Summary:
After r249211, SCEV can see through some LCSSA phis. Add a
`replacementPreservesLCSSAForm` check before replacing uses of these phi
nodes with a simplified use of the induction variable to avoid breaking
LCSSA.
Fixes 25047.
Depends on D13460.
Reviewers: atrick, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13461
llvm-svn: 249575
Summary:
Some target intrinsics can access multiple elements, using the pointer as a
base address (e.g. AArch64 ld4). When trying to CSE such instructions,
it must be checked the available value comes from a compatible instruction
because the pointer is not enough to discriminate whether the value is
correct.
Reviewers: ssijaric
Subscribers: mcrosier, llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D13475
llvm-svn: 249523
I don't think this assert adds much value, and removing it and related
variables avoids an "unused variable" warning in release builds.
llvm-svn: 249511
Summary:
A series of cosmetic cleanup changes to RewriteStatepointsForGC:
- Rename variables to LLVM style
- Remove some redundant asserts
- Remove an unsued `Pass *` parameter
- Remove unnecessary variables
- Use C++11 idioms where applicable
- Pass CallSite by value, not reference
Reviewers: reames, swaroop.sridhar
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D13370
llvm-svn: 249508
This will allow us to optimize code such as:
int f(int *p) {
int x;
return p == &x;
}
as well as:
int *allocate(void);
int f() {
int x;
int *p = allocate();
return p == &x;
}
The folding can only be done under certain circumstances. Even though p and &x
cannot alias, the comparison must still return true if the pointer
representations are equal. If a user successfully generates a p that's a
correct guess for &x, comparison should return true even though p is an invalid
pointer.
This patch argues that if the address of the alloca isn't observable outside the
function, the function can act as-if the address is impossible to guess from the
outside. The tricky part is keeping the act consistent: if we fold p == &x to
false in one place, we must make sure to fold any other comparisons based on
those pointers similarly. To ensure that, we only fold when &x is involved
exactly once in comparison instructions.
Differential Revision: http://reviews.llvm.org/D13358
llvm-svn: 249490
Summary:
After r249211, `getSCEV(X) == getSCEV(Y)` does not guarantee that X and
Y are related in the dominator tree, even if X is an operand to Y (I've
included a toy example in comments, and a real example as a test case).
This commit changes `SimplifyIndVar` to require a `DominatorTree`. I
don't think this is a problem because `ScalarEvolution` requires it
anyway.
Fixes PR25051.
Depends on D13459.
Reviewers: atrick, hfinkel
Subscribers: joker.eph, llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D13460
llvm-svn: 249471
Summary:
- Add CoreCLR to if/else ladders and switches as appropriate.
- Rename isMSVCEHPersonality to isFuncletEHPersonality to better
reflect what it captures.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13449
llvm-svn: 249455
If the mask of a select instruction is a ConstantVector, method
SimplifyDemandedVectorElts iterates over the mask elements to identify which
values are selected from the select inputs.
Before this patch, method SimplifyDemandedVectorElts always used method
Constant::isNullValue() to check if a value in the mask was zero. Unfortunately
that method always returns false when called on a ConstantExpr.
This patch fixes the problem in SimplifyDemandedVectorElts by adding an explicit
check for ConstantExpr values. Now, if a value in the mask is a ConstantExpr, we
avoid calling isNullValue() on it.
Fixes PR24922.
Differential Revision: http://reviews.llvm.org/D13219
llvm-svn: 249390
Otherwise, the map will observe changes as long as MergeFunctions is alive. This
is bad because follow-up passes could replace-all-uses-with on the key of an
entry in the map. The value handle callback of ValueMap however asserts that the
key type matches.
rdar://22971893
llvm-svn: 249327
The most important part required to make clang
devirtualization works ( ͡°͜ʖ ͡°).
The code is able to find non local dependencies, but unfortunatelly
because the caller can only handle local dependencies, I had to add
some restrictions to look for dependencies only in the same BB.
http://reviews.llvm.org/D12992
llvm-svn: 249196
When trying to optimize fortified library functions use the right
location to insert new instructions in order to preserve correct
def-use order.
This fixes an issue where a misplaced instruction definition would
happen to be *after* one of its use after a RAUW, forming invalid IR.
This behavior was introduced by r227250.
Differential Revision: http://reviews.llvm.org/D13301
rdar://problem/22802369
llvm-svn: 249092
Summary:
Some passes may open up opportunities for optimizations, leaving empty
lifetime start/end ranges. For example, with the following code:
void foo(char *, char *);
void bar(int Size, bool flag) {
for (int i = 0; i < Size; ++i) {
char text[1];
char buff[1];
if (flag)
foo(text, buff); // BBFoo
}
}
the loop unswitch pass will create 2 versions of the loop, one with
flag==true, and the other one with flag==false, but always leaving
the BBFoo basic block, with lifetime ranges covering the scope of the for
loop. Simplify CFG will then remove BBFoo in the case where flag==false,
but will leave the lifetime markers.
This patch teaches InstCombine to remove trivially empty lifetime marker
ranges, that is ranges ending right after they were started (ignoring
debug info or other lifetime markers in the range).
This fixes PR24598: excessive compile time after r234581.
Reviewers: reames, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13305
llvm-svn: 249018
Summary:
The instructions SeenExprs records may be deleted during rewriting.
FindClosestMatchingDominator should ignore these deleted instructions.
Fixes PR24301.
Reviewers: grosser
Subscribers: grosser, llvm-commits
Differential Revision: http://reviews.llvm.org/D13315
llvm-svn: 248983
Summary:
Given an array of i2 elements, 4 consecutive scalar loads will be lowered to
i8-sized loads and thus will access 4 consecutive bytes in memory. If we
vectorize these loads into a single <4 x i2> load, it'll access only 1 byte in
memory. Hence, we should prohibit vectorization in such cases.
PS: Initial patch was proposed by Arnold.
Reviewers: aschwaighofer, nadav, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13277
llvm-svn: 248943
Same strategy as simplifyInstructionsInBlock. ~1/3 less time
on my test suite. This pass doesn't have many in-tree users,
but getting rid of an O(N^2) worst case and making it cleaner
should at least make it a viable alternative to ADCE, since
it's now consistently somewhat faster.
llvm-svn: 248927
Usually large blocks are not a problem. But if a large block (> 10k instructions)
contains many (potential) chains of vector instructions, and those chains are
spread over a wide range of instructions, then scheduling becomes a compile time problem.
This change introduces a limit for the accumulate scheduling region size of a block.
For real-world functions this limit will never be exceeded (it's about 10x larger than
the maximum value seen in the test-suite and external test suite).
llvm-svn: 248917
This patch teaches InstCombiner how to convert a SSSE3/AVX2 byte shuffle to a
builtin shuffle if the mask is constant.
Converting byte shuffle intrinsic calls to builtin shuffles can help finding
more opportunities for combining shuffles later on in selection dag.
We may end up with byte shuffles with constant masks as the result of inlining.
Differential Revision: http://reviews.llvm.org/D13252
llvm-svn: 248913
Currently SimplifyDemandedVectorElts can only peek through bitcasts if the vectors have the same number of elements.
This patch fixes and enables some existing (disabled) code to support bitcasting to vectors with more/fewer elements. It currently only accepts cases when vectors alias cleanly (i.e. number of elements are an exact multiple of the other vector).
This was added to improve the demanded vector elements support for SSE vector shifts which require the __m128i (<2 x i64>) argument type to be bitcast to the vector type for the builtin shift. I've added extra tests for various additional bitcasts.
Differential Revision: http://reviews.llvm.org/D12935
llvm-svn: 248784
Summary: This patch adds block frequency analysis to LoopUnswitch pass to recognize hot/cold regions. For cold regions the pass only performs trivial unswitches since they do not increase code size, and for hot regions everything works as before. This helps to minimize code growth in cold regions and be more aggressive in hot regions. Currently the default cold regions are blocks with frequencies below 20% of function entry frequency, and it can be adjusted via -loop-unswitch-cold-block-frequency flag. The entire feature is controlled via -loop-unswitch-with-block-frequency flag and it is off by default.
Reviewers: broune, silvas, dnovillo, reames
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D11605
llvm-svn: 248777
Place new and update dbg.declare calls immediately after the
corresponding alloca.
Current code in replaceDbgDeclareForAlloca puts the new dbg.declare
at the end of the basic block. LLVM codegen has problems emitting
debug info in a situation when dbg.declare appears after all uses of
the variable. This usually kinda works for inlining and ASan (two
users of this function) but not for SafeStack (see the pending change
in http://reviews.llvm.org/D13178).
llvm-svn: 248769
Patch by Jake VanAdrighem!
Summary:
Fix the way we sort the llvm.used and llvm.compiler.used members.
This bug seems to have been introduced in rL183756 through a set of improper casts to GlobalValue*. In subsequent patches this problem was missed and transformed into a getName call on a ConstantExpr.
Reviewers: silvas
Subscribers: silvas, llvm-commits
Differential Revision: http://reviews.llvm.org/D12851
llvm-svn: 248728
1. Use a worklist, not a recursive approach, to avoid needless
revisitation and being repeatedly forced to jump back to the
start of the BB if a handle is invalidated.
2. Only insert operands to the worklist if they become unused
after a dead instruction is removed, so we don’t have to
visit them again in most cases.
3. Use a SmallSetVector to track the worklist.
4. Instead of pre-initting the SmallSetVector like in
DeadCodeEliminationPass, only put things into the worklist
if they have to be revisited after the first run-through.
This minimizes how much the actual SmallSetVector gets used,
which saves a lot of time.
llvm-svn: 248727
Originally, debug intrinsics and annotation intrinsics may prevent
the loop to be rerolled, now they are ignored.
Differential Revision: http://reviews.llvm.org/D13150
llvm-svn: 248718
This is one step towards solving PR24766:
https://llvm.org/bugs/show_bug.cgi?id=24766
We were not producing the same IR for these two C functions because the store
to the temp bool causes extra zexts:
#include <stdbool.h>
bool switchy(char x1, char x2, char condition) {
bool conditionMet = false;
switch (condition) {
case 0: conditionMet = (x1 == x2); break;
case 1: conditionMet = (x1 <= x2); break;
}
return conditionMet;
}
bool switchy2(char x1, char x2, char condition) {
switch (condition) {
case 0: return (x1 == x2);
case 1: return (x1 <= x2);
}
return false;
}
As noted in the code comments, this test case manages to avoid the more general existing
phi optimizations where there are only 2 phi inputs or where there are no constant phi
args mixed in with the casts ops. It seems like a corner case, but if we don't catch it,
then I don't think we can get SimplifyCFG to further optimize towards the canonical form
for this function shown in the bug report.
Differential Revision: http://reviews.llvm.org/D12866
llvm-svn: 248689
Summary:
Factor the code that rewrites invokes to calls and rewrites WinEH
terminators to their "unwind to caller" equivalents into a helper in
Utils/Local, and use it in the three places I'm aware of that need to do
this.
Reviewers: andrew.w.kaylor, majnemer, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13152
llvm-svn: 248677
This is a fix for PR22723:
https://llvm.org/bugs/show_bug.cgi?id=22723
My first attempt at this was to change what I thought was the root problem:
xor (zext i1 X to i32), 1 --> zext (xor i1 X, true) to i32
...but we create the opposite pattern in InstCombiner::visitZExt(), so infinite loop!
My next idea was to fix the matchIfNot() implementation in PatternMatch, but that would
mean potentially returning a different size for the match than what was input. I think
this would require all users of m_Not to check the size of the returned match, so I
abandoned that idea.
I settled on just fixing the exact case presented in the PR. This patch does allow the
2 functions in PR22723 to compile identically (x86):
bool test(bool x, bool y) { return !x | !y; }
bool test(bool x, bool y) { return !x || !y; }
...
andb %sil, %dil
xorb $1, %dil
movb %dil, %al
retq
Differential Revision: http://reviews.llvm.org/D12705
llvm-svn: 248634
Loop unswitching produces conditional branches with constant condition,
and it's beneficial for later passes to clean this up with simplify-cfg.
We do this after the second invocation of loop-unswitch, but not after
the first one. Not doing so might cause problem for passes like
LoopUnroll, whose estimate of loop body size would be less accurate.
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D13064
llvm-svn: 248460
Nothing is expected to change, except we do less redundant work in
clean-up.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12951
llvm-svn: 248444
In -fprofile-instr-generate compilation, to remove the redundant profile
variables for the COMDAT functions, these variables are placed in the same
COMDAT group as its associated function. This way when the COMDAT function
is not picked by the linker, those profile variables will also not be
output in the final binary. This may cause warning when mix link objects
built w and wo -fprofile-instr-generate.
This patch puts the profile variables for COMDAT functions to its own COMDAT
group to avoid the problem.
Patch by xur.
Differential Revision: http://reviews.llvm.org/D12248
llvm-svn: 248440
This patch changes the order of GEPs generated by Splitting GEPs
pass, specially when one of the GEPs has constant and the base is
loop invariant, then we will generate the GEP with constant first
when beneficial, to expose more cases for LICM.
If originally Splitting GEP generate the following:
do.body.i:
%idxprom.i = sext i32 %shr.i to i64
%2 = bitcast %typeD* %s to i8*
%3 = shl i64 %idxprom.i, 2
%uglygep = getelementptr i8, i8* %2, i64 %3
%uglygep7 = getelementptr i8, i8* %uglygep, i64 1032
...
Now it genereates:
do.body.i:
%idxprom.i = sext i32 %shr.i to i64
%2 = bitcast %typeD* %s to i8*
%3 = shl i64 %idxprom.i, 2
%uglygep = getelementptr i8, i8* %2, i64 1032
%uglygep7 = getelementptr i8, i8* %uglygep, i64 %3
...
For no-loop cases, the original way of generating GEPs seems to
expose more CSE cases, so we don't change the logic for no-loop
cases, and only limit our change to the specific case we are
interested in.
llvm-svn: 248420
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
This changes the behavior of AddAligntmentAssumptions to match its
comment. I.e, prove the asserted alignment in the context of the caller,
not the callee.
Thanks to Mehdi Amini for seeing the issue here! Also to Artur Pilipenko
who also saw a fix for the issue.
rdar://22521387
Differential Revision: http://reviews.llvm.org/D12997
llvm-svn: 248390
Invoking a function which returns an aggregate can sometimes be
transformed to return a scalar value. However, this means that we need
to create an insertvalue instruction(s) to recreate the correct
aggregate type. We achieved this by inserting an insertvalue
instruction at the invoke's normal successor. However, this is not
feasible if the normal successor uses the invoke's return value inside a
PHI node.
Instead, split the edge between the invoke and the unwind successor and
create the insertvalue instruction in the new basic block. The new
basic block's successor will be the old invoke successor which leaves
us with IR which is well behaved.
This fixes PR24906.
llvm-svn: 248387
This change allows dead store elimination to remove zero and null stores into memory freshly allocated with calloc-like function.
Differential Revision: http://reviews.llvm.org/D13021
llvm-svn: 248374