A target can return if a misaligned access is 'fast' as defined
by the target or not. In reality there can be different levels
of 'fast' and 'slow'. This patch changes the boolean 'Fast'
argument of the allowsMisalignedMemoryAccesses family of functions
to an unsigned representing its speed.
A target can still define it as it wants and the direct translation
of the current code uses 0 and 1 for current false and true. This
makes the change an NFC.
Subsequent patch will start using an actual value of speed in
the load/store vectorizer to compare if a vectorized access going
to be not just fast, but not slower than before.
Differential Revision: https://reviews.llvm.org/D124217
This will allow recognizing Q.31 multiplications on vectors that are
multiplies of HVX vectors. At the moment this comes at the expense of
Q.15 multiplications, which now are handled as 32-bit multiplications
with shifts.
In the longer term this will likely be replaced by a different scheme
of "legalizing" vectors, which is necessary for idiom recognition, at
least where using direct HVX instrinsics is desired.
Handle MULH[US] by normalizing them into newly invented nodes
HexagonISD::(S|U|US)MUL_LOHI. On HVX v60, if only the high part of
SMUL_LOHI is used, use the original MULHS expansion. In all other
cases, expand the full product.
On HVX v62, always expand the full product.
Introduce Hexagon-specific LLVM IR intrinsics for 32x32 multiplication
returning low/high parts.
HVX v62+ has bidirectional shifts, which do not mask the shift amount to
the bit width. Instead, the shift amount is sign-extended from the log(BW)
bit value, and a negative value causes a shift in the other direction.
For the shift amount being -log(BW), this reversed shift will shift all
bits out, inserting 0s or sign bits depending on the type and direction.
HVX v60 only has splats that take a 32-bit word as input, while v62+
has splats that take 8- or 16-bit value. This makes writing output
patterns that need to use a splat annoying, because the entire output
pattern needs to be replicated for various versions of HVX.
To avoid this, the patterns will always use the pseudos, and then the
pseudos will be handled using a post-ISel hook.
Resizing operations (e.g. sign extension) in DAG can go from any width
to any other width, e.g. i8 -> i32. If the input and the result differ
by a factor larger than 2, the operation cannot be legal in HVX, since
the only two legal vector sizes in HVX are a single vector and a pair
of vectors.
To simplify the legalization, such operations are expanded into steps
that only double/halve the type size, so that each such step can be fully
legalized on its own. The complication is that DAG will automatically
fold these steps back into one, e.g. sext(sext) -> sext. To prevent that
new HexagonISD nodes are introduced: TL_EXTEND and TL_TRUNCATE. Once
legalized, these nodes are replaced with the original opcodes.
The type legalization is now common to aext/sext/zext/trunc and Hexagon-
specific ssat/usat nodes.
All in-tree targets pass pointer-sized ConstantSDNodes to the
method. This overload reduced amount of boilerplate code a bit. This
also makes getCALLSEQ_END consistent with getCALLSEQ_START, which
already takes uint64_ts.
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
Some cl::ZeroOrMore were added to avoid the `may only occur zero or one times!`
error. More were added due to cargo cult. Since the error has been removed,
cl::ZeroOrMore is unneeded.
Also remove cl::init(false) while touching the lines.
Such vector types cannot be split at the moment, because splitting expects
an even number of elements in the source type. If a target marks such a type
as "split", TargetLoweringBase::computeRegisterProperties will override it
with widening to the next power of 2. This could lead to issues during
instruction selection when conflicting information about how to handle this
type is present.
Use the same enum as the other atomic instructions for consistency, in
preparation for addition of another strategy.
Introduce a new "Expand" option, since the store expansion does not
use cmpxchg. Alternatively, the existing CmpXChg strategy could be
renamed to Expand.
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Most changes are rewording comments but there are some assertions that I rephrased.
Reviewed By: kparzysz
Differential Revision: https://reviews.llvm.org/D114132
To better reflect the meaning of the now-disambiguated {GlobalValue,
GlobalAlias}::getBaseObject after breaking off GlobalIFunc::getResolverFunction
(D109792), the function is renamed to getAliaseeObject.
Soft deprecrate isNullValue/isAllOnesValue and update in tree
callers. This matches the changes to the APInt interface from
D109483.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D109535
This applies to memory accesses to (compile-time) constant addresses
(such as memory-mapped registers). Currently when a misaligned access
to such an address is detected, a fatal error is reported. This change
will emit a remark, and the compilation will continue with a trap,
and "undef" (for loads) emitted.
This fixes https://llvm.org/PR50838.
Differential Revision: https://reviews.llvm.org/D50524
Since this method can apply to cmpxchg operations, make sure it's clear
what value we're actually retrieving. This will help ensure we don't
accidentally ignore the failure ordering of cmpxchg in the future.
We could potentially introduce a getOrdering() method on AtomicSDNode
that asserts the operation isn't cmpxchg, but not sure that's
worthwhile.
Differential Revision: https://reviews.llvm.org/D103338
Don't require a specific kind of IRBuilder for TargetLowering hooks.
This allows us to drop the IRBuilder.h include from TargetLowering.h.
Differential Revision: https://reviews.llvm.org/D103759
getVectorNumElements() returns a value for scalable vectors
without any warning so it is effectively getVectorMinNumElements().
By renaming it and making getVectorNumElements() forward to
it, we can insert a check for scalable vectors into getVectorNumElements()
similar to EVT. I didn't do that in this patch because there are still more
fixes needed, but I was able to temporarily do it and passed the RISCV
lit tests with these changes.
The changes to isPow2VectorType and getPow2VectorType are copied from EVT.
The change to TypeInfer::EnforceSameNumElts reduces the size of AArch64's isel table.
We're now considering SameNumElts to require the scalable property to match which
removes some unneeded type checks.
This was motivated by the bug I fixed yesterday in 80b9510806
Reviewed By: frasercrmck, sdesmalen
Differential Revision: https://reviews.llvm.org/D102262
As far as I can tell, the node coming in has an i64 result so the
return should have the same type. The HexagonISD node used for
this has a type profile that says the result is i64.
Found while trying to add assserts to LegalizeDAG to catch
result type mismatches.
Reviewed By: kparzysz
Differential Revision: https://reviews.llvm.org/D98962
This should handle the basic integer min/max handling - the HVX ops are still TODO.
This is some necessary cleanup work for min/max ops to eventually help us move the add/sub sat patterns into DAGCombine - D91876.
Differential Revision: https://reviews.llvm.org/D92112