Use UnaryOperator::CreateFNeg instead.
Summary:
With the introduction of the native fneg instruction, the
fsub -0.0, %x idiom is obsolete. This patch makes LLVM
emit fneg instead of the idiom in all places.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D75130
Rather than mixing creation of new instructions and in-place
modification here, create a new log2 intrinsic. This should be
NFC apart from worklist order changes.
Adds a replaceOperand() helper, which is like Instruction.setOperand()
but adds the old operand to the worklist. This reduces the amount of
missing or incorrect worklist management.
This only applies the helper to a relatively small subset of
setOperand() calls in InstCombine, namely those of the pattern
`I.setOperand(); return &I;`, where it is most obviously applicable.
Differential Revision: https://reviews.llvm.org/D73803
This renames Worklist.AddDeferred() to Worklist.add() and
Worklist.Add() to Worklist.push(). The intention here is that
Worklist.add() should be the go-to method for explicit worklist
management, while the raw Worklist.push() is mostly for
InstCombine internals. I will then migrate uses of Worklist.push()
to Worklist.add() in followup changes.
As suggested by spatel on D73411 I'm also changing the remaining
method names to lowercase first character, in line with current
coding standards.
Differential Revision: https://reviews.llvm.org/D73745
This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0.
The m_OneUse check is avoided because even in the case of the
multiple uses for 1.0/Y, the number of instructions remain the same
and a division is replaced by a multiplication.
Differential Revision: https://reviews.llvm.org/D72319
As described here:
https://bugs.llvm.org/show_bug.cgi?id=44186
The match() code safely allows undef values, but we can't safely
propagate a vector constant that contains an undef to the new
compare instruction.
Reverse the canonicalization of fneg relative to fmul/fdiv. That makes it
easier to implement the transforms (and possibly other fneg transforms) in
1 place because we can always start the pattern match from fneg (either the
legacy binop or the new unop).
There's a secondary practical benefit seen in PR21914 and PR42681:
https://bugs.llvm.org/show_bug.cgi?id=21914https://bugs.llvm.org/show_bug.cgi?id=42681
...hoisting fneg rather than sinking seems to play nicer with LICM in IR
(although this change may expose analysis holes in the other direction).
1. The instcombine test changes show the expected neutral IR diffs from
reversing the order.
2. The reassociation tests show that we were missing an optimization
opportunity to fold away fneg-of-fneg. My reading of IEEE-754 says
that all of these transforms are allowed (regardless of binop/unop
fneg version) because:
"For all other operations [besides copy/abs/negate/copysign], this
standard does not specify the sign bit of a NaN result."
In all of these transforms, we always have some other binop
(fadd/fsub/fmul/fdiv), so we are free to flip the sign bit of a
potential intermediate NaN operand.
(If that interpretation is wrong, then we must already have a bug in
the existing transforms?)
3. The clang tests shouldn't exist as-is, but that's effectively a
revert of rL367149 (the test broke with an extension of the
pre-existing fneg canonicalization in rL367146).
Differential Revision: https://reviews.llvm.org/D65399
llvm-svn: 367447
Summary:
I have stumbled into this by accident while preparing to extend backend `x s% C ==/!= 0` handling.
While we did happen to handle this fold in most of the cases,
the folding is indirect - we fold `x u% y` to `x & (y-1)` (iff `y` is power-of-two),
or first turn `x s% -y` to `x u% y`; that does handle most of the cases.
But we can't turn `x s% INT_MIN` to `x u% -INT_MIN`,
and thus we end up being stuck with `(x s% INT_MIN) == 0`.
There is no such restriction for the more general fold:
https://rise4fun.com/Alive/IIeS
To be noted, the fold does not enforce that `y` is a constant,
so it may indeed increase instruction count.
This is consistent with what `x u% y`->`x & (y-1)` already does.
I think it makes sense, it's at most one (simple) extra instruction,
while `rem`ainder is really much more un-simple (and likely **very** costly).
Reviewers: spatel, RKSimon, nikic, xbolva00, craig.topper
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65046
llvm-svn: 367322
This reverts commit 1383a91689.
sdiv-canonicalize.ll fails after this revision. The fold needs to be
moved outside the branch handling constant operands. However when this
is done there are further test changes, so I'm reverting this in the
meantime.
llvm-svn: 358026
Similar to:
rL358005
Forego folding arbitrary vector constants to fix a possible miscompile bug.
We can enhance the transform if we do want to handle the more complicated
vector case.
llvm-svn: 358013
A more general canonicalization between fdiv and fmul would not
handle this case because that would have to be limited by uses
to prevent 2 values from becoming 3 values:
(x/y) * (x/y) --> (x*x) / (y*y)
(But we probably should still have that limited -- but more general --
canonicalization independently of this change.)
llvm-svn: 357943
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
In several places in the code we use the following pattern:
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
[...]
}
In short, we check if there is a lib-function for a certain type, and then
we _always_ fetch the name of the "double" version of the lib function and
construct a call to the appropriate function, that we just checked exists,
using that "double" name as a basis.
This is of course a problem in cases where the target doesn't support the
"double" version, but e.g. only the "float" version.
In that case TLI.getName(LibFunc_tan) returns "", and
emitUnaryFloatFnCall happily appends an "f" to "", and we erroneously end
up with a call to a function called "f".
To solve this, the above pattern is changed to
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
[...]
}
I.e instead of first fetching the name of the "double" version and then
letting emitUnaryFloatFnCall() add the final "f" or "l", we let
emitUnaryFloatFnCall() fetch the right name from TLI.
Reviewers: eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, bjope, llvm-commits
Differential Revision: https://reviews.llvm.org/D53370
llvm-svn: 344725
The IRBuilder CreateIntrinsic method wouldn't allow you to specify the
types that you wanted the intrinsic to be mangled with. To fix this
I've:
- Added an ArrayRef<Type *> member to both CreateIntrinsic overloads.
- Used that array to pass into the Intrinsic::getDeclaration call.
- Added a CreateUnaryIntrinsic to replace the most common use of
CreateIntrinsic where the type was auto-deduced from operand 0.
- Added a bunch more unit tests to test Create*Intrinsic calls that
weren't being tested (including the FMF flag that wasn't checked).
This was suggested as part of the AMDGPU specific atomic optimizer
review (https://reviews.llvm.org/D51969).
Differential Revision: https://reviews.llvm.org/D52087
llvm-svn: 343962
Similar to rL342278:
The test diffs are all cosmetic due to the change in
value naming, but I'm including that to show that the
new code does perform these folds rather than something
else in instcombine.
D52075 should be able to use this code too rather than
duplicating all of the logic.
llvm-svn: 342292
For vectors, getPrimitiveSizeInBits returns the full vector width. This code should using the element size for vectors. This could be fixed by calling getScalarSizeInBits, but its even easier to just get it from the APInt we're checking.
Differential Revision: https://reviews.llvm.org/D51938
llvm-svn: 341971
The actual code seems to be correct, but the comments were misleading.
Patch by Aaron Puchert!
Differential Revision: https://reviews.llvm.org/D49276
llvm-svn: 337131
This bug was created by rL335258 because we used to always call instsimplify
after trying the associative folds. After that change it became possible
for subsequent folds to encounter unsimplified code (and potentially assert
because of it).
Instead of carrying changed state through instcombine, we can just return
immediately. This allows instsimplify to run, so we can continue assuming
that easy folds have already occurred.
llvm-svn: 336965
Similar to other patches in this series:
https://reviews.llvm.org/rL335512https://reviews.llvm.org/rL335527https://reviews.llvm.org/rL335597https://reviews.llvm.org/rL335616
...this is filling a gap in analysis that is exposed by an unrelated select-of-constants transform.
I didn't see a way to unify the sext cases because each div/rem opcode results in a different fold.
Note that in this case, the backend might want to convert the select into math:
Name: sext urem
%e = sext i1 %x to i32
%r = urem i32 %y, %e
=>
%c = icmp eq i32 %y, -1
%z = zext i1 %c to i32
%r = add i32 %z, %y
llvm-svn: 335622
Note: I didn't add a hasOneUse() check because the existing,
related fold doesn't have that check. I suspect that the
improved analysis and codegen make these some of the rare
canonicalization cases where we allow an increase in
instructions.
llvm-svn: 335597
This removes a "UDivFoldAction" in favor of a simple constant
matcher. In theory, the existing code could do more matching,
but I don't see any evidence or need for it. I've left a TODO
about using ValueTracking in case we see any regressions.
llvm-svn: 335545
This is outwardly NFC from what I can tell, but it should be more efficient
to simplify first (despite the name, SimplifyAssociativeOrCommutative does
not actually simplify as InstSimplify does - it creates/morphs instructions).
This should make it easier to refactor duplicated code that runs for all binops.
llvm-svn: 335258
When we optimize select basing on fact that div by 0 is undef
we should not traverse the instruction which are not guaranteed to
transfer execution to next instruction. Guard intrinsic is an example.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47576
llvm-svn: 333864
As noted in the review thread for rL333782, we could have
made a bug harder to hit if we were simplifying instructions
before trying other folds.
The shuffle transform in question isn't ever a simplification;
it's just a canonicalization. So I've renamed that to make that
clearer.
This is NFCI at this point, but I've regenerated the test file
to show the cosmetic value naming difference of using
instcombine's RAUW vs. the builder.
Possible follow-ups:
1. Move reassociation folds after simplifies too.
2. Refactor common code; we shouldn't have so much repetition.
llvm-svn: 333820
This is a follow-up to r331272.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
https://reviews.llvm.org/D46290
llvm-svn: 331275
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
The tests marked with 'FIXME' require loosening the check
in SimplifyAssociativeOrCommutative() to optimize completely;
that's still checking isFast() in Instruction::isAssociative().
llvm-svn: 329121
This replaces a large chunk of code that was looking for compound
patterns that include these sub-patterns. Existing tests ensure that
all of the previous examples are still folded as expected.
We still need to loosen the FMF check.
llvm-svn: 328502
This was supposed to be an NFC refactoring that will eventually allow
eliminating the isFast() predicate, but there's a rare possibility
that we would pessimize the code as shown in the test case because
we failed to check 'hasOneUse()' properly. This version also removes
an inefficiency of the old code; we would look for:
(X * C) * C1 --> X * (C * C1)
...but that pattern is always handled by
SimplifyAssociativeOrCommutative().
llvm-svn: 327404
The code was checking that all of the instructions in the
sequence are 'fast', but that's not necessary. The final
multiply is all that we need to check (tests adjusted).
The fmul doesn't need to be fully 'fast' either, but that
can be another patch.
llvm-svn: 326608
This is a retry of r326502 with updates to the reassociate
test file that I missed the first time.
@test15_reassoc in the supposed -reassociate test file
(except that it tests 2 other passes too...) shows that
there's no clear responsiblity for reassociation transforms.
Instcombine now gets that case, but only because the
constant values are identical. Otherwise, it would still
miss that pattern.
Reassociate doesn't get that case because it hasn't been
updated to use less than 'fast' FMF.
llvm-svn: 326513
I forgot that I added tests for 'reassoc' to -reassociate, but
suprisingly that file calls -instcombine too, so it is affected.
I'll update that file and try again.
llvm-svn: 326510
Also, rename 'foldOpWithConstantIntoOperand' because that's annoyingly
vague. The constant check is redundant in some cases, but it allows
removing duplication for most of the calls.
llvm-svn: 326329
Note: gcc appears to allow this fold with -freciprocal-math alone,
but clang/llvm require more than that with this patch. The wording
in the definitions seems fuzzy enough that it could go either way,
but we'll err on the conservative side of FMF interpretation.
This patch also changes the newly created fmul to have FMF propagated
by the last fdiv rather than intersecting the FMF of the fdivs. This
matches the behavior of other folds near here. The new fmul is only
used to produce an intermediate op for the final fdiv result, so it
shouldn't be any stricter than that result. The previous behavior
could result in dropping FMF via other folds in instcombine or CSE.
Differential Revision: https://reviews.llvm.org/D43398
llvm-svn: 326098
The existing code was inefficiently looking for 'nsz' variants.
That's unnecessary because we canonicalize those to the expected
form with -0.0.
We may also want to adjust or remove the fold that sinks negation.
We don't do that for fdiv (or integer ops?). That should be uniform?
It may also lead to missed optimization as in PR21914:
https://bugs.llvm.org/show_bug.cgi?id=21914
...or we just have to fix other passes to avoid that problem.
llvm-svn: 325924
These are fdiv-with-constant-divisor, so they already become
reciprocal multiplies. The last gap for vector ops should be
closed with rL325590.
It's possible that we're missing folds for some edge cases
with denormal intermediate constants after deleting these,
but there are no tests for those patterns, and it would be
better to handle denormals more consistently (and less
conservatively) as noted in TODO comments.
llvm-svn: 325595
It's possible that we could allow this either 'arcp' or 'reassoc' alone, but this
should be conservatively better than what we have right now. GCC allows this with
only -freciprocal-math.
The last test is changed to show a case that is expected to fold, but we need D43398.
llvm-svn: 325533
The last fold that used to be here was not necessary. That's a
combination of 2 folds (and there's a regression test to show that).
The transforms are guarded by isFast(), but that should be loosened.
llvm-svn: 325531
...and delete the equivalent local functiona from InstCombine.
These might be useful to other InstCombine files or other passes
and makes FP queries more similar to integer constant queries.
llvm-svn: 325398
The variable name 'AllowReassociate' is a lie at this point because
it's set to 'isFast()' which is more than the 'reassoc' FMF after
rL317488.
In D41286, we showed that this transform may be valid even with strict
math by brute force checking every 32-bit float result.
There's a potential problem here because we're replacing with a tan()
libcall rather than a hypothetical LLVM tan intrinsic. So we might
set errno when we should be guaranteed not to do that. But that's
independent of this change.
llvm-svn: 325247
This keeps with our current usage of 'match' and is easier to see that
the optional NSW only applies in the non-constant operand case.
llvm-svn: 325140
This replaces the bit-tracking based fold that did the same thing,
but it only worked for scalars and not directly.
There is no evidence in existing regression tests that the greater
power of bit-tracking was needed here, but we should be aware of
this potential loss of optimization.
llvm-svn: 325062
This is both a functional improvement for vectors and an
efficiency improvement for scalars. The existing code below
the new folds does the same thing for scalars, but in an
indirect and expensive way.
llvm-svn: 325048
This is similar to the instsimplify fold added with D42385
( rL323716 )
...but this can't be in instsimplify because we're creating/morphing
a different instruction.
llvm-svn: 324927
The related cases for (X * Y) / X were handled in rL124487.
https://rise4fun.com/Alive/6k9
The division in these tests is subsequently eliminated by existing instcombines
for 1/X.
llvm-svn: 324843
Refactor getLogBase2Vector into getLogBase2 to accept all scalars/vectors. Generalize from ConstantDataVector to support all constant vectors.
llvm-svn: 324603
...when the shift is known to not overflow with the matching
signed-ness of the division.
This closes an optimization gap caused by canonicalizing mul
by power-of-2 to shl as shown in PR35709:
https://bugs.llvm.org/show_bug.cgi?id=35709
Patch by Anton Bikineev!
Differential Revision: https://reviews.llvm.org/D42032
llvm-svn: 323068
parent function
Ideally we should merge the attributes from the functions somehow, but
this is obviously an improvement over taking random attributes from the
caller which will trip up the verifier if they're nonsensical for an
unary intrinsic call.
llvm-svn: 322284
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
There's at least one bug here - this code can fail with vector types (PR34856).
It's also being called for FREM; I'm still trying to understand how that is valid.
llvm-svn: 315127
In these cases, two selects have constant selectable operands for
both the true and false components and have the same conditional
expression.
We then create two arithmetic operations of the same type and feed a
final select operation using the result of the true arithmetic for the true
operand and the result of the false arithmetic for the false operand and reuse
the original conditionl expression.
The arithmetic operations are naturally folded as a consequence, leaving
only the newly formed select to replace the old arithmetic operation.
Patch by: Michael Berg <michael_c_berg@apple.com>
Differential Revision: https://reviews.llvm.org/D37019
llvm-svn: 313774
There are 3 small independent changes here:
1. Account for multiple uses in the pattern matching: avoid the transform if it increases the instruction count.
2. Add a missing fold for the case where the numerator is the constant: http://rise4fun.com/Alive/E2p
3. Enable all folds for vector types.
There's still one more potential change - use "shouldChangeType()" to keep from transforming to an illegal integer type.
Differential Revision: https://reviews.llvm.org/D36988
llvm-svn: 311726
Previously the InstCombiner class contained a pointer to an IR builder that had been passed to the constructor. Sometimes this would be passed to helper functions as either a pointer or the pointer would be dereferenced to be passed by reference.
This patch makes it a reference everywhere including the InstCombiner class itself so there is more inconsistency. This a large, but mechanical patch. I've done very minimal formatting changes on it despite what clang-format wanted to do.
llvm-svn: 307451
The check to see if we can propagate the nsw flag used m_ConstantInt(uint64_t*&) which doesn't work with splat vectors and has a restriction that the bitwidth of the ConstantInt must be 64-bits are less.
This patch changes it to use m_APInt to remove both these issues
Differential Revision: https://reviews.llvm.org/D34699
llvm-svn: 306457
Summary: This matches the behavior we already had for compares and makes us consistent everywhere.
Reviewers: dberlin, hfinkel, spatel
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33604
llvm-svn: 305049
We have wrappers for several other ValueTracking methods that take care of passing all of the analysis and assumption cache parameters. This extends it to isKnownToBeAPowerOfTwo.
llvm-svn: 303924
Summary:
Fix naming conventions and const correctness.
This completes the changes made in rL303029.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33377
llvm-svn: 303529
Summary:
Merge overflow computation for signed add,
appearing both in InstCombine and ValueTracking.
As part of the merge,
cleanup the interface for overflow checks in InstCombine.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper, majnemer
Reviewed By: craig.topper
Subscribers: takuto.ikuta, llvm-commits
Differential Revision: https://reviews.llvm.org/D32946
llvm-svn: 303029
getSignBit is a static function that creates an APInt with only the sign bit set. getSignMask seems like a better name to convey its functionality. In fact several places use it and then store in an APInt named SignMask.
Differential Revision: https://reviews.llvm.org/D32108
llvm-svn: 300856
We currently only support folding a subtract into a select but not a PHI. This fixes that.
I had to fix an assumption in FoldOpIntoPhi that assumed the PHI node was always in operand 0. Now we pass it in like we do for FoldOpIntoSelect. But we still require some dancing to find the Constant when we create the BinOp or ConstantExpr. This is based code is similar to what we do for selects.
Since I touched all call sites, this also renames FoldOpIntoPhi to foldOpIntoPhi to match coding standards.
Differential Revision: https://reviews.llvm.org/D31686
llvm-svn: 300363
Some of the callers are artificially limiting this transform to integer types;
this should make it easier to incrementally remove that restriction.
llvm-svn: 291620
We correctly canonicalized (add (sext x), (sext y)) to (sext (add x, y))
where possible. However, we didn't perform the same canonicalization
for zexts or for muls.
llvm-svn: 290733
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
This patch fixes PR30366.
Function foldUDivShl() worked under the assumption that one of the values
in input to the function was always an instance of llvm::Instruction.
However, function visitUDivOperand() (the only user of foldUDivShl) was
clearly violating that precondition; internally, visitUDivOperand() uses pattern
matches to check the operands of a udiv. Pattern matchers for binary operators
know how to handle both Instruction and ConstantExpr values.
This patch fixes the problem in foldUDivShl(). Now we use pattern matchers
instead of explicit casts to Instruction. The reduced test case from PR30366
has been added to test file InstCombine/udiv-simplify.ll.
Differential Revision: https://reviews.llvm.org/D24565
llvm-svn: 282398
We already have the udiv variant of this transform, so I think this is ok for
InstCombine too even though there is an increase in IR instructions. As the
tests and TODO comments show, the transform can lead to follow-on combines.
This should fix: https://llvm.org/bugs/show_bug.cgi?id=28672
Differential Revision: https://reviews.llvm.org/D24527
llvm-svn: 282209
Since FoldOpIntoPhi speculates the binary operation to potentially each
of the predecessors of the PHI node (pulling it out of arbitrary control
dependence in the process), we can FoldOpIntoPhi only if we know the
operation doesn't have UB.
This also brings up an interesting profitability question -- the way it
is written today, commonIRemTransforms will hoist out work from
dynamically dead code into code that will execute at runtime. Perhaps
that isn't the best canonicalization?
Fixes PR27968.
llvm-svn: 271857