Previously reverted in 41f5a0004e. Fold in
D133576 previously reverted in d29d5ffb63.
---
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Overview
It's possible to find intrinsics linked to an instruction by looking at the
MetadataAsValue uses of the attached DIAssignID. That covers instruction ->
intrinsic(s) lookup. Add a global DIAssignID -> instruction(s) map which gives
us the ability to perform intrinsic -> instruction(s) lookup. Add plumbing to
keep the map up to date through optimisations and add utility functions
including two that perform those lookups. Finally, add a unittest.
Details
In llvm/lib/IR/LLVMContextImpl.h add AssignmentIDToInstrs which maps DIAssignID
* attachments to Instruction *s. Because the DIAssignID * is the key we can't
use a TrackingMDNodeRef for it, and therefore cannot easily update the mapping
when a temporary DIAssignID is replaced.
Temporary DIAssignID's are only used in IR parsing to deal with metadata
forward references. Update llvm/lib/AsmParser/LLParser.cpp to avoid using
temporary DIAssignID's for attachments.
In llvm/lib/IR/Metadata.cpp add Instruction::updateDIAssignIDMapping which is
called to remove or add an entry (or both) to AssignmentIDToInstrs. Call this
from Instruction::setMetadata and add a call to setMetadata in Intruction's
dtor that explicitly unsets the DIAssignID so that the mappging gets updated.
In llvm/lib/IR/DebugInfo.cpp and DebugInfo.h add utility functions:
getAssignmentInsts(const DbgAssignIntrinsic *DAI)
getAssignmentMarkers(const Instruction *Inst)
RAUW(DIAssignID *Old, DIAssignID *New)
deleteAll(Function *F)
deleteAssignmentMarkers(const Instruction *Inst)
These core utils are tested in llvm/unittests/IR/DebugInfoTest.cpp.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132224
This reverts commit 171f7024cc.
Reverting this patch because it causes a cyclic dependency in the module build
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/48197/consoleFull#-69937453049ba4694-19c4-4d7e-bec5-911270d8a58c
In file included from <module-includes>:1:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/Argument.h:18:10: fatal error: cyclic dependency in module 'LLVM_IR': LLVM_IR -> LLVM_intrinsic_gen -> LLVM_IR
^
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
While building module 'LLVM_IR' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:
In file included from <module-includes>:12:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/IR/DebugInfo.h:24:10: fatal error: could not build module 'LLVM_intrinsic_gen'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
While building module 'LLVM_MC' imported from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:
In file included from <module-includes>:15:
In file included from /Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCContext.h:23:
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/include/llvm/MC/MCPseudoProbe.h:57:10: fatal error: could not build module 'LLVM_IR'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/llvm/lib/MC/MCAsmInfoCOFF.cpp:14:10: fatal error: could not build module 'LLVM_MC'
~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~
4 errors generated.
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Overview
It's possible to find intrinsics linked to an instruction by looking at the
MetadataAsValue uses of the attached DIAssignID. That covers instruction ->
intrinsic(s) lookup. Add a global DIAssignID -> instruction(s) map which gives
us the ability to perform intrinsic -> instruction(s) lookup. Add plumbing to
keep the map up to date through optimisations and add utility functions
including two that perform those lookups. Finally, add a unittest.
Details
In llvm/lib/IR/LLVMContextImpl.h add AssignmentIDToInstrs which maps DIAssignID
* attachments to Instruction *s. Because the DIAssignID * is the key we can't
use a TrackingMDNodeRef for it, and therefore cannot easily update the mapping
when a temporary DIAssignID is replaced.
Temporary DIAssignID's are only used in IR parsing to deal with metadata
forward references. Update llvm/lib/AsmParser/LLParser.cpp to avoid using
temporary DIAssignID's for attachments.
In llvm/lib/IR/Metadata.cpp add Instruction::updateDIAssignIDMapping which is
called to remove or add an entry (or both) to AssignmentIDToInstrs. Call this
from Instruction::setMetadata and add a call to setMetadata in Intruction's
dtor that explicitly unsets the DIAssignID so that the mappging gets updated.
In llvm/lib/IR/DebugInfo.cpp and DebugInfo.h add utility functions:
getAssignmentInsts(const DbgAssignIntrinsic *DAI)
getAssignmentMarkers(const Instruction *Inst)
RAUW(DIAssignID *Old, DIAssignID *New)
deleteAll(Function *F)
These core utils are tested in llvm/unittests/IR/DebugInfoTest.cpp.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132224
In D131869 we noticed that we jump through some hoops because we parse the
tolerance option used in MisExpect.cpp into a 64-bit integer. This is
unnecessary, since the value can only be in the range [0, 100).
This patch changes the underlying type to be 32-bit from where it is
parsed in Clang through to it's use in LLVM.
Reviewed By: jloser
Differential Revision: https://reviews.llvm.org/D131935
This allows the construct to be shared between different backends. However, it
still remains illegal to use TypedPointerType in LLVM IR--the type is intended
to remain an auxiliary type, not a real LLVM type. So no support is provided for
LLVM-C, nor bitcode, nor LLVM assembly (besides the bare minimum needed to make
Type->dump() work properly).
Reviewed By: beanz, nikic, aeubanks
Differential Revision: https://reviews.llvm.org/D130592
Plan is the migrate the global variable metadata for sanitizers, that's
currently carried around generally in the 'llvm.asan.globals' section,
onto the global variable itself.
This patch adds the attribute and plumbs it through the LLVM IR and
bitcode formats, but is a no-op other than that so far.
Reviewed By: vitalybuka, kstoimenov
Differential Revision: https://reviews.llvm.org/D126100
As implemented this patch assumes that Typed pointer support remains in
the llvm::PointerType class, however this could be modified to use a
different subclass of llvm::Type that could be disallowed from use in
other contexts.
This does not rely on inserting typed pointers into the Module, it just
uses the llvm::PointerType class to track and unique types.
Fixes#54918
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D122268
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
specifying DW_AT_trampoline as a string. Also update the signature
of DIBuilder::createFunction to reflect this addition.
Differential Revision: https://reviews.llvm.org/D123697
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Differential Revision: https://reviews.llvm.org/D115907
This allows us to not have to specify -opaque-pointers when updating
IR tests from typed pointers to opaque pointers.
We detect opaque pointers in .ll files by looking for relevant tokens,
either "ptr" or "*".
Reviewed By: #opaque-pointers, nikic
Differential Revision: https://reviews.llvm.org/D119482
Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
DIStringType is used to encode the debug info of a character object
in Fortran. A Fortran deferred-length character object is typically
implemented as a pair of the following two pieces of info: An address
of the raw storage of the characters, and the length of the object.
The stringLocationExp field contains the DIExpression to get to the
raw storage.
This patch also enables the emission of DW_AT_data_location attribute
in a DW_TAG_string_type debug info entry based on stringLocationExp
in DIStringType.
A test is also added to ensure that the bitcode reader is backward
compatible with the old DIStringType format.
Differential Revision: https://reviews.llvm.org/D117586
With Control-Flow Integrity (CFI), the LowerTypeTests pass replaces
function references with CFI jump table references, which is a problem
for low-level code that needs the address of the actual function body.
For example, in the Linux kernel, the code that sets up interrupt
handlers needs to take the address of the interrupt handler function
instead of the CFI jump table, as the jump table may not even be mapped
into memory when an interrupt is triggered.
This change adds the no_cfi constant type, which wraps function
references in a value that LowerTypeTestsModule::replaceCfiUses does not
replace.
Link: https://github.com/ClangBuiltLinux/linux/issues/1353
Reviewed By: nickdesaulniers, pcc
Differential Revision: https://reviews.llvm.org/D108478
As mentioned in D106585, this causes non-determinism, which can also be
shown by this test case being flaky without this patch.
We were using the APSInt's bit width for hashing, but not for checking
for equality. APInt::isSameValue() does not check bit width.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D115054
This trivial patch runs clang-format on some unformatted files before
doing logic changes and prevent hard to review diffs.
Differential Revision: https://reviews.llvm.org/D113572
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.
This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.
The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.
I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.
Differential Revision: https://reviews.llvm.org/D109290
Generate btf_tag annotations for function parameters.
A field "annotations" is introduced to DILocalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DILocalVariable(name: "info",, arg: 1, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106620
Generate btf_tag annotations for DIGlobalVariable.
A field "annotations" is introduced to DIGlobalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DIGlobalVariable(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106619
Generate btf_tag annotations for DISubprogram types.
A field "annotations" is introduced to DISubprogram, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DISubprogram(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106618
Generate btf_tag annotations for DIDrived types. More specifically,
clang frontend generates the btf_tag annotations for record
fields. The annotations are represented as an DINodeArray
in DebugInfo. The following example illustrate how
annotations are encoded in IR:
distinct !DIDerivedType(tag: DW_TAG_member, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106616
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
A field "annotations" is introduced to DIComposite, and the
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates
how annotations are encoded in IR:
distinct !DICompositeType(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations, as in the above example.
Reland with additional fixes for llvm/unittests/IR/DebugTypeODRUniquingTest.cpp.
Differential Revision: https://reviews.llvm.org/D106615
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
A field "annotations" is introduced to DIComposite, and the
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates
how annotations are encoded in IR:
distinct !DICompositeType(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations, as in the above example.
Differential Revision: https://reviews.llvm.org/D106615
This reverts commit 8cd35ad854.
It breaks `TestMembersAndLocalsWithSameName.py` on GreenDragon and
Mikael Holmén points out in D104827 that bitcode files created with the
patch cannot be parsed with binaries built before it.
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
We don't want to start updating tests to use opaque pointers until we're
close to the opaque pointer transition. However, before the transition
we want to run tests as if pointers are opaque pointers to see if there
are any crashes.
At some point when we have a flag to only create opaque pointers in the
bitcode and textual IR readers, and when we have fixed all places that
try to read a pointee type, this flag will be useless. However, until
then, this can help us find issues more easily.
Since the cl::opt is read into LLVMContext, we need to make sure
LLVMContext is created after cl::ParseCommandLineOptions().
Previously ValueEnumerator would visit the value types of global values
via the pointer type, but with opaque pointers we have to manually visit
the value type.
Reviewed By: nikic, dexonsmith
Differential Revision: https://reviews.llvm.org/D103503
The opaque pointer type is essentially just a normal pointer type with a
null pointee type.
This also adds support for the opaque pointer type to the bitcode
reader/writer, as well as to textual IR.
To avoid confusion with existing pointer types, we disallow creating a
pointer to an opaque pointer.
Opaque pointer types should not be widely used at this point since many
parts of LLVM still do not support them. The next steps are to add some
very simple use cases of opaque pointers to make sure they work, then
start pretending that all pointers are opaque pointers and see what
breaks.
https://lists.llvm.org/pipermail/llvm-dev/2021-May/150359.html
Reviewed By: dblaikie, dexonsmith, pcc
Differential Revision: https://reviews.llvm.org/D101704
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
The situation with inline asm/MC error reporting is kind of messy at the
moment. The errors from MC layout are not reliably propagated and users
have to specify an inlineasm handler separately to get inlineasm
diagnose. The latter issue is not a correctness issue but could be improved.
* Kill LLVMContext inlineasm diagnose handler and migrate it to use
DiagnoseInfo/DiagnoseHandler.
* Introduce `DiagnoseInfoSrcMgr` to diagnose SourceMgr backed errors. This
covers use cases like inlineasm, MC, and any clients using SourceMgr.
* Move AsmPrinter::SrcMgrDiagInfo and its instance to MCContext. The next step
is to combine MCContext::SrcMgr and MCContext::InlineSrcMgr because in all
use cases, only one of them is used.
* If LLVMContext is available, let MCContext uses LLVMContext's diagnose
handler; if LLVMContext is not available, MCContext uses its own default
diagnose handler which just prints SMDiagnostic.
* Change a few clients(Clang, llc, lldb) to use the new way of reporting.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D97449
Rename the `RF_MoveDistinctMDs` flag passed into `MapValue` and
`MapMetadata` to `RF_ReuseAndMutateDistinctMDs` in order to more
precisely describe its effect and clarify the header documentation.
Found this while helping to investigate PR48841, which pointed out an
unsound use of the flag in `CloneModule()`. For now I've just added a
FIXME there, but I'm hopeful that the new (more precise) name will
prevent other similar errors.