM IR attribute `mustprogress` as defined in LangRef through D86233. This attribute will be applied to functions with in languages like C++ where forward progress is guaranteed. Functions without this attribute are not required to make progress.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D85393
This patch adds support for DWARF attribute DW_AT_rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF attribute
DW_AT_rank is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89141
This is an alternate fix (see D87835) for a bug where a NaN constant
gets wrongly transformed into Infinity via truncation.
In this patch, we uniformly convert any SNaN to QNaN while raising
'invalid op'.
But we don't have a way to directly specify a 32-bit SNaN value in LLVM IR,
so those are always encoded/decoded by calling convert from/to 64-bit hex.
See D88664 for a clang fix needed to allow this change.
Differential Revision: https://reviews.llvm.org/D88238
This reverts commit 55c4ff91bd.
Issues were introduced as discussed in https://reviews.llvm.org/D88241
where this change made previous bugs in the linker and BitCodeWriter
visible.
Make the corresponding change that was made for byval in
b7141207a4. Like byval, this requires a
bulk update of the test IR tests to include the type before this can
be mandatory.
This patch adds support for representing Fortran `character(n)`.
Primarily patch is based out of D54114 with appropriate modifications.
Test case IR is generated using our downstream classic-flang. We're in process
of upstreaming flang PR's but classic-flang has dependencies on llvm, so
this has to get in first.
Patch includes functional test case for both IR and corresponding
dwarf, furthermore it has been manually tested as well using GDB.
Source snippet:
```
program assumedLength
call sub('Hello')
call sub('Goodbye')
contains
subroutine sub(string)
implicit none
character(len=*), intent(in) :: string
print *, string
end subroutine sub
end program assumedLength
```
GDB:
```
(gdb) ptype string
type = character (5)
(gdb) p string
$1 = 'Hello'
```
Reviewed By: aprantl, schweitz
Differential Revision: https://reviews.llvm.org/D86305
This avoid GUID lookup in Index.findSummaryInModule.
Follow up for D81242.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D85269
Forked from pr/46523, we were having a hard time running llvm-extract on
IR from a thinLTO build of the Linux kernel.
$ llvm-extract --func jeq_imm jit-42f488b63a04fdaa931315bdadecb6d23e20529a.ll
llvm-extract: jit-42f488b63a04fdaa931315bdadecb6d23e20529a.ll:47463:8:
error: Expected 'gv', 'module', or 'typeid' at the start of summary
entry
^209 = flags: 8
^
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D82917
Summary:
This support is needed for the Fortran array variables with pointer/allocatable
attribute. This support enables debugger to identify the status of variable
whether that is currently allocated/associated.
for pointer array (before allocation/association)
without DW_AT_associated
(gdb) pt ptr
type = integer (140737345375288:140737354129776)
(gdb) p ptr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_associated
(gdb) pt ptr
type = integer (:)
(gdb) p ptr
$1 = <not associated>
for allocatable array (before allocation)
without DW_AT_allocated
(gdb) pt arr
type = integer (140737345375288:140737354129776)
(gdb) p arr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_allocated
(gdb) pt arr
type = integer, allocatable (:)
(gdb) p arr
$1 = <not allocated>
Testing
- unit test cases added
- check-llvm
- check-debuginfo
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83544
This allows tracking the in-memory type of a pointer argument to a
function for ABI purposes. This is essentially a stripped down version
of byval to remove some of the stack-copy implications in its
definition.
This includes the base IR changes, and some tests for places where it
should be treated similarly to byval. Codegen support will be in a
future patch.
My original attempt at solving some of these problems was to repurpose
byval with a different address space from the stack. However, it is
technically permitted for the callee to introduce a write to the
argument, although nothing does this in reality. There is also talk of
removing and replacing the byval attribute, so a new attribute would
need to take its place anyway.
This is intended avoid some optimization issues with the current
handling of aggregate arguments, as well as fixes inflexibilty in how
frontends can specify the kernel ABI. The most honest representation
of the amdgpu_kernel convention is to expose all kernel arguments as
loads from constant memory. Today, these are raw, SSA Argument values
and codegen is responsible for turning these into loads.
Background:
There currently isn't a satisfactory way to represent how arguments
for the amdgpu_kernel calling convention are passed. In reality,
arguments are passed in a single, flat, constant memory buffer
implicitly passed to the function. It is also illegal to call this
function in the IR, and this is only ever invoked by a driver of some
kind.
It does not make sense to have a stack passed parameter in this
context as is implied by byval. It is never valid to write to the
kernel arguments, as this would corrupt the inputs seen by other
dispatches of the kernel. These argumets are also not in the same
address space as the stack, so a copy is needed to an alloca. From a
source C-like language, the kernel parameters are invisible.
Semantically, a copy is always required from the constant argument
memory to a mutable variable.
The current clang calling convention lowering emits raw values,
including aggregates into the function argument list, since using
byval would not make sense. This has some unfortunate consequences for
the optimizer. In the aggregate case, we end up with an aggregate
store to alloca, which both SROA and instcombine turn into a store of
each aggregate field. The optimizer never pieces this back together to
see that this is really just a copy from constant memory, so we end up
stuck with expensive stack usage.
This also means the backend dictates the alignment of arguments, and
arbitrarily picks the LLVM IR ABI type alignment. By allowing an
explicit alignment, frontends can make better decisions. For example,
there's real no advantage to an aligment higher than 4, so a frontend
could choose to compact the argument layout. Similarly, there is a
high penalty to using an alignment lower than 4, so a frontend could
opt into more padding for small arguments.
Another design consideration is when it is appropriate to expose the
fact that these arguments are all really passed in adjacent
memory. Currently we have a late IR optimization pass in codegen to
rewrite the kernel argument values into explicit loads to enable
vectorization. In most programs, unrelated argument loads can be
merged together. However, exposing this property directly from the
frontend has some disadvantages. We still need a way to track the
original argument sizes and alignments to report to the driver. I find
using some side-channel, metadata mechanism to track this
unappealing. If the kernel arguments were exposed as a single buffer
to begin with, alias analysis would be unaware that the padding bits
betewen arguments are meaningless. Another family of problems is there
are still some gaps in replacing all of the available parameter
attributes with metadata equivalents once lowered to loads.
The immediate plan is to start using this new attribute to handle all
aggregate argumets for kernels. Long term, it makes sense to migrate
all kernel arguments, including scalars, to be passed indirectly in
the same manner.
Additional context is in D79744.
This restores commit 80d0a137a5, and the
follow on fix in 873c0d0786, with a new
fix for test failures after a 2-stage clang bootstrap, and a more robust
fix for the Chromium build failure that an earlier version partially
fixed. See also discussion on D75201.
Reviewers: evgeny777
Subscribers: mehdi_amini, Prazek, hiraditya, steven_wu, dexonsmith, arphaman, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73242
The `noundef` attribute indicates an argument or return value which
may never have an undef value representation.
This patch allows LLVM to parse the attribute.
Differential Revision: https://reviews.llvm.org/D83412
Every other value parameter attribute uses parentheses, so accept this
as the preferred modern syntax. Updating everything to use the new
syntax is left for a future change.
Only functions with floating-point return type accepts fast-math flags.
When adding such flags to function returning integer, we'll see a crash,
because there's still an undeleted value referencing the argument. This
patch manually removes the temporary instruction when error occurs.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D78355
Summary:
This patch adds optional field into function summary,
implements asm and bitcode serialization. YAML
serialization is omitted and can be added later if
needed.
This patch includes this information into summary only
if module contains at least one sanitize_memtag function.
In a near future MTE is the user of the analysis.
Later if needed we can provede more direct control
on when information is included into summary.
Reviewers: eugenis
Subscribers: hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80908
Summary:
Count the per-module number of basic blocks when the module summary is computed
and sum them up during Thin LTO indexing.
This is used to estimate the working set size under the partial sample PGO.
This is split off of D79831.
Reviewers: davidxl, espindola
Subscribers: emaste, inglorion, hiraditya, MaskRay, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80403
This patch upgrades DISubrange to support fortran requirements.
Summary:
Below are the updates/addition of fields.
lowerBound - Now accepts signed integer or DIVariable or DIExpression,
earlier it accepted only signed integer.
upperBound - This field is now added and accepts signed interger or
DIVariable or DIExpression.
stride - This field is now added and accepts signed interger or
DIVariable or DIExpression.
This is required to describe bounds of array which are known at runtime.
Testing:
unit test cases added (hand-written)
check clang
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D80197
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
If isSized is passed a SmallPtrSet, it uses that set to catch infinitely
recursive types (for example, a struct that has itself as a member).
Otherwise, it just crashes on such types.
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
Summary:
The BFloat IR type is introduced to provide support for, initially, the BFloat16
datatype introduced with the Armv8.6 architecture (optional from Armv8.2
onwards). It has an 8-bit exponent and a 7-bit mantissa and behaves like an IEEE
754 floating point IR type.
This is part of a patch series upstreaming Armv8.6 features. Subsequent patches
will upstream intrinsics support and C-lang support for BFloat.
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, sdesmalen, deadalnix, ctetreau
Subscribers: hiraditya, llvm-commits, danielkiss, arphaman, kristof.beyls, dexonsmith
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78190
This patch adds support for DWARF attribute DW_AT_data_location.
Summary:
Dynamic arrays in fortran are described by array descriptor and
data allocation address. Former is mapped to DW_AT_location and
later is mapped to DW_AT_data_location.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79592
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
This patch extends DIModule Debug metadata in LLVM to support
Fortran modules. DIModule is extended to contain File and Line
fields, these fields will be used by Flang FE to create debug
information necessary for representing Fortran modules at IR level.
Furthermore DW_TAG_module is also extended to contain these fields.
If these fields are missing, debuggers like GDB won't be able to
show Fortran modules information correctly.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79484
We want to add a way to avoid merging identical calls so as to keep the
separate debug-information for those calls. There is also an asan
usecase where having this attribute would be beneficial to avoid
alternative work-arounds.
Here is the link to the feature request:
https://bugs.llvm.org/show_bug.cgi?id=42783.
`nomerge` is different from `noline`. `noinline` prevents function from
inlining at callsites, but `nomerge` prevents multiple identical calls
from being merged into one.
This patch adds `nomerge` to disable the optimization in IR level. A
followup patch will be needed to let backend understands `nomerge` and
avoid tail merge at backend.
Reviewed By: asbirlea, rnk
Differential Revision: https://reviews.llvm.org/D78659
Add llvm.call.preallocated.{setup,arg} instrinsics.
Add "preallocated" operand bundle which takes a token produced by llvm.call.preallocated.setup.
Add "preallocated" parameter attribute, which is like byval but without the copy.
Verifier changes for these IR constructs.
See https://github.com/rnk/llvm-project/blob/call-setup-docs/llvm/docs/CallSetup.md
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74651
Recommits c51b45e32e
Reverted in b350c666ab due to some
(Google-internal) regressions I cannot reproduce... (so we'll see if
they reproduce this time around)
This will allow us to use the datalayout to disambiguate other
constructs in IR, like load alignment. Split off from D78403.
Differential Revision: https://reviews.llvm.org/D78413
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77274
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
In order for dsymutil to collect .apinotes files (which capture
attributes such as nullability, Swift import names, and availability),
I want to propose adding an apinotes: field to DIModule that gets
translated into a DW_AT_LLVM_apinotes (path) nested inside
DW_TAG_module. This will be primarily used by LLDB to indirectly
extract the Swift names of Clang declarations that were deserialized
from DWARF.
<rdar://problem/59514626>
Differential Revision: https://reviews.llvm.org/D75585
This is part of PR44213 https://bugs.llvm.org/show_bug.cgi?id=44213
When importing (system) Clang modules, LLDB needs to know which SDK
(e.g., MacOSX, iPhoneSimulator, ...) they came from. While the sysroot
attribute contains the absolute path to the SDK, this doesn't work
well when the debugger is run on a different machine than the
compiler, and the SDKs are installed in different directories. It thus
makes sense to just store the name of the SDK instead of the absolute
path, so it can be found relative to LLDB.
rdar://problem/51645582
Differential Revision: https://reviews.llvm.org/D75646
This reverts commit 80d0a137a5, and the
follow on fix in 873c0d0786. It is
causing test failures after a multi-stage clang bootstrap. See
discussion on D73242 and D75201.
in C++ templates."
This was reverted in 802b22b5c8 due to
missing .bc file and a chromium bot failure.
https://bugs.chromium.org/p/chromium/issues/detail?id=1057559#c1
This revision address both of them.
Summary:
This patch adds support for debuginfo generation for defaulted
parameters in clang and also extends corresponding DebugMetadata/IR to support this feature.
Reviewers: probinson, aprantl, dblaikie
Reviewed By: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D73462
The Bitcode/DITemplateParameter-5.0.ll test is failing:
FAIL: LLVM :: Bitcode/DITemplateParameter-5.0.ll (5894 of 36324)
******************** TEST 'LLVM :: Bitcode/DITemplateParameter-5.0.ll' FAILED ********************
Script:
--
: 'RUN: at line 1'; /usr/local/google/home/thakis/src/llvm-project/out/gn/bin/llvm-dis -o - /usr/local/google/home/thakis/src/llvm-project/llvm/test/Bitcode/DITemplateParameter-5.0.ll.bc | /usr/local/google/home/thakis/src/llvm-project/out/gn/bin/FileCheck /usr/local/google/home/thakis/src/llvm-project/llvm/test/Bitcode/DITemplateParameter-5.0.ll
--
Exit Code: 2
Command Output (stderr):
--
It looks like the Bitcode/DITemplateParameter-5.0.ll.bc file was never checked in.
This reverts commit c2b437d53d.
in C++ templates.
Summary:
This patch adds support for debuginfo generation for defaulted
parameters in clang and also extends corresponding DebugMetadata/IR to support this feature.
Reviewers: probinson, aprantl, dblaikie
Reviewed By: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D73462
Summary:
Terminators in LLVM aren't prohibited from returning values. This means that
the "callbr" instruction, which is used for "asm goto", can support "asm goto
with outputs."
This patch removes all restrictions against "callbr" returning values. The
heavy lifting is done by the code generator. The "INLINEASM_BR" instruction's
a terminator, and the code generator doesn't allow non-terminator instructions
after a terminator. In order to correctly model the feature, we need to copy
outputs from "INLINEASM_BR" into virtual registers. Of course, those copies
aren't terminators.
To get around this issue, we split the block containing the "INLINEASM_BR"
right before the "COPY" instructions. This results in two cheats:
- Any physical registers defined by "INLINEASM_BR" need to be marked as
live-in into the block with the "COPY" instructions. This violates an
assumption that physical registers aren't marked as "live-in" until after
register allocation. But it seems as if the live-in information only
needs to be correct after register allocation. So we're able to get away
with this.
- The indirect branches from the "INLINEASM_BR" are moved to the "COPY"
block. This is to satisfy PHI nodes.
I've been told that MLIR can support this handily, but until we're able to
use it, we'll have to stick with the above.
Reviewers: jyknight, nickdesaulniers, hfinkel, MaskRay, lattner
Reviewed By: nickdesaulniers, MaskRay, lattner
Subscribers: rriddle, qcolombet, jdoerfert, MatzeB, echristo, MaskRay, xbolva00, aaron.ballman, cfe-commits, JonChesterfield, hiraditya, llvm-commits, rnk, craig.topper
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D69868
This restores commit 748bb5a0f1, along
with a fix for a Chromium test suite build issue (and a new test for
that case).
Differential Revision: https://reviews.llvm.org/D73242
Summary:
Currently type test assume sequences inserted for devirtualization are
removed during WPD. This patch delays their removal until later in the
optimization pipeline. This is an enabler for upcoming enhancements to
indirect call promotion, for example streamlined promotion guard
sequences that compare against vtable address instead of the target
function, when there are small number of possible vtables (either
determined via WPD or by in-progress type profiling). We need the type
tests to correlate the callsites with the address point offset needed in
the compare sequence, and optionally to associated type summary info
computed during WPD.
This depends on work in D71913 to enable invocation of LowerTypeTests to
drop type test assume sequences, which will now be invoked following ICP
in the ThinLTO post-LTO link pipelines, and also after the existing
export phase LowerTypeTests invocation in regular LTO (which is already
after ICP). We cannot simply move the existing import phase
LowerTypeTests pass later in the ThinLTO post link pipelines, as the
comment in PassBuilder.cpp notes (it must run early because when
performing CFI other passes may disturb the sequences it looks for).
This necessitated adding a new type test resolution "Unknown" that we
can use on the type test assume sequences previously removed by WPD,
that we now want LTT to ignore.
Depends on D71913.
Reviewers: pcc, evgeny777
Subscribers: mehdi_amini, Prazek, hiraditya, steven_wu, dexonsmith, arphaman, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73242
Summary:
* Most of the simplifications in SimplifyShuffleVectorInst depend on the
concrete value of, or the length of the mask vector. For scalable
vectors, this cannot be known at compile time.
** for these tests, detect if the vector is scalable before attempting
the transformation
* The functions ShuffleVectorInst::getMaskValue and
ShuffleVectorInst::getShuffleMask access the value of the constant mask.
However, since the length of the mask is unknown at compile time, these
function do not work for scalable vectors. Add asserts to ensure that
the input mask is not scalable
Reviewers: efriedma, sdesmalen, apazos, chrisj, huihuiz
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73555
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
Second patch in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
Summarize vcall_visibility metadata in ThinLTO global variable summary.
Depends on D71907.
Reviewers: pcc, evgeny777, steven_wu
Subscribers: mehdi_amini, Prazek, inglorion, hiraditya, dexonsmith, arphaman, ostannard, llvm-commits, cfe-commits, davidxl
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71911
[this re-applies c0176916a4
with the correct commit message and phabricator link]
This addresses point 1 of PR44213.
https://bugs.llvm.org/show_bug.cgi?id=44213
The DW_AT_LLVM_sysroot attribute is used for Clang module debug info,
to allow LLDB to import a Clang module from source. Currently it is
part of each DW_TAG_module, however, it is the same for all modules in
a compile unit. It is more efficient and less ambiguous to store it
once in the DW_TAG_compile_unit.
This should have no effect on DWARF consumers other than LLDB.
Differential Revision: https://reviews.llvm.org/D71732
This is a purely cosmetic change that is NFC in terms of the binary
output. I bugs me that I called the attribute DW_AT_LLVM_isysroot
since the "i" is an artifact of GCC command line option syntax
(-isysroot is in the category of -i options) and doesn't carry any
useful information otherwise.
This attribute only appears in Clang module debug info.
Differential Revision: https://reviews.llvm.org/D71722
This patch imports constant variables even when they can't be internalized
(which results in promotion). This offers some extra constant folding
opportunities.
Differential revision: https://reviews.llvm.org/D70404
Summary:
Remove the restrictions that preventing "asm goto" from returning non-void
values. The values returned by "asm goto" are only valid on the "fallthrough"
path.
Reviewers: jyknight, nickdesaulniers, hfinkel
Reviewed By: jyknight, nickdesaulniers
Subscribers: rsmith, hiraditya, llvm-commits, cfe-commits, craig.topper, rnk
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69876
Seeing some curious CFI failures internally - which makes little sense
to me, as I don't think anyone is using this flag (even us,
internally)... so sounds like a bug in my code somewhere (possibly a
latent one that propagating this flag exposed, not sure). Reverting
while I investigate.
This reverts commit c51b45e32e.
This is a purely cosmetic change that is NFC in terms of the binary
output. I bugs me that I called the attribute DW_AT_LLVM_isysroot
since the "i" is an artifact of GCC command line option syntax
(-isysroot is in the category of -i options) and doesn't carry any
useful information otherwise.
This attribute only appears in Clang module debug info.
Differential Revision: https://reviews.llvm.org/D71722
Summary:
This patch redefines freeze instruction from being UnaryOperator to a subclass of UnaryInstruction.
ConstantExpr freeze is removed, as discussed in the previous review.
FreezeOperator is not added because there's no ConstantExpr freeze.
`freeze i8* null` test is added to `test/Bindings/llvm-c/freeze.ll` as well, because the null pointer-related bug in `tools/llvm-c/echo.cpp` is now fixed.
InstVisitor has visitFreeze now because freeze is not unaryop anymore.
Reviewers: whitequark, deadalnix, craig.topper, jdoerfert, lebedev.ri
Reviewed By: craig.topper, lebedev.ri
Subscribers: regehr, nlopes, mehdi_amini, hiraditya, steven_wu, dexonsmith, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69932
Summary: A user can force a function to be inlined by specifying the always_inline attribute. Currently, thinlto implementation is not aware of always_inline functions and does not guarantee import of such functions, which in turn can prevent inlining of such functions.
Patch by Bharathi Seshadri <bseshadr@cisco.com>
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70014
Summary:
This extends the rules for when a call instruction is deemed to be an
FPMathOperator, which is based on the type of the call (i.e. the return
type of the function being called). Previously we only allowed
floating-point and vector-of-floating-point types. Now we also allow
arrays (nested to any depth) of floating-point and
vector-of-floating-point types.
This was motivated by llpc, the pipeline compiler for AMD GPUs
(https://github.com/GPUOpen-Drivers/llpc). llpc has many math library
functions that operate on vectors, typically represented as <4 x float>,
and some that operate on matrices, typically represented as
[4 x <4 x float>], and it's useful to be able to decorate calls to all
of them with fast math flags.
Reviewers: spatel, wristow, arsenm, hfinkel, aemerson, efriedma, cameron.mcinally, mcberg2017, jmolloy
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69161
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
When the target option GuaranteedTailCallOpt is specified, calls with
the fastcc calling convention will be transformed into tail calls if
they are in tail position. This diff adds a new calling convention,
tailcc, currently supported only on X86, which behaves the same way as
fastcc, except that the GuaranteedTailCallOpt flag does not need to
enabled in order to enable tail call optimization.
Patch by Dwight Guth <dwight.guth@runtimeverification.com>!
Reviewed By: lebedev.ri, paquette, rnk
Differential Revision: https://reviews.llvm.org/D67855
llvm-svn: 373976
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917 <https://reviews.llvm.org/D61917>
As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086
The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535
But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.
The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.
Differential Revision: https://reviews.llvm.org/D67564
llvm-svn: 372878
The changes here are based on the corresponding diffs for allowing FMF on 'select':
D61917
As discussed there, we want to have fast-math-flags be a property of an FP value
because the alternative (having them on things like fcmp) leads to logical
inconsistency such as:
https://bugs.llvm.org/show_bug.cgi?id=38086
The earlier patch for select made almost no practical difference because most
unoptimized conditional code begins life as a phi (based on what I see in clang).
Similarly, I don't expect this patch to do much on its own either because
SimplifyCFG promptly drops the flags when converting to select on a minimal
example like:
https://bugs.llvm.org/show_bug.cgi?id=39535
But once we have this plumbing in place, we should be able to wire up the FMF
propagation and start solving cases like that.
The change to RecurrenceDescriptor::AddReductionVar() is required to prevent a
regression in a LoopVectorize test. We are intersecting the FMF of any
FPMathOperator there, so if a phi is not properly annotated, new math
instructions may not be either. Once we fix the propagation in SimplifyCFG, it
may be safe to remove that hack.
Differential Revision: https://reviews.llvm.org/D67564
llvm-svn: 372866
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.
Also modifies the parser to accept IR in that form for obvious reasons.
llvm-svn: 367755
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
Introduce and deduce "nosync" function attribute to indicate that a function
does not synchronize with another thread in a way that other thread might free memory.
Reviewers: jdoerfert, jfb, nhaehnle, arsenm
Subscribers: wdng, hfinkel, nhaenhle, mehdi_amini, steven_wu,
dexonsmith, arsenm, uenoku, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D62766
llvm-svn: 365830
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D49165
llvm-svn: 365336
Reintroduces the scalable vector IR type from D32530, after it was reverted
a couple of times due to increasing chromium LTO build times. This latest
incarnation removes the walk over aggregate types from the verifier entirely,
in favor of rejecting scalable vectors in the isValidElementType methods in
ArrayType and StructType. This removes the 70% degradation observed with
the second repro tarball from PR42210.
Reviewers: thakis, hans, rengolin, sdesmalen
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D64079
llvm-svn: 365203