It originally triggered a stepping problem in the debugger, which could
be fixed by adjusting CodeGen/LexicalScopes.cpp however it seems we prefer
the previous behavior anyway.
See the discussion for details: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181008/593833.html
This reverts commit r343880.
This reverts commit r343874.
llvm-svn: 344318
DWARF v5 introduces DW_AT_call_all_calls, a subprogram attribute which
indicates that all calls (both regular and tail) within the subprogram
have call site entries. The information within these call site entries
can be used by a debugger to populate backtraces with synthetic tail
call frames.
Tail calling frames go missing in backtraces because the frame of the
caller is reused by the callee. Call site entries allow a debugger to
reconstruct a sequence of (tail) calls which led from one function to
another. This improves backtrace quality. There are limitations: tail
recursion isn't handled, variables within synthetic frames may not
survive to be inspected, etc. This approach is not novel, see:
https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=get&target=jelinek.pdf
This patch adds an IR-level flag (DIFlagAllCallsDescribed) which lowers
to DW_AT_call_all_calls. It adds the minimal amount of DWARF generation
support needed to emit standards-compliant call site entries. For easier
deployment, when the debugger tuning is LLDB, the DWARF requirement is
adjusted to v4.
Testing: Apart from check-{llvm, clang}, I built a stage2 RelWithDebInfo
clang binary. Its dSYM passed verification and grew by 1.4% compared to
the baseline. 151,879 call site entries were added.
rdar://42001377
Differential Revision: https://reviews.llvm.org/D49887
llvm-svn: 343883
Context: Compiler generated instructions do not have a debug location
assigned to them. However emitting 0-line records for all of them bloats
the line tables for very little benefit so we usually avoid doing that.
Not emitting anything will lead to the previous debug location getting
applied to the locationless instructions. This is not desirable for
block begin and after labels. Previously we would emit simply emit
line-0 records in this case, this patch changes the behavior to do a
forward search for a debug location in these cases before emitting a
line-0 record to further reduce line table bloat.
Inspired by the discussion in https://reviews.llvm.org/D52862
llvm-svn: 343874
Currently, we emit DW_AT_addr_base that points to the beginning of
the .debug_addr section. That is not correct for the DWARF5 case because address
table contains the header and the attribute should point to the first entry
following the header.
This is currently the reason why LLDB does not work with such executables correctly.
Patch fixes the issue.
Differential revision: https://reviews.llvm.org/D52168
llvm-svn: 342635
std::vector::iterator type may be a pointer, then
iterator::value_type fails to compile since iterator is not a class,
namespace, or enumeration.
Patch by orivej (Orivej Desh)
Differential Revision: https://reviews.llvm.org/D52142
llvm-svn: 342354
In DwarfDebug::collectEntityInfo(), if the label entity is processed in
DbgLabels list, it means the label is not optimized out. There is no
need to generate debug info for it with null position.
llvm-svn: 341513
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 340039
In cases where the debugger load time is a worthwhile tradeoff (or less
costly - such as loading from a DWP instead of a variety of DWOs
(possibly over a high-latency/distributed filesystem)) against object
file size, it can be reasonable to disable pubnames and corresponding
gdb-index creation in the linker.
A backend-flag version of this was implemented for NVPTX in
D44385/r327994 - which was fine for NVPTX which wouldn't mix-and-match
CUs. Now that it's going to be a user-facing option (likely powered by
"-gno-pubnames", the same as GCC) it should be encoded in the
DICompileUnit so it can vary per-CU.
After this, likely the NVPTX support should be migrated to the metadata
& the previous flag implementation should be removed.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D50213
llvm-svn: 339939
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 339676
When using APPLE extensions, don't duplicate the compiler invocation's
flags both in AT_producer and AT_APPLE_flags.
Differential revision: https://reviews.llvm.org/D50453
llvm-svn: 339268
Summary:
The accelerator tables use the debug_str section to store their strings.
However, they do not support the indirect method of access that is
available for the debug_info section (DW_FORM_strx et al.).
Currently our code is assuming that all strings can/will be referenced
indirectly, and puts all of them into the debug_str_offsets section.
This is generally true for regular (unsplit) dwarf, but in the DWO case,
most of the strings in the debug_str section will only be used from the
accelerator tables. Therefore the contents of the debug_str_offsets
section will be largely unused and bloating the main executable.
This patch rectifies this by teaching the DwarfStringPool to
differentiate between strings accessed directly and indirectly. When a
user inserts a string into the pool it has to declare whether that
string will be referenced directly or not. If at least one user requsts
indirect access, that string will be assigned an index ID and put into
debug_str_offsets table. Otherwise, the offset table is skipped.
This approach reduces the overall binary size (when compiled with
-gdwarf-5 -gsplit-dwarf) in my tests by about 2% (debug_str_offsets is
shrunk by 99%).
Reviewers: probinson, dblaikie, JDevlieghere
Subscribers: aprantl, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D49493
llvm-svn: 339122
Summary:
Added an option that allows to emit only '.loc' and '.file' kind debug
directives, but disables emission of the DWARF sections. Required for
NVPTX target to support profiling. It requires '.loc' and '.file'
directives, but does not require any DWARF sections for the profiler.
Reviewers: probinson, echristo, dblaikie
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46021
llvm-svn: 338616
Getting the DWARF types section is only implemented for ELF object
files. We already disabled emitting debug types in clang (r337717), but
now we also report an fatal error (rather than crashing) when trying to
obtain this section in MC. Additionally we ignore the generate debug
types flag for unsupported target triples.
See PR38190 for more information.
Differential revision: https://reviews.llvm.org/D50057
llvm-svn: 338527
This revision implements support for generating DWARFv5 .debug_addr section.
The implementation is pretty straight-forward: we just check the dwarf version
and emit section header if needed.
Reviewers: aprantl, dblaikie, probinson
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D50005
llvm-svn: 338487
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 338390
The test failure was caused by the compiler not emitting a __debug_ranges section with DWARF 4 and
earlier when no ranges are needed. The test checks for the existence regardless.
llvm-svn: 338081
Previous version of this patch failed on darwin targets because of
different handling of cross-debug-section relocations. This fixes the
tests to emit the DW_AT_str_offsets_base attribute correctly in both
cases. Since doing this is a non-trivial amount of code, and I'm going
to need it in more than one test, I've added a helper function to the
dwarfgen DIE class to do it.
Original commit message follows:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 338031
This recommits r337910 after fixing an "ambiguous call to addAttribute"
error with some compilers (gcc circa 4.9 and MSVC). It seems that these
compilers will consider a "false -> pointer" conversion during overload
resolution. This creates ambiguity because one I added an overload which
takes a MCExpr * as an argument.
I fix this by making the new overload take MCExpr&, which avoids the
conversion. It also documents the fact that we expect a valid MCExpr
object.
Original commit message follows:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 337933
This reverts commit r337910 as it's generating "ambiguous call to
addAttribute" errors on some bots.
Will resubmit once I get a chance to look into the problem.
llvm-svn: 337924
Summary:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 337910
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
Differential Revision: https://reviews.llvm.org/D45556
Patch by Hsiangkai Wang.
llvm-svn: 337799
Summary:
Each of the four methods had a dozen lines and was doing almost exactly
the same thing: get the appropriate accelerator table kind and insert an
entry into it. I move this common logic to a helper function and make
these methods delegate to it.
This came up in the context of D49493, where I've needed to make adding
a string to a string pool slightly more complicated, and it seemed to
make sense to do it in one place instead of five.
To make this work I've needed to unify the interface of the AccelTable
data types, as some used to store DIE& and others DIE*. I chose to unify
to a reference as that's what the caller uses.
This technically isn't NFC, because it changes the StringPool used for
apple tables in the DWO case (now it uses the main file like DWARF v5
instead of the DWO file). However, that shouldn't matter, as DWO is not
a thing on apple targets (clang frontend simply ignores -gsplit-dwarf).
Reviewers: JDevlieghere, aprantl, probinson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49542
llvm-svn: 337562
Summary:
This patch makes us generate the debug_names section in response to some
user-facing commands (previously it was only generated if explicitly
selected via the -accel-tables option).
My goal was to make this work for DWARF>=5 (as it's an official part of
that standard), and also, as an extension, for DWARF<5 if one is
explicitly tuning for lldb as a debugger (because it brings a large
performance improvement there).
This is slightly complicated by the fact that the debug_names tables are
incompatible with the DWARF v4 type units (they assume that the type
units are in the debug_info section), and unfortunately, right now we
generate DWARF v4-style type units even for -gdwarf-5. For this reason,
I disable all accelerator tables if the user requested type unit
generation. I do this even for apple tables, as they have the same
problem (in fact generating type units for apple targets makes us crash
even before we get around to emitting the accelerator tables).
Reviewers: JDevlieghere, aprantl, dblaikie, echristo, probinson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49420
llvm-svn: 337544
Since DWARFv5 rnglists are self descriptive and have distinct encodings
for base-relative (offset_pair) and absolute (start_length) entries,
there's no need to use a base address specifier when describing a lone
address range in a section.
Use that, and improve the test coverage a bit here to include cases like
this and others.
llvm-svn: 337411
and no use of DW_FORM_rnglistx with the DW_AT_ranges attribute.
Reviewer: aprantl
Differential Revision: https://reviews.llvm.org/D49214
llvm-svn: 336927
This is prep for DWARF v5 range list emission. Emission of a single range list is moved
to a static helper function.
Reviewer: jdevlieghere
Differential Revision: https://reviews.llvm.org/D49098
llvm-svn: 336621
Summary:
.debug_loc section is not supported for NVPTX target. If there is an
object whose location can change during its lifetime, we do not generate
debug location info for this variable.
Reviewers: echristo
Subscribers: jholewinski, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48730
llvm-svn: 335976
Remove unused ByteStreamer argument from function emitDebugLocValue.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D48590
llvm-svn: 335811
In DWARF v5, the DWO ID is in the (split/skeleton) CU header, not an
attribute on the CU DIE.
This changes the size of those headers, so use the parsed size whenever
we have one, for simplicitly.
Differential Revision: https://reviews.llvm.org/D47158
llvm-svn: 333004
This reapplies commits: r330271, r330592, r330779.
[DEBUG] Initial adaptation of NVPTX target for debug info emission.
Summary:
Patch adds initial emission of the debug info for NVPTX target.
Currently, only .file and .loc directives are emitted, everything else is
commented out to not break the compilation of Cuda.
llvm-svn: 332689
Summary:
If we are not emitting a linkage name in the .debug_info sections, we
should not add it into the index either. This makes sure our index is
consistent with the actual debug info.
I am also explicitly setting the --dwarf-linkage-names=All in the
name-collsions test as that one would now fail on targets where this
defaults to "Abstract" (in fact, it would have failed already if there
wasn't a bug in the DWARF verifier, which I fix as well).
Reviewers: probinson, aprantl, JDevlieghere
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46748
llvm-svn: 332246
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
This appears to have some issues associated with the file directive output
causing multiple global symbols with the name "file" to be emitted into a
startup section. I'm investigating more specific causes and working with the
original author.
This reverts commit r330271.
Also Revert "[DEBUGINFO, NVPTX] Add the test for the debug info of the local"
This reverts commit r330592 and the follow up of 330779 as the testcase is dependent upon r330271.
llvm-svn: 331237
Summary:
Patch adds initial emission of the debug info for NVPTX target.
Currently, only .file and .loc directives are emitted, everything else is
commented out to not break the compilation of Cuda.
Reviewers: echristo, jlebar, tra, jholewinski
Subscribers: mgorny, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41827
llvm-svn: 330271
Summary:
Previously we crashed for the combination of the two features because we
tried to reference the dwo CU from the main object file. The fix
consists of two items:
- reference the skeleton CU from the name index (the consumer is
expected to use the skeleton CU to find the real data).
- use the main object file string pool for the strings in the index
Reviewers: JDevlieghere, aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45566
llvm-svn: 330249
Summary:
If an input DICompileUnit is completely empty (e.g., the result of
running "clang -g" on an empty file), we don't bother emitting an empty
DWARF CU. When we do that, we must make sure we don't also emit a DWARF v5
name index, as DWARF specifies that each index must reference at least
one compilation unit.
Reviewers: JDevlieghere, aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45435
llvm-svn: 329575
Summary:
We were emitting accelerator entries for functions with no name, which
is contrary to the DWARF v5 spec: "All other (i.e., *not*
DW_TAG_namespace) debugging information entries without a DW_AT_name
attribute are excluded." Besides that, a name table entry with an empty
string as a key is fairly useless.
We can sometimes end up with functions which have a DW_AT_linkage_name but no
DW_AT_name. One such example is the global-constructor-initialization functions,
which C++ compilers synthesize for each compilation unit with global
constructors.
A very strict reading of the DWARF v5 spec would suggest that we should not even
emit the accelerator entry for the linkage name in this case, but I don't think
we should go that far.
I found this when running the dwarf verifier over llvm codebase compiled
with DWARF v5 accelerator tables.
Reviewers: JDevlieghere, aprantl, dblaikie
Subscribers: vleschuk, clayborg, echristo, probinson, llvm-commits
Differential Revision: https://reviews.llvm.org/D45367
llvm-svn: 329552
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: bogner, rnk, MatzeB, RKSimon
Reviewed By: rnk
Subscribers: JDevlieghere, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D45133
llvm-svn: 329435
Some compilers do not like having an enum type and a variable with the
same name (AccelTableKind). I rename the variable to TheAccelTableKind.
Suggestions for a better name welcome.
llvm-svn: 329202
- MSVC was not OK with a static_assert referencing a non-static member
variable, even though it was just in a sizeof(expression). I move the
assert into the emit function, where it is probably more useful.
- Tests were failing in builds which did not have the X86 target
configured. Since this functionality is not target-specific, I have
removed the target specifiers from the .ll files.
llvm-svn: 329201
Summary:
This patch adds a DwarfAccelTableEmitter class, which generates an
accelerator table, as specified in DWARF v5 standard. At the moment it
only generates a DIE offset column and (if we are indexing more than one
compile unit) a CU column.
Indexing type units is not currently supported, as we don't even have
the ability to generate DWARF v5-compatible compile units.
The implementation is not data-source agnostic like the one generating
apple tables. This was not necessary as we currently only have one user
of this code, and without a second user it was not obvious to me how to
best abstract this. (The difference between these tables and the apple
ones is that they need a lot more metadata about the debug info they are
indexing).
The generation is triggered by the --accel-tables argument, which
supersedes the --dwarf-accel-tables arg -- the latter was a simple
on-off switch, but not we can choose between two kinds of accelerator
tables we can generate.
This is tested by parsing the generated tables with llvm-dwarfdump and
the DWARFVerifier, and I've also checked that GNU readelf is able to
make sense of the tables.
Differential Revision: https://reviews.llvm.org/D43286
llvm-svn: 329179
DWARF v5 specifies that the root file (also given in the DW_AT_name
attribute of the compilation unit DIE) should be emitted explicitly to
the line table's list of files. This makes the line table more
independent of the .debug_info section.
We emit the new syntax only for DWARF v5 and later.
Fixes the bug found by asan. Also XFAIL the new test for Darwin, which
is stuck on DWARF v2, and fix up other tests so they stop failing on
Windows. Last but not least, don't break "clang -g" of an assembler
file that has .file directives in it.
Differential Revision: https://reviews.llvm.org/D44054
llvm-svn: 328805
This reverts commit r328676.
Commit r328676 broke the -no-integrated-as flag necessary to build Linux kernel with Clang:
$ cat t.c
void foo() {}
$ clang -no-integrated-as -c t.c -g
/tmp/t-dcdec5.s: Assembler messages:
/tmp/t-dcdec5.s:8: Error: file number less than one
clang-7.0: error: assembler command failed with exit code 1 (use -v to see invocation)
llvm-svn: 328699
DWARF v5 specifies that the root file (also given in the DW_AT_name
attribute of the compilation unit DIE) should be emitted explicitly to
the line table's list of files. This makes the line table more
independent of the .debug_info section.
Fixes the bug found by asan. Also XFAIL the new test for Darwin, which
is stuck on DWARF v2, and fix up other tests so they stop failing on
Windows. Last but not least, don't break "clang -g" of an assembler
file that has .file directives in it.
Differential Revision: https://reviews.llvm.org/D44054
llvm-svn: 328676
If a given split type unit does not have source locations, don't have
it refer to the split line table.
If no split type unit refers to the split line table, don't emit the
line table at all.
This will save a little space on rare occasions, but also refactors
things a bit to improve which class is responsible for what.
Responding to review comments on r326395.
Differential Revision: https://reviews.llvm.org/D44220
llvm-svn: 328670
Summary:
Some targets does not support labels inside debug sections, but support
references in form `section+offset`. Patch adds initial support
for this.
Reviewers: echristo, probinson, jlebar
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43943
llvm-svn: 328314
Summary:
Added a flag -no-dwarf-pub-sections, which allows to disable
emission of DWARF public sections.
Reviewers: probinson, echristo
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D44385
llvm-svn: 327994
Summary:
1) Make sure to discard dangling debug info if the variable (or
variable fragment) is mapped to something new before we had a
chance to resolve the dangling debug info.
2) When resolving debug info, make sure to bump the associated
SDNodeOrder to ensure that the DBG_VALUE is emitted after the
instruction that defines the value used in the DBG_VALUE.
This will avoid a debug-use before def scenario as seen in
https://bugs.llvm.org/show_bug.cgi?id=36417.
The new test case, test/DebugInfo/X86/sdag-dangling-dbgvalue.ll,
show some other limitations in how dangling debug info is
handled in the SelectionDAG. Since we currently only support
having one dangling dbg.value per Value, we will end up dropping
debug info when there are more than one variable that is described
by the same "dangling value".
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: aprantl, eraman, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44369
llvm-svn: 327303
Fixes the bug found by asan. Also XFAIL the new test for Darwin,
which is stuck on DWARF v2, and fix up other tests so they stop
failing on Windows.
llvm-svn: 326839
DWARF v5 specifies that the root file (also given in the DW_AT_name
attribute of the compilation unit DIE) should be emitted explicitly to
the line table's list of files. This makes the line table more
independent of the .debug_info section.
Differential Revision: https://reviews.llvm.org/D44054
llvm-svn: 326758
Summary:
Some targets does not support labels inside debug sections, but support
references in form `section +|- offset`. Patch adds initial support
for this. Also, this patch disables emission of all additional debug
sections that may have labels inside of it (like pub sections and
string tables).
Reviewers: probinson, echristo
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D43627
llvm-svn: 326328
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
Summary:
If there is no debug info for macros, do not emit labels for empty
macinfo sections.
Reviewers: probinson, echristo
Subscribers: aprantl, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43589
llvm-svn: 325803
Summary:
This commit separates the abstract accelerator table data structure
from the code for writing out an on-disk representation of a specific
accelerator table format. The idea is that former (now called
AccelTable<T>) can be reused for the DWARF v5 accelerator tables
as-is, without any further customizations.
Some bits of the emission code (now living in the EmissionContext class)
can be reused for DWARF v5 as well, but the subtle differences in the
layout of various subtables mean the sharing is not always possible.
(Also, the individual emit*** functions are fairly simple so there's a
tradeoff between making a bigger general-purpose function, and two
smaller targeted functions.)
Another advantage of this setup is that more of the serialization logic
can be hidden in the .cpp file -- I have moved declarations of the
header and all the emission functions there.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: echristo, clayborg, vleschuk, llvm-commits
Differential Revision: https://reviews.llvm.org/D43285
llvm-svn: 325516
The prologue-end line record must be emitted after the last
instruction that is part of the function frame setup code and before
the instruction that marks the beginning of the function body.
Patch by Carlos Alberto Enciso!
Differential Revision: https://reviews.llvm.org/D41762
llvm-svn: 325143
This patch renames DwarfAccelTable.{h,cpp} to AccelTable.{h,cpp} and
moves the header to the include dir so it is accessible by the
dsymutil implementation.
Differential revision: https://reviews.llvm.org/D42529
llvm-svn: 323654
This patch refactors the way data is stored in the accelerator table and
makes them truly generic. There have been several attempts to do this in
the past:
- D8215 & D8216: Using a union and partial hardcoding.
- D11805: Using inheritance.
- D42246: Using a callback.
In the end I didn't like either of them, because for some reason or
another parts of it felt hacky or decreased runtime performance. I
didn't want to completely rewrite them as I was hoping that we could
reuse parts for the successor in the DWARF standard. However, it seems
less and less likely that there will be a lot of opportunities for
sharing code and/or an interface.
Originally I choose to template the whole class, because it introduces
no performance overhead compared to the original implementation.
We ended up settling on a hybrid between a templated method and a
virtual call to emit the data. The motivation is that we don't want to
increase code size for a feature that should soon be superseded by the
DWARFv5 accelerator tables. While the code will continue to be used for
compatibility, it won't be on the hot path. Furthermore this does not
regress performance compared to Apple's internal implementation that
already uses virtual calls for this.
A quick summary for why these changes are necessary: dsymutil likes to
reuse the current implementation of the Apple accelerator tables.
However, LLDB expects a slightly different interface than what is
currently emitted. Additionally, in dsymutil we only have offsets and no
actual DIEs.
Although the patch suggests a lot of code has changed, this change is
pretty straightforward:
- We created an abstract class `AppleAccelTableData` to serve as an
interface for the different data classes.
- We created two implementations of this class, one for type tables and
one for everything else. There will be a third one for dsymutil that
takes just the offset.
- We use the supplied class to deduct the atoms for the header which
makes the structure of the table fully self contained, although not
enforced by the interface as was the case for the fully templated
approach.
- We renamed the prefix from DWARF- to Apple- to make space for the
future implementation of .debug_names.
This change is NFC and relies on the existing tests.
Differential revision: https://reviews.llvm.org/D42334
llvm-svn: 323653
Summary: This is the producer side for DWARF v5 string offsets tables. The reader/consumer
side was committed with r321295. All compile and type units in a module share a
contribution to the string offsets table. Indirect strings use the strx{1,2,3,4} index forms.
Reviewers: dblaikie, aprantl, JDevliegehere
Differential Revision: https://reviews.llvm.org/D42021
llvm-svn: 323546
Summary:
Currently -glldb turns on emission of apple tables on all targets, but
lldb is only really capable of consuming them on darwin. Furthermore,
making lldb consume these tables is not straight-forward because of the
differences in how the debug info is distributed on darwin vs. elf
targets.
The darwin debug model assumes that the debug info (along with
accelerator tables) will either remain in the .o files or it will be
linked into a dsym bundle by a linker that knows how to merge these
tables. In the elf world, all present linkers will simply concatenate
these accelerator tables into the shared object. Since the tables are
not self-terminating, this renders the tables unusable, as the debugger
cannot pry the individual tables apart anymore.
It might theoretically be possible to make the tables work with split
dwarf, as that is somewhat similar to the apple .o model, but
unfortunately right now the combination of -glldb and -gsplit-dwarf
produces broken object files.
Until these issues are resolved there is no point in emitting the apple
tables for these targets. At best, it wastes space; at worst, it breaks
compilation and prevents the user from getting other benefits of -glldb.
Reviewers: probinson, aprantl, dblaikie
Subscribers: emaste, dim, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D41986
llvm-svn: 322633
Pass MD5 checksums through from IR to assembly/object files.
After this, getting Clang to compute the MD5 should be the last step
to supporting MD5 in the DWARF v5 line table header.
Differential Revision: https://reviews.llvm.org/D41926
llvm-svn: 322391
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
The comparator passed to std::sort must provide a strict weak ordering;
otherwise, the behavior is undefined.
Fixes an assertion failure generating debug info for globals
split by GlobalOpt. I have a testcase, but not sure how to reduce it,
so not included here. (Someone else came up with a testcase, but I
can't reproduce the crash with it, presumably because my version of LLVM
ends up sorting the array differently.)
This isn't really a complete fix (see the FIXME in the patch), but at
least it doesn't have undefined behavior.
Differential Revision: https://reviews.llvm.org/D38830
llvm-svn: 315619
While this shouldn't be necessary anymore, we have cases where we run
into the assertion below, i.e. cases with two non-fragment entries for the
same variable at different frame indices.
This should be fixed, but for now, we should revert to a version that
does not trigger asserts.
llvm-svn: 315576
Some passes might duplicate calls to llvm.dbg.declare creating
duplicate frame index expression which currently trigger an assertion
which is meant to catch erroneous, overlapping fragment declarations.
But identical frame index expressions are just redundant and don't
actually conflict with each other, so we can be more lenient and just
ignore the duplicates.
Reviewers: aprantl, rnk
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D38540
llvm-svn: 315279
A prologue-end line record is emitted with an incorrect associated address,
which causes a debugger to show the beginning of function body to be inside
the prologue.
Patch written by Carlos Alberto Enciso.
Differential Revision: https://reviews.llvm.org/D37625
llvm-svn: 313047
They won't affect the DWARF output, but they will mess with the
sorting of the fragments. This fixes the crash reported in PR34159.
https://bugs.llvm.org/show_bug.cgi?id=34159
llvm-svn: 311217
Chromium's gold build seems to have trouble with this (gold produces
errors) - not sure if it's gold that's not coping with the valid
representation, or a bug in the implementation in LLVM, etc.
llvm-svn: 309630
Missed the resetting base address selections when going from a base
address version to zero base address for non-base-addressed entries.
llvm-svn: 309529
(from comments in the test)
Group ranges in a range list that apply to the same section and use a base
address selection entry to reduce the number of relocations to one reloc per
section per range list. DWARF5 debug_rnglist will be more efficient than this
in terms of relocations, but it's still better than one reloc per entry in a
range list.
This is an object/executable size tradeoff - shrinking objects, but growing
the linked executable. In one large binary tested, total object size (not just
debug info) shrank by 16%, entirely relocation entries. Linked executable
grew by 4%. This was with compressed debug info in the objects, uncompressed
in the linked executable. Without compression in the objects, the win would be
smaller (the growth of debug_ranges itself would be more significant).
llvm-svn: 309526
This can come up in ThinLTO & wastes space & makes degenerate IR.
As per the added FIXME, ultimately, local imported entities should hang
off the function and that way the imported entity list on the CU can be
tested for emptiness like all the other CU lists.
(function-attached local imported entities are probably also the best
path forward for fixing how imported entities are handled both in
cross-module use (currently, while ThinLTO preserves the imported
entities, they would not get used at the imported inlined location -
only in the abstract origin that appears in the partial CU created by
the import (which isn't emitted under Fission due to cross-CU
limitations there)) and to reduce the number of points where imported
entities are emitted (they're currently emitted into every inlined
instance, concrete instance, and abstract origin - they should only go
in teh abstract origin if there is one, otherwise in the concrete
instance - but this requires lots of delayed handling and wiring up,
same as abstract variables & subprograms))
llvm-svn: 309354
Local imported entities at the top level of a subprogram were being
handled differently from those in nested scopes - that different
handling would cause pseudo concrete out-of-line definitions to be
created (but without any of their attributes, nor an abstract_origin) in
the case where there was no real concrete definition.
These local imported entities also only appeared in the concrete
definition where those imported entities in nested scopes appear in all
cases (abstract, concrete, and inlined). This change at least makes top
level case handle the same as the others - though there's a FIXME to
improve this to /only/ emit them into the abstract origin (though this
requires more plumbing - like the abstract subprogram and variable
handling that must defer population until the end of the unit to
discover if there is an abstract origin, or only a standalone concrete
definition).
llvm-svn: 309237
This is a better fix than r308708 for the problem introduced in
r304020. It restores the skeleton CU testcases modified by that commit
to their original form and most importantly ensures that
frontend-generated skeleton CUs (such as used to point to Clang
modules) come after the regular CUs. This broke for DICompileUnit
nodes that don't have any immediate children because they are now
constructed lazily instead of the order in which they are listed in
!llvm.dbg.cu. After this commit we still don't guarantee that order,
but we do guarantee that empty skeletons come last.
Shipping versions of LLDB are very sensitive to the ordering of
CUs. I'll track a fix for LLDB to be more permissive separately.
This fixes a test failure in the LLDB testsuite.
rdar://problem/33357252
llvm-svn: 309154
The instruction it falls over on is an IMPLICT_DEF that also happens
to be the only instruction in its lexical scope. That LexicalScope has
never been created because its range is empty. This patch skips over
all meta-instructions instead of just DBG_VALUEs.
Thanks to David Blaikie for providing a testcase!
llvm-svn: 305853
For the following motivating example
bool c();
void f();
bool start() {
bool result = c();
if (!c()) {
result = false;
goto exit;
}
f();
result = true;
exit:
return result;
}
we would previously generate a single DW_AT_const_value(1) because
only the DBG_VALUE in the second-to-last basic block survived
codegen. This patch improves the heuristic used to determine when a
DBG_VALUE is available at the beginning of its variable's enclosing
lexical scope:
- Stop giving singular constants blanket permission to take over the
entire scope. There is still a special case for constants in the
function prologue that we also miight want to retire later.
- Use the lexical scope information to determine available-at-entry
instead of proximity to the function prologue.
After this patch we generate a location list with a more accurate
narrower availability for the constant true value. As a pleasant side
effect, we also generate inline locations instead of location lists
where a loacation covers the entire range of the enclosing lexical
scope.
Measured on compiling llc with four targets this doesn't have an
effect on compile time and reduces the size of the debug info for llc
by ~600K.
rdar://problem/30286912
llvm-svn: 305599
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
This is really a workaround for ThinLTO in particular - since it can
import partial CUs that may end up looking very similar/the same as
the same partial import in another ThinLTO compile.
An alternative fix would be to change the DICompileUnit metadata to
include a "primary file" or the like - and when importing for ThinLTO
set the primary file to the name of the DICompileUnit that is being
imported into. This involves changing the schema and would reduce the
excessive uniqueness in the hash that this change creates - allowing
diagnosing of more duplicate CUs than will be caught with this change.
But duplicate CUs can still be caught in non-ThinLTO builds & are mostly
a nuisance rather than a particularly deliberate/effective tool for
finding broken code. (arguably the hash could always include the dwo
file and nothing in fission would break, I think..)
Reapply of r304119 after adding a triple to the test and moving it
to the X86 directory.
llvm-svn: 304130
When the only use of a CU is for a subprogram that's only emitted into
the using CU (to avoid cross-CU references in DWO files), avoid creating
that CU at all.
Reapply of r304111 after adding a triple to the test and moving it
to the X86 directory.
llvm-svn: 304129
This is really a workaround for ThinLTO in particular - since it can
import partial CUs that may end up looking very similar/the same as
the same partial import in another ThinLTO compile.
An alternative fix would be to change the DICompileUnit metadata to
include a "primary file" or the like - and when importing for ThinLTO
set the primary file to the name of the DICompileUnit that is being
imported into. This involves changing the schema and would reduce the
excessive uniqueness in the hash that this change creates - allowing
diagnosing of more duplicate CUs than will be caught with this change.
But duplicate CUs can still be caught in non-ThinLTO builds & are mostly
a nuisance rather than a particularly deliberate/effective tool for
finding broken code. (arguably the hash could always include the dwo
file and nothing in fission would break, I think..)
llvm-svn: 304119
When the only use of a CU is for a subprogram that's only emitted into
the using CU (to avoid cross-CU references in DWO files), avoid creating
that CU at all.
llvm-svn: 304111
Consistent with GCC and addresses a shortcoming with ThinLTO where many
imported CUs may end up being empty (because the functions imported from
them either ended up not being used (and were then discarded, since
they're imported as available_externally) or optimized away entirely).
Test cases previously testing empty CUs (either intentionally, or
because they didn't need anything more complicated) had a trivial 'int'
or similar basic type added to their retained types list.
This is a first order approximation - a deeper implementation could do
things like:
1) Be more lazy about construction of the CU - for example if two CUs
containing a single identical retained type are linked together, with
this change one of the two CUs will be produced but empty (since a
duplicate type won't be produced).
2) Go further and invert all the CU links the same way the subprogram
link is inverted - keep named CU lists of retained types, macros, etc,
and have those link back to the CU. Then if they're emitted, the CU is
emitted, but never otherwise - this would allow the metadata itself to
be dropped earlier too, though it seems unlikely that's an important
optimization as there shouldn't be many CUs relative to the number of
other entities.
llvm-svn: 304020
This produced 'strange' DWARF anyway - the CU would have no ranges (or
at least not a range including the inlined code) nor any subprogram or
inlined_subroutine - yet the line table would have entries for these
instructions.
(this actually becomes more relevant with changes coming after this,
where a CU without any contents will be omitted entirely - so there
would be no line table to put this on anyway)
llvm-svn: 304004
Previously this code was defensive to the situation in which the debug
info scopes would lead to a different subprogram from the subprogram in
the CU's subprogram list (this could've happened with linkonce
functions, etc as per the comment being removed). Since the CU<>SP link
reversal this is no longer possible.
llvm-svn: 303933
Turns out gold doesn't use the DW_AT_GNU_pubnames to decide whether to
parse the rest of the DIEs when building gdb-index. This causes gold to
trip over LLVM's output when there are DW_FORM_ref_addr present.
Gold does use the presence of a debug_gnu_pub{names,types} entry for the
CU to skip parsing the debug_info portion, so make sure that's included
even when empty (technically, when empty there couldn't be any ref_addr
anyway - it only came up when gmlt didn't produce any (even non-empty)
pubnames - but given what that reveals about gold's implementation, this
seems like a good thing to do for consistency).
llvm-svn: 303894
MachineInstructions that don't generate any code (such as
IMPLICIT_DEFs) should not generate any debug info either.
Fixes PR33107.
https://bugs.llvm.org/show_bug.cgi?id=33107
This reapplies r303566 without any modifications. The stage2 build
failures persisted even after reverting this patch, and looking back
through history, it looks like these tests are flaky.
llvm-svn: 303575
MachineInstructions that don't generate any code (such as
IMPLICIT_DEFs) should not generate any debug info either.
Fixes PR33107.
https://bugs.llvm.org/show_bug.cgi?id=33107
llvm-svn: 303566
Turns out that the Fission/Split DWARF package format (DWP) is currently
insufficient to handle cross-CU (ref_addr) references. So for now,
duplicate any debug info needed in these situations:
* inlined_subroutine's abstract_origin
* inlined variable's abstract_origin
* types
Keep the ref_addr behavior in general, including in the split DWARF
inline debug info that can be emitted into the object files for online
symbolication.
Keep a flag to use the old (ref_addr) behavior for testing ways of
addressing this limitation in the DWP tool (& for those not using DWP
packaging).
llvm-svn: 302858
Since Split DWARF needs to name the actual .dwo file that is generated,
it can't be known at the time the llvm::Module is produced as it may be
merged with other Modules before the object is generated and that object
may be generated with any name.
By passing the Split DWARF file name when LLVM is producing object code
the .dwo file name in the object file can match correctly.
The support for Split DWARF for implicit modules remains the same -
using metadata to store the dwo name and dwo id so that potentially
multiple skeleton CUs referring to different dwo files can be generated
from one llvm::Module.
llvm-svn: 301062
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
llvm-svn: 300793
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
llvm-svn: 300790
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
Also add an assertion for the case that there are multiple FI
expressions with a DW_OP_LLVM_fragment; which should violate internal
constraints in DbgVariable.
llvm-svn: 298518
In doing so, clean up the MD5 interface a little. Most
existing users only care about the lower 8 bytes of an MD5,
but for some users that care about the upper and lower,
there wasn't a good interface. Furthermore, consumers
of the MD5 checksum were required to handle endianness
details on their own, so it seems reasonable to abstract
this into a nicer interface that just gives you the right
value.
Differential Revision: https://reviews.llvm.org/D31105
llvm-svn: 298322
and mark the methods as protected.
Besides reducing the surface area of DwarfExpression, this is in
preparation for an upcoming bugfix in the DwarfExpression
implementation, for which it will be necessary to defer emitting
register operations until the rest of the expression is known.
NFC
llvm-svn: 298309
This reverts commit r242302. External type refs of this form were
never used by any LLVM frontend so this is effectively dead code.
(They were introduced to support clang module debug info, but in the
end we came up with a better design that doesn't use this feature at
all.)
rdar://problem/25897929
Differential Revision: https://reviews.llvm.org/D30917
llvm-svn: 297684
This fixes PR31381, which caused an assertion and/or invalid debug info.
This affects debug variables that have multiple fragments in the MMI
side (i.e.: in the stack frame) table.
rdar://problem/30571676
llvm-svn: 295486
While looking to add support for placing singular types (types that will
only be emitted in one place (such as attached to a strong vtable or
explicit template instantiation definition)) not in type units (since
type units have overhead) I stumbled across that change causing an
increase in pubtypes.
Turns out we were missing some types from type units if they were only
referenced from other type units and not from the debug_info section.
This fixes that, following GCC's line of describing the offset of such
entities as the CU die (since there's no compile unit-relative offset
that would describe such an entity - they aren't in the CU). Also like
GCC, this change prefers to describe the type stub within the CU rather
than the "just use the CU offset" fallback where possible. This may give
the DWARF consumer some opportunity to find the extra info in the type
stub - though I'm not sure GDB does anything with this currently.
The size of the pubnames/pubtypes sections now match exactly with or
without type units enabled.
This nearly triples (+189%) the pubtypes section for a clang self-host
and grows pubnames by 0.07% (without compression). For a total of 8%
increase in debug info sections of the objects of a Split DWARF build
when using type units.
llvm-svn: 293971
LTO. Replace it with a related assertion, ensuring that abstract
variables appear only in abstract scopes.
Part of PR31437.
Differential Revision: http://reviews.llvm.org/D29430
llvm-svn: 293841
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
Follow-up to r289256, address a FIXME to avoid resetting the column
number. This reduced .debug_line by 2.6% in a RelWithDebInfo
self-build of clang.
llvm-svn: 289620
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. By default, use this for branch targets
and some other cases that have no specified source location, to
prevent inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Updated patch allows enabling or suppressing this behavior for all
unspecified source locations.
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 289468
LLVM's use of DW_OP_bit_piece is incorrect and a based on a
misunderstanding of the wording in the DWARF specification. The offset
argument of DW_OP_bit_piece refers to the offset into the location
that is on the top of the DWARF expression stack, and not an offset
into the source variable. This has since also been clarified in the
DWARF specification.
This patch fixes all uses of DW_OP_bit_piece to emit the correct
offset and simplifies the DwarfExpression class to semi-automaticaly
emit empty DW_OP_pieces to adjust the offset of the source variable,
thus simplifying the code using DwarfExpression.
While this is an incompatible bugfix, in practice I don't expect this
to be much of a problem since LLVM's old interpretation and the
correct interpretation of DW_OP_bit_piece differ only when there are
gaps in the fragmented locations of the described variables or if
individual fragments are smaller than a byte. LLDB at least won't
interpret locations with gaps in them because is has no way to present
undefined bits in a variable, and there is a high probability that an
old-form expression will be malformed when interpreted correctly,
because the DW_OP_bit_piece offset will be outside of the location at
the top of the stack.
As a nice side-effect, this patch enables us to use a more efficient
encoding for subregisters: In order to express a sub-register at a
non-zero offset we now use a DW_OP_bit_piece instead of shifting the
value into place manually.
This patch also adds missing test coverage for code paths that weren't
exercised before.
<rdar://problem/29335809>
Differential Revision: https://reviews.llvm.org/D27550
llvm-svn: 289266
Like DBG_VALUE, these emit nothing to the .text section, and sometimes
have no source location specified. Just ignore them.
Differential Revision: http://reviews.llvm.org/D27492
llvm-svn: 289256
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
The DIEUnit class represents a compile or type unit and it owns the unit DIE as an instance variable. This allows anyone with a DIE, to get the unit DIE, and then get back to its DIEUnit without adding any new ivars to the DIE class. Why was this needed? The DIE class has an Offset that is always the CU relative DIE offset, not the "offset in debug info section" as was commented in the header file (the comment has been corrected). This is great for performance because most DIE references are compile unit relative and this means most code that accessed the DIE's offset didn't need to make it into a compile unit relative offset because it already was. When we needed to emit a DW_FORM_ref_addr though, we needed to find the absolute offset of the DIE by finding the DIE's compile/type unit. This class did have the absolute debug info/type offset and could be added to the CU relative offset to compute the absolute offset. With this change we can easily get back to a DIE's DIEUnit which will have this needed offset. Prior to this is required having a DwarfDebug and required calling:
DwarfCompileUnit *DwarfDebug::lookupUnit(const DIE *CU) const;
Now we can use the DIEUnit class to do so without needing DwarfDebug. All clients now use DIEUnit objects (the DwarfDebug stack and the DwarfLinker). A follow on patch for the DWARF generator will also take advantage of this.
Differential Revision: https://reviews.llvm.org/D27170
llvm-svn: 288399
VariableDbgInfo is per function data, so it makes sense to have it with
the function instead of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27186
llvm-svn: 288292
The LLDB tests are now ready for this patch.
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288283
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288212
This patch makes AsmPrinter less reliant on DwarfDebug by relying on the DWARF version in the AsmPrinter's MCStreamer's MCContext. This allows us to remove the redundant DWARF version from DwarfDebug. It also lets us change code that used to access the AsmPrinter's DwarfDebug just to get to the DWARF version by changing the DWARF version accessor on AsmPrinter so that it grabs the version from its MCStreamer's MCContext.
Differential Revision: https://reviews.llvm.org/D27032
llvm-svn: 287839
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
llvm-svn: 287369
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
Summary: -fsample-profile needs discriminator, which will not be added if built with -g0. This patch makes sure the discriminator is added for sample-profile at -g0. A followup patch will be send out to update clang tests.
Reviewers: davidxl, dblaikie, echristo, dnovillo
Subscribers: mehdi_amini, probinson, llvm-commits
Differential Revision: https://reviews.llvm.org/D25132
llvm-svn: 283565
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
This patch changes LLVM_CONSTEXPR variable declarations to const
variable declarations, since LLVM_CONSTEXPR expands to nothing if the
current compiler doesn't support constexpr. In all of the changed
cases, it looks like the code intended the variable to be const instead
of sometimes-constexpr sometimes-not.
llvm-svn: 279696
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279650
These attributes aren't used by other debuggers (& may be confused with
other DWARF extensions) so they just waste space (about 1.5% on .dwo
file size on a random large program I tested).
We could remove the ObjC property ones too, but I figured they were
probably more necessary when trying to understand ObjC (I could be wrong
though) & so any debugger interested in working with ObjC would use
them, perhaps? (also, there are some legacy tests in Clang that test for
them - making it one of those annoying cross-project commits and/or
cleanup to refactor those tests)
llvm-svn: 270613
This gives AsmPrinter a chance to initialize its DD field before
we call beginModule(), which is about to start using it.
Differential Revision: http://reviews.llvm.org/D20413
llvm-svn: 270258
We are about to start using DIEDwarfExpression to create global variable
DIEs, which happens before we generate code for functions.
Differential Revision: http://reviews.llvm.org/D20412
llvm-svn: 270257
Sorry for the lack testcase. There is one in the pr, but it depends on
std::sort and the .ll version is 110 lines, so I don't think it is
wort it.
The bug was that we were sorting after adding a terminator, and the
sorting algorithm could end up putting the terminator in the middle of
the List vector.
With that we would create a Spans map entry keyed on nullptr which would
then be added to CUs and fail in that sorting.
llvm-svn: 270165
instead of having DwarfUnit query the debugger tuning options.
Follow-up commmit to r269827.
Thanks to Paul Robinson for pointing this out!
llvm-svn: 269840
for the same subprogram.
This fixes a bug where DW_AT_abstract_origin is being emitted twice for
the same subprogram if a function is both inlined and emitted in the same
translation unit, by restoring the pre-r266446 behavior.
http://reviews.llvm.org/D20072
llvm-svn: 269103
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
When we suppress linkage names, for a non-inlined subprogram the name
can still be found in the object-file symbol table, because we have
the code address of the subprogram. This is not necessarily the case
for an inlined subprogram, so we still want to emit the linkage name
in the DWARF. Put this on the abstract-origin DIE because it's common
to all inlined instances.
Differential Revision: http://reviews.llvm.org/D18706
llvm-svn: 266692
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
This patch drops the debug info for all DISubprograms that are
(a) not attached to an llvm::Function and
(b) not indirectly reachable via inline scopes from any surviving Function and
(c) not reachable from a type (i.e.: member functions).
Background: I'm currently working on a patch to reverse the pointers
between DICompileUnit and DISubprogram (for more info check Duncan's RFC
on lazy-loading of debug info metadata
http://lists.llvm.org/pipermail/llvm-dev/2016-March/097419.html).
The idea is to remove the list of subprograms from DICompileUnit and
instead point to the owning compile unit from each DISubprogram.
After doing this all DISubprograms fulfilling the above criteria will be
implicitly dropped unless we go through an extra effort to preserve them.
http://reviews.llvm.org/D18477
<rdar://problem/25256815>
llvm-svn: 265876
Sample-based profiling and optimization remarks currently remove
DICompileUnits from llvm.dbg.cu to suppress the emission of debug info
from them. This is somewhat of a hack and only borderline legal IR.
This patch uses the recently introduced NoDebug emission kind in
DICompileUnit to achieve the same result without breaking the Verifier.
A nice side-effect of this change is that it is now possible to combine
NoDebug and regular compile units under LTO.
http://reviews.llvm.org/D18808
<rdar://problem/25427165>
llvm-svn: 265861
This patch closes a gap in the DWARF backend that caused LLVM to drop
debug info for floating point variables that were constant for part of
their scope. Floating point constants are emitted as one or more
DW_OP_constu joined via DW_OP_piece.
This fixes a regression caught by the LLDB testsuite that I introduced
in r262247 when we stopped blindly expanding the range of singular
DBG_VALUEs to span the entire scope and started to emit location lists
with accurate ranges instead.
Also deletes a now-impossible testcase (debug-loc-empty-entries).
<rdar://problem/25448338>
llvm-svn: 265760
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
When multiple DWP files are merged together and duplicate DWO IDs are
found it's currently difficult to give an actionable error message - the
DW_AT_name of the CU could be provided, but might be identical (if the
same source file is built into two different configurations), which
doesn't help the user identify the problem.
When no intermediate DWP files are generated, the path to the two DWO
files could be provided - but is lost once the DWOs are merged into a
DWP.
So, include the name of the DWO (dwo_name) in the split file so that
collissions involving a source CU from a DWP can be better diagnosed.
(improvements to llvm-dwp using this to come shortly)
llvm-svn: 264316
When a variable is described by a single DBG_VALUE instruction we can
often use a more efficient inline DW_AT_location instead of using a
location list.
This commit makes the heuristic that decides when to apply this
optimization stricter by also verifying that the DBG_VALUE is live at the
entry of the function (instead of just checking that it is valid until
the end of the function).
<rdar://problem/24611008>
llvm-svn: 262247
Rather than storing type units in a vector and emitting them at the end
of code generation, emit them immediately and destroy them, reclaiming the
memory we were using for their DIEs.
In one benchmark carried out against Chromium's 50 largest (by bitcode
file size) translation units, total peak memory consumption with type units
decreased by median 17%, or by 7% when compared against disabling type units.
Tested using check-{llvm,clang}, the GDB 7.5 test suite (with
'-fdebug-types-section') and by eyeballing llvm-dwarfdump output on those
Chromium translation units with split DWARF both disabled and enabled, and
verifying that the only changes were to addresses and abbreviation ordering.
Differential Revision: http://reviews.llvm.org/D17118
llvm-svn: 260578
Summary:
Refactor common value, scope, and label tracking logic out of DwarfDebug
into a common base class called DebugHandlerBase.
Update an old LLVM IR test case to avoid an assertion in LexicalScopes.
Reviewers: dblaikie, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16931
llvm-svn: 260432
Summary:
In r257979, I added code to ensure that we wouldn't merge DebugLocEntries if
the pieces they describe overlap. Unfortunately, I failed to cover the case,
where there may have multiple active Expressions in the entry, in which case we
need to make sure that no two values overlap before we can perform the merge.
This fixed PR26148.
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D16742
llvm-svn: 259696
Changed emitting offset of macinfo entry into compiler unit DIE to use "addSectionLabel" method rather than explicitly calculating size/offset of macro entry.
Differential Revision: http://reviews.llvm.org/D16292
llvm-svn: 259358
Summary:
Later in DWARF emission we check that DebugLocEntries have
non-overlapping pieces, so we should create any such entries
by merging here.
Fixes PR26163.
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D16249
llvm-svn: 257979
Summary:
In rL242338, debugger tuning was introduced, and the tuning for FreeBSD
was set to lldb by default. However, for the foreseeable future we
still need to default to gdb tuning, since lldb is not ready for all of
FreeBSD's architectures, and some system tools (like objcopy, etc) have
not yet been adapted to cope with the lldb tuned format, which has
.apple sections.
Therefore, let FreeBSD use gdb by default for now.
Reviewers: emaste, probinson
Subscribers: llvm-commits, emaste
Differential Revision: http://reviews.llvm.org/D15966
llvm-svn: 257103
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
Summary:
In particular, this CL speeds up the official Chrome linking with LTO by
1.8x.
See more details in https://crbug.com/542426
Reviewers: dblaikie
Subscribers: jevinskie
Differential Revision: http://reviews.llvm.org/D13918
llvm-svn: 251353
Mangled "linkage" names can be huge, and if the debugger (or other
tools) have no use for them, the size savings can be very impressive
(on the order of 40%).
Add one test for controlling behavior, and modify a number of tests to
either stop using linkage names, or make llc emit them (so these tests
will still run when the default triple is for PS4).
Differential Revision: http://reviews.llvm.org/D11374
llvm-svn: 244678
NFC patch for current users, but llvm-dsymutil will use the new
functionality to adapt to the input linetable.
Based on a patch by Adrian Prantl.
llvm-svn: 244318
Summary:
Emit both DWARF and CodeView if "CodeView" and "Dwarf Version" module
flags are set.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11756
llvm-svn: 244158
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
There is an assertion inside `DICompositeTypeBase::getElements()` that
`this` is not a `DISubroutineType`, leaving only `DICompositeType`.
Make that clear at the call sites.
llvm-svn: 243134
emit debug info, according to the preferences of the different
debuggers used on various targets.
Darwin and FreeBSD default to tuning for LLDB; PS4 defaults to tuning for
the SCE (Sony Computer Entertainment) debugger. All others default to GDB.
Differential Revision: http://reviews.llvm.org/D8506
llvm-svn: 242338
This is a necessary prerequisite for bootstrapping the emission
of debug info inside modules.
- Adds a FlagExternalTypeRef to DICompositeType.
External types must have a unique identifier.
- External type references are emitted using a forward declaration
with a DW_AT_signature([DW_FORM_ref_sig8]) based on the UID.
http://reviews.llvm.org/D9612
llvm-svn: 242302
Function static variables, typedefs and records (class, struct or union) declared inside
a lexical scope were associated with the function as their parent scope, rather than the
lexical scope they are defined or declared in.
This fixes PR19238
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D9758
llvm-svn: 241153
If we don't know how to represent a .debug_loc entry, skip the entry
entirely rather than emitting an empty one. Similarly, if a .debug_loc
list has no entries, don't create the list.
We still want to create the variables, just in an optimized-out form
that doesn't have a DW_AT_location.
llvm-svn: 240244
There are three types of `DbgVariable`:
- alloca variables, created based on the MMI table,
- register variables, created based on DBG_VALUE instructions, and
- optimized-out variables.
This commit reconfigures `DbgVariable` to make it easier to tell which
kind we have, and make initialization a little clearer.
For MMI/alloca variables, `FrameIndex.size()` must always equal
`Expr.size()`, and there shouldn't be an `MInsn`. For register
variables (with a `MInsn`), `FrameIndex` must be empty, and `Expr`
should have 0 or 1 element depending on whether it has a complex
expression (registers with multiple locations use `DebugLocListIndex`).
Optimized-out variables shouldn't have any of these fields.
Moreover, this separates DBG_VALUE initialization until after the
variable is created, simplifying logic in a future commit that changes
`collectVariableInfo()` to stop creating empty .debug_loc entries/lists.
llvm-svn: 240243
Different object formats represent references from dwarf in different ways.
ELF uses a relocation to the referenced point (except for .dwo) and
COFF/MachO use the offset of the referenced point inside its section.
This patch renames emitSectionOffset because
* It doesn't produce an offset on ELF.
* It changes behavior depending on how DWARF is represented, so adding
dwarf to its name is probably a good thing.
The patch also adds an option to force the use of offsets.That avoids
funny looking code like
if (!UseOffsets)
Asm->emitSectionOffset....
It was correct, but read as if the ! was inverted.
llvm-svn: 239866
Summary: I noticed an object file with `DW_OP_reg4 DW_OP_breg4 0` as a DWARF expression,
which I traced to a missing break (and `++I`) in this code snippet.
While I was at it, I also added support for a few other corner cases
along the same lines that I could think of.
Test Plan: Hand-crafted test case to exercises these cases is included.
Reviewers: echristo, dblaikie, aprantl
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10302
llvm-svn: 239380
This reverts commit r238350, effectively reapplying r238349 after fixing
(all?) the problems, all somehow related to how I was using
`AlignedArrayCharUnion<>` inside `DIEValue`:
- MSVC can only handle `sizeof()` on types, not values. Change the
assert.
- GCC doesn't know the `is_trivially_copyable` type trait. Instead of
asserting it, add destructors.
- Call placement new even when constructing POD (i.e., the pointers).
- Instead of copying the char buffer, copy the casted classes.
I've left in a couple of `static_assert`s that I think both MSVC and GCC
know how to handle. If the bots disagree with me, I'll remove them.
- Check that the constructed type is either standard layout or a
pointer. This protects against a programming error: we really want
the "small" `DIEValue`s to be small and simple, so don't
accidentally change them not to be.
- Similarly, check that the size of the buffer is no bigger than a
`uint64_t` or a pointer. (I thought checking against
`sizeof(uint64_t)` would be good enough, but Chandler suggested that
pointers might sometimes be bigger than that in the context of
sanitizers.)
I've also committed r238359 in the meantime, which introduces a
DIEValue.def to simplify dispatching between the various types (thanks
to a review comment by David Blaikie). Without that, this commit would
be almost unintelligible.
Here's the original commit message:
--
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
--
llvm-svn: 238362
This reverts commit r238349, since it caused some errors on bots:
- std::is_trivially_copyable isn't available until GCC 5.0.
- It was complaining about strict aliasing with my use of
ArrayCharUnion.
llvm-svn: 238350
Change `DIEValue` to be stored/passed/etc. by value, instead of
reference. It's now a discriminated union, with a `Val` field storing
the actual type. The classes that used to inherit from `DIEValue` no
longer do. There are two categories of these:
- Small values fit in a single pointer and are stored by value.
- Large values require auxiliary storage, and are stored by reference.
The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It
was relying on `DIEInteger`s being passed around by reference, so I
replaced that assumption with a `PatchLocation` type that stores a safe
reference to where the `DIEInteger` lives instead.
This commit causes a temporary regression in memory usage, since I've
left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I
measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up
drops it lower than the starting point, and I've only recently brought
the memory this low anyway, so I'm committing these changes separately
to keep them incremental. (I also considered swapping the commits, but
the other one first would cause a lot more code churn.)
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 238349
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
llvm-svn: 237936
The ByteStreamer here wasn't taking account of whether the asm streamer was text based and verbose. Only with that combination should we emit comments.
This change makes sure that we only actually convert a Twine to a string using Twine::str() if we need the comment. This saves about 10000 small allocations on a test case involving the verify-use_list-order bitcode going through llc with debug info.
Note, this is NFC as the comments would ultimately never be emitted unless required.
Reviewed by Duncan Exon Smith and David Blaikie.
llvm-svn: 237851
This reverts commit 0037b6bcbc874aa1b93d7ce3ad8dba3753ee2d9d (r237827).
David Blaikie suggested some alternatives to this which are better. Reverting to apply a better solution later.
llvm-svn: 237849
DebugLocDwarfExpression::EmitOp was creating temporary strings by concatenating Twine's.
When emitting to object files, these comments are thrown away.
This commit adds a boolean to the constructor of the DwarfExpression to control whether it will actually emit
any comments. This prevents it from even generating the temporary comments which would have been thrown away anyway.
llvm-svn: 237827
Emit the number of bytes in a `.debug_loc` entry directly. The old code
created temp labels (expensive), emitted the difference between them,
and then emitted one on each side of the relevant bytes.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`
(the optimized version of ld64's `-save-temps` when linking the
`verify-uselistorder` executable in an LTO bootstrap). I've hacked
`MCContext::Allocate()` to just call `malloc()` instead of using the
`BumpPtrAllocator` so that the heap profile is easier to read. As far
as peak memory is concerned, `MCContext::Allocate()` is equivalent to a
leak, since it only gets freed at process teardown.
In my heap profile, this patch drops memory usage of
`DwarfDebug::emitDebugLoc()` from 132.56 MB (11.4%) down to 29.86 MB
(2.7%) at peak memory. Some of that must be noise from `SmallVector`
(or other) allocations -- peak memory only dropped from 1160 MB down to
1100 MB -- but this nevertheless shaves 5% off the top.)
llvm-svn: 236629
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Delete subclasses of (the already deleted) `DIType` in favour of
directly using pointers from the `Metadata` hierarchy.
While `DICompositeType` wraps `MDCompositeTypeBase` and `DIDerivedType`
wraps `MDDerivedTypeBase`, most uses of each really meant the more
specific `MDCompositeType` and `MDDerivedType`.
llvm-svn: 235351
The version of `constructTypeDIE()` for `MDSubroutineType` is unrelated
to (and has different callers than) the `MDCompositeType`. Split the
two in half.
This simplifies an upcoming patch to delete `DICompositeType`. There
shouldn't be any real functionality change here. `createTypeDIE()` is
`cast<>`'ing where it didn't need to before, but that function in turn
is only called for true `MDCompositeType`s.
llvm-svn: 235349
This is the last major parent class, so I'll probably start deleting
classes in batches now. Looks like many of the references to the DI*
hierarchy were updated organically along the way.
llvm-svn: 235331
This commit removes `DebugLocList` and replaces it with
`DebugLocStream`.
- `DebugLocEntry` no longer contains its byte/comment streams.
- The `DebugLocEntry` list for a variable/inlined-at pair is allocated
on the stack, and released right after `DebugLocEntry::finalize()`
(possible because of the refactoring in r231023). Now, only one
list is in memory at a time now.
- There's a single unified stream for the `.debug_loc` section that
persists, stored in the new `DebugLocStream` data structure.
The last point is important: this collapses the nested `SmallVector<>`s
from `DebugLocList` into unified streams. We previously had something
like the following:
vec<tuple<Label, CU,
vec<tuple<BeginSym, EndSym,
vec<Value>,
vec<char>,
vec<string>>>>>
A `SmallVector` can avoid allocations, but is statically fairly large
for a vector: three pointers plus the size of the small storage, which
is the number of elements in small mode times the element size).
Nesting these is expensive, since an inner vector's size contributes to
the element size of an outer one. (Nesting any vector is expensive...)
In the old data structure, the outer vector's *element* size was 632B,
excluding allocation costs for when the middle and inner vectors
exceeded their small sizes. 312B of this was for the "three" pointers
in the vector-tree beneath it. If you assume 1M functions with an
average of 10 variable/inlined-at pairs each (in an LTO scenario),
that's almost 6GB (besides inner allocations), with almost 3GB for the
"three" pointers.
This came up in a heap profile a little while ago of a `clang -flto -g`
bootstrap, with `DwarfDebug::collectVariableInfo()` using something like
10-15% of the total memory.
With this commit, we have:
tuple<vec<tuple<Label, CU, Offset>>,
vec<tuple<BeginSym, EndSym, Offset, Offset>>,
vec<char>,
vec<string>>
The offsets are used to create `ArrayRef` slices of adjacent
`SmallVector`s. This reduces the number of vectors to four (unrelated
to the number of variable/inlined-at pairs), and caps the number of
allocations at the same number.
Besides saving memory and limiting allocations, this is NFC.
I don't know my way around this code very well yet, but I wonder if we
could go further: why stream to a side-table, instead of directly to the
output stream?
llvm-svn: 235229
Stop storing the `MDLocalVariable` in the `DebugLocEntry::Value`s. We
generate the list of `DebugLocEntry`s separately for each
variable/inlined-at pair, so the variable never actually changes here.
This is effectively NFC (aside from saving some memory and CPU time).
llvm-svn: 235202
We can calculate the variable type up front before calling
`DebugLocEntry::finalize()`. In fact, since we only care about the type
if it's an `MDBasicType`, don't even bother resolving it using the type
identifier map.
llvm-svn: 235201
Delete `DIRef<>`, and replace the remaining uses of it with
`TypedDebugNodeRef<>`. To minimize code churn, I've added typedefs from
`MDTypeRef` to `DITypeRef` (etc.).
llvm-svn: 235071
Continuing PR23080, gut `DIType` and its various subclasses, leaving
behind thin wrappers around the pointer types in the new debug info
hierarchy.
llvm-svn: 235064
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
llvm-svn: 234850
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
llvm-svn: 234840
Completely gut `DIExpression`, turning it into a simple wrapper around
`MDExpression *`. There are two bits of magic left:
- It's constructed from `const MDExpression*` but convertible to
`MDExpression*`.
- It's default-constructed to `nullptr`.
Otherwise, it should behave quite like a raw pointer. Once I've done
the same to the rest of the `DIDescriptor` subclasses, I'll come back to
delete them entirely (and update call sites as necessary to deal with
the missing magic).
llvm-svn: 234832
This reverts commit r234717, reapplying r234698 (in spirit).
As described in r234717, the original `Verifier` check had a
use-after-free. Instead of storing pointers to "interesting" debug info
intrinsics whose bit piece expressions should be verified once we have
typerefs, do a second traversal. I've added a testcase to catch the
`llc` crasher.
Original commit message:
Verifier: Check for incompatible bit piece expressions
Convert an assertion into a `Verifier` check. Bit piece expressions
must fit inside the variable, and mustn't be the entire variable.
Catching this in the verifier will help us find bugs sooner, and makes
`DIVariable::getSizeInBits()` dead code.
llvm-svn: 234776
This reverts commit r234698.
This caused a use-after-free: `QueuedBitPieceExpressions` holds onto
references to `DbgInfoIntrinsic`s and references them past where they're
deleted (this is because the verifier is run as a function pass, and
then `verifyTypeRefs()` is called during `doFinalization()`).
I'll include a reduced crasher for `llc` when I recommit the check.
llvm-svn: 234717
Convert an assertion into a `Verifier` check. Bit piece expressions
must fit inside the variable, and mustn't be the entire variable.
Catching this in the verifier will help us find bugs sooner, and makes
`DIVariable::getSizeInBits()` dead code.
llvm-svn: 234698
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
llvm-svn: 234290
Remove special iterators from `DIExpression` in favour of same in
`MDExpression`. There should be no functionality change here.
Note that the APIs are slightly different: `getArg(unsigned)` counts
from 0, not 1, in the `MDExpression` version of the iterator.
llvm-svn: 234285
Remove `DIDescriptor::Verify()` and the `Verify()`s from subclasses.
They had already been gutted, and just did an `isa<>` check.
In a couple of cases I've temporarily dropped the check entirely, but
subsequent commits are going to disallow conversions to the
`DIDescriptor`s directly from `MDNode`, so the checks will come back in
another form soon enough.
llvm-svn: 234201
As a follow-up to r234021, assert that a debug info intrinsic variable's
`MDLocalVariable::getInlinedAt()` always matches the
`MDLocation::getInlinedAt()` of its `!dbg` attachment.
The goal here is to get rid of `MDLocalVariable::getInlinedAt()`
entirely (PR22778), but I'll let these assertions bake for a while
first.
If you have an out-of-tree backend that just broke, you're probably
attaching the wrong `DebugLoc` to a `DBG_VALUE` instruction. The one
you want is the location that was attached to the corresponding
`@llvm.dbg.declare` or `@llvm.dbg.value` call that you started with.
llvm-svn: 234038
Pervasively use the types provided by the debug info hierarchy rather
than `MDNode` in `LexicalScopes`.
I noticed (again, I guess, based on comments in the implementation?)
that `DILexicalBlockFile::getScope()` returns something different from
`DILexicalBlockFile::getContext()`. I created a local helper for
getting the same logic from `MDLexicalBlockFile` called
`getScopeOfScope()`. I still don't really understand it, but I've added
some FIXMEs and I'll come back to it (I suspect the way we encode these
objects isn't really ideal).
Note that my previous commit r233610 accidentally changed behaviour in
`findLexicalScope()` -- it transitioned from a call to
`DILexicalBlockFile::getScope()` to `MDLexicalBlockFile::getScope()`
(sounds right, doesn't it?) -- so I've fixed that as a drive-by. No
tests failed with my error, so it looks like we're missing some coverage
here... when I come back to understand the logic, I'll see if I can add
some.
Other than the fix to `findLexicalScope()`, no functionality change.
llvm-svn: 233640
Don't use `DebugLoc::getFnDebugLoc()`, which creates new `MDLocation`s,
in the backend. We just want to grab the subprogram here anyway.
llvm-svn: 233601
There is now a canonical symbol at the end of a section that different
passes can request.
This also allows us to assert that we don't switch back to a section whose
end symbol has already been printed.
llvm-svn: 233026
`DL` might be null, so check for that before using accessors. A WIP
patch to make `DIDescriptors` more strict fails otherwise.
As a bonus, I think the logic is easier to follow now (despite the extra
nesting depth).
llvm-svn: 232836
Before this patch code wanting to create temporary labels for a given entity
(function, cu, exception range, etc) had to keep its own counter to have stable
symbol names.
createTempSymbol would still add a suffix to make sure a new symbol was always
returned, but it kept a single counter. Because of that, if we were to use
just createTempSymbol("cu_begin"), the label could change from cu_begin42 to
cu_begin43 because some other code started using temporary labels.
Simplify this by just keeping one counter per prefix and removing the various
specialized counters.
llvm-svn: 232535
This lets us pass the symbol to the constructor and avoid the mutable field.
This also opens the way for outputting the symbol only when needed, instead
of outputting them at the start of the file.
llvm-svn: 231859
This makes code that uses section relative expressions (debug info) simpler and
less brittle.
This is still a bit awkward as the symbol is created late and has to be
stored in a mutable field.
I will move the symbol creation earlier in the next patch.
llvm-svn: 231802
(They are called emitDwarfDIE and emitDwarfAbbrevs in their new home)
llvm-dsymutil wants to reuse that code, but it doesn't have a DwarfUnit or
a DwarfDebug object to call those. It has access to an AsmPrinter though.
Having emitDIE in the AsmPrinter also removes the DwarfFile dependency
on DwarfDebug, and thus the patch drops that field.
Differential Revision: http://reviews.llvm.org/D8024
llvm-svn: 231210
The cause of the issue is the interaction of two factors:
1) When generating a DW_TAG_imported_declaration DIE which imports another
imported declaration, the code in AsmPrinter/DwarfCompileUnit.cpp
asserts that the second imported declaration must already have a DIE.
2) There is a non-determinism in the order in which imported declarations
within the same scope are processed.
Because of the non-determinism (2), it is possible that an imported
declaration is processed before another one it depends on, breaking the
assumption in (1).
The source of the non-determinism is that the imported declaration
DIDescriptors are sorted by scope in DwarfDebug::beginModule(); however that
sort is not a stable_sort, therefore the order of the declarations within
the same scope is not preserved. The attached patch changes the std::sort to
a std::stable_sort and it fixes the problem.
Test omitted due to it being non-deterministic and depending on the
implementation of std::sort.
llvm-svn: 231100
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 without the assertion in DebugLocEntry::finalize()
because not all Machine registers can be lowered into DWARF register
numbers and floating point constants cannot be expressed.
llvm-svn: 231023
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 with a relaxed assertion in DebugLocEntry::finalize()
that allows for empty DWARF expressions for constant FP values.
llvm-svn: 230975
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
llvm-svn: 230930
Previously `DwarfExpression::AddExpression()` relied on
default-constructing the end iterators for `DIExpression` -- once the
operands are represented explicitly via `MDExpression` (instead of via
the strange `StringRef` navigator in `DIHeaderIterator`) this won't
work. Explicitly take an iterator for the end of the range.
llvm-svn: 229572
While looking at a heap profile of a clang LTO bootstrap with -g, I
noticed that 2.2% of memory in an `llvm-lto` of clang is from calling
`DebugLoc::get()` in `collectVariableInfo()` (accounting for ~40% of
memory used for `MDLocation`s).
I suspect this was introduced by r226736, whose goal was to prevent
uniquing of `DebugLoc`s (goal achieved, if so).
There's no reason we need a `DebugLoc` here at all -- it was just being
used for (in)convenient API -- so the fix is to pass the scope and
inlined-at directly to `LexicalScopes::findInlinedScope()`.
llvm-svn: 229459
table entry. This happens when SROA splits up an alloca and the resulting
allocas cannot be lowered to SSA values because their address is passed
to a function.
Fixes PR22502.
llvm-svn: 228764
intermediate representation. This
- increases consistency by using the same granularity everywhere
- allows for pieces < 1 byte
- DW_OP_piece didn't actually allow storing an offset.
Part of PR22495.
llvm-svn: 228631
Remove handling for DW_TAG_constant. We started producing it in
r110656, but reverted that in r110876 without dropping the support.
Finish the job.
llvm-svn: 228623
frontends to use a DIExpression with a DW_OP_deref instead.
This is not only a much more natural place for this informationl; there
is also a technical reason: The FlagIndirectVariable is used to mark a
variable that is turned into a reference by virtue of the calling
convention; this happens for example to aggregate return values.
The inliner, for example, may actually need to undo this indirection to
correctly represent the value in its new context. This is impossible to
implement because the DIVariable can't be safely modified. We can however
safely construct a new DIExpression on the fly.
llvm-svn: 226476
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
emitDebugLocValue() into DwarfExpression.
Ought to be NFC, but it actually uncovered a bug in the debug-loc-asan.ll
testcase. The testcase checks that the address of variable "y" is stored
at [RSP+16], which also lines up with the comment.
It also check(ed) that the *value* of "y" is stored in RDI before that,
but that is actually incorrect, since RDI is the very value that is
stored in [RSP+16]. Here's the assembler output:
movb 2147450880(%rcx), %r8b
#DEBUG_VALUE: bar:y <- RDI
cmpb $0, %r8b
movq %rax, 32(%rsp) # 8-byte Spill
movq %rsi, 24(%rsp) # 8-byte Spill
movq %rdi, 16(%rsp) # 8-byte Spill
.Ltmp3:
#DEBUG_VALUE: bar:y <- [RSP+16]
Fixed the comment to spell out the correct register and the check to
expect an address rather than a value.
Note that the range that is emitted for the RDI location was and is still
wrong, it claims to begin at the function prologue, but really it should
start where RDI is first assigned.
llvm-svn: 225851
Move the declaration of DebugLocDwarfExpression into DwarfExpression.h
because it needs to be accessed from AsmPrinterDwarf.cpp and DwarfDebug.cpp
NFC.
llvm-svn: 225734
dsymutil would like to use all the AsmPrinter/MCStreamer infrastructure
to stream out the DWARF. In order to do so, it will reuse the DIE object
and so this header needs to be public.
The interface exposed here has some corners that cannot be used without a
DwarfDebug object, but clients that want to stream Dwarf can just avoid
these.
Differential Revision: http://reviews.llvm.org/D6695
llvm-svn: 225208
GCC does this for non-zero discriminators and since GCC doesn't produce
column info, that was the only place it comes up there. For LLVM, since
we can emit discriminators and/or column info, it makes more sense to
invert the condition and just test for changes in line number.
This should resolve at least some of the GDB 7.5 test suite failures
created by recent Clang changes that increase the location fidelity
(which, since Clang defaults to including column info on Linux by
default created a bunch of cases that confused GDB).
In theory we could do this better/differently by grouping actual source
statements together in a similar manner to the way lexical scopes are
handled but given that GDB isn't really in a position to consume that (&
users are probably somewhat used to different lines being different
'statements') this seems the safest and cheapest change. (I'm concerned
that doing this 'right' would bloat the debugloc data even further -
something Duncan's working hard to address)
llvm-svn: 225011
Debug info marks the first instruction without the FrameSetup flag
as being the end of the function prologue. Any CFI instructions in the
middle of the function prologue would cause debug info to end the prologue
too early and worse, attach the line number of the CFI instruction, which
incidentally is often 0.
llvm-svn: 224294
DW_OP_const <const> doesn't describe a constant value, but a value at a constant address.
The proper way to describe a constant value is DW_OP_constu <const>, DW_OP_stack_value.
Added DW_OP_stack_value to the stack.
Marked incorrect-variable-debugloc1.ll to xfail for PowerPC64, while the the failure (PR21881)
is being investigated.
llvm-svn: 224098
The test is failing for llvm-ppc64 because for this platform the location list is not being generated at all (most likely because of the bug in PPC code optimization or generation). I will file a bug agains PPC compiler, but meanwhile, until PPC bug is fixed, I will have to revert my change.
llvm-svn: 224000
DW_OP_const <const> doesn't describe a constant value, but a value at a constant address.
The proper way to describe a constant value is DW_OP_constu <const>, DW_OP_stack_value.
Added DW_OP_stack_value to the stack.
-This line, and those below, will be ignored--
M lib/CodeGen/AsmPrinter/DwarfDebug.cpp
A test/DebugInfo/incorrect-variable-debugloc1.ll
llvm-svn: 223981
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
The DIE offset in the accel tables is an offset relative to the start
of the debug_info section, but we were encoding the offset to the
start of the containing CU.
llvm-svn: 221837
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
Change `NamedMDNode::getOperator()` from returning `MDNode *` to
returning `Value *`. To reduce boilerplate at some call sites, add a
`getOperatorAsMDNode()` for named metadata that's expected to only
return `MDNode` -- for now, that's everything, but debug node named
metadata (such as llvm.dbg.cu and llvm.dbg.sp) will soon change. This
is part of PR21433.
Note that there's a follow-up patch to clang for the API change.
llvm-svn: 221375
Clang -gsplit-dwarf self-host -O0, binary increases by 0.0005%, -O2,
binary increases by 25%.
A large binary inside Google, split-dwarf, -O0, and other internal flags
(GDB index, etc) increases by 1.8%, optimized build is 35%.
The size impact may be somewhat greater in .o files (I haven't measured
that much - since the linked executable -O0 numbers seemed low enough)
due to relocations. These relocations could be removed if we taught the
llvm-symbolizer to handle indexed addressing in the .o file (GDB can't
cope with this just yet, but GDB won't be reading this info anyway).
Also debug_ranges could be shared between .o and .dwo, though ideally
debug_ranges would get a schema that could used index(+offset)
addressing, and move to the .dwo file, then we'd be back to sharing
addresses in the address pool again.
But for now, these sizes seem small enough to go ahead with this.
Verified that no other DW_TAGs are produced into the .o file other than
subprograms and inlined_subroutines.
llvm-svn: 221306
This generalizes the range handling for ranges in both the skeleton and
full unit, laying the foundation for the addition of more ranges (rather
than just the CU's special case) in the skeleton CU with fission+gmlt.
llvm-svn: 221202
So that it may be shared between skeleton/full compile unit, for CU
ranges and other ranges to be added for fission+gmlt.
(at some point we might want some kind of object shared between the
skeleton and full compile units for all those things we only want one of
in that scope, rather than having the full unit always look through to
the skeleton... - alternatively, we might be able to have the skeleton
pointer (or another, separate pointer) point to the skeleton or to the
unit itself in non-fission, so we don't have to special case its
absence)
llvm-svn: 221186
This is one of a few steps to generalize range handling to include the
CU range (thus the CU's range list will be moved into the range list
list, losing track of the base address in the process), which means
generalizing ranges from both the skeleton and full unit under fission.
And... then I can used that generalized support for ranges in
fission+gmlt where there'll be a bunch more ranges in the skeleton.
llvm-svn: 221182
Currently we only need to emit skeleton strings into the CU header and
we do this by explicitly calling "addLocalString". With gmlt-in-fission,
we'll be emitting a bunch of other strings from other codepaths where
it's not statically known that these strings will be local or not.
Introduce a virtual function to indicate whether this unit is a DWO unit
or not (I'm not sure if we have a good term for this, the
opposite/alternative to 'skeleton' unit) and use that to generalize the
string emission logic so that strings can be correctly emitted in both
the skeleton and dwo unit when in split dwarf mode.
And to demonstrate that this works, switch the existing special callers
of addLocalString in the skeleton builder to addString - and they still
work. Yay.
llvm-svn: 221094