Commit Graph

774 Commits

Author SHA1 Message Date
Simon Pilgrim 6941b1f6c1 [CostModel][X86] Add CostKinds to SSE42 fadd/fsub/fneg ops
These were missed in an earlier commit, the latency/codesize/size-latency numbers aren't different from the SSE2 values that it was falling through to, hence no test change, but it did mean we were wasting a lookup.
2022-09-02 16:32:44 +01:00
Simon Pilgrim ad16f3e413 [CostModel][X86] Add CostKinds handling for fadd/fsub/fneg ops
This was achieved with an updated version of the 'cost-tables vs llvm-mca' script D103695 which I'll update shortly

As we're using 'typical' worst case values, not all cost entries come from a single CPU - e.g. the latency/throughput from haswell but the size-latency(uops) from zen1/alderlake-e due to 'double pumping'
2022-09-02 11:50:01 +01:00
Simon Pilgrim ad8e4dd2ad [CostModel][X86] Add and/or/xor general cost kinds support
Account for double-pumping on early AVX1/AVX2 targets
2022-08-31 17:26:05 +01:00
Simon Pilgrim 1209b9c2c2 [CostModel][X86] Replace CostKindCosts constructor with default values.
This improves static initialization of the cost tables and significantly speeds up MSVC compile time.
2022-08-31 10:44:44 +01:00
Simon Pilgrim 7830445086 [CostModel][X86] Account for add/sub 512-bit vector splitting costs on non-AVX512BW targets 2022-08-30 16:54:06 +01:00
Simon Pilgrim 0d0dc4e6ab [CostModel][X86] Add CodeSize handling for and/or/xor ops
Eventually this will be part of the cost table lookup
2022-08-26 18:42:52 +01:00
Simon Pilgrim f9445ae75c [CostModel][X86] Add CodeSize handling for fneg ops
Eventually this will be part of the cost table lookup
2022-08-26 17:34:52 +01:00
Simon Pilgrim 7790518c1f [CostModel][X86] getArithmeticInstrCost - use the cost tables for all cost kinds
The tables currently only have TCK_RecipThroughput costs, but we should now be able to add individual entries without any further refactoring
2022-08-26 17:34:52 +01:00
Simon Pilgrim fef3eeef48 [CostModel][X86] Convert AVX2 SRA by uniform constant to cost table
When adding cost kind support it will be easier to maintain these if we're not calculating on the fly
2022-08-26 16:14:13 +01:00
Simon Pilgrim f3590b6440 [CostModel][X86] getArithmeticInstrCost - move SLM reduceVMULWidth cost handling into the generic MUL handling
This is still SLM specific atm, but converting this to more closely match the codegen from reduceVMULWidth should be straightforward
2022-08-26 16:14:12 +01:00
Simon Pilgrim 9c29b4a0ac [CostModel][X86] Convert AVX1/SSE41 SREM/SDIV by constants to cost tables
When adding cost kind support it will be easier to maintain these if we're not calculating on the fly
2022-08-26 16:14:12 +01:00
Simon Pilgrim 9f94240fe1 [CostModel][X86] getArithmeticInstrCost - use cost kind specific look up tables
Building on D132216, use CostKindTblEntry cost tables to simplify the transition to supporting cost kinds other than recip-throughput

Adding full cost kinds support is going to take a while, but by converting to CostKindTblEntry first it will make it easier to support the costs on a per-ISD basis.
2022-08-26 14:28:35 +01:00
Simon Pilgrim 1736f76948 [CostModel][X86] getTypeBasedIntrinsicInstrCost - adjustTableCost - split CostTblEntry into ISD/Cost pair. NFC
This will be necessary to allow us to reuse this for other cost kind types
2022-08-26 11:17:22 +01:00
Simon Pilgrim 3edec9ba60 [CostModel][X86] Support cost kind specific look up tables (REAPPLIED)
Most of our cost model tables have been created assuming cost kind == recip-throughput. But we're starting to see passes wanting to get accurate costs for the other kinds as well. Some of these can be determined procedurally (e.g. codesize by default could just be the split count after type legalization), but others are going to need to be handled in cost tables - this is especially true for x86 which has so many ISA combinations.

I've created a 'CostKindCosts' struct which can hold cost values for the 4 cost kinds, defaulting to -1U for unknown cost, this can be used with the existing CostTblEntryT/CostTableLookup template code. I've also added a [TargetCostKind] accessor to make it much easier to look up individual <Optional> costs.

This just changes the ISD::SELECT costs to check the effect (and also to check that the ISD::SETCC are correctly handled for default/None cost kinds) - the plan would be to slowly extend this and move the CostKindTblEntry type somewhere generic to allow other targets to use it once its matured.

I'm also going to resurrect D103695 so that it can help with latency/codesize/sizelatency coverage testing.

For sizelatency - IIRC the definition was vague to let it be target specific - I've tried to use typical uop counts so they're comparable to MicroOpBufferSize etc.

REAPPLIED: Added early out to prevent getCmpSelInstrCost being used for anything but generic integer/float scalar/vector types - getTypeLegalizationCost can't handle the "exotic" TypeID enums that some passes attempt to get a costs for (aggregates etc.).

Differential Revision: https://reviews.llvm.org/D132216
2022-08-25 16:49:17 +01:00
Benjamin Kramer ab85996e47 Revert "[CostModel][X86] Support cost kind specific look up tables"
This reverts commit 45846854a2.

This triggers an assertion failure during Clang selfhost

Unknown type!
UNREACHABLE executed at llvm/lib/CodeGen/ValueTypes.cpp:548!
*** SIGABRT received by PID 6107 (TID 6107) on cpu 218 from PID 6107; stack trace: ***
    @     0x556c8827c2d1         64  llvm::llvm_unreachable_internal()
    @     0x556c82a5542a         32  llvm::MVT::getVT()
    @     0x556c82a54a28         80  llvm::EVT::getEVT()
    @     0x556c7dda1526         80  llvm::TargetLoweringBase::getValueType()
    @     0x556c8174dd38        112  llvm::BasicTTIImplBase<>::getTypeLegalizationCost()
    @     0x556c81755e72        144  llvm::X86TTIImpl::getCmpSelInstrCost()
    @     0x556c8174cadf        512  llvm::TargetTransformInfoImplCRTPBase<>::getInstructionCost()
    @     0x556c84ab4dd2         32  llvm::TargetTransformInfo::getInstructionCost()
    @     0x556c82ead283       1968  llvm::sinkRegion()
2022-08-25 15:42:44 +02:00
Simon Pilgrim 2e5f16516a [CostModel][X86] Add CodeSize handling for fdiv ops
Eventually this will be part of the cost table lookup
2022-08-25 14:08:03 +01:00
Simon Pilgrim 45846854a2 [CostModel][X86] Support cost kind specific look up tables
Most of our cost model tables have been created assuming cost kind == recip-throughput. But we're starting to see passes wanting to get accurate costs for the other kinds as well. Some of these can be determined procedurally (e.g. codesize by default could just be the split count after type legalization), but others are going to need to be handled in cost tables - this is especially true for x86 which has so many ISA combinations.

I've created a 'CostKindCosts' struct which can hold cost values for the 4 cost kinds, defaulting to -1U for unknown cost, this can be used with the existing CostTblEntryT/CostTableLookup template code. I've also added a [TargetCostKind] accessor to make it much easier to look up individual <Optional> costs.

This just changes the ISD::SELECT costs to check the effect (and also to check that the ISD::SETCC are correctly handled for default/None cost kinds) - the plan would be to slowly extend this and move the CostKindTblEntry type somewhere generic to allow other targets to use it once its matured.

I'm also going to resurrect D103695 so that it can help with latency/codesize/sizelatency coverage testing.

For sizelatency - IIRC the definition was vague to let it be target specific - I've tried to use typical uop counts so they're comparable to MicroOpBufferSize etc.

Differential Revision: https://reviews.llvm.org/D132216
2022-08-25 12:23:36 +01:00
Simon Pilgrim 9317e6311f [TTI] Add SK_Splice shuffle mask detection and X86 costs
Enables fixed sized vectors to detect SK_Splice shuffle patterns and provides basic X86 cost support

Differential Revision: https://reviews.llvm.org/D132374
2022-08-23 20:07:30 +01:00
Philip Reames df20ff9ae2 [TTI] Kill last couple uses of OperandValueKind in targets [nfc]
Use the accessor methods on the containing class instead so that we can change the representation.
2022-08-23 08:54:41 -07:00
Philip Reames c9608d57b8 [TTI] Plumb through OperandValueInfo in getMemoryOpCost [NFC]
This has the effect of exposing the power-of-two property for use in memory op costing, but no target actually uses it yet.  The main point of this change is simple consistency with the recently changes getArithmeticInstrCost, and to remove the last (interface) use of OperandValueKind.
2022-08-23 07:55:42 -07:00
Philip Reames 104fa367ee [TTI] Use OperandValueInfo in getArithmeticInstrCost implementation [NFC]
This change completes the process of replacing OperandValueKind and OperandValueProperties which were previously passed independently in this API with a single container class which contains both.

This is the change which motivated the whole sequence which preceeded it.  In an original spike version of this change, I'd noticed a nasty bug: I'd changed the signature without changing names, and as result, we silently passed additional information through a callsite which previously dropped the power-of-two fact.  This might be harmless in most cases, but at least a couple clearly dependend for correctness on not passing that property through.

I did my best to split off prior changes which reduced the scope of this one, and which made it possible to use compiler assistance.  For instance, every parameter which changes type in this change also changes name.  This was intentional to make sure that every call site possible effected must show up in the diff.  This let me audit each one closely.
2022-08-22 15:16:39 -07:00
Philip Reames 478cf94378 [X86][AArch64][WebAsm][RISCV] Query operand properties instead of using enums directly [nfc]
This is part of an ongoing transition to use OperandValueInfo which combines OperandValueKind and OperandValueProperties.  This change adds some accessor methods and uses them to simplify backend code.  The primary motivation of doing so is removing uses of the parameters so that an upcoming api change is less error prone.
2022-08-22 13:37:59 -07:00
Philip Reames 5e87a020a5 [X86][TTI] Rename OpNInfo to OpNKind [nfc]
Both are reasonable names; this is solely that an upcoming change can use the OpNInfo name, and the compiler can tell me if I forgot to update something (instead of silently passing along properties that might not hold.)
2022-08-22 13:37:59 -07:00
Simon Pilgrim dd5b48976c [CostModel][X86] getShuffleCost - treat SK_Splice as SK_PermuteTwoSrc
SK_Splice should be equivalent to a PALIGNR instruction etc. - but as discussed on D132308, until full fixed vector support for SK_Splice is in place, just assume its a SK_PermuteTwoSrc.
2022-08-22 10:51:08 +01:00
Simon Pilgrim 7ff2a9f250 [CostModel][X86] Add CodeSize handling for fadd/fsub/fmul/fsqrt ops
Eventually this will be part of the cost table lookup
2022-08-21 17:42:11 +01:00
Simon Pilgrim 3c4391b4bb Revert rG15de7aaae52ef4be9f9ff3b130804e5b5ccd29f4 "[CostModel][X86] Add CodeSize/SizeLatency handling for fadd/fsub/fmul/fsqrt ops"
This is unintentionally affecting some backend tests
2022-08-21 16:51:45 +01:00
Simon Pilgrim 15de7aaae5 [CostModel][X86] Add CodeSize/SizeLatency handling for fadd/fsub/fmul/fsqrt ops
Eventually this will be part of the cost table lookup
2022-08-21 16:39:57 +01:00
Simon Pilgrim 5263155d5b [CostModel] Add CostKind argument to getShuffleCost
Defaults to TCK_RecipThroughput - as most explicit calls were assuming TCK_RecipThroughput (vectorizers) or was just doing a before-vs-after comparison (vectorcombiner). Calls via getInstructionCost were just dropping the CostKind, so again there should be no change at this time (as getShuffleCost and its expansions don't use CostKind yet) - but it will make it easier for us to better account for size/latency shuffle costs in inline/unroll passes in the future.

Differential Revision: https://reviews.llvm.org/D132287
2022-08-21 10:54:51 +01:00
Alexey Bataev 0e7ed32c71 [SLP]Cost for a constant buildvector.
In many cases constant buildvector results in a vector load from a
constant/data pool. Need to consider this cost too.

Differential Revision: https://reviews.llvm.org/D126885
2022-08-19 08:02:42 -07:00
Alexey Bataev d53e245951 [COST][NFC]Introduce OperandValueKind in getMemoryOpCost, NFC.
Added OperandValueKind OpdInfo parameter to getMemoryOpCost functions to
better estimate cost with immediate values.

Part of D126885.
2022-08-19 07:33:00 -07:00
Simon Pilgrim b864cad7b4 [CostModel][X86] Adjust SLM select costs to match poor throughput of pblendvb/blendvpd/blendvps 2022-08-18 17:05:38 +01:00
Simon Pilgrim 55b1a147f2 [CostModel][X86] getArithmeticInstrCost - use MUL/DIV/REM expansions for all cost kinds
The costs tables still assume throughput, but the general expansion patterns should be good for any cost kind
2022-08-18 14:18:54 +01:00
Simon Pilgrim fdec50182d [CostModel] Replace getUserCost with getInstructionCost
* Replace getUserCost with getInstructionCost, covering all cost kinds.
* Remove getInstructionLatency, it's not implemented by any backends, and we should fold the functionality into getUserCost (now getInstructionCost) to make it easier for targets to handle the cost kinds with their existing cost callbacks.

Original Patch by @samparker (Sam Parker)

Differential Revision: https://reviews.llvm.org/D79483
2022-08-18 11:55:23 +01:00
Daniil Fukalov 7ed3d81333 [NFCI] Move cost estimation from TargetLowering to TargetTransformInfo.
TragetLowering had two last InstructionCost related `getTypeLegalizationCost()`
and `getScalingFactorCost()` members, but all other costs are processed in TTI.

E.g. it is not comfortable to use other TTI members in these two functions
overrided in a target.

Minor refactoring: `getTypeLegalizationCost()` now doesn't need DataLayout
parameter - it was always passed from TTI.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D117723
2022-08-18 00:38:55 +03:00
Fangrui Song de9d80c1c5 [llvm] LLVM_FALLTHROUGH => [[fallthrough]]. NFC
With C++17 there is no Clang pedantic warning or MSVC C5051.
2022-08-08 11:24:15 -07:00
Kazu Hirata a2d4501718 [llvm] Fix comment typos (NFC) 2022-08-07 00:16:14 -07:00
Phoebe Wang f187948162 [X86][FP16] Enable vector support for FP16 emulation
This is follow up of D107082, which enable vector support according to psABI.

Reviewed By: skan

Differential Revision: https://reviews.llvm.org/D127982
2022-07-16 09:38:58 +08:00
Vasileios Porpodas 7a9ad25769 Recommit "[SLP][X86] Improve reordering to consider alternate instruction bundles"
This reverts commit 6d6268dcbf.

Review: https://reviews.llvm.org/D125712
2022-06-21 18:35:29 -07:00
Vasileios Porpodas 6d6268dcbf Revert "[SLP][X86] Improve reordering to consider alternate instruction bundles"
This reverts commit 6f88acf410.
2022-06-21 17:07:21 -07:00
Vasileios Porpodas 6f88acf410 [SLP][X86] Improve reordering to consider alternate instruction bundles
During the reordering transformation we should try to avoid reordering bundles
like fadd,fsub because this may block them being matched into a single vector
instruction in x86.
We do this by checking if a TreeEntry is such a pattern and adding it to the
list of TreeEntries with orders that need to be considered.

Differential Revision: https://reviews.llvm.org/D125712
2022-06-21 16:44:48 -07:00
Simon Pilgrim cf2072bcad [X86] X86TargetTransformInfo.cpp - use InstructionCost type to accumulate instructions costs 2022-06-15 12:21:01 +01:00
eopXD 6a84579243 [LSR][TTI][PowerPC][SystemZ][X86] Add const-ness to TTI::isLSRCostLess. NFC
Reviewed By: Meinersbur

Differential Revision: https://reviews.llvm.org/D126350
2022-05-27 15:22:23 -07:00
Simon Pilgrim 6c80267d0f [CostModel][X86] getScalarizationOverhead - improve extraction costs for > 128-bit vectors
We were using the default getScalarizationOverhead expansion for extraction costs, which adds up all the individual element extraction costs.

This is fine for 128-bit vectors, but for 256/512-bit vectors each element extraction also has to account for extracting the upper 128-bit subvector extraction before it can handle the element. For scalarization costs we only need to extract each demanded subvector once.

Differential Revision: https://reviews.llvm.org/D125527
2022-05-24 15:18:08 +01:00
Jay Foad 6bec3e9303 [APInt] Remove all uses of zextOrSelf, sextOrSelf and truncOrSelf
Most clients only used these methods because they wanted to be able to
extend or truncate to the same bit width (which is a no-op). Now that
the standard zext, sext and trunc allow this, there is no reason to use
the OrSelf versions.

The OrSelf versions additionally have the strange behaviour of allowing
extending to a *smaller* width, or truncating to a *larger* width, which
are also treated as no-ops. A small amount of client code relied on this
(ConstantRange::castOp and MicrosoftCXXNameMangler::mangleNumber) and
needed rewriting.

Differential Revision: https://reviews.llvm.org/D125557
2022-05-19 11:23:13 +01:00
Simon Pilgrim 3d107ce2b2 [CostModel][X86] Relax fcmp costs on SSE41 targets or later
Only pre-SSE41 targets double-pump the fp comparison ops
2022-05-06 13:29:40 +01:00
Simon Pilgrim cbfa857346 [CostModel][X86] Adjust 128-bit select costs to account for slow BLENDV op
Based off the script from D103695 - Jaguar, Bulldozer, Silvermont (et al) and Haswell all have slow BLENDV ops, so adjust the worse case cost values
2022-05-06 13:07:34 +01:00
Simon Pilgrim d21bf51494 [CostModel][X86] Adjust pre-SSE41 fp scalar select costs to account for vector ops
Based off the script from D103695, we now mainly use BLENDV or OR(AND,ANDN) to select scalar float/double ops
2022-05-06 11:41:55 +01:00
Simon Pilgrim f0e8c1d6d9 [CostModel][X86] Adjust 256-bit select costs to account for slow BLENDV op
Based off the script from D103695, on AVX1, Jaguar/Bulldozer both have low throughput for ymm select patterns (BLENDV + OR(AND,ANDN))), and even on AVX2 Haswell still struggles with BLENDV ops
2022-05-06 11:27:37 +01:00
Simon Pilgrim 86bb7df6e6 [CostModel][X86] getScalarizationOverhead - handle vXi1 extracts with MOVMSK (pre-AVX512)
We can quickly extract multiple elements of a bool vector using MOVMSK ops - since we don't know what generated the vXi1, I've been optimistic and assumed we can use PMOVMSKB to extract the maximum number of bools with a single op.

The MOVMSK pattern isn't great for extract+insert round trips as vXi1 type legalization can interfere with this a lot - so this relies on us remaining good at using getScalarizationOverhead properly (and tagging both Insert and Extract modes) for those round trip cases.

The AVX512 KMOV codegen for bool extraction is a bit of a mess so for now I've not included that - the per-element cost is a lot more accurate for current codegen.
2022-05-02 09:58:39 +01:00
Simon Pilgrim d5198cf92f [CostModel][X86] Check for 'null op' truncations
If the legalized src/dst types are the same, assume the "truncation" is free.

This fixes some edge cases such as mul lo/hi ops and bool vectors which will get legalized back to legal vector widths
2022-05-01 12:03:40 +01:00
Simon Pilgrim c2964746e3 [CostModel][X86] Reduce cost of vector selects on SSE2/AVX1 targets
Based off the script from D103695, we were exaggerating the cost of the OR(AND(X,M),AND(Y,~M)) expansion using instruction count instead of effective throughput
2022-05-01 09:32:14 +01:00
Alexey Bataev 371412e065 [COST]Fix crash for non-power-2 vector shuffle mask.
Need to normalizize the mask to avoid possible crashes during attempts
to estimate cost of the very long shuffles with non-power-2 number of
elements in masks.
2022-04-29 07:28:07 -07:00
Alexey Bataev 75e1cf4a6a [COST]Improve cost model for shuffles in SLP.
Introduced masks where they are not added and improved target dependent
cost models to avoid returning of the incorrect cost results after
adding masks.

Differential Revision: https://reviews.llvm.org/D100486
2022-04-28 10:04:41 -07:00
Alexey Bataev 9861ca0c23 Revert "[COST]Improve cost model for shuffles in SLP."
This reverts commit 29a470e380 to fix
a crash reported in https://reviews.llvm.org/D100486#3479989.
2022-04-28 08:11:56 -07:00
Alexey Bataev 29a470e380 [COST]Improve cost model for shuffles in SLP.
Introduced masks where they are not added and improved target dependent
cost models to avoid returning of the incorrect cost results after
adding masks.

Differential Revision: https://reviews.llvm.org/D100486
2022-04-27 10:56:26 -07:00
Vasileios Porpodas fa8a9fea47 Recommit "[SLP][TTI] Refactoring of `getShuffleCost` `Args` to work like `getArithmeticInstrCost`"
This reverts commit 6a9bbd9f20.

Code review: https://reviews.llvm.org/D124202
2022-04-26 14:02:40 -07:00
Vasileios Porpodas 6a9bbd9f20 Revert "[SLP][TTI] Refactoring of `getShuffleCost` `Args` to work like `getArithmeticInstrCost`"
This reverts commit 55ce296d6f.
2022-04-26 11:25:26 -07:00
Vasileios Porpodas 55ce296d6f [SLP][TTI] Refactoring of `getShuffleCost` `Args` to work like `getArithmeticInstrCost`
Before this patch `Args` was used to pass a broadcat's arguments by SLP.
This patch changes this. `Args` is now used for passing the operands of
the shuffle.

Differential Revision: https://reviews.llvm.org/D124202
2022-04-26 11:11:29 -07:00
Vasileios Porpodas 889588ee97 [SLP] Refactoring isLegalBroadcastLoad() to use `ElementCount`.
Replacing `unsigned` with `ElementCount` in the argument of `isLegalBroadcastLoad()`.
This helps reduce the diff of a future SLP patch for AArch64.
2022-04-21 10:19:00 -07:00
Simon Pilgrim d663166acb [CostModel][X86] Reduce cost of v2i64 icmp base cost on SSE2 targets
Based off the script from D103695, we were exaggerating the cost of the v2i64 comparison expansion using instruction count instead of effective throughput
2022-03-30 09:11:55 +01:00
Vasileios Porpodas 39aa202aff Recommit "[SLP] Fix lookahead operand reordering for splat loads." attempt 3, fixed assertion crash.
Original review: https://reviews.llvm.org/D121354

This reverts commit e6ead19b77.
2022-03-23 18:32:17 -07:00
Arthur Eubanks e6ead19b77 Revert "Recommit "[SLP] Fix lookahead operand reordering for splat loads." attempt 2, fixed assertion crash."
This reverts commit 27bd8f9492.

Causes crashes, see comments in D121973
2022-03-23 10:57:45 -07:00
Vasileios Porpodas 27bd8f9492 Recommit "[SLP] Fix lookahead operand reordering for splat loads." attempt 2, fixed assertion crash.
Original review: https://reviews.llvm.org/D121354

This reverts commit f7d7d2a08d.
2022-03-22 16:41:55 -07:00
Arthur Eubanks f7d7d2a08d Revert "Recommit "[SLP] Fix lookahead operand reordering for splat loads.""
This reverts commit 79613185d3.

Causes crashes, see comments in https://reviews.llvm.org/D121973.
2022-03-22 13:33:49 -07:00
Vasileios Porpodas 79613185d3 Recommit "[SLP] Fix lookahead operand reordering for splat loads."
Original review: https://reviews.llvm.org/D121354

The original commit 9136145eb0 broke the build on several targets.

Differential Revision: https://reviews.llvm.org/D121973
2022-03-21 15:57:32 -07:00
Simon Pilgrim 5dde9c1286 [CostModel][X86] Reduce cost of extracting bool vector elements
For constant indices, these are now just a MOVMSK+TEST/BT
2022-03-18 19:02:47 +00:00
Vasileios Porpodas 9136145eb0 Revert "[SLP] Fix lookahead operand reordering for splat loads." due to build failures
This reverts commit 5efa78985b.
2022-03-17 18:22:04 -07:00
Vasileios Porpodas 5efa78985b [SLP] Fix lookahead operand reordering for splat loads.
Splat loads are inexpensive in X86. For a 2-lane vector we need just one
instruction: `movddup (%reg), xmm0`. Using the standard Splat score leads
to worse code. This patch adds a new score dedicated for splat loads.

Please note that a splat is usually three IR instructions:
- It is usually a load and 2 inserts:
 %ld = load double, double* %gep
 %ins1 = insertelement <2 x double> poison, double %ld, i32 0
 %ins2 = insertelement <2 x double> %ins1, double %ld, i32 1

- But it can also be a load, an insert and a shuffle:
 %ld = load double, double* %gep
 %ins = insertelement <2 x double> poison, double %ld, i32 0
 %shf = shufflevector <2 x double> %ins, <2 x double> poison, <2 x i32> zeroinitializer

Because of this some of the lit tests contain more IR instructions.

Differential Revision: https://reviews.llvm.org/D121354
2022-03-17 18:05:54 -07:00
Simon Pilgrim 8c82d42e97 [TTI][X86] Pull out repeated getSizeInBits() calls. NFC. 2022-02-10 18:58:32 +00:00
Rosie Sumpter 552eb372cb [LoopVectorize] Pass a vector type to isLegalMaskedGather/Scatter
This is required to query the legality more precisely in the LoopVectorizer.

This adds another TTI function named 'forceScalarizeMaskedGather/Scatter'
function to work around the hack introduced for MVE, where
isLegalMaskedGather/Scatter would return an answer by second-guessing
where the function was called from, based on the Type passed in (vector
vs scalar). The new interface makes this explicit. It is also used by
X86 to check for vector widths where gather/scatters aren't profitable
(or don't exist) for certain subtargets.

Differential Revision: https://reviews.llvm.org/D115329
2022-01-12 13:34:12 +00:00
Simon Pilgrim 5eb47961c4 [CostModel][X86] Update ROTL/ROTR vXi8/vXi16 costs on AVX512BW targets
Refresh based off recent improvements to codegen and the helper script from D103695
2022-01-10 13:18:25 +00:00
Nikita Popov 7c3cf4c2c0 [Inline][X86] Avoid inlining if it would create ABI-incompatible calls (PR52660)
X86 allows inlining functions if the callee target features are a
subset of the caller target features. This ensures that we don't
inline something into a caller that does not support it.

However, this does not account for possible call ABI mismatches as
a result of inlining. If a call passing a vector argument was
originally in a -avx function, calling another -avx function, the
vector is passed in xmm. If we now inline it into a +avx function,
then it will be passed in ymm, even though the callee expects it in xmm.

Fix this by scanning over all calls in the function and checking
whether ABI incompatibility is possible. Calls that only pass scalar
types are excluded, as I believe those always use the same ABI
independent of target features.

Fixes https://github.com/llvm/llvm-project/issues/52660.

Differential Revision: https://reviews.llvm.org/D116036
2021-12-27 09:36:21 +01:00
Nikita Popov f5ac23b5ae [ArgPromotion][TTI] Pass types to ABI compatibility hook
The areFunctionArgsABICompatible() hook currently accepts a list of
pointer arguments, though what we're actually interested in is the
ABI compatibility after these pointer arguments have been converted
into value arguments.

This means that a) the current API is incompatible with opaque
pointers (because it requires inspection of pointee types) and
b) it can only be used in the specific context of ArgPromotion.
I would like to reuse the API when inspecting calls during inlining.

This patch converts it into an areTypesABICompatible() hook, which
accepts a list of types. This makes the method more generally usable,
and compatible with opaque pointers from an API perspective (the
actual usage in ArgPromotion/Attributor is still incompatible,
I'll follow up on that in separate patches).

Differential Revision: https://reviews.llvm.org/D116031
2021-12-22 09:37:51 +01:00
Simon Pilgrim 30e38d6771 [CostModel][X86] Split MUL/SDIV+SREM/UDIV+UREM PowerOf2 handling. NFC.
This is a NFC cleanup to simplify some upcoming refactoring required to address the regressions in D111968.
2021-12-08 18:47:12 +00:00
Haohai Wen d2c093e79d [CostModel][X86] Add i64 mul cost for avx512 as 1cy
i64 mul cost is 1cy for all cpu that support avx512. Currently
all X86 cpu uses i64 mul cost in X64 cost table which is not
true for cpu that support avx512 (skx, icx).

Reviewed By: pengfei, RKSimon

Differential Revision: https://reviews.llvm.org/D115016
2021-12-08 11:29:08 +08:00
Roman Lebedev 8cd782487f
[X86][LoopVectorize] "Fix" `X86TTIImpl::getAddressComputationCost()`
We ask `TTI.getAddressComputationCost()` about the cost of computing vector address,
and then multiply it by the vector width. This doesn't make any sense,
it implies that we'd do a vector GEP and then scalarize the vector of pointers,
but there is no such thing in the vectorized IR, we perform scalar GEP's.

This is *especially* bad on X86, and was effectively prohibiting any scalarized
vectorization of gathers/scatters, because `X86TTIImpl::getAddressComputationCost()`
says that cost of vector address computation is `10` as compared to `1` for scalar.

The computed costs are similar to the ones with D111222+D111220,
but we end up without masked memory intrinsics that we'd then have to
expand later on, without much luck. (D111363)

Differential Revision: https://reviews.llvm.org/D111460
2021-11-30 10:47:56 +03:00
Roman Lebedev 7e73c2a66a
[X86][Costmodel] `getInterleavedMemoryOpCostAVX512()`: masked load can not be folded into a shuffle
The mask on the shuffle is for the output, not the input.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114697
2021-11-29 18:37:07 +03:00
Roman Lebedev cffe3a084f
[X86][Costmodel] Now that `getReplicationShuffleCost()` is good, update `getInterleavedMemoryOpCostAVX512()`
... to actually ask about i1-elt-wide mask, since that is what will probably be used on AVX512.
This unblocks D111460.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114316
2021-11-29 14:41:48 +03:00
Roman Lebedev cd8d219536
[X86][Costmodel] `getReplicationShuffleCost()`: promote 1 bit-wide elements to 32 bit when have AVX512DQ
I believe, this effectively completes `X86TTIImpl::getReplicationShuffleCost()`
for AVX512, other than the question of handling plain AVX512F,
where we end up with some really ugly "shuffles",
but then is there any CPU's that support AVX512, but not AVX512DQ/AVX512BW?

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114315
2021-11-24 17:23:15 +03:00
Roman Lebedev 704d92607d
[X86][TTI] Finish costmodel for AVX512BW's VPMOVM2[BW] / VPMOV[BW]2M instructions
Apparently my methodology was suboptimal, and not only did miss all the +VL tuples,
i also missed some plain tuples. I believe, this adds everything missing.
Indeed, these manual costmodels are just not okay long-term.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114334
2021-11-22 14:31:34 +03:00
Roman Lebedev 8d09dd61c3
[X86][TTI] Costmodel for AVX512DQ's VPMOVM2[DQ] / VPMOV[DQ]2M instructions
Much like the VPMOVM2[BW] / VPMOV[BW]2M from AVX512BW,
these either sign-extent the mask register into a vector,
or pack the mask from vector register.

Apparently, we didn't even have MCA tests for these,
added in rG2f364f6f0d3a2420ca78cbd80abb186657180e05,
so i'm just guessing that their perf characteristics
are optimal.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114314
2021-11-22 14:31:34 +03:00
Roman Lebedev 049799c311
[X86][Costmodel] `getReplicationShuffleCost()`: promote 1 bit-wide elements to 8 bit when have AVX512BW+AVX512VBMI
If in addition to AVX512BW (that provides `{k}<->{i8,i16}` casts and i16 shuffles),
we have AVX512VBMI, which provides i8 shuffles, we are in an optimal situation.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114071
2021-11-19 15:58:10 +03:00
Roman Lebedev a751084bb4
[X86][Costmodel] `trunc v16i8 to v8i1` can appear after legalization, cost is same as for `trunc v8i8 to v8i1`
Note that there are many other missing costs, i'm *only* adding the ones that are queried
from `getReplicationShuffleCost()` for the existing (quite exhaustive) test coverage.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114070
2021-11-19 15:57:32 +03:00
Roman Lebedev a50fdd3fc9
[X86][Costmodel] `getReplicationShuffleCost()`: promote 1 bit-wide elements to 16 bit when have AVX512BW
Here we get pretty lucky. AVX512F does not provide any instructions
to convert between a `k` vector mask and a vector,
but AVX512BW adds `{k}<->nX{i8,i16}`conversions,
and just as it happens, with AVX512BW we have a i16 shuffle.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113915
2021-11-19 15:55:41 +03:00
Roman Lebedev 2037ec725f
[X86][Costmodel] `*ext v64i1 to v32i16` can appear after legalization, cost is same as for `*ext v32i1 to v32i16`
Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113914
2021-11-17 12:02:50 +03:00
Roman Lebedev 23b194bf18
[X86][Costmodel] `trunc v32i16 to v64i1` can appear after legalization, cost is same as for `trunc v32i16 to v32i1`
Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113913
2021-11-17 12:02:50 +03:00
Roman Lebedev 5c7255fe3a
[X86][Costmodel] `getReplicationShuffleCost()`: promote 8 bit-wide elements to 32 bit when no AVX512VBMI
Currently `X86TTIImpl::getInterleavedMemoryOpCostAVX512()` asks about i8 elt type,
so this change does affect vectorization. In the end, it will ask about i1.

We should also try to promote to i16 if we have AVX512BW, i'll do that in a follow-up.
All costs here look good, i've added the missing truncation costs in preparatory patches.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113853
2021-11-15 19:04:02 +03:00
Roman Lebedev a468c39c90
[X86][Costmodel] `trunc v32i16 to v64i8` can appear after legalization, cost is same as for `trunc v32i16 to v32i8`
Some of the costs get larger here,
but i suppose that makes sense since we'd previously query
scalarization costs that may not be really representative of the reality.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113852
2021-11-15 19:04:02 +03:00
Roman Lebedev 9e57d9b09d
[X86][Costmodel] `trunc v8i64 to v16i8/v32i8/v64i8` can appear after legalization, cost is same as for `trunc v8i64 to v8i8`
While this one is trivial and identical to the previous patch,
there is a weird cost change in a follow-up patch that i'm not sure about.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113851
2021-11-15 19:04:02 +03:00
Roman Lebedev 0116c708c6
[X86][Costmodel] `trunc v16i32 to v32i8/v64i8` can appear after legalization, cost is same as for `trunc v16i32 to v16i8`
While this one is trivial and identical to the previous patch,
there is a weird cost change in a follow-up patch that i'm not sure about.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113850
2021-11-15 19:04:02 +03:00
Roman Lebedev 4dd2f0446c
[X86][Costmodel] `getReplicationShuffleCost()`: promote 16 bit-wide elements to 32 bit when no AVX512BW
The basic idea is simple, if we don't have native shuffle for this element type,
then we must have native shuffle for wider element type,
so promote, replicate, demote.

I believe, asking `getCastInstrCost(Instruction::Trunc` is correct semantically,
case in point `trunc <32 x i32> to <32 x i8>` aka 2 * ZMM will naively result in
2 * XMM, that then will be packed into 1 * YMM,
and it should count the cost of said packing,
not just the truncations.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113609
2021-11-14 20:01:38 +03:00
Roman Lebedev e876698a5d
[NFC][TTI] `getReplicationShuffleCost()`: s/Replicated/Dst/
'Replicated' is mouthful and somewhat ambigious,
while 'destination' is pretty self-explanatory.
2021-11-14 20:01:38 +03:00
Roman Lebedev b283961012
[X86][Costmodel] `trunc v8i64 to v16i16/v32i16` can appear after legalization, cost is same as for `trunc v8i64 to v8i16`
Same as D113842, but for i64

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113843
2021-11-14 18:41:38 +03:00
Roman Lebedev a5f2fdca99
[X86][Costmodel] `trunc v16i32 to v32i16` can appear after legalization, cost is same as for `trunc v16i32 to v16i16`
This was noticed in D113609, hopefully it unblocks that patch.
There are likely other similar problems.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113842
2021-11-14 18:41:37 +03:00
Roman Lebedev a70d74323e
[X86][Costmodel] `getReplicationShuffleCost()`: implement cost model for 8 bit-wide elements with AVX512VBMI
VBMI introduced VPERMB, so cost-model i8 replication shuffle using it.
Note that we can still model i8 replication shufflle without VBMI,
by promoting to i16/i32. That will be done in follow-ups.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113479
2021-11-10 22:52:40 +03:00
Roman Lebedev c6e894b9b2
[X86][Costmodel] `getReplicationShuffleCost()`: implement cost model for 16 bit-wide elements with AVX512BW
BWI introduced VPERMW, so cost-model i16 replication shuffle using it.
Note that we can still model i16 replication shufflle without BWI,
by promoting to i32. That will be done in follow-ups.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113478
2021-11-10 22:52:39 +03:00
Roman Lebedev 4101c7bf19
[X86][Costmodel] `getReplicationShuffleCost()`: implement cost model for 32/64 bit-wide elements with AVX512F
This models lowering to `vpermd`/`vpermq`/`vpermps`/`vpermpd`,
that take a single input vector and a single index vector,
and are cross-lane. So far i haven't seen evidence that
replication ever results in demanding more than a single
input vector per output vector.

This results in *shockingly* lesser costs :)

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113350
2021-11-10 22:52:33 +03:00
Roman Lebedev d484cc152b
[TTI] Adjust `getReplicationShuffleCost()` interface
It is trivial to produce DemandedSrcElts given DemandedReplicatedElts,
so don't pass the former. Also, it isn't really useful so far
to have the overload taking the Mask, so just inline it.
2021-11-09 14:07:59 +03:00
Roman Lebedev f8efc5c0ac
[NFC][TTI] Add/extract `getReplicationShuffleCost()` method, deduplicate it's implementations
Hiding it in `getInterleavedMemoryOpCost()` is problematic for a number of reasons,
including testability and reuse, let's do better.

In a followup `getUserCost()` will be taught to use to to estimate the mask costs,
which will allow for better cost model tests for it.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D113313
2021-11-06 16:45:15 +03:00
Roman Lebedev ad617183bb
[X86] `X86TTIImpl::getInterleavedMemoryOpCostAVX512()`: mask is i8 not i1
Even though AVX512's masked mem ops (unlike AVX1/2) have a mask
that is a `VF x i1`, replication of said masks happens after
promotion of it to `VF x i8`, so we should use `i8`, not `i1`,
when calculating the cost of mask replication.
2021-11-05 17:27:02 +03:00