`(A * -2**C) + B --> B - (A << C)`
https://alive2.llvm.org/ce/z/A6BWkf
This inverts what Negator was doing before:
D134310 / 0f32a5dea0
Analysis and codegen are generally better without multiply,
so we should favor this form even if we trade add for sub
(because those are generally equivalent cost operations).
Fixes#57531
This transformation may be particularly useful on x86-64,
because x & (x - 1) can be performed by a single blsr instruction.
Differential Revision: https://reviews.llvm.org/D133362
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
This pattern is handled more generally in SimplifySelectsFeedingBinaryOp().
Tests to confirm that added to the add.ll test file in the previous commit.
https://alive2.llvm.org/ce/z/j_8Wz9
The arithmetic shift was converted to logical shift with:
246078604c
That does not seem to uncover any other missing/conflicting folds,
so convert directly to signbit test + cast.
We still need to fold the pattern with logical shift to test + cast.
This allows reducing patterns where the output type is not
the same as the input value:
https://alive2.llvm.org/ce/z/nydwFVFixes#57394
~(A * C1) + A --> (A * (1 - C1)) - 1
This is a non-obvious mix of bitwise logic and math:
https://alive2.llvm.org/ce/z/U7ACVT
The pattern may be produced by Negator from the more typical
code seen in issue #57255.
Canonicalize ((x + C1) & C2) --> ((x & C2) + C1) for suitable constants
C1 and C2, instead of the other way round. This should allow more
constant ADDs to be matched as part of addressing modes for loads and
stores.
Differential Revision: https://reviews.llvm.org/D130080
We manage to iteratively achieve this result with no extra
uses, and the reassociate pass can also do this, but this
pattern falls through the cracks in the example from
issue #57053.
Replace ConstantExpr:getFAdd etc with call to
ConstantFoldBinaryOpOperands(). I'm using the constant folding API
rather than IRBuilder here to ensure that this does actually
constant fold. These transforms don't use m_ImmConstant(), so this
would not otherwise be guaranteed (and apparently, they can't use
m_ImmConstant because they want to handle scalable vector splats).
There is an opportunity here to further migrate these to the
ConstantFoldFPInstOperands() API, which would respect the denormal
mode. I've held off on doing so here, because some of this code
explicitly checks for denormal results, and I don't want to touch
it in a mostly NFC change.
The test diffs are cosmetic -- but improvements -- because we
let instcombine handle replacement. Instead of dropping the
old value name, it propagates to the new instruction.
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
Bitcasts were stripped in one case, but not the other. Of course,
this no longer really matters with opaque pointers, but as I went
through the trouble of tracking this down, we may as well remove
one typed vs opaque pointer optimization discrepancy.
This patch fix bug left in D124503. We should do
sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) instead of
sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Y,Z)).
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125352
This can be viewed as swapping the select arms:
https://alive2.llvm.org/ce/z/jUvFMJ
...so we don't have the 'nsz' problem with the more general fold.
This unlocks other folds for the motivating fabs example.
This was discussed in issue #38828.
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
This is an alternate version of D115914 that handles/tests all binary opcodes.
I suspect that we don't see these patterns too often because -simplifycfg
would convert the minimal cases into selects rather than leave them in phi form
(note: instcombine has logic holes for combining the select patterns too though,
so that's another potential patch).
We only create a new binop in a predecessor that unconditionally branches to
the final block.
https://alive2.llvm.org/ce/z/C57M2Fhttps://alive2.llvm.org/ce/z/WHwAoU (not safe to speculate an sdiv for example)
https://alive2.llvm.org/ce/z/rdVUvW (but it is ok on this path)
Differential Revision: https://reviews.llvm.org/D117110
Previously some constants were not pushed to the top of the resulting
expression tree as intended by the algorithm. We can remove the logic
from simplifyFAdd and rely on SimplifyAssociativeOrCommutative to do
that.
Differential Revision: https://reviews.llvm.org/D117302
This fold already exists for scalars via FAddCombine (and that's
why 2 of the tests are only changed cosmetically), but that code
misses vectors and has largely been replaced by simpler folds
over time, so this is another step towards removing it.
Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op1)
I'm not sure if this is really an improvement in IR because
we probably have better recognition/analysis for min/max,
but this lines up with the fold we do for the icmp+select
idiom and removes another diff from D98152.
This is similar to the previous fold in the code that was
added with:
83c2fb9f66baa6a85130https://alive2.llvm.org/ce/z/5MrVB9
umax(X, Op1) - Op1 --> usub.sat(X, Op1)
https://alive2.llvm.org/ce/z/HpcGiJ
This happens in 2 or more steps with an icmp-select idiom
instead of an intrinsic. This is another step towards
canonicalization of the min/max intrinsics. See:
D98152
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
This is a translation of the existing code to handle the intrinsics
and another step towards D98152.
https://alive2.llvm.org/ce/z/jA7eBC
This pattern is already handled by underlying folds if there are
less uses, so the minimal tests in this case have extra uses.
The larger cmyk tests show the motivation - when combined with
other folds, we invert a larger sequence and eliminate 'not' ops.
This is a re-try of 3aa009cc87 which was reverted at
9577fac0fd because it caused an infinite loop.
For the extra test case, either re-ordering the transforms
or adding the extra clause to avoid sub-of-sub is enough
to prevent the infinite compile, but I'm doing both to be
safer.
Original commit message:
The motivation was to get min/max intrinsics to parity
with cmp+select idioms, but this unlocks a few more
folds because isFreeToInvert recognizes add/sub with
constants too.
In the min/max example, we have too many extra uses
for smaller folds to improve things, but this fold
is able to eliminate uses even though we can't reduce
the number of instructions.