I submitted that patch after I got the LGTM, but the comments didn't
appear until after I submitted the change. This adds `const` to the
constructor argument and makes it a pointer.
llvm-svn: 373391
PR42924 points out that copying the GlobalsMetadata type during
construction of AddressSanitizer can result in exteremely lengthened
build times for translation units that have many globals. This can be addressed
by just making the GlobalsMD member in AddressSanitizer a reference to
avoid the copy. The GlobalsMetadata type is already passed to the
constructor as a reference anyway.
Differential Revision: https://reviews.llvm.org/D68287
llvm-svn: 373389
The static analyzer is warning about potential null dereference, but we can use cast<ConstantInt> directly and if not assert will fire for us.
llvm-svn: 372429
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
By default ASan calls a versioned function
`__asan_version_mismatch_check_vXXX` from the ASan module constructor to
check that the compiler ABI version and runtime ABI version are
compatible. This ensures that we get a predictable linker error instead
of hard-to-debug runtime errors.
Sometimes, however, we want to skip this safety guard. This new command
line option allows us to do just that.
rdar://47891956
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D66826
llvm-svn: 370258
Summary:
This change gives Emscripten the ability to use more than one constructor
priorities that runs before ASan. By convention, constructor priorites 0-100
are reserved for use by the system. ASan on Emscripten now uses priority 50,
leaving plenty of room for use by Emscripten before and after ASan.
This change is done in response to:
https://github.com/emscripten-core/emscripten/pull/9076#discussion_r310323723
Reviewers: kripken, tlively, aheejin
Reviewed By: tlively
Subscribers: cfe-commits, dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D65684
llvm-svn: 368101
Summary:
This patch removes the `default` case from some switches on
`llvm::Triple::ObjectFormatType`, and cases for the missing enumerators
(`UnknownObjectFormat`, `Wasm`, and `XCOFF`) are then added.
For `UnknownObjectFormat`, the effect of the action for the `default`
case is maintained; otherwise, where `llvm_unreachable` is called,
`report_fatal_error` is used instead.
Where the `default` case returns a default value, `report_fatal_error`
is used for XCOFF as a placeholder. For `Wasm`, the effect of the action
for the `default` case in maintained.
The code is structured to avoid strongly implying that the `Wasm` case
is present for any reason other than to make the switch cover all
`ObjectFormatType` enumerator values.
Reviewers: sfertile, jasonliu, daltenty
Reviewed By: sfertile
Subscribers: hiraditya, aheejin, sunfish, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64222
llvm-svn: 366544
Summary:
This diff enables address sanitizer on Emscripten.
On Emscripten, real memory starts at the value passed to --global-base.
All memory before this is used as shadow memory, and thus the shadow mapping
function is simply dividing by 8.
Reviewers: tlively, aheejin, sbc100
Reviewed By: sbc100
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63742
llvm-svn: 364468
The VM layout on iOS is not stable between releases. On 64-bit iOS and
its derivatives we use a dynamic shadow offset that enables ASan to
search for a valid location for the shadow heap on process launch rather
than hardcode it.
This commit extends that approach for 32-bit iOS plus derivatives and
their simulators.
rdar://50645192
rdar://51200372
rdar://51767702
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D63586
llvm-svn: 364105
Refactor DIExpression::With* into a flag enum in order to be less
error-prone to use (as discussed on D60866).
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D61943
llvm-svn: 361137
If there are any intrinsics that cannot be traced back to an alloca, we
might have missed the start of a variable's scope, leading to false
error reports if the variable is poisoned at function entry. Instead, if
there are some intrinsics that can't be traced, fail safe and don't
poison the variables in that function.
Differential revision: https://reviews.llvm.org/D60686
llvm-svn: 358478
Summary:
Factor out findAllocaForValue() from ASan so that we can use it in
MSan to handle lifetime intrinsics.
Reviewers: eugenis, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60615
llvm-svn: 358380
This is in preparation to a driver patch to add gcc 8's -fsanitize=pointer-compare and -fsanitize=pointer-subtract.
Disabled by default as this is still an experimental feature.
Reviewed By: morehouse, vitalybuka
Differential Revision: https://reviews.llvm.org/D59220
llvm-svn: 357157
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
Summary:
Currently, ASan inserts a call to `__asan_handle_no_return` before every
`noreturn` function call/invoke. This is unnecessary for calls to other
runtime funtions. This patch changes ASan to skip instrumentation for
functions calls marked with `!nosanitize` metadata.
Reviewers: TODO
Differential Revision: https://reviews.llvm.org/D57489
llvm-svn: 352948
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
Generated code:
```
call void @__asan_handle_no_return // Additionally inserted to avoid false positives
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
unreachable
```
The second call to `__asan_handle_no_return` is redundant. This will be
cleaned up in a follow-up patch.
rdar://problem/40723397
Reviewers: delcypher, eugenis
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D56624
llvm-svn: 352003
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Instruction::isLifetimeStartOrEnd() checks whether an Instruction is an
llvm.lifetime.start or an llvm.lifetime.end intrinsic.
This was suggested as a cleanup in D55967.
Differential Revision: https://reviews.llvm.org/D56019
llvm-svn: 349964
Summary:
On non-Windows these are already removed by ShouldInstrumentGlobal.
On Window we will wait until we get actual issues with that.
Reviewers: pcc
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55899
llvm-svn: 349707
Summary:
ICF prevented by removing unnamed_addr and local_unnamed_addr for all sanitized
globals.
Also in general unnamed_addr is not valid here as address now is important for
ODR violation detector and redzone poisoning.
Before the patch ICF on globals caused:
1. false ODR reports when we register global on the same address more than once
2. globals buffer overflow if we fold variables of smaller type inside of large
type. Then the smaller one will poison redzone which overlaps with the larger one.
Reviewers: eugenis, pcc
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55857
llvm-svn: 349706
Summary:
unnamed_addr is still useful for detecting of ODR violations on vtables
Still unnamed_addr with lld and --icf=safe or --icf=all can trigger false
reports which can be avoided with --icf=none or by using private aliases
with -fsanitize-address-use-odr-indicator
Reviewers: eugenis
Reviewed By: eugenis
Subscribers: kubamracek, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55799
llvm-svn: 349555
Looks like there are valid reasons why we need to allow bitcasts in llvm.asan.globals, see discussion at https://github.com/apple/swift-llvm/pull/133. Let's look through bitcasts when iterating over entries in the llvm.asan.globals list.
Differential Revision: https://reviews.llvm.org/D55794
llvm-svn: 349544
Summary:
private and internal: should not trigger ODR at all.
unnamed_addr: current ODR checking approach fail and rereport false violation if
a linker merges such globals
linkonce_odr, weak_odr: could cause similar problems and they are already not
instrumented for ELF.
Reviewers: eugenis, kcc
Subscribers: kubamracek, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55621
llvm-svn: 349015
Summary:
--asan-use-private-alias increases binary sizes by 10% or more.
Most of this space was long names of aliases and new symbols.
These symbols are not needed for the ODC check at all.
Reviewers: eugenis
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D55146
llvm-svn: 348221
This reverts commit 8d6af840396f2da2e4ed6aab669214ae25443204 and commit
b78d19c287b6e4a9abc9fb0545de9a3106d38d3d which causes slower build times
by initializing the AddressSanitizer on every function run.
The corresponding revisions are https://reviews.llvm.org/D52814 and
https://reviews.llvm.org/D52739.
llvm-svn: 345433
This requires updating a number of .cpp files to adapt to the new API.
I've just systematically updated all uses of `TerminatorInst` within
these files te `Instruction` so thta I won't have to touch them again in
the future.
llvm-svn: 344498
Summary:
We have two copies of createPrivateGlobalForString (in asan and in esan).
This change merges them into one. NFC
Reviewers: vitalybuka
Reviewed By: vitalybuka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53178
llvm-svn: 344314
This patch ports the legacy pass manager to the new one to take advantage of
the benefits of the new PM. This involved moving a lot of the declarations for
`AddressSantizer` to a header so that it can be publicly used via
PassRegistry.def which I believe contains all the passes managed by the new PM.
This patch essentially decouples the instrumentation from the legacy PM such
hat it can be used by both legacy and new PM infrastructure.
Differential Revision: https://reviews.llvm.org/D52739
llvm-svn: 344274
If we can use comdats, then we can make it so that the global metadata
is thrown away if the prevailing definition of the global was
uninstrumented. I have only tested this on COFF targets, but in theory,
there is no reason that we cannot also do this for ELF.
This will allow us to re-enable string merging with ASan on Windows,
reducing the binary size cost of ASan on Windows.
I tested this change with ASan+PGO, and I fixed an issue with the
__llvm_profile_raw_version symbol. With the old version of my patch, we
would attempt to instrument that symbol on ELF because it had a comdat
with external linkage. If we had been using the linker GC-friendly
metadata scheme, everything would have worked, but clang does not enable
it by default.
llvm-svn: 340232
This prevents gold from printing a warning when trying to export
these symbols via the asan dynamic list after ThinLTO promotes them
from private symbols to external symbols with hidden visibility.
Differential Revision: https://reviews.llvm.org/D49498
llvm-svn: 337428
There are quite a few if statements that enumerate all these cases. It gets
even worse in our fork of LLVM where we also have a Triple::cheri (which
is mips64 + CHERI instructions) and we had to update all if statements that
check for Triple::mips64 to also handle Triple::cheri. This patch helps to
reduce our diff to upstream and should also make some checks more readable.
Reviewed By: atanasyan
Differential Revision: https://reviews.llvm.org/D48548
llvm-svn: 335493
Such globals are very likely to be part of a sorted section array, such
the .CRT sections used for dynamic initialization. The uses its own
sorted sections called ATL$__a, ATL$__m, and ATL$__z. Instead of special
casing them, just look for the dollar sign, which is what invokes linker
section sorting for COFF.
Avoids issues with ASan and the ATL uncovered after we started
instrumenting comdat globals on COFF.
llvm-svn: 334653
Currently SmallSet<PointerTy> inherits from SmallPtrSet<PointerTy>. This
patch replaces such types with SmallPtrSet, because IMO it is slightly
clearer and allows us to get rid of unnecessarily including SmallSet.h
Reviewers: dblaikie, craig.topper
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D47836
llvm-svn: 334492
Summary:
If we can use comdats, then we can make it so that the global metadata
is thrown away if the prevailing definition of the global was
uninstrumented. I have only tested this on COFF targets, but in theory,
there is no reason that we cannot also do this for ELF.
This will allow us to re-enable string merging with ASan on Windows,
reducing the binary size cost of ASan on Windows.
Reviewers: eugenis, vitalybuka
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47841
llvm-svn: 334313
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
1. Define Myriad-specific ASan constants.
2. Add code to generate an outer loop that checks that the address is
in DRAM range, and strip the cache bit from the address. The
former is required because Myriad has no memory protection, and it
is up to the instrumentation to range-check before using it to
index into the shadow memory.
3. Do not add an unreachable instruction after the error reporting
function; on Myriad such function may return if the run-time has
not been initialized.
4. Add a test.
Differential Revision: https://reviews.llvm.org/D46451
llvm-svn: 332692
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary:
Ship kNetBSD_ShadowOffset32 set to 1ULL << 30.
This is prepared for the amd64 kernel runtime.
Sponsored by <The NetBSD Foundation>
Reviewers: vitalybuka, joerg, kcc
Reviewed By: vitalybuka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46724
llvm-svn: 332069
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
This fixes a false positive ODR violation that is reported by ASan when using LTO. In cases, where two constant globals have the same value, LTO will merge them, which breaks ASan's ODR detection.
Differential Revision: https://reviews.llvm.org/D43959
llvm-svn: 327061
This fixes a false positive ODR violation that is reported by ASan when using LTO. In cases, where two constant globals have the same value, LTO will merge them, which breaks ASan's ODR detection.
Differential Revision: https://reviews.llvm.org/D43959
llvm-svn: 327053
This fixes a false positive ODR violation that is reported by ASan when using LTO. In cases, where two constant globals have the same value, LTO will merge them, which breaks ASan's ODR detection.
Differential Revision: https://reviews.llvm.org/D43959
llvm-svn: 327029
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
AddressSanitizer pass to cease using The old IRBuilder CreateMemCpy single-alignment API
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324653
Right now clang uses "_n" suffix for some user space callbacks and "N" for the matching kernel ones. There's no need for this and it actually breaks kernel build with inline instrumentation. Use the same callback names for user space and the kernel (and also make them consistent with the names GCC uses).
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D42423
llvm-svn: 323470
Currently ASan instrumentation pass forces callback
instrumentation when applied to the kernel.
This patch changes the current behavior to allow
using inline instrumentation in this case.
Authored by andreyknvl. Reviewed in:
https://reviews.llvm.org/D42384
llvm-svn: 323140
The function stack poisioner conditionally stores local variables
either in an alloca or in malloc'ated memory, which has the
unfortunate side-effect, that the actual address of the variable is
only materialized when the variable is accessed, which means that
those variables are mostly invisible to the debugger even when
compiling without optimizations.
This patch stores the address of the local stack base into an alloca,
which can be referred to by the debug info and is available throughout
the function. This adds one extra pointer-sized alloca to each stack
frame (but mem2reg can optimize it away again when optimizations are
enabled, yielding roughly the same debug info quality as before in
optimized code).
rdar://problem/30433661
Differential Revision: https://reviews.llvm.org/D41034
llvm-svn: 320415
In more recent Linux kernels with 47 bit VMAs the layout of virtual memory
for powerpc64 changed causing the address sanitizer to not work properly. This
patch adds support for 47 bit VMA kernels for powerpc64 and fixes up test
cases.
https://reviews.llvm.org/D40907
There is an associated patch for compiler-rt.
Tested on several 4.x and 3.x kernel releases.
llvm-svn: 320109
Summary:
This change reverts r318575 and changes FindDynamicShadowStart() to
keep the memory range it found mapped PROT_NONE to make sure it is
not reused. We also skip MemoryRangeIsAvailable() check, because it
is (a) unnecessary, and (b) would fail anyway.
Reviewers: pcc, vitalybuka, kcc
Subscribers: srhines, kubamracek, mgorny, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40203
llvm-svn: 318666
Revert the following commits:
r318369 [asan] Fallback to non-ifunc dynamic shadow on android<22.
r318235 [asan] Prevent rematerialization of &__asan_shadow.
r317948 [sanitizer] Remove unnecessary attribute hidden.
r317943 [asan] Use dynamic shadow on 32-bit Android.
MemoryRangeIsAvailable() reads /proc/$PID/maps into an mmap-ed buffer
that may overlap with the address range that we plan to use for the
dynamic shadow mapping. This is causing random startup crashes.
llvm-svn: 318575
The requirement is that shadow memory must be aligned to page
boundaries (4k in this case). Use a closed form equation that always
satisfies this requirement.
Differential Revision: https://reviews.llvm.org/D39471
llvm-svn: 318421
Fix a couple places where the minimum alignment/size should be a
function of the shadow granularity:
- alignment of AllGlobals
- the minimum left redzone size on the stack
Added a test to verify that the metadata_array is properly aligned
for shadow scale of 5, to be enabled when we add build support
for testing shadow scale of 5.
Differential Revision: https://reviews.llvm.org/D39470
llvm-svn: 318395
Summary:
In the mode when ASan shadow base is computed as the address of an
external global (__asan_shadow, currently on android/arm32 only),
regalloc prefers to rematerialize this value to save register spills.
Even in -Os. On arm32 it is rather expensive (2 loads + 1 constant
pool entry).
This changes adds an inline asm in the function prologue to suppress
this behavior. It reduces AsanTest binary size by 7%.
Reviewers: pcc, vitalybuka
Subscribers: aemerson, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40048
llvm-svn: 318235
Summary:
The following kernel change has moved ET_DYN base to 0x4000000 on arm32:
https://marc.info/?l=linux-kernel&m=149825162606848&w=2
Switch to dynamic shadow base to avoid such conflicts in the future.
Reserve shadow memory in an ifunc resolver, but don't use it in the instrumentation
until PR35221 is fixed. This will eventually let use save one load per function.
Reviewers: kcc
Subscribers: aemerson, srhines, kubamracek, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D39393
llvm-svn: 317943
Summary:
Instrumentation to copy byval arguments is now correctly inserted
after the dynamic shadow base is loaded.
Reviewers: vitalybuka, eugenis
Reviewed By: vitalybuka
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D36533
llvm-svn: 310503
Summary:
ASan determines the stack layout from alloca instructions. Since
arguments marked as "byval" do not have an explicit alloca instruction, ASan
does not produce red zones for them. This commit produces an explicit alloca
instruction and copies the byval argument into the allocated memory so that red
zones are produced.
Submitted on behalf of @morehouse (Matt Morehouse)
Reviewers: eugenis, vitalybuka
Reviewed By: eugenis
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34789
llvm-svn: 308387
Revert "Copy arguments passed by value into explicit allocas for ASan."
Revert "[asan] Add end-to-end tests for overflows of byval arguments."
Build failure on lldb-x86_64-ubuntu-14.04-buildserver.
Test failure on clang-cmake-aarch64-42vma and sanitizer-x86_64-linux-android.
llvm-svn: 307345
ASan determines the stack layout from alloca instructions. Since
arguments marked as "byval" do not have an explicit alloca instruction, ASan
does not produce red zones for them. This commit produces an explicit alloca
instruction and copies the byval argument into the allocated memory so that red
zones are produced.
Patch by Matt Morehouse.
Differential revision: https://reviews.llvm.org/D34789
llvm-svn: 307342
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.
llvm-svn: 307292
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
This is a second re-land of r298158. This time, this feature is
limited to -fdata-sections builds.
llvm-svn: 301587
When possible, put ASan ctor/dtor in comdat.
The only reason not to is global registration, which can be
TU-specific. This is not the case when there are no instrumented
globals. This is also limited to ELF targets, because MachO does
not have comdat, and COFF linkers may GC comdat constructors.
The benefit of this is a lot less __asan_init() calls: one per DSO
instead of one per TU. It's also necessary for the upcoming
gc-sections-for-globals change on Linux, where multiple references to
section start symbols trigger quadratic behaviour in gold linker.
This is a second re-land of r298756. This time with a flag to disable
the whole thing to avoid a bug in the gold linker:
https://sourceware.org/bugzilla/show_bug.cgi?id=19002
llvm-svn: 301586
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299699
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
This is a re-land of r298158 rebased on D31358. This time,
asan.module_ctor is put in a comdat as well to avoid quadratic
behavior in Gold.
llvm-svn: 299697
When possible, put ASan ctor/dtor in comdat.
The only reason not to is global registration, which can be
TU-specific. This is not the case when there are no instrumented
globals. This is also limited to ELF targets, because MachO does
not have comdat, and COFF linkers may GC comdat constructors.
The benefit of this is a lot less __asan_init() calls: one per DSO
instead of one per TU. It's also necessary for the upcoming
gc-sections-for-globals change on Linux, where multiple references to
section start symbols trigger quadratic behaviour in gold linker.
This is a rebase of r298756.
llvm-svn: 299696
Create the constructor in the module pass.
This in needed for the GC-friendly globals change, where the constructor can be
put in a comdat in some cases, but we don't know about that in the function
pass.
This is a rebase of r298731 which was reverted due to a false alarm.
llvm-svn: 299695
When possible, put ASan ctor/dtor in comdat.
The only reason not to is global registration, which can be
TU-specific. This is not the case when there are no instrumented
globals. This is also limited to ELF targets, because MachO does
not have comdat, and COFF linkers may GC comdat constructors.
The benefit of this is a lot less __asan_init() calls: one per DSO
instead of one per TU. It's also necessary for the upcoming
gc-sections-for-globals change on Linux, where multiple references to
section start symbols trigger quadratic behaviour in gold linker.
llvm-svn: 298756
Create the constructor in the module pass.
This in needed for the GC-friendly globals change, where the constructor can be
put in a comdat in some cases, but we don't know about that in the function
pass.
llvm-svn: 298731
This adds a parameter to @llvm.objectsize that makes it return
conservative values if it's given null.
This fixes PR23277.
Differential Revision: https://reviews.llvm.org/D28494
llvm-svn: 298430
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
Differential Revision: https://reviews.llvm.org/D30121
llvm-svn: 298158
The Fuchsia ASan runtime reserves the low part of the address space.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30426
llvm-svn: 296405
They are register promoted by ISel and so it makes no sense to treat them as
memory.
Inserting calls to the thread sanitizer would also generate invalid IR.
You would hit:
"swifterror value can only be loaded and stored from, or as a swifterror
argument!"
llvm-svn: 295230
Other than on COFF with incremental linking, global metadata should
not need any extra alignment.
Differential Revision: https://reviews.llvm.org/D28628
llvm-svn: 291859
When using profiling and ASan together (-fprofile-instr-generate -fcoverage-mapping -fsanitize=address), at least on Darwin, the section of globals that ASan emits (__asan_globals) is misaligned and starts at an odd offset. This really doesn't have anything to do with profiling, but it triggers the issue because profiling emits a string section, which can have arbitrary size. This patch changes the alignment to sizeof(GlobalStruct).
Differential Revision: https://reviews.llvm.org/D28573
llvm-svn: 291715
This flag is used to track global registration in Mach-O and it doesn't need to be exported and visible.
Differential Revision: https://reviews.llvm.org/D28250
llvm-svn: 291289
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
This way, when the linker adds padding between globals, we can skip over
the zero padding bytes and reliably find the start of the next metadata
global.
llvm-svn: 288096
Summary:
This is similar to what was done for Darwin in rL264645 /
http://reviews.llvm.org/D16737, but it uses COFF COMDATs to achive the
same result instead of relying on new custom linker features.
As on MachO, this creates one metadata global per instrumented global.
The metadata global is placed in the custom .ASAN$GL section, which the
ASan runtime will iterate over during initialization. There are no other
references to the metadata, so normal linker dead stripping would
discard it. However, the metadata is put in a COMDAT group with the
instrumented global, so that it will be discarded if and only if the
instrumented global is discarded.
I didn't update the ASan ABI version check since this doesn't affect
non-Windows platforms, and the WinASan ABI isn't really stable yet.
Implementing this for ELF will require extending LLVM IR and MC a bit so
that we can use non-COMDAT section groups.
Reviewers: pcc, kcc, mehdi_amini, kubabrecka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26770
llvm-svn: 287576
This patch adds support for instrumenting masked loads and stores under
ASan, if they have a constant mask.
isInterestingMemoryAccess now supports returning a mask to be applied to
the loads, and instrumentMop will use it to generate additional checks.
Added tests for v4i32 v8i32, and v4p0i32 (~v4i64) for both loads and
stores (as well as a test to verify we don't add checks to non-constant
masks).
Differential Revision: https://reviews.llvm.org/D26230
llvm-svn: 287047
This addresses PR30746, <https://llvm.org/bugs/show_bug.cgi?id=30746>. The ASan pass iterates over entry-block instructions and checks each alloca whether it's in NonInstrumentedStaticAllocaVec, which is apparently slow. This patch gathers the instructions to move during visitAllocaInst.
Differential Revision: https://reviews.llvm.org/D26380
llvm-svn: 286296
On Darwin, simple C null-terminated constant strings normally end up in the __TEXT,__cstring section of the resulting Mach-O binary. When instrumented with ASan, these strings are transformed in a way that they cannot be in __cstring (the linker unifies the content of this section and strips extra NUL bytes, which would break instrumentation), and are put into a generic __const section. This breaks some of the tools that we have: Some tools need to scan all C null-terminated strings in Mach-O binaries, and scanning all the contents of __const has a large performance penalty. This patch instead introduces a special section, __asan_cstring which will now hold the instrumented null-terminated strings.
Differential Revision: https://reviews.llvm.org/D25026
llvm-svn: 285619
The binder is in a specific section that "reverse" the edges in a
regular dead-stripping: the binder is live as long as a global it
references is live.
This is a big hammer that prevents LLVM from dead-stripping these,
while still allowing linker dead-stripping (with special knowledge
of the section).
Differential Revision: https://reviews.llvm.org/D24673
llvm-svn: 282988
Summary:
This patch is adding the support for a shadow memory with
dynamically allocated address range.
The compiler-rt needs to export a symbol containing the shadow
memory range.
This is required to support ASAN on windows 64-bits.
Reviewers: kcc, rnk, vitalybuka
Subscribers: zaks.anna, kubabrecka, dberris, llvm-commits, chrisha
Differential Revision: https://reviews.llvm.org/D23354
llvm-svn: 282881
This is a follow-up to r281284. Global Variables now can have
!dbg attachements, so ASAN should clone these when generating a
sanitized copy of a global variable.
<rdar://problem/24899262>
llvm-svn: 281994
Summary:
This patch is adding the support for a shadow memory with
dynamically allocated address range.
The compiler-rt needs to export a symbol containing the shadow
memory range.
This is required to support ASAN on windows 64-bits.
Reviewers: kcc, rnk, vitalybuka
Subscribers: kubabrecka, dberris, llvm-commits, chrisha
Differential Revision: https://reviews.llvm.org/D23354
llvm-svn: 281908
Summary: The return value of `maybeInsertAsanInitAtFunctionEntry` is ignored.
Reviewers: rnk
Subscribers: llvm-commits, chrisha, dberris
Differential Revision: https://reviews.llvm.org/D24568
llvm-svn: 281620
Summary:
Function __asan_default_options is called by __asan_init before the
shadow memory got initialized. Instrumenting that function may lead
to flaky execution.
As the __asan_default_options is provided by users, we cannot expect
them to add the appropriate function atttributes to avoid
instrumentation.
Reviewers: kcc, rnk
Subscribers: dberris, chrisha, llvm-commits
Differential Revision: https://reviews.llvm.org/D24566
llvm-svn: 281503
The '-asan-use-private-alias’ option (disabled by default) option is currently only enabled for Linux and ELF, but it also works on Darwin and Mach-O. This option also fixes a known problem with LTO on Darwin (https://github.com/google/sanitizers/issues/647). This patch enables the support for Darwin (but still keeps it off by default) and adds the LTO test case.
Differential Revision: https://reviews.llvm.org/D24292
llvm-svn: 281470
Summary:
Could be useful for comparison when we suspect that alloca was skipped
because of this.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24437
llvm-svn: 281126
Summary:
C allows to jump over variables declaration so lifetime.start can be
avoid before variable usage. To avoid false-positives on such rare cases
we detect them and remove from lifetime analysis.
PR27453
PR28267
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24321
llvm-svn: 280907
Summary:
C allows to jump over variables declaration so lifetime.start can be
avoid before variable usage. To avoid false-positives on such rare cases
we detect them and remove from lifetime analysis.
PR27453
PR28267
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24321
llvm-svn: 280880
Summary:
Calling __asan_poison_stack_memory and __asan_unpoison_stack_memory for small
variables is too expensive.
Code is disabled by default and can be enabled by -asan-experimental-poisoning.
PR27453
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23947
llvm-svn: 279984
Summary: No functional changes, just refactoring to make D23947 simpler.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23954
llvm-svn: 279982
Summary: r279379 introduced crash on arm 32bit bot. I suspect this is alignment issue.
Reviewers: eugenis
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D23762
llvm-svn: 279413
Summary:
We can insert function call instead of multiple store operation.
Current default is blocks larger than 64 bytes.
Changes are hidden behind -asan-experimental-poisoning flag.
PR27453
Differential Revision: https://reviews.llvm.org/D23711
llvm-svn: 279383
Summary:
Callbacks are not being used yet.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23634
llvm-svn: 279380
Summary: Reduce store size to avoid leading and trailing zeros.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23648
llvm-svn: 279379
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279373
Summary: Reduce store size to avoid leading and trailing zeros.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23648
llvm-svn: 279178
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279020
Summary:
Clang inserts cleanup code before resume similar way as before return instruction.
This makes asan poison local variables causing false use-after-scope reports.
__asan_handle_no_return does not help here as it was executed before
llvm.lifetime.end inserted into resume block.
To avoid false report we need to unpoison stack for resume same way as for return.
PR27453
Reviewers: kcc, eugenis
Differential Revision: https://reviews.llvm.org/D22661
llvm-svn: 276480
Summary:
Clang inserts GetElementPtrInst so findAllocaForValue was not
able to find allocas.
PR27453
Reviewers: kcc, eugenis
Differential Revision: https://reviews.llvm.org/D22657
llvm-svn: 276374
See the bug report at https://github.com/google/sanitizers/issues/691. When a dynamic alloca has a constant size, ASan instrumentation will treat it as a regular dynamic alloca (insert calls to poison and unpoison), but the backend will turn it into a regular stack variable. The poisoning/unpoisoning is then broken. This patch will treat such allocas as static.
Differential Revision: http://reviews.llvm.org/D21509
llvm-svn: 273888
It's only useful to asan-itize profiling globals while debugging llvm's
profiling instrumentation passes. Enabling asan along with instrprof or
gcov instrumentation shouldn't incur extra overhead.
This patch is in the same spirit as r264805 and r273202, which disabled
tsan instrumentation of instrprof/gcov globals.
Differential Revision: http://reviews.llvm.org/D21541
llvm-svn: 273444
Do not instrument pointers with address space attributes since we cannot track
them anyway. Instrumenting them results in false positives in ASan and a
compiler crash in TSan. (The compiler should not crash in any case, but that's
a different problem.)
llvm-svn: 273339
The large offset is being tested on Windows 10 (which has larger usable
virtual address space than Windows 8 or earlier)
Patch by: Wei Wang
Differential Revision: http://reviews.llvm.org/D21523
llvm-svn: 273269
CodeGen has hooks that allow targets to emit specialized code instead
of calls to memcmp, memchr, strcpy, stpcpy, strcmp, strlen, strnlen.
When ASan/MSan/TSan/ESan is in use, this sidesteps its interceptors, resulting
in uninstrumented memory accesses. To avoid that, make these sanitizers
mark the calls as nobuiltin.
Differential Revision: http://reviews.llvm.org/D19781
llvm-svn: 273083
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
Summary:
We failed to unpoison uninteresting allocas on return as unpoisoning is part of
main instrumentation which skips such allocas.
Added check -asan-instrument-allocas for dynamic allocas. If instrumentation of
dynamic allocas is disabled it will not will not be unpoisoned.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21207
llvm-svn: 272341
Summary:
We still want to unpoison full stack even in use-after-return as it can be disabled at runtime.
PR27453
Reviewers: eugenis, kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21202
llvm-svn: 272334
Allowing overriding the default ASAN shadow mapping offset with the
-asan-shadow-offset option, and allow zero to be specified for both offset and
scale.
Patch by Aaron Carroll <aaronc@apple.com>.
llvm-svn: 268724
Allowing overriding the default ASAN shadow mapping offset with the
-asan-shadow-offset option, and allow zero to be specified for both offset and
scale.
llvm-svn: 268586