Commit Graph

144 Commits

Author SHA1 Message Date
Matt Arsenault a91c17498a GlobalISel: Fix copy paste error
Pretty sure this was harmless since the tablegen
calling convention definitions do not use pointers.

Part of issue 58604
2022-10-25 17:06:00 -07:00
Serge Pavlov b3913a9cdf [GlobalISel] Do not crash on widening vector result
Function buildCopyToRegs did not handle properly the case when it should
make wider vector result. It happened, for example, in a function that
returns value of type <2 x f32>, which should be widen to <4 x f32> to
fit XMM register. The function eventually calls
MachineIRBuilder.buildUnmerge, which does not expect that only one
destination register is specified.

Now this case is treated specifically in buildCopyToRegs.

Differential Revision: https://reviews.llvm.org/D128546
2022-09-30 21:30:55 +07:00
Jessica Paquette 1eb49bbab6 [GlobalISel][CallLowering] Use hasRetAttr for return flags on CallBases
Given something like this:

```
declare signext i16 @signext_callee()
define i32 @caller() {
  %res = call i16 @signext_callee()
  ...
}
```

CallLowering would miss that signext_callee's return value is sign extended,
because it isn't on the call.

Use hasRetAttr on the CallBase to allow us to catch this.

(This now inserts G_ASSERT_SEXT/G_ASSERT_ZEXT like in the original review.)

Differential Revision: https://reviews.llvm.org/D86228
2022-09-28 19:38:24 -07:00
Sami Tolvanen cff5bef948 KCFI sanitizer
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.

Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.

KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.

A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:

```
.c:
  int f(void);
  int (*p)(void) = f;
  p();

.s:
  .4byte __kcfi_typeid_f
  .global f
  f:
    ...
```

Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.

As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.

Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.

Relands 67504c9549 with a fix for
32-bit builds.

Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay

Differential Revision: https://reviews.llvm.org/D119296
2022-08-24 22:41:38 +00:00
Sami Tolvanen a79060e275 Revert "KCFI sanitizer"
This reverts commit 67504c9549 as using
PointerEmbeddedInt to store 32 bits breaks 32-bit arm builds.
2022-08-24 19:30:13 +00:00
Sami Tolvanen 67504c9549 KCFI sanitizer
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.

Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.

KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.

A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:

```
.c:
  int f(void);
  int (*p)(void) = f;
  p();

.s:
  .4byte __kcfi_typeid_f
  .global f
  f:
    ...
```

Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.

As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.

Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.

Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay

Differential Revision: https://reviews.llvm.org/D119296
2022-08-24 18:52:42 +00:00
Kazu Hirata 9e6d1f4b5d [CodeGen] Qualify auto variables in for loops (NFC) 2022-07-17 01:33:28 -07:00
Petar Avramovic 2483f43d47 [AArch64][GlobalISel] Fix call lowering for <3 x i32> vector arguments
Differential Revision: https://reviews.llvm.org/D129194
2022-07-08 10:25:45 +02:00
serge-sans-paille 989f1c72e0 Cleanup codegen includes
This is a (fixed) recommit of https://reviews.llvm.org/D121169

after:  1061034926
before: 1063332844

Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D121681
2022-03-16 08:43:00 +01:00
serge-sans-paille ed98c1b376 Cleanup includes: DebugInfo & CodeGen
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D121332
2022-03-12 17:26:40 +01:00
Nico Weber a278250b0f Revert "Cleanup codegen includes"
This reverts commit 7f230feeea.
Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang,
and many LLVM tests, see comments on https://reviews.llvm.org/D121169
2022-03-10 07:59:22 -05:00
serge-sans-paille 7f230feeea Cleanup codegen includes
after:  1061034926
before: 1063332844

Differential Revision: https://reviews.llvm.org/D121169
2022-03-10 10:00:30 +01:00
Sheng 76c83e747f [GlobalISel] Add big endian support in CallLowering
When splitting values, CallLowering assumes Lo part goes first. But in big endian ISA such as M68k, Hi part goes first.

This patch fixes this.

Differential Revision: https://reviews.llvm.org/D116877
2022-02-08 14:43:38 +00:00
Matt Arsenault 99e8e17313 Reapply "Revert "GlobalISel: Add G_ASSERT_ALIGN hint instruction"
This reverts commit a97e20a3a8.
2022-01-24 09:26:52 -05:00
Nikita Popov 0d1308a7b7 [AArch64][GlobalISel] Support returned argument with multiple registers
The call lowering code assumed that a returned argument could only
consist of one register. Pass an ArrayRef<Register> instead of
Register to make sure that all parts get assigned.

Fixes https://github.com/llvm/llvm-project/issues/53315.

Differential Revision: https://reviews.llvm.org/D117866
2022-01-24 10:55:28 +01:00
James Y Knight a97e20a3a8 Revert "GlobalISel: Add G_ASSERT_ALIGN hint instruction"
This commit sometimes causes a crash when compiling a vtable thunk. E.g.:

clang '--target=aarch64-grtev4-linux-gnu' -xc++ - -c -o /dev/null <<EOF
struct a {
  virtual int f();
};
struct c {
  virtual int &g() const;
};
struct d : a, c {
  int &g() const;
};
int &d::g() const {}
EOF

Some follow-up commits have been reverted as well:
Revert "IR: Make getRetAlign check callee function attributes"
Revert "Fix MSVC "32-bit shift implicitly converted to 64 bits" warning. NFC."
Revert "Fix MSVC "32-bit shift implicitly converted to 64 bits" warning. NFC."

This reverts commit 4f414af6a7.
This reverts commit a5507d2e25.
This reverts commit 3d2d208f6a.
This reverts commit 07ddfa95e3.
2022-01-14 04:50:07 +00:00
Matt Arsenault 07ddfa95e3 GlobalISel: Add G_ASSERT_ALIGN hint instruction
Insert it for call return values only for now, which is the only case
the DAG handles also.
2022-01-12 18:20:58 -05:00
Petar Avramovic 29f88b93fd [GlobalISel] Rework more/fewer elements for vectors
Artifact combiner is not able to access individual elements after using
LCMTy style merge/unmerge, extract and insert to change vector number of
elements (pad with undef or split to sub-vector instructions).
Use unmerge to individual elements instead and then merge elements into
requested types.
Change argument lowering for vectors and moreElementsVector to use
buildPadVectorWithUndefElements and buildDeleteTrailingVectorElements.
FewerElementsVector had a few helpers that had different behavior,
introduce new helper for most of the opcodes.
FewerElementsVector helper is more flexible since it can create leftover
instruction smaller then requested type (useful in case target wants to
avoid pad with undef and use fewer registers). If target does not want
leftover of different type it should call more elements first.
Some helpers were performing more elements first to have split without
leftover. Opcodes that used this helper use clampMaxNumElementsStrict
(does more elements first) in LegalizerInfo to avoid test changes.
Fixes failures caused by failing to combine artifacts created during
more/fewer elements vector.

Differential Revision: https://reviews.llvm.org/D114198
2021-12-23 14:30:02 +01:00
Amara Emerson 8bde5e58c0 Delay outgoing register assignments to last.
The delayed stack protector feature which is currently used for SDAG (and thus
allows for more commonly generating tail calls) depends on being able to extract
the tail call into a separate return block. To do this it also has to extract
the vreg->physreg copies that set up the call's arguments, since if it doesn't
then the call inst ends up using undefined physregs in it's new spliced block.

SelectionDAG implementations can do this because they delay emitting register
copies until  *after* the stack arguments are set up. GISel however just
processes and emits the arguments in IR order, so stack arguments always end up
last, and thus this breaks the code that looks for any register arg copies that
precede the call instruction.

This patch adds a thunk argument to the assignValueToReg() and custom assignment
hooks. For outgoing arguments, register assignments use this return param to
return a thunk that does the actual generating of the copies. We collect these
until all the outgoing stack assignments have been done and then execute them,
so that the copies (and perhaps some artifacts like G_SEXTs) are placed after
any stores.

Differential Revision: https://reviews.llvm.org/D110610
2021-10-04 12:33:20 -07:00
Nikita Popov 14afbe9448 [CallLowering] Support opaque pointers
Always use the byval/inalloca/preallocated type (which is required
nowadays), don't fall back on the pointer element type.

This requires adding Function::getParamPreallocatedType() to
mirror the CallBase API, so that the templated code can work with
both.
2021-09-10 18:32:12 +02:00
Arthur Eubanks 52e6d70c40 [NFC] Use newly introduced *AtIndex methods
Introduced in D108788. These are clearer.
2021-09-01 11:18:41 -07:00
Matt Arsenault 3fdcd9bb13 GlobalISel: Add CallBase to CallLoweringInfo
The DAG version has this, and is necessary for call lowering to take
advantage of any attributes at the call site.
2021-08-26 21:09:11 -04:00
Matt Arsenault 904dab55ab GlobalISel: Remove some mystery code that clears isReturned
I don't understand what this is going for, and haven't found an analog
in DAG code. No tests fail with this removed.
2021-07-19 20:21:05 -04:00
Matt Arsenault 67d6132463 GlobalISel: Preserve memory types for implicit sret load/stores 2021-07-19 11:52:42 -04:00
Matt Arsenault f57f8f7ccc GlobalISel: Remove dead function 2021-07-16 08:59:25 -04:00
Matt Arsenault a2d7ace3e3 GlobalISel: Surface offsets parameter from ComputeValueVTs 2021-07-15 19:11:40 -04:00
Matt Arsenault e91da668d0 GlobalISel: Track argument pointeriness with arg flags
Since we're still building on top of the MVT based infrastructure, we
need to track the pointer type/address space on the side so we can end
up with the correct pointer LLTs when interpreting CCValAssigns.
2021-07-15 19:11:40 -04:00
Matt Arsenault 222fde1eec GlobalISel: Use extension instead of merge with undef in common case
This fixes not respecting signext/zeroext in these cases. In the
anyext case, this avoids a larger merge with undef and should be a
better canonical form.

This should also handle this if a merge is needed, but I'm not aware
of a case where that can happen. In a future change this will also
allow AMDGPU to drop some custom code without introducing regressions.
2021-07-13 11:04:47 -04:00
Matt Arsenault 9b057f647d GlobalISel: Track original argument index in ArgInfo
SelectionDAG's equivalents in ISD::InputArg/OutputArg track the
original argument index. Mips relies on this, and its currently
reinventing its own parallel CallLowering infrastructure which tracks
these indexes on the side. Add this to help move towards deleting the
custom mips handling.
2021-07-08 13:39:02 -04:00
Matt Arsenault 99c7e918b5 GlobalISel: Use LLT in call lowering callbacks
This preserves the memory type so the lowerings can rely on them.
2021-07-01 12:15:54 -04:00
Sander de Smalen 0e09d18c6a Reland [GlobalISel] NFC: Have LLT::getSizeInBits/Bytes return a TypeSize.
This patch relands https://reviews.llvm.org/D104454, but fixes some failing
builds on Mac OS which apparently has a different definition for size_t,
that caused 'ambiguous operator overload' for the implicit conversion
of TypeSize to a scalar value.

This reverts commit b732e6c9a8.
2021-06-28 15:24:27 +01:00
Sander de Smalen c9acd2f32e [GlobalISel] NFC: Change LLT::changeNumElements to LLT::changeElementCount.
Reviewed By: aemerson

Differential Revision: https://reviews.llvm.org/D104453
2021-06-25 15:54:00 +01:00
Sander de Smalen d5e14ba88c [GlobalISel] NFC: Change LLT::vector to take ElementCount.
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector

The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
  same number of elements, then use LLT::vector(OtherTy.getElementCount())
  or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
  or operator*. That is because there is no reason to specifically restrict
  the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
  just use fixed_vector. This will need to be fixed up in the future when
  modifying the algorithm to also work for scalable vectors, and will need
  then need additional tests to confirm the behaviour works the same for
  scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
  this is replaced by LLT::scalable_vector.

Reviewed By: aemerson

Differential Revision: https://reviews.llvm.org/D104451
2021-06-24 11:26:12 +01:00
David Spickett e4ecd83fe9 [llvm][AArch64] Handle arrays of struct properly (from IR)
This only applies to FastIsel. GlobalIsel seems to sidestep
the issue.

This fixes https://bugs.llvm.org/show_bug.cgi?id=46996

One of the things we do in llvm is decide if a type needs
consecutive registers. Previously, we just checked if it
was an array or not.
(plus an SVE specific check that is not changing here)

This causes some confusion when you arbitrary IR like:
```
%T1 = type { double, i1 };
define [ 1 x %T1 ] @foo() {
entry:
  ret [ 1 x %T1 ] zeroinitializer
}
```

We see it is an array so we call CC_AArch64_Custom_Block
which bails out when it sees the i1, a type we don't want
to put into a block.

This leaves the location of the double in some kind of
intermediate state and leads to odd codegen. Which then crashes
the backend because it doesn't know how to implement
what it's been asked for.

You get this:
```
  renamable $d0 = FMOVD0
  $w0 = COPY killed renamable $d0
```

Rather than this:
```
  $d0 = FMOVD0
  $w0 = COPY $wzr
```

The backend knows how to copy 64 bit to 64 bit registers,
but not 64 to 32. It can certainly be taught how but the real
issue seems to be us even trying to assign a register block
in the first place.

This change makes the logic of
AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters
a bit more in depth. If we find an array, also check that all the
nested aggregates in that array have a single member type.

Then CC_AArch64_Custom_Block's assumption of a type that looks
like [ N x type ] will be valid and we get the expected codegen.

New tests have been added to exercise these situations. Note that
some of the output is not ABI compliant. The aim of this change is
to simply handle these situations and not to make our processing
of arbitrary IR ABI compliant.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D104123
2021-06-16 13:56:01 +00:00
Amara Emerson 80c534a8f9 [GlobalISel][CallLowering] Fix crash when handling a v3s32 type that's being passed as v2s64. 2021-05-14 16:30:51 -07:00
Tim Northover ea0eec69f1 IR+AArch64: add a "swiftasync" argument attribute.
This extends any frame record created in the function to include that
parameter, passed in X22.

The new record looks like [X22, FP, LR] in memory, and FP is stored with 0b0001
in bits 63:60 (CodeGen assumes they are 0b0000 in normal operation). The effect
of this is that tools walking the stack should expect to see one of three
values there:

  * 0b0000 => a normal, non-extended record with just [FP, LR]
  * 0b0001 => the extended record [X22, FP, LR]
  * 0b1111 => kernel space, and a non-extended record.

All other values are currently reserved.

If compiling for arm64e this context pointer is address-discriminated with the
discriminator 0xc31a and the DB (process-specific) key.

There is also an "i8** @llvm.swift.async.context.addr()" intrinsic providing
front-ends access to this slot (and forcing its creation initialized to nullptr
if necessary).
2021-05-14 11:43:58 +01:00
Matt Arsenault 6f5ddf6731 GlobalISel: Don't hardcode varargs=false in resultsCompatible 2021-05-11 20:22:06 -04:00
Matt Arsenault 24e2e5df0e GlobalISel: Split ValueHandler into assignment and emission classes
Currently the ValueHandler handles both selecting the type and
location for arguments, as well as inserting instructions needed to
handle them. Split this so that the determination of the argument
handling is independent of the function state. Currently the checks
for tail call compatibility do not follow the full assignment logic,
so it misses cases where arguments require nontrivial legalization.

This should help avoid targets ending up in a buggy state where the
argument evaluation may change in different contexts.
2021-05-11 19:50:12 -04:00
Momchil Velikov f3139b20a0 [GlobalISel] Fix wrong invocation of `getParamStackAlign` (NFC)
The function template `CallLowering::setArgFlags` is invoked both
for arguments and return values. In the latter case, it calls
`getParamStackAlign` with argument index `~0u`. Nothing wrong
happens now, as the argument is safely incremented back to 0
inside `getParamStackAlign` (the type is `unsigned`), but in
principle it's fragile and may become incorrect.

Differential Revision: https://reviews.llvm.org/D102004
2021-05-10 12:16:33 +01:00
Matt Arsenault fa0b93b5a0 GlobalISel: Use DAG call lowering infrastructure in a more compatible way
Unfortunately the current call lowering code is built on top of the
legacy MVT/DAG based code. However, GlobalISel was not using it the
same way. In short, the DAG passes legalized types to the assignment
function, and GlobalISel was passing the original raw type if it was
simple.

I do believe the DAG lowering is conceptually broken since it requires
picking a type up front before knowing how/where the value will be
passed. This ends up being a problem for AArch64, which wants to pass
i1/i8/i16 values as a different size if passed on the stack or in
registers.

The argument type decision is split across 3 different places which is
hard to follow. SelectionDAG builder uses
getRegisterTypeForCallingConv to pick a legal type, tablegen gives the
illusion of controlling the type, and the target may have additional
hacks in the C++ part of the call lowering. AArch64 hacks around this
by not using the standard AnalyzeFormalArguments and special casing
i1/i8/i16 by looking at the underlying type of the original IR
argument.

I believe people have generally assumed the calling convention code is
processing the original types, and I've discovered a number of dead
paths in several targets.

x86 actually relies on the opposite behavior from AArch64, and relies
on x86_32 and x86_64 sharing calling convention code where the 64-bit
cases implicitly do not work on x86_32 due to using the pre-legalized
types.

AMDGPU targets without legal i16/f16 have always used a broken ABI
that promotes to i32/f32. GlobalISel accidentally fixed this to be the
ABI we should have, but this fixes it so we're using the worse ABI
that is compatible with the DAG. Ideally we would fix the DAG to match
the old GlobalISel behavior, but I don't wish to fight that battle.

A new native GlobalISel call lowering framework should let the target
process the incoming types directly.

CCValAssigns select a "ValVT" and "LocVT" but the meanings of these
aren't entirely clear. Different targets don't use them consistently,
even within their own call lowering code. My current belief is the
intent was "ValVT" is supposed to be the legalized value type to use
in the end, and and LocVT was supposed to be the ABI passed type
(which is also legalized).

With the default CCState::Analyze functions always passing the same
type for these arguments, these only differ when the TableGen part of
the lowering decide to promote the type from one legal type to
another. AArch64's i1/i8/i16 hack ends up inverting the meanings of
these values, so I had to add an additional hack to let the target
interpret how large the argument memory is.

Since targets don't consistently interpret ValVT and LocVT, this
doesn't produce quite equivalent code to the initial DAG
lowerings. I've opted to consistently interpret LocVT as the in-memory
size for stack passed values, and ValVT as the register type to assign
from that memory. We therefore produce extending loads directly out of
the IRTranslator, whereas the DAG would emit regular loads of smaller
values. This will also produce loads/stores that are wider than the
argument value if the allocated stack slot is larger (and there will
be undef padding bytes). If we had the optimizations to reduce
load/stores based on truncated values, this wouldn't produce a
different end result.

Since ValVT/LocVT are more consistently interpreted, we now will emit
more G_BITCASTS as requested by the CCAssignFn. For example AArch64
was directly assigning types to some physical vector registers which
according to the tablegen spec should have been casted to a vector
with a different element type.

This also moves the responsibility for inserting
G_ASSERT_SEXT/G_ASSERT_ZEXT from the target ValueHandlers into the
generic code, which is closer to how SelectionDAGBuilder works.

I had to xfail an x86 test since I don't see a quick way to fix it
right now (I filed bug 50035 for this). It's broken independently of
this change, and only triggers since now we end up with more ands
which hit the improperly handled selection pattern.

I also observed that FP arguments that need promotion (e.g. f16 passed
as f32) are broken, and use regular G_TRUNC and G_ANYEXT.

TLDR; the current call lowering infrastructure is bad and nobody has
ever understood how it chooses types.
2021-05-05 17:35:02 -04:00
Matt Arsenault 620fdb9671 GlobalISel: Defer register creation in handleAssignments
This is currently built on top of the SelectionDAG call lowering, but
does not use it the same way. SelectionDAG passes legalized types to
the assignment functions, and the tablegenerated assignment functions
may change the value types expected for registers. This does not
change the types used, just moves the register creation to help fix
this in the future.

Defer the register creation until after all of the assignment
decisions have been made. This will also help have correct tail call
compatibility checking in a future change. Currently it does not work
as expected for any arguments split across multiple registers.
2021-04-20 11:48:12 -04:00
Momchil Velikov f9d932e673 [clang][AArch64] Correctly align HFA arguments when passed on the stack
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example

    struct S {
      __attribute__ ((__aligned__(16))) double v[4];
    };

Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)

Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.

This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.

The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.

For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.

On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.

Patch by Momchil Velikov and Lucas Prates.

Differential Revision: https://reviews.llvm.org/D98794
2021-04-15 22:58:14 +01:00
Matt Arsenault b9a0384983 GlobalISel: Preserve source value information for outgoing byval args
Pass through the original argument IR value in order to preserve the
aliasing information in the memcpy memory operands.
2021-03-18 09:16:54 -04:00
Matt Arsenault 61f834cc09 GlobalISel: Insert memcpy for outgoing byval arguments
byval requires an implicit copy between the caller and callee such
that the callee may write into the stack area without it modifying the
value in the parent. Previously, this was passing through the raw
pointer value which would break if the callee wrote into it.

Most of the time, this copy can be optimized out (however we don't
have the optimization SelectionDAG does yet).

This will trigger more fallbacks for AMDGPU now, since we don't have
legalization for memcpy yet (although we should stop using byval
anyway).
2021-03-18 09:16:54 -04:00
Matt Arsenault 6b76d82853 GlobalISel: Fix marking byval arguments as immutable
byval arguments need to be assumed writable. Only implicitly stack
passed arguments which aren't addressable in the IR can be assumed
immutable.

Mips is still broken since for some reason its doing its own thing
with the ValueHandlers (and x86 doesn't actually handle byval
arguments now, although some of the code is there).
2021-03-12 09:01:53 -05:00
Matt Arsenault 34471c3060 GlobalISel: Partially fix handling of byval arguments
This was essentially ignoring byval and treating them as a pointer
argument which needed to be loaded from. This should copy the frame
index value to the virtual register, not insert a load from the frame
index into the pointer value.

For AMDGPU, this was producing a load from the byval pointer argument,
to a pointer used for the byval arguments. I do not understand how
AArch64 managed to work before since it appears to be similarly
broken.

We could also change the ValueHandler API to avoid the extra copy from
the frame index, since currently it returns a new register.

I believe there is still an issue with outgoing byval arguments. These
should have a copy inserted in case the callee decided to overwrite
the memory.
2021-03-12 09:01:53 -05:00
Matt Arsenault cf5ecd5644 GlobalISel: Fix off by one in finding explicit byval alignment
For attribute sets, the return index is at 0, and arguments start at
1. getParamAlignment adds the offset of 1, so we need to convert from
attribute index back to IR index.
2021-03-11 10:23:08 -05:00
Matt Arsenault 78dcff4841 GlobalISel: Add default implementation of assignValueToReg
Refactor insertion of the asserting ops. This enables using them for
AMDGPU.

This code should essentially be the same for every target. Mips, X86
and ARM all have different code there now, but this seems to be an
accident. The assignment functions are called with different types
than they would be in the DAG, so this is all likely an assortment of
hacks to get around that.
2021-03-03 09:29:53 -05:00
Matt Arsenault fd82cbcf7d GlobalISel: Merge and cleanup more AMDGPU call lowering code
This merges more AMDGPU ABI lowering code into the generic call
lowering. Start cleaning up by factoring away more of the pack/unpack
logic into the buildCopy{To|From}Parts functions. These could use more
improvement, and the SelectionDAG versions are significantly more
complex, and we'll eventually have to emulate all of those cases too.

This is mostly NFC, but does result in some minor instruction
reordering. It also removes some of the limitations with mismatched
sizes the old code had. However, similarly to the merge on the input,
this is forcing gfx6/gfx7 to use the gfx8+ ABI (which is what we
actually want, but SelectionDAG is stuck using the weird emergent
ABI).

This also changes the load/store size for stack passed EVTs for
AArch64, which makes it consistent with the DAG behavior.
2021-03-02 17:31:13 -05:00
Matt Arsenault 0131498402 GlobalISel: Remove dead code
Generic code should probably not introduce G_INSERT/G_EXTRACT. The
mirror unpackRegs should also be removed, but AMDGPU still has a use
remaining which needs to be fixed.
2021-03-01 17:06:43 -05:00