This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This creates a library for fetching debug info by build ID, whether
locally or remotely via debuginfod. The functionality was refactored
out of existing code in the Symboliize library. Existing utilities
were refactored to use this library.
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D132504
When populating the symbol table for an ELF object file, don't insert any symbols that come from ELF sections which don't have runtime allocated memory (typically debugging symbols).
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D133795
This adds support for backtrace generation to the llvm-symbolizer markup
filter, which is likely the largest use case.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D132706
Implements the pc element for the symbolizing filter, including it's
"ra" and "pc" modes. Return addresses ("ra") are adjusted by
decrementing one. By default, {{{pc}}} elements are assumed to point to
precise code ("pc") locations. Backtrace elements will adopt the
opposite convention.
Along the way, some minor refactors of value printing and colorization.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D131115
This connects the Symbolizer to the markup filter and enables the first
working end-to-end flow using the filter.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D130187
This change implements the contextual symbolizer markup elements: reset,
module, and mmap. These provide information about the runtime context of
the binary necessary to resolve addresses to symbolic values.
Summary information is printed to the output about this context.
Multiple mmap elements for the same module line are coalesced together.
The standard requires that such elements occur on their own lines to
allow for this; accordingly, anything after a contextual element on a
line is silently discarded.
Implementing this cleanly requires that the filter drive the parser;
this allows skipped sections to avoid being parsed. This also makes the
filter quite a bit easier to use, at the cost of some unused
flexibility.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D129519
This library implements the class `DebuginfodCollection`, which scans a set of directories for binaries, classifying them according to whether they contain debuginfo. This also provides the `DebuginfodServer`, an `HTTPServer` which serves debuginfod's `/debuginfo` and `/executable` endpoints. This is intended as the final new supporting library required for `llvm-debuginfod`.
As implemented here, `DebuginfodCollection` only finds ELF binaries and DWARF debuginfo. All other files are ignored. However, the class interface is format-agnostic. Generalizing to support other platforms will require refactoring of LLVM's object parsing libraries to eliminate use of `report_fatal_error` ([[ https://github.com/llvm/llvm-project/blob/main/llvm/lib/Object/WasmObjectFile.cpp#L74 | e.g. when reading WASM files ]]), so that the debuginfod daemon does not crash when it encounters a malformed file on the disk.
The `DebuginfodCollection` is tested by end-to-end tests of the debuginfod server (D114846).
Reviewed By: mysterymath
Differential Revision: https://reviews.llvm.org/D114845
This adds a --filter option to llvm-symbolizer. This takes log-bearing
symbolizer markup from stdin and writes a human-readable version to
stdout.
For now, this only implements the "symbol" markup tag; all others are
passed through unaltered. This is a proof-of-concept bit of
functionalty; implement the various tags is more-or-less just a matter
of hooking up various parts of the Symbolize library to the architecture
established here.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D126980
This allows registering certain tags as possibly beginning multi-line
elements in the symbolizer markup parser. The parser is kept agnostic to
how lines are delimited; it reports the entire contents, including line
endings, once the end of element marker is reached.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D124798
This adds a parser for the log symbolizer markup format discussed in
https://discourse.llvm.org/t/rfc-log-symbolizer/61282. The parser
operates in a line-by-line fashion with minimal memory requirements.
This doesn't yet include support for multi-line tags or specific parsing
for ANSI X3.64 SGR control sequences, but it can be extended to do so.
The latter can also be relatively easily handled by examining the
resulting text elements.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D124686
Currently, llvm-symbolizer doesn't like to parse .debug_info in order to
show the line info for global variables. addr2line does this. In the
future, I'm looking to migrate AddressSanitizer off of internal metadata
over to using debuginfo, and this is predicated on being able to get the
line info for global variables.
This patch adds the requisite support for getting the line info from the
.debug_info section for symbolizing global variables. This only happens
when you ask for a global variable to be symbolized as data.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D123538
This change adds a simple LRU cache to the Symbolize class to put a cap
on llvm-symbolizer memory usage. Previously, the Symbolizer's virtual
memory footprint would grow without bound as additional binaries were
referenced.
I'm putting this out there early for an informal review, since there may be
a dramatically different/better way to go about this. I still need to
figure out a good default constant for the memory cap and benchmark the
implementation against a large symbolization workload. Right now I've
pegged max memory usage at zero for testing purposes, which evicts the whole
cache every time.
Unfortunately, it looks like StringRefs in the returned DI objects can
directly refer to the contents of binaries. Accordingly, the cache
pruning must be explicitly requested by the caller, as the caller must
guarantee that none of the returned objects will be used afterwards.
For llvm-symbolizer this a light burden; symbolization occurs
line-by-line, and the returned objects are discarded after each.
Implementation wise, there are a number of nested caches that depend
on one another. I've implemented a simple Evictor callback system to
allow derived caches to register eviction actions to occur when the
underlying binaries are evicted.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D119784
On some standard library configurations these have a dependency on the
complete type of SymbolizableModule. They also do a lot of
copying/freeing so no point in inlining them.
This adds a --build-id=<hex build ID> flag to llvm-symbolizer. If --obj
is unspecified, this will attempt to look up the provided build ID using
whatever mechanisms are available to the Symbolizer (typically,
debuginfod). The semantics are then as if the found binary were given
using the --obj flag.
Reviewed By: jhenderson, phosek
Differential Revision: https://reviews.llvm.org/D118633
Debuginfod can pull in libcurl as a dependency, which isn't appropriate
for libLLVM. (See
https://gitlab.freedesktop.org/mesa/mesa/-/issues/5732).
This change breaks out debuginfod into a separate non-component library
that can be used directly in llvm-symbolizer. The tool can inject
debuginfod into the Symbolizer library via an abstract DebugInfoFetcher
interface, breaking the dependency of Symbolizer on debuinfod.
See https://github.com/llvm/llvm-project/issues/52731
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D118413
This change moves the SymbolizableObjectFile header to
include/llvm/DebugInfo/Symbolize. Making this header available to other
llvm libraries simplifies use cases where implicit caching, multiple
platform support and other features of the Symbolizer class are not
required. This also makes the dependent libraries easier to unit test
by having mocks which derive from SymbolizableModule.
Differential Revision: https://reviews.llvm.org/D116781
Adds a fallback to use the debuginfod client library (386655) in `findDebugBinary`.
Fixed a cast of Erorr::success() to Expected<> in debuginfod library.
Added Debuginfod to Symbolize deps in gn.
Updates compiler-rt/lib/sanitizer_common/symbolizer/scripts/build_symbolizer.sh to include Debuginfod library to fix sanitizer-x86_64-linux breakage.
Reviewed By: jhenderson, vitalybuka
Differential Revision: https://reviews.llvm.org/D113717
Adds a fallback to use the debuginfod client library (386655) in `findDebugBinary`.
Fixed a cast of Erorr::success() to Expected<> in debuginfod library.
Added Debuginfod to Symbolize deps in gn.
Updates compiler-rt/lib/sanitizer_common/symbolizer/scripts/build_symbolizer.sh to include Debuginfod library to fix sanitizer-x86_64-linux breakage.
Reviewed By: jhenderson, vitalybuka
Differential Revision: https://reviews.llvm.org/D113717
Adds a fallback to use the debuginfod client library (386655) in `findDebugBinary`.
Fixed a cast of Erorr::success() to Expected<> in debuginfod library.
Added Debuginfod to Symbolize deps in gn.
Adds new symbolizer symbols to `global_symbols.txt`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D113717
This reverts commit 02cc8d698c because it
caused buildbot failures. The issue appears to be simply that we need to
only enable debuginfod when the HTTPClient has been initialized by the
running tool, since InitLLVM does not do the initialization step anymore.
Adds a fallback to use the debuginfod client library (386655) in `findDebugBinary`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D113717
Add support for demangling Rust v0 symbols to LLVM symbolizer by reusing
nonMicrosoftDemangle which supports both Itanium and Rust mangling.
Reviewed By: dblaikie, jhenderson
Part of https://reviews.llvm.org/D110664
When we build with split dwarf in single mode the .o files that contain both "normal" debug sections and dwo sections, along with relocaiton sections for "normal" debug sections.
When we create DWARF context in DWARFObjInMemory we process relocations and store them in the map for .debug_info, etc section.
For DWO Context we also do it for non dwo dwarf sections. Which I believe is not necessary. This leads to a lot of memory being wasted. We observed 70GB extra memory being used.
I went with context sensitive approach, flag is passed in. I am not sure if it's always safe not to process relocations for regular debug sections if Obj contains .dwo sections.
If it is alternatvie might be just to scan, in constructor, sections and if there are .dwo sections not to process regular debug ones.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D106624
In many cases it is helpful to know at what address the resolved function starts.
This patch adds a new StartAddress member to the DILineInfo structure.
Reviewed By: jhenderson, dblaikie
Differential Revision: https://reviews.llvm.org/D102316
This patch introduces source loading and pruning functions.
It will allow to use the DWARF embedded source and use the same code for JSON printout.
No functional changes.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102539