Optimizing (a * 0 + b) to (b) requires assuming that a is finite and not
NaN. DAGCombiner will do this optimization when the reassoc fast math
flag is set, which is not correct. Change DAGCombiner to only consider
UnsafeMath for this optimization.
Differential Revision: https://reviews.llvm.org/D130232
Co-authored-by: Andrea Faulds <andrea.faulds@arm.com>
This will fix the SystemZ v3i31 memcpy regression in D77804 (with the help of D129765 as well....).
It should also allow us to /bend/ the oneuse limitation for cases where we can use demanded bits to safely peek though multiple uses of the AND ops.
We were looking for loads or any_extend+load. reduceLoadWidth
hasn't known how to look through such an any_extend to find the
load since D40667 almost 5 years ago.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130333
When determining if an `and` should be merged into an extending load
the constant argument to the `and` is currently not checked if the
argument requires truncation. This prevents the combine happening when
the vector width is half the normal available vector width for SVE VLA
vectors.
Reviewed By: c-rhodes
Differential Revision: https://reviews.llvm.org/D129281
This revision supports to scalarize a binary operation of two scalable splat vectors.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D122791
The DAG Combiner unnecessarily restricts commutative CSE
to nodes with a single result value. This commit removes
that restriction.
Signed-off-by: Itay Bookstein <ibookstein@gmail.com>
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D129666
trunc (sign_ext_inreg X, iM) to iN --> sign_ext_inreg (trunc X to iN), iM
There are improvements on existing tests from this, and there are a pair
of large regressions in D127115 for Thumb2 caused by not folding this
pattern.
Differential Revision: https://reviews.llvm.org/D129890
D127595 added the ability to recurse up a (one-use) INSERT_VECTOR_ELT chain to create a BUILD_VECTOR before other combines manage to break the chain, something that is particularly bad in D127115.
The patch generalises this so it doesn't have to build the chain starting from the last element insertion, instead it can now start from any insertion and will recurse up the chain until it finds all elements or finds a UNDEF/BUILD_VECTOR/SCALAR_TO_VECTOR which represents that start of the chain.
Fixes several regressions in D127115
As mentioned on D127115, this patch that attempts to recognise shuffle masks that could be simplified to a AND mask - we already have a similar transform that will fold AND -> 'clear mask' shuffle, but this patch handles cases where the referenced elements are not from the same lane indices but are known to be zero.
Differential Revision: https://reviews.llvm.org/D129150
combineShiftAnd1ToBitTest already matches "and (not (srl X, C)), 1 --> (and X, 1<<C) == 0" patterns, but we can end up with situations where the not is before the shift.
Part of some yak shaving for D127115 to generalise the "xor (X >> ShiftC), XorC --> (not X) >> ShiftC" fold.
SimplifyDemandedBits is called slightly later which allows the not(sext(x)) -> sext(not(x)) fold to occur via foldLogicOfShifts
As mentioned on D127115, we should be able to further generalise this based off the demanded bits.
We have the same fold in InstCombine - though implemented via OrZero flag on isKnownToBePowerOfTwo. The reasoning here is that either a) the result of the lshr is a power-of-two, or b) we have a div-by-zero triggering UB which we can ignore.
Differential Revision: https://reviews.llvm.org/D129606
As suggested in the post-commit feedback for D128123,
we can ease the mask constraint to ignore the MSB
(and make the code easier to read by adjusting the check).
https://alive2.llvm.org/ce/z/bbvqWv
This patch restores calls to has_value to make it clear that we are
checking the presence of an optional value, not the underlying value.
This patch partially reverts d08f34b592.
Differential Revision: https://reviews.llvm.org/D129454
We already handled this case for add with a constant RHS. A
similar pattern can occur for sub with a constant left hand side.
Test cases use add and a mul representing (neg (shl X, C)) because
that's what I saw in the wild. The mul will be decomposed and then
the new transform can kick in.
Tests have not been committed, but this patch shows the changes.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D128769
This is almost the same as the abandoned D48529, but it
allows splat vector constants too.
This replaces the x86-specific code that was added with
the alternate patch D48557 with the original generic
combine.
This transform is a less restricted form of an existing
InstCombine and the proposed SDAG equivalent for that
in D128080:
https://alive2.llvm.org/ce/z/OUm6N_
Differential Revision: https://reviews.llvm.org/D128123
Similar to the existing (shl (srl x, c1), c2) fold
Part of the work to fix the regressions in D77804
Differential Revision: https://reviews.llvm.org/D125836
The VT we want to shrink to may not be legal especially after type
legalization.
Fixes PR56110.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D128135
Another issue unearthed by D127115
We take a long time to canonicalize an insert_vector_elt chain before being able to convert it into a build_vector - even if they are already in ascending insertion order, we fold the nodes one at a time into the build_vector 'seed', leaving plenty of time for other folds to alter it (in particular recognising when they come from extract_vector_elt resulting in a shuffle_vector that is much harder to fold with).
D127115 makes this particularly difficult as we're almost guaranteed to have the lost the sequence before all possible insertions have been folded.
This patch proposes to begin at the last insertion and attempt to collect all the (oneuse) insertions right away and create the build_vector before its too late.
Differential Revision: https://reviews.llvm.org/D127595
This should fix a number of shuffle regressions in D127115 where the re-ordered combines mean we fail to fold a EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT sequence into a BUILD_VECTOR if we extract from more than one vector source.
As noticed on D127115 - we were missing this fold, instead just having the shuffle(shuffle(x,undef,splatmask),undef) fold. We should be able to merge these into one using SelectionDAG::isSplatValue, but we'll need to match the shuffle's undef handling first.
This also exposed an issue in SelectionDAG::isSplatValue which was incorrectly propagating the undef mask across a bitcast (it was trying to just bail with a APInt::isSubsetOf if it found any undefs but that was actually the wrong way around so didn't fire for partial undef cases).
I can't remove the function just yet as it is used in the generated .inc files.
I would also like to provide a way to compare alignment with TypeSize since it came up a few times.
Differential Revision: https://reviews.llvm.org/D126910
These assert that there are no "useless" assertzext/assertsext nodes
(that assert a wider width than a following trunc), but I don't think
there is anything preventing such nodes from reaching this code.
I don't think the assertion is relevant for correctness of this
transform either -- if such an assert is present, then the other
one will always be to a smaller width, and we'll pick that one.
The assertion dates back to D37017.
Fixes https://github.com/llvm/llvm-project/issues/55846.
Differential Revision: https://reviews.llvm.org/D126952
When promoting a shift, make sure we only fetch the second operand
after promoting the first. Load promotion may replace users of the
old load, and we don't want to be left with a dangling reference to
the old load instruction.
The crashing test case is from https://reviews.llvm.org/D126689#3553212.
Differential Revision: https://reviews.llvm.org/D126886
If the VT is i2, then 2 is really -2.
Test has not been commited yet, but diff shows the change.
Fixes PR55644.
Differential Revision: https://reviews.llvm.org/D126213
Most clients only used these methods because they wanted to be able to
extend or truncate to the same bit width (which is a no-op). Now that
the standard zext, sext and trunc allow this, there is no reason to use
the OrSelf versions.
The OrSelf versions additionally have the strange behaviour of allowing
extending to a *smaller* width, or truncating to a *larger* width, which
are also treated as no-ops. A small amount of client code relied on this
(ConstantRange::castOp and MicrosoftCXXNameMangler::mangleNumber) and
needed rewriting.
Differential Revision: https://reviews.llvm.org/D125557
This function tries to match (a >> 8) | (a << 8) as (bswap a) >> 16.
If the SRL isn't masked and the high bits aren't demanded, we still
need to ensure that bits 23:16 are zero. After the right shift they
will be in bits 15:8 which is where the important bits from the SHL
end up. It's only a bswap if the OR on bits 15:8 only takes the bits
from the SHL.
Fixes PR55484.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D125641
If we're using shift pairs to mask, then relax the one use limit if the shift amounts are equal - we'll only be generating a single AND node.
AArch64 has a couple of regressions due to this, so I've enforced the existing one use limit inside a AArch64TargetLowering::shouldFoldConstantShiftPairToMask callback.
Part of the work to fix the regressions in D77804
Differential Revision: https://reviews.llvm.org/D125607
During early gather/scatter enablement two different approaches
were taken to represent scaled indices:
* A Scale operand whereby byte_offsets = Index * Scale
* An IndexType whereby byte_offsets = Index * sizeof(MemVT.ElementType)
Having multiple representations is bad as shown by this patch which
fixes instances where the two are out of sync. The dedicated scale
operand is more flexible and pervasive so this patch removes the
UNSCALED values from IndexType. This means all indices are scaled
but the scale can be one, hence unscaled. SDNodes now use the scale
operand to answer the "isScaledIndex" question.
I toyed with the idea of keeping the UNSCALED enums and helper
functions but because they will have no uses and force SDNodes to
validate the set of supported values I figured it's best to remove
them. We can re-add them if there's a real need. For similar
reasons I've kept the IndexType enum when a bool could be used as I
think being explicitly looks better.
Depends On D123347
Differential Revision: https://reviews.llvm.org/D123381
SelectionDAG::FoldConstantArithmetic determines if operands are foldable constants, so we don't need to bother with isConstantOrConstantVector / Opaque tests before calling it directly.
SelectionDAG::FoldConstantArithmetic determines if operands are foldable constants, so we don't need to bother with isConstantOrConstantVector / Opaque tests before calling it directly.
As suggested from 02f8519502, this uses the
isAnyConstantBuildVector method in lieu of separate
isBuildVectorOfConstantSDNodes calls. It should
otherwise be an NFC.
This prevents an infinite loop from D123801, where code trying to reduce
the total number of bitcasts, but also handling constants, could create
the opposite transform. Prevent the transform in these case to let the
bitcast of a constant transform naturally.
Fixes#55345
This is part of an ongoing effort toward making DAGCombine process the nodes in topological order.
This is able to discover a couple of new optimizations, but also causes a couple of regression. I nevertheless chose to submit this patch for review as to start the discussion with people working on the backend so we can find a good way forward.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D124743
Add helper functions to query the signed and scaled properties
of ISD::IndexType along with functions to change them.
Remove setIndexType from MaskedGatherSDNode because it only has
one usage and typically should only be changed alongside its
index operand.
Minimise the direct use of the enum values to lay the groundwork
for more refactoring.
Differential Revision: https://reviews.llvm.org/D123347
Something is going wrong with the BigEndian PowerPC bot. It is hard to
tell what is wrong from here, but attempt to fix it by disabling the
combineShuffleOfBitcast combine for bigendian.
If the mask is made up of elements that form a mask in the higher type
we can convert shuffle(bitcast into the bitcast type, simplifying the
instruction sequence. A v4i32 2,3,0,1 for example can be treated as a
1,0 v2i64 shuffle. This helps clean up some of the AArch64 concat load
combines, along with helping simplify a number of other tests.
The PowerPC combine for v16i8 splat vector loads needed some fixes to
keep it working for v16i8 vectors. This improves the handling of v2i64
shuffles to match too, hopefully improving them in general.
Differential Revision: https://reviews.llvm.org/D123801
This extends the (X & ~Y) | Y to X | Y fold to also work if ~Y is
a truncated not (when taking into account the mask X). This is
done by exporting the infrastructure added in D124856 and reusing
it here.
I've retained the old value of AllowUndefs=false, though probably
this can be switched to true with extra test coverage.
Differential Revision: https://reviews.llvm.org/D124930
Don't assume the rotation amounts have been correctly normalized - do it as part of the constant folding.
Also, the normalization should be performed with UREM not SREM.
When looking for memory uses,
reassociationCanBreakAddressingModePattern should check uses of
the outer ADD rather than the inner ADD. We want to know if the
two ops we're reassociating are used by a load/store.
In practice, the existing check usually works because CodeGenPrepare
will make one of the load/stores have an offset of 0 relative to
split GEP. That will make the inner add have a memory use.
To test this, I've manually split the GEPs so there is no 0 offset
store.
This issue was recently discussed in the original review D60294.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D124644
We try to match as a disguised rotate by constant of these forms
(shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1)
(shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2)
We may have also looked through an AND to find the shift. If we
did, we need to apply a mask to the result.
I'll add an AArch64 test and pre-commit it and the RISC-V test
tomorrow.
Fixes PR55201.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D124711
When looking through extends of gather/scatter indices it's safe
to convert a known positive signed index to unsigned, but unsigned
indices must remain unsigned.
Depends On D123318
Differential Revision: https://reviews.llvm.org/D123326
refineUniformBase and selectGatherScatterAddrMode both attempt the
transformation:
base(0) + index(A+splat(B)) => base(B) + index(A)
However, this is only safe when index is not implicitly scaled.
Differential Revision: https://reviews.llvm.org/D123222
This is a very specific fold to fix an upstream poor codegen issue.
InstCombine has the much more flexible pushFreezeToPreventPoisonFromPropagating but I don't think we're quite there with DAG/TLI handling for canCreateUndefOrPoison/isGuaranteedNotToBeUndefOrPoison value tracking yet.
Fixes#54911
Differential Revision: https://reviews.llvm.org/D124185
We can process the long shuffles (working across several actual
vector registers) in the best way if we take the actual register
represantion into account. We can build more correct representation of
register shuffles, improve number of recognised buildvector sequences.
Also, same function can be used to improve the cost model for the
shuffles. in future patches.
Part of D100486
Differential Revision: https://reviews.llvm.org/D115653
We can process the long shuffles (working across several actual
vector registers) in the best way if we take the actual register
represantion into account. We can build more correct representation of
register shuffles, improve number of recognised buildvector sequences.
Also, same function can be used to improve the cost model for the
shuffles. in future patches.
Part of D100486
Differential Revision: https://reviews.llvm.org/D115653
1. X%C to the equivalent of X-X/C*C is not always fastest path if there is no SDIV pair exist. So check target have faster for srem only first.
2. Add AArch64 faster path for SREM only pow2 case.
Fix https://github.com/llvm/llvm-project/issues/54649
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D122968
hasOneUse is not cheap on nodes with chain results that might have
many uses. By checking the opcode first, we can avoid a costly walk
of the use list on nodes we aren't interested in.
Found by investigating calls to hasNUsesOfValue from the example
provided in D123857.
As far as I know getNode will never return a null SDValue.
I'm guessing this was modeled after the FoldConstantArithmetic
call earlier.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D123550
Accord the discussion in D122281, we missing an ISD::AND combine for MLOAD
because it relies on BuildVectorSDNode is fails for scalable vectors.
This patch is intend to handle that, so we can circle back the type MVT::nxv2i32
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D122703
As raised on PR52267, XOR(X,MIN_SIGNED_VALUE) can be treated as ADD(X,MIN_SIGNED_VALUE), so let these cases use the 'AddLike' folds, similar to how we perform no-common-bits OR(X,Y) cases.
define i8 @src(i8 %x) {
%r = xor i8 %x, 128
ret i8 %r
}
=>
define i8 @tgt(i8 %x) {
%r = add i8 %x, 128
ret i8 %r
}
Transformation seems to be correct!
https://alive2.llvm.org/ce/z/qV46E2
Differential Revision: https://reviews.llvm.org/D122754
When shifting by a byte-multiple:
bswap (shl X, C) --> lshr (bswap X), C
bswap (lshr X, C) --> shl (bswap X), C
This is the backend version of D122010 and an alternative
suggested in D120648.
There's an extra check to make sure the shift amount is
valid that was not in the rough draft.
I'm not sure if there is a larger motivating case for RISCV (bug report?),
but the ARM diffs show a benefit from having a late version of the
transform (because we do not combine the loads in IR).
Differential Revision: https://reviews.llvm.org/D122655
Modified DAGCombiner to pass the shift the bittest input and the shift amount
to hasBitTest. This matches the other call to hasBitTest in TargetLowering.h
This is an alternative to D122454.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D122458
Trying to reduce the number of masked loads in favour of more unpklo/hi
instructions. Both ISD::ZEXTLOAD and ISD::SEXTLOAD are supported to extensions
from legal types.
Both of normal and masked loads test cases added to guard compile crash.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D120953
Add shl/srl/sra to the list of ops that we canonicalize with a select to expose an identity merge
Differential Revision: https://reviews.llvm.org/D122070
RISCV strong prefers i32 values be sign extended to i64. This combine
was always zero extending the constant using APInt methods.
This adjusts the code so that it calls getNode using ISD::ANY_EXTEND instead.
getNode will call TLI.isSExtCheaperThanZExt to decide how to handle
the constant.
Tests were copied from D121598 where I noticed that we were creating
constants that were hard to materialize.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D121650
We do not have general reassociation here (and probably
do not need it), but I noticed these were missing in
patches/tests motivated by D111530, so we can at
least handle the simplest patterns.
The VE test diff looks correct, but we miss that
pattern in IR currently:
https://alive2.llvm.org/ce/z/u66_PM
This is another fold generalized from D111530.
We can find a common source for a rotate operation hidden inside an 'or':
https://alive2.llvm.org/ce/z/9pV8hn
Deciding when this is profitable vs. a funnel-shift is tricky, but this
does not show any regressions: if a target has a rotate but it does not
have a funnel-shift, then try to form the rotate here. That is why we
don't have x86 test diffs for the scalar tests that are duplicated from
AArch64 ( 74a65e3834 ) - shld/shrd are available. That also makes it
difficult to show vector diffs - the only case where I found a diff was
on x86 AVX512 or XOP with i64 elements.
There's an additional check for a legal type to avoid a problem seen
with x86-32 where we form a 64-bit rotate but then it gets split
inefficiently. We might avoid that by adding more rotate folds, but
I didn't check to see what is missing on that path.
This gets most of the motivating patterns for AArch64 / ARM that are in
D111530.
We still need a couple of enhancements to setcc pattern matching with
rotate/funnel-shift to get the rest.
Differential Revision: https://reviews.llvm.org/D120933
When inserting undef into buildvectors created from shuffles of
buildvectors, we convert elements to the largest needed type. This had
the effect of converting undef into 0, which isn't needed as the
buildvector implicitly truncates and trunc(zext(undef)) == undef.
Differential Revision: https://reviews.llvm.org/D121002
This extends acb96ffd14 to 'and' and 'xor' opcodes.
Copying from that message:
LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
https://alive2.llvm.org/ce/z/QmR9rR
This is a reassociation + factoring fold. The common shift operation is moved
after a bitwise logic op on 2 input operands.
We get simpler cases of these patterns in IR, but I suspect we would miss all
of these exact tests in IR too. We also handle the simpler form of this plus
several other folds in DAGCombiner::hoistLogicOpWithSameOpcodeHands().
When triggered during operation legalisation the affected combine
generates a splat_vector that when custom lowered for SVE fixed
length code generation, results in the original precombine sequence
and thus we enter a legalisation/combine hang.
NOTE: The patch contains no tests because I observed this issue
only when combined with other work that might never become public.
The current way AArch64 lowers ISD::SPLAT_VECTOR meant a specific
test was not possible so I'm hoping the DAGCombiner fix can be seen
as obvious. The AArch64ISelLowering change is requirted to maintain
existing code quality.
Differential Revision: https://reviews.llvm.org/D120735
If the types aren't legal, the expansions may get type legalized in a
different way preventing code sharing. If the type is legal, we will
share some instructions between the two expansions, but we will need an
extra register.
Since we don't appear to fold (neg (sub A, B)) if the sub has an
additional user, I think it makes sense not to expand NABS.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D120513
LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
https://alive2.llvm.org/ce/z/QmR9rR
This is a reassociation + factoring fold. The common shift operation is moved
after a bitwise logic op on 2 input operands.
We get simpler cases of these patterns in IR, but I suspect we would miss all
of these exact tests in IR too. We also handle the simpler form of this plus
several other folds in DAGCombiner::hoistLogicOpWithSameOpcodeHands().
This is a partial implementation of a transform suggested in D111530
(only handles 'or' bitwise logic as a first step - need to stamp out more
tests for other opcodes).
Several of the same tests added for D111530 are altered here (but not
fully optimized). I'm not sure yet if this would help/hinder that patch,
but this should be an improvement for all tests added with ecf606cb43
since it removes a shift operation in those examples.
Differential Revision: https://reviews.llvm.org/D120516
If the shl is at least half the bitwidth (i.e. the lower half of the bswap source is zero), then we can reduce the shift and perform the bswap at half the bitwidth and just zero extend.
Based off PR51391 + PR53867
Differential Revision: https://reviews.llvm.org/D120192
This is the SDAG translation of D120253 :
https://alive2.llvm.org/ce/z/qHpmNn
The SDAG nodes can have different operand types than the result value.
We can see an example of that with AArch64 - the funnel shift amount
is an i64 rather than i32.
We may need to make that match even more flexible to handle
post-legalization nodes, but I have not stepped into that yet.
Differential Revision: https://reviews.llvm.org/D120264
Internally to DAGCombiner the SDValues were passed by non-const
reference despite not being modified. They were then passed by
const reference to TLI.
This patch passes them by value which is consistent with the vast
majority of code.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D120420
In combineCarryDiamond() use getAsCarry() to find more candidates for being a carry flag.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D118362
This fold is done in IR:
https://alive2.llvm.org/ce/z/jWyFrP
There is an x86 test that shows an improvement
from the added flexibility of using add (commutative).
The other diffs are presumed neutral.
Note that this could also be folded to an 'xor',
but I'm not sure if that would be universally better
(eg, x86 can convert adds more easily into LEA).
This helps prevent regressions from a potential fold for
issue #53829.
The current ABD combine doesn't quite work for SVE because only a
single scalable vector per scalar integer type is legal (e.g. for
i32, <vscale x 4 x i32> is the only legal scalable vector type).
This patch extends the combine to also trigger for the cases when
operand extension must be retained.
Differential Revision: https://reviews.llvm.org/D115739
This moves the matching of AVGFloor and AVGCeil into a place where
demand bit are available, so that it can detect more cases for more
folds. It changes the transform to start from a shift, not from a
truncate. We match the pattern shr(add(ext(A), ext(B)), 1), transforming
to ext(hadd(A, B)).
For signed values, because only the bottom bits are demanded llvm will
transform the above to use a lshr too, as opposed to ashr. In order to
correctly detect the hadd we need to know the demanded bits to turn it
back. Depending on whether the shift is signed (ashr) or logical (lshr),
and the extensions are signed or unsigned we can create different nodes.
If the shift is signed:
Needs >= 2 sign bits. https://alive2.llvm.org/ce/z/h4gQAW generating signed rhadd.
Needs >= 2 zero bits. https://alive2.llvm.org/ce/z/B64DUA generating unsigned rhadd.
If the shift is unsigned:
Needs >= 1 zero bits. https://alive2.llvm.org/ce/z/ByD8sj generating unsigned rhadd.
Needs 1 demanded bit zero and >= 2 sign bits https://alive2.llvm.org/ce/z/hvPGxX and
https://alive2.llvm.org/ce/z/32P5n1 generating signed rhadd.
Differential Revision: https://reviews.llvm.org/D119072
This adds very basic combines for AVG nodes, mostly for constant folding
and handling degenerate (zero) cases. The code performs mostly the same
transforms as visitMULHS, adjusted for AVG nodes.
Constant folding extends to a higher bitwidth and drops the lowest bit.
For undef nodes, `avg undef, x` is transformed to x. There is also a
transform for `avgfloor x, 0` transforming to `shr x, 1`.
Differential Revision: https://reviews.llvm.org/D119559
This enables fshl to be matched earlier on X86
%6 = lshr i32 %3, 1
%7 = select i1 %4, i32 -2147483648, i32 0
%8 = or i32 %6, %7
X86 uses i8 for shift amounts. SelectionDAGBuilder creates the
ISD::SRL with an i8 shift type. DAGCombiner turns the select into
an ISD::SHL. Prior to this patch it would use i32 for the shift
amount. fshl matching failed because the shift amounts have different
types. LegalizeDAG fixes the ISD::SHL shift amount to i8. This
allowed fshl matching to succeed.
With this patch, the ISD::SHL will be created with an i8 shift
amount. This allows the fshl to match immediately.
No test case beause we still end up with a fshl either way.
I have not found a way to expose a difference for this patch in a test
because it only triggers for a one-use load, but this is the code that
was adapted into D118376 and caused miscompiles. The new code pattern
is the same as what we do in narrowExtractedVectorLoad() (reduces load
width for a subvector extract).
This removes seemingly unnecessary manual worklist management and fixes
the chain updating via "SelectionDAG::makeEquivalentMemoryOrdering()".
Differential Revision: https://reviews.llvm.org/D119549
This ports the aarch64 combines for HADD and RHADD over to DAG combine,
so that they can be used in more architectures (notably MVE in a
followup patch). They are renamed to AVGFLOOR and AVGCEIL in the
process, to avoid confusion with instructions such as X86 hadd. The code
was also rewritten slightly to remove the AArch64 idiosyncrasies.
The general pattern for a AVGFLOORS is
%xe = sext i8 %x to i32
%ye = sext i8 %y to i32
%a = add i32 %xe, %ye
%r = lshr i32 %a, 1
%t = trunc i32 %r to i8
An AVGFLOORU is equivalent with zext. Because of the truncate
lshr==ashr, as the top bits are not demanded. An AVGCEIL also includes
an extra rounding, so includes an extra add of 1.
Differential Revision: https://reviews.llvm.org/D106237
We're hitting a pathological compile-time case, profiled to be in
DagCombiner::visitTokenFactor and many inserts into a SmallPtrSet.
It looks like one of the paths around findBetterNeighborChains is not
capped and leads to this.
This patch resolves the issue. Looking for feedback if this solution
looks reasonable.
Differential Revision: https://reviews.llvm.org/D118877
The test diffs are identical to D119111.
This only affects x86 currently because no other target
has an override for the TLI hook that controls this transform.
This is no-functional-change-intended because only the
x86 target enables the TLI hook currently.
We can add fmul/fdiv opcodes to the switch similar to the
proposal D119111, but we don't need to make other changes
like enabling target-specific combines.
We can also add integer opcodes (add, or, shl, etc.) to
the switch because this function is called from all of the
generic binary opcodes.
The goal is to incrementally enable the profitable diffs
from D90113 while avoiding regressions.
Differential Revision: https://reviews.llvm.org/D119150
In many cases, calls to isShiftedMask are immediately followed with checks to determine the size and position of the bitmask.
This patch adds variants of APInt::isShiftedMask, isShiftedMask_32 and isShiftedMask_64 that return these values as additional arguments.
I've updated a number of cases that were either performing seperate size/position calculations or had created their own local wrapper versions of these.
Differential Revision: https://reviews.llvm.org/D119019