Summary:
LoopPredication is not profitable when the loop is known to always exit
through some block other than the latch block.
A coarse grained latch check can cause loop predication to predicate the
loop, and unconditionally deoptimize.
However, without predicating the loop, the guard may never fail within the
loop during the dynamic execution because the non-latch loop termination
condition exits the loop before the latch condition causes the loop to
exit.
We teach LP about this using BranchProfileInfo pass.
Reviewers: apilipenko, skatkov, mkazantsev, reames
Reviewed by: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44667
llvm-svn: 328210
The dominator tree analysis can be preserved easily.
Some other kinds of analysis can probably be preserved
too.
Reviewers: junbuml, dberlin
Reviewed By: dberlin
Differential Revision: https://reviews.llvm.org/D43173
llvm-svn: 328206
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
MemCpyOpt pass to cease using:
1) The old getAlignment() API of MemoryIntrinsic in favour of getting source & dest specific
alignments through the new API.
2) The old IRBuilder CreateMemCpy/CreateMemMove single-alignment APIs in favour of the new
API that allows setting source and destination alignments independently.
We also add a few tests to fill gaps in the testing of this pass.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816, rL327398, rL327421 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 328097
Summary:
If the operands of a udiv/urem can be proved to fit within a smaller
power-of-two-sized type, reduce the width of the udiv/urem.
Backed out for causing performance regressions. Re-landing
because we've determined that these regressions were noise.
Original Differential Revision: https://reviews.llvm.org/D44102
llvm-svn: 328096
Summary: Fix a bug in entry block shuffled to middle of the chain.
Reviewers: davide, courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44642
llvm-svn: 327971
LICM deletes trivially dead instructions which it won't attempt to sink.
Attempt to salvage debug values which reference these instructions.
llvm-svn: 327800
JumpThreading iterates over F until the IR quiesces. Transforming
unreachable BBs increases compile time and it is also possible to
never stabilize causing JumpThreading to hang. An older attempt at
fixing this problem was D3991 where removeUnreachableBlocks(F)
was called before JumpThreading began. This has a few drawbacks:
* expensive - the routine attempts to fix up the IR to identify
additional BBs that can be removed along with unreachable BBs.
* aggressive - does not identify and preserve the shape of the IR.
At a minimum it does not preserve loop hierarchies.
* invasive - altering reachable blocks it may disrupt IR shapes
that could have otherwise been JumpThreaded.
This patch avoids removeUnreachableBlocks(F) and instead tracks
unreachable BBs in a SmallPtrSet using DominatorTree to validate the
initial state of all BBs. We then rely on subsequent passes to identify
and remove these unreachable blocks from F.
Reviewers: dberlin, sebpop, kuhar, dinesh.d
Reviewed by: sebpop, kuhar
Subscribers: hiraditya, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D44177
llvm-svn: 327713
If the loop body contains conditions of the form IndVar < #constant, we
can remove the checks by peeling off #constant iterations.
This improves codegen for PR34364.
Reviewers: mkuper, mkazantsev, efriedma
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43876
llvm-svn: 327671
If we've already established an invariant scope with an earlier generation, we don't want to hide it in the scoped hash table with one with a later generation. I noticed this when working on the invariant-load handling, but it also applies to the invariant.start case as well.
Without this change, my previous patch for invariant-load regresses some cases, so I'm pushing this without waiting for review. This is why you don't make last minute tweaks to patches to catch "obvious cases" after it's already been reviewed. Bad Philip!
llvm-svn: 327655
This is a follow up to https://reviews.llvm.org/D43716 which rewrites the invariant load handling using the new infrastructure. It's slightly more powerful, but only in somewhat minor ways for the moment. It's not clear that DSE of stores to invariant locations is actually interesting since why would your IR have such a construct to start with?
Note: The submitted version is slightly different than the reviewed one. I realized the scope could start for an invariant load which was proven redundant and removed. Added a test case to illustrate that as well.
Differential Revision: https://reviews.llvm.org/D44497
llvm-svn: 327646
There are two nontrivial details here:
* Loop structure update interface is quite different with new pass manager,
so the code to add new loops was factored out
* BranchProbabilityInfo is not a loop analysis, so it can not be just getResult'ed from
within the loop pass. It cant even be queried through getCachedResult as LoopCanonicalization
sequence (e.g. LoopSimplify) might invalidate BPI results.
Complete solution for BPI will likely take some time to discuss and figure out,
so for now this was partially solved by making BPI optional in IRCE
(skipping a couple of profitability checks if it is absent).
Most of the IRCE tests got their corresponding new-pass-manager variant enabled.
Only two of them depend on BPI, both marked with TODO, to be turned on when BPI
starts being available for loop passes.
Reviewers: chandlerc, mkazantsev, sanjoy, asbirlea
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43795
llvm-svn: 327619
Summary:
Before this patch call graph is like this in the LoopUnrollPass:
tryToUnrollLoop
ApproximateLoopSize
collectEphemeralValues
/* Use collected ephemeral values */
computeUnrollCount
analyzeLoopUnrollCost
/* Bail out from the analysis if loop contains CallInst */
This patch moves collection of the ephemeral values to the tryToUnrollLoop
function and passes the collected values into both ApproximateLoopsize (as
before) and additionally starts using them in analyzeLoopUnrollCost:
tryToUnrollLoop
collectEphemeralValues
ApproximateLoopSize(EphValues)
/* Use EphValues */
computeUnrollCount(EphValues)
analyzeLoopUnrollCost(EphValues)
/* Ignore ephemeral values - they don't contribute to the final cost */
/* Bail out from the analysis if loop contains CallInst */
Reviewers: mzolotukhin, evstupac, sanjoy
Reviewed By: evstupac
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43931
llvm-svn: 327617
If we have an invariant.start with no corresponding invariant.end, then the memory location becomes invariant indefinitely after the invariant.start. As a result, anything dominated by the start is guaranteed to see the value the memory location had when the invariant.start executed.
This patch adds an AvailableInvariants table which tracks the generation a particular memory location became invariant and then uses that information to allow value forwarding that would otherwise be disallowed by potentially aliasing stores. (Reminder: In EarlyCSE everything clobbers everything by default.)
This should be compatible with the MemorySSA variant, but design is generational. We can and should add first class support for invariant.start within MemorySSA at a later time. I took a quick look at doing so, but probably need some input from a MemorySSA expert.
Differential Revision: https://reviews.llvm.org/D43716
llvm-svn: 327577
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in
favour of getting source & dest specific alignments through the new API. This allows us
to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy
calls that it creates, as well as to only change the alignment of a memcpy/memmove
argument that it replaces.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: chandlerc, bollu, efriedma
Reviewed By: efriedma
Subscribers: efriedma, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D42974
llvm-svn: 327398
LoopInstSimplify is unused and untested. Reading through the commit
history the pass also seems to have a high maintenance burden.
It would be best to retire the pass for now. It should be easy to
recover if we need something similar in the future.
Differential Revision: https://reviews.llvm.org/D44053
llvm-svn: 327329
getNumUses is a linear operation. It walks a linked list to get a count. So in this case its better to just ask if there are any users rather than how many.
llvm-svn: 327314
This reverts r326908, originally landed as D44102.
Reverted for causing performance regressions on x86. (These regressions
are not yet understood.)
llvm-svn: 327252
There are six separate instances of getPointerOperand() utility.
LoopVectorize.cpp has one of them,
and I don't want to create a 7th one while I'm trying to move
LoopVectorizationLegality into a separate file
(eventual objective is to move it to Analysis tree).
See http://lists.llvm.org/pipermail/llvm-dev/2018-February/120999.html
for llvm-dev discussions
Closes D43323.
Patch by Hideki Saito <hideki.saito@intel.com>.
llvm-svn: 327173
In r263618, JumpThreading learned to look trough simple cast instructions, but
only if the source of those cast instructions was a phi/cmp i1 (in an effort to
limit compile time effects). I think this condition is too restrictive. For
switches with limited value range, InstCombine will readily introduce an extra
trunc instruction to a smaller integer type (e.g. from i8 to i2), leaving us in
the somewhat perverse situation that jump-threading would work before running
instcombine, but not after. Since instcombine produces this pattern, I think we
need to consider it canonical and support it in JumpThreading. In general,
for limiting recursion, I think the existing restriction to phi and cmp nodes
should be sufficient to avoid looking through unprofitable chains of
instructions.
Patch by Keno Fischer!
Differential Revision: https://reviews.llvm.org/D42262
llvm-svn: 327150
Summary:
If the operands of a udiv/urem can be proved to fit within a smaller
power-of-two-sized type, reduce the width of the udiv/urem.
Backed out for failing an assert in clang bootstrap builds. Re-landing
with a fix for handling non-power-of-two inputs (e.g. udiv i24).
Original Differential Revision: https://reviews.llvm.org/D44102
llvm-svn: 326908
Breaks bootstrap builds: clang built with this patch asserts while
building MCDwarf.cpp: Assertion `castIsValid(op, S, Ty) && "Invalid
cast!"' failed.
llvm-svn: 326900
Summary:
If the operands of a udiv/urem can be proved to fit within a smaller
power-of-two-sized type, reduce the width of the udiv/urem.
Reviewers: spatel, sanjoy
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D44102
llvm-svn: 326898
It's been quite some time the Dependence Analysis (DA) is broken,
as it uses the GEP representation to "identify" multi-dimensional arrays.
It even wrongly detects multi-dimensional arrays in single nested loops:
from test/Analysis/DependenceAnalysis/Coupled.ll, example @couple6
;; for (long int i = 0; i < 50; i++) {
;; A[i][3*i - 6] = i;
;; *B++ = A[i][i];
DA used to detect two subscripts, which makes no sense in the LLVM IR
or in C/C++ semantics, as there are no guarantees as in Fortran of
subscripts not overlapping into a next array dimension:
maximum nesting levels = 1
SrcPtrSCEV = %A
DstPtrSCEV = %A
using GEPs
subscript 0
src = {0,+,1}<nuw><nsw><%for.body>
dst = {0,+,1}<nuw><nsw><%for.body>
class = 1
loops = {1}
subscript 1
src = {-6,+,3}<nsw><%for.body>
dst = {0,+,1}<nuw><nsw><%for.body>
class = 1
loops = {1}
Separable = {}
Coupled = {1}
With the current patch, DA will correctly work on only one dimension:
maximum nesting levels = 1
SrcSCEV = {(-2424 + %A)<nsw>,+,1212}<%for.body>
DstSCEV = {%A,+,404}<%for.body>
subscript 0
src = {(-2424 + %A)<nsw>,+,1212}<%for.body>
dst = {%A,+,404}<%for.body>
class = 1
loops = {1}
Separable = {0}
Coupled = {}
This change removes all uses of GEP from DA, and we now only rely
on the SCEV representation.
The patch does not turn on -da-delinearize by default, and so the DA analysis
will be more conservative in the case of multi-dimensional memory accesses in
nested loops.
I disabled some interchange tests, as the DA is not able to disambiguate
the dependence anymore. To make DA stronger, we may need to
compute a bound on the number of iterations based on the access functions
and array dimensions.
The patch cleans up all the CHECKs in test/Transforms/LoopInterchange/*.ll to
avoid checking for snippets of LLVM IR: this form of checking is very hard to
maintain. Instead, we now check for output of the pass that are more meaningful
than dozens of lines of LLVM IR. Some tests now require -debug messages and thus
only enabled with asserts.
Patch written by Sebastian Pop and Aditya Kumar.
Differential Revision: https://reviews.llvm.org/D35430
llvm-svn: 326837
Change doCallSiteSplitting to iterate until we reach the terminator instruction.
tryToSplitCallSite can replace BB's terminator in case BB is a successor of
itself. Then IE will be invalidated and we also have to check the current
terminator.
Reviewers: junbuml, davidxl, davide, fhahn
Reviewed By: fhahn, junbuml
Differential Revision: https://reviews.llvm.org/D43824
llvm-svn: 326793
Summary:
RewriteStatepointsForGC collects parse points for further processing.
During the collection if a callsite is found in an unreachable block
(DominatorTree::isReachableFromEntry()) then all unreachable blocks are
removed by removeUnreachableBlocks(). Some of the removed blocks could
have been reachable according to DominatorTree::isReachableFromEntry().
In this case the collected parse points became stale and resulted in a
crash when accessed.
The fix is to unconditionally canonicalize the IR to
removeUnreachableBlocks and then collect the parse points.
The added test crashes with the old version and passes with this patch.
Patch by Yevgeny Rouban!
Reviewed by: Anna
Differential Revision: https://reviews.llvm.org/D43929
llvm-svn: 326748
getCompare returns true, false or undef constants if the comparison can
be evaluated, or nullptr if it cannot. This is in line with what
ConstantExpr::getCompare returns. It also allows us to use
ConstantExpr::getCompare for comparing constants.
Reviewers: davide, mssimpso, dberlin, anna
Reviewed By: davide
Differential Revision: https://reviews.llvm.org/D43761
llvm-svn: 326720
Summary:
We can discard initial blocks that do other work
We do not need to limit ourselves to just the first block in the chain.
Reviewers: courbet, davide
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44029
llvm-svn: 326698
Iterating through predecessors of `TailBB` while removing their
terminators leads to use after-free, because the predecessor list is
changing on each removal.
llvm-svn: 326668
Summary:
`musttail` calls can't be naively splitted. The split blocks must
include not only the call instruction itself, but also (optional)
`bitcast` and `return` instructions that follow it.
Clone `bitcast` and `ret`, place them into the split blocks, and
remove the tail block when done.
Reviewers: junbuml, mcrosier, davidxl, davide, fhahn
Reviewed By: fhahn
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D43729
llvm-svn: 326666
Currently when AllowRemainder is disabled, pragma unroll count is not
respected even though there is no remainder. This bug causes a loop
fully unrolled in many cases even though the user specifies a unroll
count. Especially it affects OpenCL/CUDA since in many cases a loop
contains convergent instructions and currently AllowRemainder is
disabled for such loops.
Differential Revision: https://reviews.llvm.org/D43826
llvm-svn: 326585
Do not replace results of `musttail` calls with a constant if the
call itself can't be removed.
Do not zap returns of `musttail` callees, if the call site can't be
removed and replaced with a constant.
Do not zap returns of `musttail`-calling blocks, this breaks
invariant too.
Patch by Fedor Indutny
Differential Revision: https://reviews.llvm.org/D43695
llvm-svn: 326404
Summary:
Fix a bug in MergeICmp that can lead to a BCECmp block being processed more than once and eventually lead to a broken LLVM module.
The problem is that if the non-constant value is not produced by the last block, the producer will be processed once when the its parent block
is processed and second time when the last block is processed.
We end up having 2 same BCECmpBlock in the merge queue. And eventually lead to a broken LLVM module.
Reviewers: courbet, davide
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43825
llvm-svn: 326318
Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
In case we update a ValuePHI node created earlier, we could update it
based on a different OpPHI which could be in a different block.
We need to update the TempToBlock mapping reflecting the new block,
otherwise we would end up placing the new phi node in a wrong block.
This problem is exposed by the test case in
https://bugs.llvm.org/show_bug.cgi?id=36504.
This patch fixes a slightly simpler problem than in the bug report. In
the bug's re-producer, the additional problem is that we are re-using a
ValuePHI node with to few incoming values for the new OpPHI. If this
patch makes sense, I will follow it up with a patch that creates a new
PHI node if the existing PHI node has a different number of incoming
values.
Reviewers: davide, dberlin
Reviewed By: dberlin
Differential Revision: https://reviews.llvm.org/D43770
llvm-svn: 326181
The dependency matrix is only empty if no conflicting load/store
instructions have been found. In that case, it is safe to interchange.
For the LLVM test-suite, after this change around 1900 loops are
interchanged, whereas it is 15 before this change. On cortex-a57,
this gives an improvement of -0.57% on the geomean execution
time of SPEC2006, SPEC2000 and the test-suite. There are a
few small perf regressions, but I think we can improve on those
by making the cost model better.
Reviewers: karthikthecool, mcrosier
Reviewed by: karthikthecool
Differential Revision: https://reviews.llvm.org/D43236
llvm-svn: 326077
Summary:
This fixes cases like the new test @nonuniform. In that test, %cc itself
is a uniform value; however, when reading it after the end of the loop in
basic block %if, its value is effectively non-uniform.
This problem was encountered in
https://bugs.freedesktop.org/show_bug.cgi?id=103743; however, this change
in itself is not sufficient to fix that bug, as there is another issue
in the AMDGPU backend.
Change-Id: I32bbffece4a32f686fab54964dae1a5dd72949d4
Reviewers: arsenm, rampitec, jlebar
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D40546
llvm-svn: 325881