As in SystemZ backend, correctly propagate node ids when inserting new
unselected nodes into the DAG during instruction Seleciton for X86
target.
Fixes PR36865.
Reviewers: jyknight, craig.topper
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D44797
llvm-svn: 328233
Summary:
When building the selection DAG we sometimes need to postpone
the handling of a dbg.value until the value it should refer to
is created. This is done by using the DanglingDebugInfoMap.
In the past this map has been limited to hold one dangling
dbg.value per value. This patch removes that restriction.
Reviewers: aprantl, rnk, probinson, vsk
Reviewed By: aprantl
Subscribers: Ka-Ka, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44610
llvm-svn: 328084
I'm not entirely sure these hacks are still needed. If you remove the hacks completely, the name of the library call that gets generated doesn't match the grep the test previously had. So the test wasn't really checking anything.
If the hack is still needed it belongs in PPC specific code. I believe the FP_TO_SINT code here is the only place in the tree where a FP_ROUND_INREG node is created today. And I don't think its even being used correctly because the legalization returned a BUILD_PAIR with the same value twice. That doesn't seem right to me. By moving the code entirely to PPC we can avoid creating the FP_ROUND_INREG at all.
I replaced the grep in the existing test with full checks generated by hacking update_llc_test_check.py to support ppc32 just long enough to generate it.
Differential Revision: https://reviews.llvm.org/D44061
llvm-svn: 328017
Summary:
DbgValue nodes were not transferred when integer DAG nodes were promoted. For example, if an i32 add node was promoted to an i64 add node by DAGTypeLegalizer::PromoteIntegerResult(), its DbgValue node was not transferred to the new node. The simple fix is to update SetPromotedInteger() to transfer DbgValues.
Add AArch64/dbg-value-i8.ll to test this change and fix ARM/debug-info-d16-reg.ll which had the wrong DILocalVariable nodes with arg numbers even though they are not for function parameters.
Patch by Se Jong Oh!
Reviewers: vsk, JDevlieghere, aprantl
Reviewed By: JDevlieghere
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44546
llvm-svn: 327919
X86 Supports Indirect Branch Tracking (IBT) as part of Control-Flow Enforcement Technology (CET).
IBT instruments ENDBR instructions used to specify valid targets of indirect call / jmp.
The `nocf_check` attribute has two roles in the context of X86 IBT technology:
1. Appertains to a function - do not add ENDBR instruction at the beginning of the function.
2. Appertains to a function pointer - do not track the target function of this pointer by adding nocf_check prefix to the indirect-call instruction.
This patch implements `nocf_check` context for Indirect Branch Tracking.
It also auto generates `nocf_check` prefixes before indirect branchs to jump tables that are guarded by range checks.
Differential Revision: https://reviews.llvm.org/D41879
llvm-svn: 327767
The BITCAST handling in computeKnownBits() previously only worked for little
endian.
This patch reverses the iteration over elements for a big endian target which
allows this to work in this case also.
SystemZ test case.
Review: Eli Friedman
https://reviews.llvm.org/D44249
llvm-svn: 327764
Previously if getSetccResultType returned an illegal type we just fell back to using the default promoted type. This appears to have been to handle the case where for vectors getSetccResultType returns the input type, but the input type itself isn't legal and will need to be promoted. Without the legality check we would never reach a legal type.
But just picking the promoted type to be the setcc type can create strange setccs where the result type is 128 bits and the operand type is 256 bits. If for example the result type was promoted to v8i16 from v8i1, but the input type was promoted from v8i23 to v8i32. We currently handle this with custom lowering code in X86.
This legality check also caused us reject the getSetccResultType when the input type needed to be widened or split. Even though that result wouldn't have caused legalization to get stuck.
This patch tries to fix this by detecting the getSetccResultType needs to be promoted. If its input type also needs to be promoted we'll try a ask for a new setcc result type based on its eventual promoted value. Otherwise we fall back to default type to promote to.
For any other illegal values we might get back from the initial call to getSetccResultType we just keep and allow it to be re-legalized later via splitting or widening or scalarizing.
llvm-svn: 327683
Summary:
Local values are constants, global addresses, and stack addresses that
can't be folded into the instruction that uses them. For example, when
storing the address of a global variable into memory, we need to
materialize that address into a register.
FastISel doesn't want to materialize any given local value more than
once, so it generates all local value materialization code at
EmitStartPt, which always dominates the current insertion point. This
allows it to maintain a map of local value registers, and it knows that
the local value area will always dominate the current insertion point.
The downside is that local value instructions are always emitted without
a source location. This is done to prevent jumpy line tables, but it
means that the local value area will be considered part of the previous
statement. Consider this C code:
call1(); // line 1
++global; // line 2
++global; // line 3
call2(&global, &local); // line 4
Today we end up with assembly and line tables like this:
.loc 1 1
callq call1
leaq global(%rip), %rdi
leaq local(%rsp), %rsi
.loc 1 2
addq $1, global(%rip)
.loc 1 3
addq $1, global(%rip)
.loc 1 4
callq call2
The LEA instructions in the local value area have no source location and
are treated as being on line 1. Stepping through the code in a debugger
and correlating it with the assembly won't make much sense, because
these materializations are only required for line 4.
This is actually problematic for the VS debugger "set next statement"
feature, which effectively assumes that there are no registers live
across statement boundaries. By sinking the local value code into the
statement and fixing up the source location, we can make that feature
work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and
https://crbug.com/793819.
This change is obviously not enough to make this feature work reliably
in all cases, but I felt that it was worth doing anyway because it
usually generates smaller, more comprehensible -O0 code. I measured a
0.12% regression in code generation time with LLC on the sqlite3
amalgamation, so I think this is worth doing.
There are some special cases worth calling out in the commit message:
1. local values materialized for phis
2. local values used by no-op casts
3. dead local value code
Local values can be materialized for phis, and this does not show up as
a vreg use in MachineRegisterInfo. In this case, if there are no other
uses, this patch sinks the value to the first terminator, EH label, or
the end of the BB if nothing else exists.
Local values may also be used by no-op casts, which adds the register to
the RegFixups table. Without reversing the RegFixups map direction, we
don't have enough information to sink these instructions.
Lastly, if the local value register has no other uses, we can delete it.
This comes up when fastisel tries two instruction selection approaches
and the first materializes the value but fails and the second succeeds
without using the local value.
Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo
Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43093
llvm-svn: 327581
Get rid of the "; mem:" suffix and use the one we use in MIR: ":: (load 2)".
rdar://38163529
Differential Revision: https://reviews.llvm.org/D42377
llvm-svn: 327580
I had to modify the bswap recognition to allow unshrunk masks to make this work.
Fixes PR36689.
Differential Revision: https://reviews.llvm.org/D44442
llvm-svn: 327530
BUILD_VECTORs aren't themselves legalized until LegalizeDAG so we should still be able to create an "illegal" one before that. This helps combine with BUILD_VECTORS that are introduced during LegalizeVectorOps due to unrolling.
llvm-svn: 327446
Under some circumstances the divrems won't have been combined together before getting to this code.
So replace the assertion with a if() guard to not expand to X-((X/C)*C) to give the other combine chance to happen.
Reduced from OSS-Fuzz #6883https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=6883
llvm-svn: 327424
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SelectionDAGBuilder to cease using the old getAlignment() API of MemoryIntrinsic in favour of getting
source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816, rL327398 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 327421
Summary:
1) Make sure to discard dangling debug info if the variable (or
variable fragment) is mapped to something new before we had a
chance to resolve the dangling debug info.
2) When resolving debug info, make sure to bump the associated
SDNodeOrder to ensure that the DBG_VALUE is emitted after the
instruction that defines the value used in the DBG_VALUE.
This will avoid a debug-use before def scenario as seen in
https://bugs.llvm.org/show_bug.cgi?id=36417.
The new test case, test/DebugInfo/X86/sdag-dangling-dbgvalue.ll,
show some other limitations in how dangling debug info is
handled in the SelectionDAG. Since we currently only support
having one dangling dbg.value per Value, we will end up dropping
debug info when there are more than one variable that is described
by the same "dangling value".
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: aprantl, eraman, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44369
llvm-svn: 327303
r327171 "Improve Dependency analysis when doing multi-node Instruction Selection"
r328170 "[DAG] Enforce stricter NodeId invariant during Instruction selection"
Reverting patch as NodeId invariant change is causing pathological
increases in compile time on PPC
llvm-svn: 327197
Relanding after fixing NodeId Invariant.
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 327171
Instruction Selection makes use of the topological ordering of nodes
by node id (a node's operands have smaller node id than it) when doing
cycle detection. During selection we may violate this property as a
selection of multiple nodes may induce a use dependence (and thus a
node id restriction) between two unrelated nodes. If a selected node
has an unselected successor this may allow us to miss a cycle in
detection an invalid selection.
This patch fixes this by marking all unselected successors of a
selected node have negated node id. We avoid pruning on such negative
ids but still can reconstruct the original id for pruning.
In-tree targets have been updated to replace DAG-level replacements
with ISel-level ones which enforce this property.
This preemptively fixes PR36312 before triggering commit r324359 relands
Reviewers: craig.topper, bogner, jyknight
Subscribers: arsenm, nhaehnle, javed.absar, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43198
llvm-svn: 327170
The retpoline mitigation for variant 2 of CVE-2017-5715 inhibits the
branch predictor, and as a result it can lead to a measurable loss of
performance. We can reduce the performance impact of retpolined virtual
calls by replacing them with a special construct known as a branch
funnel, which is an instruction sequence that implements virtual calls
to a set of known targets using a binary tree of direct branches. This
allows the processor to speculately execute valid implementations of the
virtual function without allowing for speculative execution of of calls
to arbitrary addresses.
This patch extends the whole-program devirtualization pass to replace
certain virtual calls with calls to branch funnels, which are
represented using a new llvm.icall.jumptable intrinsic. It also extends
the LowerTypeTests pass to recognize the new intrinsic, generate code
for the branch funnels (x86_64 only for now) and lay out virtual tables
as required for each branch funnel.
The implementation supports full LTO as well as ThinLTO, and extends the
ThinLTO summary format used for whole-program devirtualization to
support branch funnels.
For more details see RFC:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120672.html
Differential Revision: https://reviews.llvm.org/D42453
llvm-svn: 327163
The code to match and produce more x86 vector blends was enabled for all
architectures even though the transform may pessimize the code for other
architectures that do not provide a vector blend instruction.
Added an aarch64 testcase to check that a VZIP instruction is generated instead
of byte movs.
Differential Revision: https://reviews.llvm.org/D44118
llvm-svn: 327132
This patch is a fix for PR36642.
While legalizing long vector types, make sure the smaller types get the
flags of the wider type.
bugzilla link: https://bugs.llvm.org/show_bug.cgi?id=36642
Change-Id: I0c2829639f094c862c10a6b51b342d4c2563e1fa
llvm-svn: 327079
Loading a constant into a k-register in AVX512 requires a bitcast from a scalar constant. In the test case here we have a k-register store that gets split into multiple parts of KNL. MergeConsecutiveStores sees each of these pieces as a consecutive store and looks through the bitcast to find the underly scalar constant. But when we went to create the combined store we didn't look through the same bitcast.
llvm-svn: 326677
X86 considers v1i1 a legal type under AVX512 and as such a truncate from a v1iX type to v1i1 can be turned into a scalar truncate plus a conversion to v1i1. We would much prefer a v1i1 SCALAR_TO_VECTOR over a one element BUILD_VECTOR.
During lowering we were detecting the v1i1 BUILD_VECTOR as a splat BUILD_VECTOR like we try to do for v2i1/v4i1/etc. In this case we create (select i1 splat_elt, v1i1 all-ones, v1i1 all-zeroes). That goes through some more legalization and we end up with a CMOV choosing between 0 and 1 in scalar and a scalar_to_vector.
Arguably we could detect the v1i1 BUILD_VECTOR and do this better in X86 target code. But just using a SCALAR_TO_VECTOR in legalization is much easier.
llvm-svn: 326637
The fast/linear DAG scheduler doesn't lower DBG_VALUEs except for
function entry nodes.
Patch by Joshua Cranmer!
Differential Revision: https://reviews.llvm.org/D43028
llvm-svn: 326631
Masking first, prevents the extend from being combine with loads. Its also interfering with some vXi1 extraction code.
Differential Revision: https://reviews.llvm.org/D42679
llvm-svn: 326500
This supports things like
(setcc ugt X, 0) -> (setcc ne X, 0)
I've restricted to only make changes to vectors before legalize ops because I doubt all targets have accurate condition code legality information for vectors given how little we did before.
Differential Revision: https://reviews.llvm.org/D42948
llvm-svn: 326495
AVX512 used to promote v32i1 to v32i8 during legalization when BWI was disabled. So this code was added to improve legalization of v32i1 concat_vectors of v16i1 by extending the v16i1 to v16i8 to avoid scalarization.
X86 has since switched to legalizing v32i1 by splitting to v16i1 instead. This has rendered this code unnecessary and its no longer exercised.
llvm-svn: 326153
Summary:
There are transformation that change setcc into other constructs, and transform that try to reconstruct a setcc from the brcond condition. Depending on what order these transform are done, the end result differs.
Most of the time, it is preferable to get a setcc as a brcond argument (and this is why brcond try to recreate the setcc in the first place) so we ensure this is done every time by also doing it at the setcc level when the only user is a brcond.
Reviewers: spatel, hfinkel, niravd, craig.topper
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D41235
llvm-svn: 325892
isCondCodeLegal internally checked Legal or Custom which is misleading. Though no targets set any cond code action to Custom today.
So I've renamed isCondCodeLegal to isCondCodeLegalOrCustom and added a real isCondCodeLegal that only checks Legal.
I've changed legalization code to use isCondCodeLegalOrCustom and left things reachable via DAG combine as isCondCodeLegal. I've also changed some places that called getCondCodeAction and compared to Legal to just use isCondCodeLegal.
I'm looking at trying to keep SETCC all the way to isel for the AVX512 integer comparisons and I suspect I'll need to make some condition codes Custom to stop DAG combine from changing things post LegalizeOps. Prior to this only Expand stopped DAG combine, but that causes LegalizeOps to try to swap operands or invert rather than calling our Custom handler.
Differential Revision: https://reviews.llvm.org/D43607
llvm-svn: 325829
This patch reverts r325440 and r325438 because it triggers an
assertion in SelectionDAGBuilder.cpp. Also having debug enabled
may unintentionally affect code-gen. The patch is reverted until
we find a better solution.
llvm-svn: 325825
This allows us to improve vector constant matching in more DAG code (backends, TargetLowering etc.).
Differential Revision: https://reviews.llvm.org/D43466
llvm-svn: 325815
We looked through a BITCAST, but the bitcast might be a from a scalar type rather than a vector.
I don't have a test case. I stumbled onto it while prototyping another change that isn't ready yet.
llvm-svn: 325750
This is split off from D42948 and includes just the cases that constant fold to true or false. It also includes some refactoring to keep predicate checks together.
This supports things like
(setcc uge X, 0) -> true
Differential Revision: https://reviews.llvm.org/D43489
llvm-svn: 325627
DAGCombiner and SimplifySetCC both use getPointerTy for shift amounts pre-legalization. DAGCombiner uses a single helper function to hide this. SimplifySetCC does it in multiple places.
This patch adds a defaulted parameter to getShiftAmountTy that can make it return getPointerTy for scalar types. Use this parameter to simplify the SimplifySetCC and DAGCombiner.
Additionally, there were two places in SimplifySetCC that were creating shifts using the target's preferred shift amount pre-legalization. If the target uses a narrow type and the type is illegal, this can cause SimplfiySetCC to create a shift with an amount that can't represent all possible shift values for the type. To fix this we should use pointer type there too.
Alternatively we could make getScalarShiftAmountTy for each target return a safe value for large types as proposed in D43445. And maybe we should still do that, but fixing the SimplifySetCC code keeps other targets from tripping over this in the future.
Fixes PR36250.
Differential Revision: https://reviews.llvm.org/D43449
llvm-svn: 325602
ExpandUINT_TO_FLOAT can accept vXi32 or vXi64 inputs, so we need to use a uint64_t shift to generate the 2^(BW/2) constant.
No test case unfortunately as no upstream target uses this, but its affecting a downstream target.
llvm-svn: 325578
If we have a clamp pattern, SMIN(SMAX(X, LO),HI) or SMAX(SMIN(X, HI),LO) then we can deduce that the number of signbits (zeros/ones) will be at least the minimum of the LO and HI constants.
ComputeKnownBits equivalent of D43338.
Differential Revision: https://reviews.llvm.org/D43463
llvm-svn: 325521